fbpx
Wikipedia

Phytoplasma

Phytoplasmas are obligate intracellular parasites of plant phloem tissue and of the insect vectors that are involved in their plant-to-plant transmission. Phytoplasmas were discovered in 1967 by Japanese scientists who termed them mycoplasma-like organisms.[3] Since their discovery, phytoplasmas have resisted all attempts at in vitro culture in any cell-free medium; routine cultivation in an artificial medium thus remains a major challenge. Phytoplasmas are characterized by the lack of a cell wall, a pleiomorphic or filamentous shape, a diameter normally less than 1 μm, and a very small genome.

Phytoplasma
Phyllody induced by phytoplasma infection on a coneflower (Echinacea purpurea)
Scientific classification
Domain: Bacteria
Phylum: Mycoplasmatota
Class: Mollicutes
Order: Acholeplasmatales
Family: Acholeplasmataceae
Genus: Candidatus Phytoplasma
Firrao et al. 2004[1][2]

Phytoplasmas are pathogens of agriculturally important plants, including coconut, sugarcane, sandalwood, and cannabis, as well as horticultural crops like sweet cherry, peaches, and nectarines. They cause a wide variety of symptoms ranging from mild yellowing, small fruit, and reduced sugar content to death. Phytoplasmas are most prevalent in tropical and subtropical regions. They are transmitted from plant to plant by vectors (normally sap-sucking insects such as leafhoppers) in which they both survive and replicate.

History edit

References to diseases now known to be caused by phytoplasmas can be found as far back as 1603 (mulberry dwarf disease in Japan).[4] Such diseases were originally thought to be caused by viruses, which, like phytoplasmas, require insect vectors and cannot be cultured. Viral and phytoplasmic infections share some symptoms.[5] In 1967, phytoplasmas were discovered in ultrathin sections of plant phloem tissue and were termed mycoplasma-like organisms due to their physiological resemblance.[3] The organisms were renamed phytoplasmas in 1994 at the 10th Congress of the International Organization for Mycoplasmology.[5]

Morphology edit

Phytoplasmas are Mollicutes that are bound by a triple-layered membrane rather than a cell wall.[6] The phytoplasma cell membranes studied to date usually contain a single immunodominant protein of unknown function that constitutes most of the protein in the membrane.[7] A typical phytoplasma is pleiomorphic or filamentous in shape and is less than 1 μm in diameter. Like other prokaryotes, phytoplasmic DNA is distributed throughout the cytoplasm instead of being concentrated in a nucleus.[citation needed]

Symptoms edit

Phytoplasmas can infect and cause various symptoms in more than 700 plant species. One characteristic symptom is abnormal floral organ development, including phyllody (the production of leaf-like structures in place of flowers), virescence (the development of green flowers attributable to a loss of pigment by petal cells),[8] and fasciation (abnormal change in the apical meristem structure).[9] Phytoplasma-harboring flowering plants may become sterile. The expression of genes involved in maintaining the apical meristem or in the development of floral organs is altered in the morphologically affected floral organs of phytoplasma-infected plants.[10][11]

A phytoplasma infection often triggers leaf yellowing, probably due to the presence of phytoplasma cells in the phloem, which can affect phloem function and carbohydrate transport,[12] inhibit chlorophyll biosynthesis, and trigger chlorophyll breakdown.[6] These symptoms may be attributable to stress caused by the infection rather than a specific pathogenetic process.[citation needed]

Many phytoplasma-infected plants develop a bushy or "witches' broom" appearance due to changes in their normal growth patterns. Most plants exhibit apical dominance, but infection can trigger the proliferation of axillary (side) shoots and a reduction in internode size.[8] Such symptoms are actually useful in the commercial production of poinsettias. An infection triggers more axillary shoot production; the poinsettia plants thus produce more than a single flower.[13]

Effector (virulence) proteins edit

Many plant pathogens produce virulence factors, or effectors, that modulate or interfere with normal host processes to the benefit of the pathogens. The first phytoplasmal virulence factor, a secreted protein termed “tengu-su inducer” (TENGU; C0H5W6), was identified in 2009 from a phytoplasma causing yellowing of onions. TENGU induces characteristic symptoms, including witches' broom and dwarfism.[14] Transgenic expression of TENGU in Arabidopsis plants induced sterility in male and female flowers.[15] TENGU contains a signal peptide at its N-terminus. After cleavage, the mature protein is only 38 amino acids long.[14] Although phytoplasmas are restricted to the phloem, TENGU is transported from the phloem to other cells, including those of the apical and axillary meristems.[14] TENGU was suggested to inhibit both auxin- and jasmonic acid-related pathways, thereby affecting plant development.[14][15] Surprisingly, the N-terminal 11 amino acid region of the mature protein triggers symptom development in Nicotiana benthamiana plants.[16] TENGU undergoes proteolytic processing by a plant serine protease in vivo, suggesting that the N-terminal peptide alone induces the observed symptoms. TENGU homologs have been identified in AY-group phytoplasmas. All such homologs undergo processing and can induce symptoms, suggesting that the symptom-inducing mechanism is conserved among TENGU homologs.[16]

In 2009, 56 genes for secreted proteins were identified in the genome of aster yellows witches' broom phytoplasma strain (AY-WB); these were named secreted AY-WB proteins (SAPs) and considered effectors.[17] Also in 2009, effector SAP11 was shown to target plant cell nuclei and unload from phloem cells in AY-WB-infected plants.[17] SAP11 was later found to induce changes in leaf shapes of plants and stem proliferations which resembled the witches' broom symptoms of AY-WB-infected plants.[18] In addition, it was demonstrated that SAP11 interacts with and destabilizes plant class II TCP protein domain transcription factors that lead to shoot proliferation and leaf shape changes.[18][19] TCPs also control the expression of lipoxygenase genes required for jasmonate biosynthesis.[20][21] Jasmonate levels are decreased in phytoplasma-infected Arabidopsis plants and plants that transgenically express the AY-WB SAP11 effector. The downregulation of jasmonate production is beneficial to phytoplasmas because jasmonate is involved in plant defenses against herbivorous insects such as leafhoppers.[18][22] Leafhoppers lay increased numbers of eggs on AY-WB-infected plants, at least in part because of SAP11 production. For example, the leafhopper Macrosteles quadrilineatus laid 30% more eggs on plants expressing SAP11 transgenically than control plants and 60% more eggs on plants infected with AY-WB.[23] Phytoplasmas cannot survive in the external environment and are dependent upon insects such as leafhoppers for transmission to new (healthy) plants. Thus, by compromising jasmonate production, SAP11 encourages leafhoppers to lay more eggs on phytoplasma-infected plants, thereby ensuring that newly hatched leafhopper nymphs feed upon infected plants to become phytoplasma vectors. SAP11 effectors are identified in a number of divergent phytoplasmas and these effectors also interact with TCPs and modulate plant defenses.[24][25][26][27] SAP11 is the first phytoplasma virulence protein for which plant targets and effector functions were identified. TCPs were found to be targeted by a number of other pathogen effectors.[28][29]

The AY-WB phytoplasma effector SAP54 was shown to induce virescence and phyllody when expressed in plants, and homologs of this effector were found in at least three other phytoplasmas.[30] Two SAP54 homologs, PHYL1 of the onion yellows phytoplasma and PHYL1PnWB of the peanut witches' broom phytoplasma, also induce phyllody-like floral abnormalities.[31][32] These results suggest that PHYL1, SAP54, and their homologs form a phyllody-inducing gene family, the members of which are termed phyllogens.[31] MADS-box transcription factors (MTFs) of the ABCE model play critical roles in floral organ development in Arabidopsis. Phyllogens interact directly with class A and class E MTFs, inducing protein degradation in a ubiquitin/proteasome-dependent manner that, at least for SAP54, is dependent on interactions with the proteasome shuttle factor RAD23.[31][33][34] Interestingly, RAD23 mutants do not show phyllody when infected with phytoplasma indicating that RAD23 proteins are susceptibility factors; i.e. phytoplasmas and SAP54 require these plant proteins to induce phyllody symptoms.[35] The accumulation of mRNAs encoding class B MTFs, the transcription of which is positively regulated by class A and class E MTFs, is drastically decreased in Arabidopsis constitutively expressing PHYL1.[31] Phyllogens induce abnormal floral organ development by inhibiting the functions of these MTFs. RAD23 proteins are also required for promoting leafhopper vector egg laying on plants that express SAP54 and are infected with AY-WB phytoplasma.[35][36]

Transmission edit

Movement between plants edit

Phytoplasmas are spread principally by insects of the families Cicadellidae (leafhoppers), Fulgoridae (planthoppers), and Psyllidae (jumping plant lice),[37] which feed on the phloem of infected plants, ingesting phytoplasmas and transmitting them to the next plant on which they feed. Thus, the host range of phytoplasmas is strongly dependent upon that of the insect vector. Phytoplasmas contain a major antigenic protein constituting most of the cell surface protein. This protein associates with insect microfilament complexes and is believed to control insect-phytoplasma interactions.[38] Phytoplasmas can overwinter in insect vectors or perennial plants. Phytoplasmas can have varying effects on their insect hosts; examples of both reduced and increased fitness have been noted.[39]

Phytoplasmas enter the insect body through the stylet, pass through the intestine, and then move to the hemolymph and colonize the salivary glands.[39] The entire process can take up to 3 weeks.[39] Once established in an insect host, phytoplasmas are found in most major organs. The time between ingestion by the insect and attainment of an infectious titer in the salivary glands is termed the latency period.[39]

Phytoplasmas can also be spread via dodders (Cuscuta)[40] or by vegetative propagation such as the grafting of infected plant tissue onto a healthy plant.

Movement within plants edit

Phytoplasmas move within phloem from a source to a sink, and can pass through sieve tube element. However, as phytoplasmas spread more slowly than solutes, and for other reasons, passive translocation within plants is thought to be unimportant[41]

Detection and diagnosis edit

Before the molecular era, the diagnosis of diseases caused by phytoplasma was difficult because the organisms could not be cultured. Thus, classical diagnostic techniques, including symptom observation, were used. Ultrathin sections of phloem tissue from plants with suspected phytoplasma-infections were also studied.[3] The empirical use of antibiotics such as tetracycline was additionally employed.[citation needed]

Molecular diagnostic techniques for phytoplasma detection began to emerge in the 1980s and included enzyme-linked immunosorbent assay (ELISA)-based methods. In the early 1990s, polymerase chain reaction (PCR)-based techniques were developed. These are far more sensitive than ELISAs, and restriction fragment length polymorphism (RFLP) analysis allowed the accurate identification of various phytoplasma strains and species.[42]

More recent techniques allow infection levels to be assessed. Both quantitative PCR and bioimaging can effectively quantify phytoplasma titers within plants.[41] In addition, loop-mediated isothermal amplification (LAMP) is now available as a commercial kit, allowing all known phytoplasma species to be detected in about 1 h, including the DNA extraction step.[citation needed]

Although phytoplasmas have recently been reported to be grown in a specific artificial medium, experimental repetition has yet to be reported.[43]

Control edit

Phytoplasmas are normally controlled by the breeding and planting of disease-resistant crop varieties and by the control of insect vectors.[8]

Tissue culture can be used to produce healthy clones of phytoplasma-infected plants. Cryotherapy, the freezing of plant samples in liquid nitrogen, prior to tissue culture increases the probability of producing healthy plants in this manner.[44]

Plantibodies targeting phytoplasmas have also been developed.[45]

Tetracyclines are bacteriostatic to phytoplasmas.[46] However, disease symptoms reappear in the absence of continuous antibiotic application. Thus, tetracycline is not a viable agricultural control agent, but it is used to protect ornamental coconut trees.[47]

Genetics edit

The genomes of four phytoplasmas have been sequenced: "onion yellows",[48] "aster yellows witches' broom" ("Candidatus Phytoplasma asteris"),[49] "Ca. Phytoplasma australiense",[50] and "Ca. Phytoplasma mali".[51] Phytoplasmas have very small genomes with extremely low GC content (sometimes as little as 23%, which is thought to be the lower threshold for a viable genome).[52] In fact, the Bermuda grass white-leaf phytoplasma ("Ca. P. cynodontis") has a genome size of only 530 kb, one of the smallest known genomes of all living organisms.[53] The larger phytoplasma genomes are around 1350 kb in size. The small genome size of phytoplasma is attributable to reductive evolution from Bacillus/Clostridium[dubious ] ancestors. Phytoplasmas have lost ≥75% of their original genes, and can thus no longer survive outside of insects or plant phloem. Some phytoplasmas contain extrachromosomal DNA such as plasmids.[54]

Despite their small genomes, many predicted phytoplasma genes are present in multiple copies. Phytoplasmas lack many genes encoding standard metabolic functions and have no functioning homologous recombination pathway, but they do have a sec transport pathway.[49] Many phytoplasmas contain two rRNA operons. Unlike other Mollicutes, the triplet code of UGA is used as a stop codon in phytoplasmas.[55]

Phytoplasma genomes contain large numbers of transposons and insertion sequences, as well as a unique family of repetitive extragenic palindromes termed PhREPS, for which no role is known. It is theorized that the stem-loop structures in PhREPS play a role in transcription termination or genome stability.[56]

Taxonomy edit

Phytoplasmas belong to the monotypic order Acholeplasmatales.[8] In 1992, the Subcommittee on the Taxonomy of Mollicutes proposed the use of "'Phytoplasma' rather than 'mycoplasma-like organisms' for reference to the phytopathogenic mollicutes".[57] In 2004, the generic name Phytoplasma was adopted and is currently of Candidatus (Ca.) status[2] (used for bacteria that cannot be cultured).[58] As phytoplasma cannot be cultured, methods normally used to classify prokaryotes are not available.[8] Phytoplasma taxonomic groups are based on differences in fragment sizes produced by restriction digests of 16S ribosomal RNA gene sequences (RFLPs) or by comparisons of DNA sequences from 16S/23S spacer regions.[59] The actual number of taxonomic groups remains unclear; recent work on computer-simulated restriction digests of the 16Sr gene suggested up to 28 groups,[60] whereas others have proposed fewer groups with more subgroups. Each group includes at least one Ca. Phytoplasma species, characterized by distinctive biological, phytopathological, and genetic properties.[citation needed]

Species edit

As of November 2021, the following names and type strains are from LPSN,[1], the List of Prokaryotic names with Standing in Nomenclature.[61] The associated diseases and 16Sr group-subgroup classifications are from various sources.[62]

Phylogeny of "Ca. Phytoplasma"[63][64][65]

"Ca. P. tritici" {16SrI}

16SrXIII

"Ca. P. hispanica"

"Ca. P. meliae"

16SrXII

"Ca. P. mali" {16SrX}

16SrII

"Ca. P. australasiatica"

"Ca. P. citri"

"Ca. P. pruni" {16SrIII}

16SrIX

"Ca. P. phoenicia"

16SrXI

"Ca. P. oryzae"

"Ca. P. sacchari"

"Ca. P. pini" {16SrXXI}

16SrVIII

"Ca. P. luffae"

16SrV

"Ca. P. vitis"

"Ca. P. ziziphi"

"Candidatus Phytoplasma" species
Species name Associated disease Type strain 16Sr group-subgroup
"Ca. P. aculeata" Soto et al. 2021 16SrIV
"Ca. P. allocasuarinae" Marcone et al. 2004 Allocasuarina yellows AlloY 16SrXXXIII-A
"Ca. P. americanum" Lee et al. 2006 American potato purple top wilt APPTW12-NE; PPT12-NE 16SrXVIII-A
"Ca. P. asteris" Lee et al. 2004 Aster yellows MIAY; OAY 16SrI-B
"Ca. P. australamericanum" corrig. Davis et al. 2012 (Ca. P. sudamericanum Davis et al. 2012) Passionfruit witches' broom PassWB-Br3; PassWB-Br3R 16SrVI-I
"Ca. P. australasiaticum" corrig. White et al. 1998 (Ca. P. australasia White et al. 1998) Papaya mosaic PpYC 16SrII-D
"Ca. P. australiense" Davis et al. 1997 Australian grapevine yellows none 16SrXII-B
"Ca. P. balanitis" corrig. Win et al. 2013 (Ca. P. balanitae Win et al. 2013) Balanites witches' broom none 16SrV-F
"Ca. P. bonamiae" Rodrigues-Jardim et al. 2023 none
"Ca. P. brasiliense" Montano et al. 2001 Hibiscus witches' broom HibWB26 16SrXV-A
"Ca. P. caricae" Arocha et al. 2005 Papaya bunchy top PAY 16SrXVII-A
"Ca. P. castaneae" Jung et al. 2002 Chestnut witches' broom CnWB 16SrXIX-A
"Ca. P. cirsii" Šafárová et al. 2016 Cirsium yellows and stunting CirYS 16SrXI-E
"Ca. P. citri" corrig. Zreik et al. 1995 (Ca. P. aurantifolia Zreik et al. 1995) Lime witches' broom WBDL 16SrII-B
"Ca. P. cocoinigeriae" corrig. Firrao et al. 2004
"Ca. P. cocoitanzaniae" corrig. Firrao et al. 2004 16SrIV
"Ca. P. convolvuli" Martini et al. 2012 Bindweed yellows BY-S57/11 16SrXII-H
"Ca. P. costaricanum" Lee et al. 2011 Soybean stunt SoyST1c1 16SrXXXI-A
"Ca. P. cynodontis" Marcone et al. 2004 Bermuda grass white leaf BGWL-C1 16SrXIV-A
"Ca. P. dypsidis" Jones et al. 2021 RID7692 16SrIV-?
"Ca. P. fabacearum" Rodrigues-Jardim et al. 2023 none
"Ca. P. fragariae" Valiunas et al. 2006 Strawberry yellows StrawY; StrawYR 16SrXII-E
"Ca. P. fraxini" Griffiths et al. 1999 Ash yellows AshY1; Ashy lT 16SrVII-A
"Ca. P. graminis" Arocha et al. 2005 Sugarcane yellow leaf SCYLP 16SrXVI-A
"Ca. P. hispanicum" Davis et al. 2016 Mexican periwinkle virescence MPV; MPVR 16SrXIII-A
"Ca. P. hispanola" Soto et al. 2021 16SrIV
"Ca. P. japonicum" Sawayanagi et al. 1999 Japanese hydrangea phyllody none 16SrXII-D
"Ca. P. luffae" Davis et al. 2017 Loofah witches' broom LfWB; LfWBR 16SrVIII-A
"Ca. P. lycopersici" Arocha et al. 2007 Tomato 'brote grande' THP 16SrI-Y
"Ca. P. malaysianum" Nejat et al. 2013 Malaysian periwinkle virescence MaPV; MaPVR 16SrXXXII-A
"Ca. P. mali" Seemüller and Schneider 2004 Apple proliferation AP15 16SrX-A
"Ca. P. meliae" Fernández et al. 2016 Chinaberry yellowing ChTY-Mo3 16SrXIII-G
"Ca. P. noviguineense" Miyazaki et al. 2018 Bogia coconut syndrome BCS-Bo; BCS-BoR
"Ca. P. omanense" Al-Saady et al. 2008 Cassia witches' broom IM-1 16SrXXIX-A
"Ca. P. oryzae" Jung et al. 2003 Rice yellow dwarf RYD-Th 16SrXI-A
"Ca. P. palmae" Firrao et al. 2004 Palm lethal yellowing 16SrIV-D
"Ca. P. palmicola" Harrison et al. 2014 Coconut lethal yellowing LYDM-178; LYDM-178R 16SrXXII-A
"Ca. P. persicae" Jones et al. 2004 16SrXII
"Ca. P. phoenicium" Verdin et al. 2003 Almond witches' broom A4 16SrIX-B
"Ca. P. pini" Schneider et al. 2005 Pine witches' broom Pin127S; Pin127SR 16SrXXI-A
"Ca. P. planchoniae" Rodrigues-Jardim et al. 2023 none
"Ca. P. pruni" Davis et al. 2013 Peach X-disease PX11Ct1; PX11CT1R 16SrIII-A
"Ca. P. prunorum" Seemüller and Schneider 2004 European stone fruit yellows ESFY-G1 16SrX-B
"Ca. P. pyri" Seemüller and Schneider 2004 Pear decline PD1 16SrX-C
"Ca. P. rhamni" Marcone et al. 2004 Rhamnus witches' broom BAWB; BWB 16SrXX-A
"Ca. P. rubi" Malembic-Maher et al. 2011 Rubus stunt RuS 16SrV-E
"Ca. P. sacchari" Kirdat et al. 2021 Sugarcane Grassy Shoot Disease SCGS 16SrXI-B
"Ca. P. solani" Quaglino et al. 2013 Stolbur STOL; STOL11R 16SrXII-A
"Ca. P. spartii" Marcone et al. 2004 Spartium witches' broom SpaWB 16SrX-D
"Ca. P. stylosanthis" Rodrigues-Jardim et al. 2021 Stylosanthes little leaf phytoplasma VPRI 43683 16SrXXXVII-A
"Ca. P. tamaricis" Zhao et al. 2009 Salt cedar witches' broom SCWB1; SCWB1R 16SrXXX-A
"Ca. P. taraxaca" corrig. Matiashova 2017 16SrIII
"Ca. P. trifolii" Hiruki and Wang 2004 Clover proliferation CP 16SrVI-A
"Ca. P. tritici" Zhao et al. 2021 WBD R 16SrI-C
"Ca. P. ulmi" Lee et al. 2004 Elm yellows EY1 16SrV-A
"Ca. P. vitis" Firrao et al. 2004 none 16SrV-?
"Ca. P. wodyetiae" Naderali et al. 2017 Foxtail palm yellow decline Bangi-2; FPYD Bangi-2R 16SrXXXVI-A
"Ca. P. ziziphi" Jung et al. 2003 Jujube witches' broom JWB; JWB-Ky 16SrV-B

Gallery edit

See also edit

References edit

  1. ^ a b "Genus "Candidatus Phytoplasma"". List of Prokaryotic names with Standing in Nomenclature. Retrieved 21 November 2021.
  2. ^ a b The IRPCM Phytoplasma/Spiroplasma Working Team - Phytoplasma taxonomy group (2004). "Candidatus Phytoplasma, a taxon for the wall-less, non-helical prokaryotes that colonize plant phloem and insects". Int. J. Syst. Evol. Microbiol. 54 (Pt 4): 1243–1255. doi:10.1099/ijs.0.02854-0. PMID 15280299.
  3. ^ a b c Doi, Yoji; Teranaka, Michiaki; Yora, Kiyoshi; Asuyama, Hidefumi (1967). "Mycoplasma- or PLT Group-like Microorganisms Found in the Phloem Elements of Plants Infected with Mulberry Dwarf, Potato Witches' Broom, Aster Yellows, or Paulownia Witches' Broom". Annals of the Phytopathological Society of Japan (in Japanese). 33 (4): 259–266. doi:10.3186/jjphytopath.33.259.
  4. ^ Okuda, S (1972). "Occurrence of diseases caused by mycoplasma-like organisms in Japan". Plant Protection. 26: 180–183.
  5. ^ a b Hogenhout, Saskia A; Oshima, Kenro; Ammar, El-Desouky; Kakizawa, Shigeyuki; Kingdom, Heather N; Namba, Shigetou (2008). "Phytoplasmas: bacteria that manipulate plants and insects". Molecular Plant Pathology. 9 (4): 403–423. doi:10.1111/j.1364-3703.2008.00472.x. PMC 6640453. PMID 18705857.
  6. ^ a b Bertamini, M; Grando, M. S.; Muthuchelian, K; Nedunchezhian, N (2004). "Effect of phytoplasmal infection on photosystem II efficiency and thylakoid membrane protein changes in field grown apple (Malus pumila) leaves". Physiological and Molecular Plant Pathology. 47 (2): 237–242. doi:10.1006/pmpp.2003.0450.
  7. ^ Berg, Michael; Davies, David L.; Clark, Michael F.; Vetten, H. Joseph; Maie, Gernot; Marcone, Carmine; Seemüller, Erich (1999). "Isolation of the gene encoding an immunodominant membrane protein of the apple proliferation phytoplasma, and expression and characterization of the gene product". Microbiology. 145 (8): 1939–1943. doi:10.1099/13500872-145-8-1937. PMID 10463160.
  8. ^ a b c d e Lee, Ing-Ming; Davis, Robert E.; Gundersen-Rindal, Dawn E. (2000). "Phytoplasma: Phytopathogenic Mollicutes". Annual Review of Microbiology. 54: 221–255. doi:10.1146/annurev.micro.54.1.221. PMID 11018129.
  9. ^ Klingaman, Gerald (February 22, 2008). "Plant of the Week: Fasciated Plants (Crested Plants)". The University of Arkansas System Division of Agriculture. Retrieved 20 May 2023.
  10. ^ Pracros, P; Renaudin J; Eveillard S; Mouras A; Hernould M (2006). "Tomato Flower Abnormalities Induced by Stolbur Phytoplasma Infection Are Associated with Changes of Expression of Floral Development Genes". Molecular Plant-Microbe Interactions. 19 (1): 62–68. doi:10.1094/MPMI-19-0062. PMID 16404954.
  11. ^ Himeno, Misako; Neriya, Yutaro; Minato, Nami; Miura, Chihiro; Sugawara, Kyoko; Ishii, Yoshiko; Yamaji, Yasuyuki; Kakizawa, Shigeyuki; Oshima, Kenro; Namba, Shigetou (2011). "Unique morphological changes in plant pathogenic phytoplasma-infected petunia flowers are related to transcriptional regulation of floral homeotic genes in an organ-specific manner". Plant Journal. 67 (6): 971–979. doi:10.1111/j.1365-313X.2011.04650.x. PMID 21605209.
  12. ^ Muast, BE; Espadas, F; Talavera, C; Aguilar, M; Santamaría, JM; Oropeza, C (2003). "Changes in carbohydrate metabolism in coconut palms infected with the lethal yellowing phytoplasma". Phytopathology. 93 (8): 976–981. doi:10.1094/PHYTO.2003.93.8.976. PMID 18943864.
  13. ^ Lee, Ing-Ming; Klopmeyer, Michael; Bartoszyk, Irena M.; Gundersen-Rindal, Dawn E.; Chou, Tau-San; Thomson, Karen L.; Eisenreich, Robert (1997). "Phytoplasma induced free-branching in commercial poinsettia cultivars". Nature Biotechnology. 15 (2): 178–182. doi:10.1038/nbt0297-178. PMID 9035146. S2CID 11228113.
  14. ^ a b c d Hoshi, Ayaka; Oshima, Kenro; Kakizawa, Shigeyuki; Ishii, Yoshiko; Ozeki, Johji; Hashimoto, Masayoshi; Komatsu, Ken; Kagiwada, Satoshi; Yamaji, Yasuyuki; Namba, Shigetou (2009). "A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium". Proceedings of the National Academy of Sciences. 106 (15): 6416–6421. Bibcode:2009PNAS..106.6416H. doi:10.1073/pnas.0813038106. PMC 2669400. PMID 19329488.
  15. ^ a b Minato, Nami; Himeno, Misako; Hoshi, Ayaka; Maejima, Kensaku; Komatsu, Ken; Takebayashi, Yumiko; Kasahara, Hiroyuki; Yusa, Akira; Yamaji, Yasuyuki; Oshima, Kenro; Kamiya, Yuji; Namba, Shigetou (2014). "The phytoplasmal virulence factor TENGU causes plant sterility by downregulating of the jasmonic acid and auxin pathways". Scientific Reports. 4: 7399. Bibcode:2014NatSR...4E7399M. doi:10.1038/srep07399. PMC 4261181. PMID 25492247.
  16. ^ a b Sugawara, Kyoko; Honma, Youhei; Komatsu, Ken; Himeno, Misako; Oshima, Kenro; Namba, Shigetou (2013). "The alteration of plant morphology by small peptides released from the proteolytic processing of the bacterial peptide TENGU". Plant Physiology. 162 (4): 2004–2015. doi:10.1104/pp.113.218586. PMC 3729778. PMID 23784461.
  17. ^ a b Bai, Xiaodong; Correa, Valdir R; Toruño, Tania Y; Ammar, El-Desouky; Kamoun, Sophien; Hogenhout, Saskia A (January 2009). "AY-WB phytoplasma secretes a protein that targets plant cell nuclei". Molecular Plant-Microbe Interactions. 22 (1): 18–30. doi:10.1094/MPMI-22-1-0018. PMID 19061399.
  18. ^ a b c Sugio, A; Kingdom, HN; MacLean, AM; Grieve, VM; Hogenhout, SA (29 November 2011). "Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis". Proceedings of the National Academy of Sciences of the United States of America. 108 (48): E1254-63. doi:10.1073/pnas.1105664108. PMC 3228479. PMID 22065743.
  19. ^ Sugio, A; MacLean, AM; Hogenhout, SA (May 2014). "The small phytoplasma virulence effector SAP11 contains distinct domains required for nuclear targeting and CIN-TCP binding and destabilization". The New Phytologist. 202 (3): 838–48. doi:10.1111/nph.12721. PMC 4235307. PMID 24552625.
  20. ^ Schommer, C; Debernardi, JM; Bresso, EG; Rodriguez, RE; Palatnik, JF (October 2014). "Repression of cell proliferation by miR319-regulated TCP4". Molecular Plant. 7 (10): 1533–44. doi:10.1093/mp/ssu084. hdl:11336/29605. PMID 25053833.
  21. ^ Danisman, S; van der Wal, F; Dhondt, S; Waites, R; de Folter, S; Bimbo, A; van Dijk, AD; Muino, JM; Cutri, L; Dornelas, MC; Angenent, GC; Immink, RG (August 2012). "Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically". Plant Physiology. 159 (4): 1511–23. doi:10.1104/pp.112.200303. PMC 3425195. PMID 22718775.
  22. ^ Kallenbach, M; Bonaventure, G; Gilardoni, PA; Wissgott, A; Baldwin, IT (12 June 2012). "Empoasca leafhoppers attack wild tobacco plants in a jasmonate-dependent manner and identify jasmonate mutants in natural populations". Proceedings of the National Academy of Sciences of the United States of America. 109 (24): E1548-57. Bibcode:2012PNAS..109E1548K. doi:10.1073/pnas.1200363109. PMC 3386116. PMID 22615404.
  23. ^ Sugio, A; Kingdom HN; MacLean AM; Grieve VM; Hogenhout SA (2011). "Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis". Proceedings of the National Academy of Sciences. 108 (48): E1254–E1263. doi:10.1073/pnas.1105664108. PMC 3228479. PMID 22065743.
  24. ^ Janik, K; Mithöfer, A; Raffeiner, M; Stellmach, H; Hause, B; Schlink, K (April 2017). "An effector of apple proliferation phytoplasma targets TCP transcription factors-a generalized virulence strategy of phytoplasma?". Molecular Plant Pathology. 18 (3): 435–442. doi:10.1111/mpp.12409. PMC 6638208. PMID 27037957.
  25. ^ Tan, CM; Li, CH; Tsao, NW; Su, LW; Lu, YT; Chang, SH; Lin, YY; Liou, JC; Hsieh, LC; Yu, JZ; Sheue, CR; Wang, SY; Lee, CF; Yang, JY (July 2016). "Phytoplasma SAP11 alters 3-isobutyl-2-methoxypyrazine biosynthesis in Nicotiana benthamiana by suppressing NbOMT1". Journal of Experimental Botany. 67 (14): 4415–25. doi:10.1093/jxb/erw225. PMC 5301940. PMID 27279277.
  26. ^ Wang, N; Yang, H; Yin, Z; Liu, W; Sun, L; Wu, Y (December 2018). "Phytoplasma effector SWP1 induces witches' broom symptom by destabilizing the TCP transcription factor BRANCHED1". Molecular Plant Pathology. 19 (12): 2623–2634. doi:10.1111/mpp.12733. PMC 6638060. PMID 30047227.
  27. ^ Chang, SH; Tan, CM; Wu, CT; Lin, TH; Jiang, SY; Liu, RC; Tsai, MC; Su, LW; Yang, JY (26 November 2018). "Alterations of plant architecture and phase transition by the phytoplasma virulence factor SAP11". Journal of Experimental Botany. 69 (22): 5389–5401. doi:10.1093/jxb/ery318. PMC 6255702. PMID 30165491.
  28. ^ Mukhtar, MS; Carvunis, AR; Dreze, M; Epple, P; Steinbrenner, J; Moore, J; Tasan, M; Galli, M; Hao, T; Nishimura, MT; Pevzner, SJ; Donovan, SE; Ghamsari, L; Santhanam, B; Romero, V; Poulin, MM; Gebreab, F; Gutierrez, BJ; Tam, S; Monachello, D; Boxem, M; Harbort, CJ; McDonald, N; Gai, L; Chen, H; He, Y; European Union Effectoromics, Consortium.; Vandenhaute, J; Roth, FP; Hill, DE; Ecker, JR; Vidal, M; Beynon, J; Braun, P; Dangl, JL (29 July 2011). "Independently evolved virulence effectors converge onto hubs in a plant immune system network". Science. 333 (6042): 596–601. Bibcode:2011Sci...333..596M. doi:10.1126/science.1203659. PMC 3170753. PMID 21798943.
  29. ^ Yang, L; Teixeira, PJ; Biswas, S; Finkel, OM; He, Y; Salas-Gonzalez, I; English, ME; Epple, P; Mieczkowski, P; Dangl, JL (8 February 2017). "Pseudomonas syringae Type III Effector HopBB1 Promotes Host Transcriptional Repressor Degradation to Regulate Phytohormone Responses and Virulence". Cell Host & Microbe. 21 (2): 156–168. doi:10.1016/j.chom.2017.01.003. PMC 5314207. PMID 28132837.
  30. ^ MacLean, A. M.; Sugio, A.; Makarova, O. V.; Findlay, K. C.; Grieve, V. M.; Toth, R.; Nicolaisen, M.; Hogenhout, S. A. (2011). "Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants". Plant Physiology. 157 (2): 831–841. doi:10.1104/pp.111.181586. PMC 3192582. PMID 21849514.
  31. ^ a b c d Maejima, K; Iwai R; Himeno M; Komatsu K; Kitazawa Y; Fujita N; Ishikawa K; Fukuoka M; Minato N; Yamaji Y; Oshima K; Namba S (2014). "Recognition of floral homeotic MADS-domain transcription factors by a phytoplasmal effector, phyllogen, induces phyllody". Plant Journal. 78 (4): 541–554. doi:10.1111/tpj.12495. PMC 4282529. PMID 24597566.
  32. ^ Yang, Chiao-Yin; Huang, Yu-Hsin; Lin, Chan-Pin; Lin, Yen-Yu; Hsu, Hao-Chun; Wang, Chun-Neng; Liu, Li-Yu; Shen, Bing-Nan; Lin, Shih-Shun (2015). "MiR396-targeted SHORT VEGETATIVE PHASE is required to repress flowering and is related to the development of abnormal flower symptoms by the PHYL1 effector". Plant Physiology. 168 (4): 1702–1716. doi:10.1104/pp.15.00307. PMC 4528741. PMID 26103992.
  33. ^ MacLean, Allyson M.; Orlovskis, Zigmunds; Kowitwanich, Krissana; Zdziarska, Anna M.; Angenent, Gerco C.; Immink, Richard G. H.; Hogenhout, Saskia A. (2014). "Phytoplasma Effector SAP54 Hijacks Plant Reproduction by Degrading MADS-box Proteins and Promotes Insect Colonization in a RAD23-Dependent Manner". PLOS Biology. 12 (4): e1001835. doi:10.1371/journal.pbio.1001835. PMC 3979655. PMID 24714165.
  34. ^ Maejima, Kensaku; Kitazawa, Yugo; Tomomitsu, Tatsuya; Yusa, Akira; Neriya, Yutaro; Himeno, Misako; Yamaji, Yasuyuki; Oshima, Kenro; Namba, Shigetou (2015). "Degradation of class E MADS-domain transcription factors in Arabidopsis by a phytoplasmal effector, phyllogen". Plant Signaling & Behavior. 10 (8): e1042635. Bibcode:2015PlSiB..10E2635M. doi:10.1080/15592324.2015.1042635. PMC 4623417. PMID 26179462.
  35. ^ a b MacLean, Allyson M.; Sugio, Akiko; Makarova, Olga V.; Findlay, Kim C.; Grieve, Victoria M.; Tóth, Réka; Nicolaisen, Mogens; Hogenhout, Saskia A. (October 2011). "Phytoplasma effector SAP54 induces indeterminate leaf-like flower development in Arabidopsis plants". Plant Physiology. 157 (2): 831–41. doi:10.1104/pp.111.181586. PMC 3192582. PMID 21849514.
  36. ^ Orlovskis, Zigmunds; Hogenhout, Saskia A. (2016). "A Bacterial Parasite Effector Mediates Insect Vector Attraction in Host Plants Independently of Developmental Changes". Frontiers in Plant Science. 7: 885. doi:10.3389/fpls.2016.00885. PMC 4917533. PMID 27446117.
  37. ^ Weintraub, Phyllis G.; Beanland, LeAnn (2006). "Insect vectors of phytoplasmas". Annual Review of Entomology. 51: 91–111. doi:10.1146/annurev.ento.51.110104.151039. PMID 16332205.
  38. ^ Suzuki, S.; Oshima, K.; Kakizawa, S.; Arashida, R.; Jung, H.-Y.; Yamaji, Y.; Nishigawa, H.; Ugaki, M.; Namba, S. (2006). "Interactions between a membrane protein of a pathogen and insect microfilament complex determines insect vector specificity". Proceedings of the National Academy of Sciences. 103 (11): 4252–4257. doi:10.1073/pnas.0508668103. PMC 1449679. PMID 16537517.
  39. ^ a b c d Christensen, N; Axelsen, K; Nicolaisen, M; Schulz, A (2005). "Phytoplasmas and their interactions with their hosts". Trends in Plant Science. 10 (11): 526–535. doi:10.1016/j.tplants.2005.09.008. PMID 16226054.
  40. ^ Carraro, L.; Loi, N.; Favali, M. A.; Favali, M. A. (1991). "Transmission characteristics of the clover phyllody agent by dodder". Journal of Phytopathology. 133: 15–22. doi:10.1111/j.1439-0434.1991.tb00132.x.
  41. ^ a b Christensen, Nynne Meyn; Nicolaisen, Mogens; Hansen, Michael; Schulz, Alexander (2004). "Distribution of phytoplasmas in infected plants as revealed by real-time PCR and bioimaging". Molecular Plant-Microbe Interactions. 17 (11): 1175–1184. doi:10.1094/MPMI.2004.17.11.1175. PMID 15553243.
  42. ^ Chen, TA; Lei, JD; Lin, CP (1989). "Detection and identification of plant and insect mollicutes". In Whitcomb, RF; Tully, JG (eds.). The Mycoplasmas. Vol. 5. pp. 393–424. doi:10.1016/B978-0-12-078405-9.50016-1. ISBN 978-0-12-078405-9.
  43. ^ Contaldo, Nicoletta; Bertaccini, Assunta; Paltrinieri, Samanta; Windsor, Helena; Windsor, G (2012). "Axenic culture of plant pathogenic phytoplasmas". Phytopathologia Mediterranea. 51 (3): 607–617. doi:10.14601/Phytopathol_Mediterr-11773 (inactive 31 January 2024).{{cite journal}}: CS1 maint: DOI inactive as of January 2024 (link)
  44. ^ Wang, Qiaochun; Valkonen, J. P. T. (2008). "Efficient elimination of sweetpotato little leaf phytoplasma from sweetpotato by cryotherapy of shoot tips". Plant Pathology. 57 (2): 338–347. doi:10.1111/j.1365-3059.2007.01710.x. ISSN 0032-0862.
  45. ^ Chen, Y. D.; Chen, T. A. (1998). "Expression of engineered antibodies in plants: A possible tool for spiroplasma and phytoplasma disease control". Phytopathology. 88 (12): 1367–1371. doi:10.1094/PHYTO.1998.88.12.1367. PMID 18944841.
  46. ^ Davies, R. E.; Whitcomb, R. F.; Steere, R. L. (1968). "Remission of aster yellows disease by antibiotics". Science. 161 (3843): 793–794. Bibcode:1968Sci...161..793D. doi:10.1126/science.161.3843.793. PMID 5663807. S2CID 46249624.
  47. ^ Pace, Eric (July 19, 1983). "DRUG FOR HUMANS CHECKS PALM TREE DISEASE". The New York Times – via NYTimes.com.
  48. ^ Oshima, K; Kakizawa, S; Nishigawa, H; Jung, HY; Wei, W; Suzuki, S; Arashida, R; Nakata, D; et al. (2004). "Reductive evolution suggested from the complete genome sequence of a plant-pathogenic phytoplasma". Nature Genetics. 36 (1): 27–29. doi:10.1038/ng1277. PMID 14661021. S2CID 572757.
  49. ^ a b Bai, X; Zhang, J; Ewing, A; Miller, SA; Jancso Radek, A; Shevchenko, DV; Tsukerman, K; Walunas, T; et al. (2006). "Living with Genome Instability: the Adaptation of Phytoplasmas to Diverse Environments of Their Insect and Plant Hosts". Journal of Bacteriology. 188 (10): 3682–3696. doi:10.1128/JB.188.10.3682-3696.2006. PMC 1482866. PMID 16672622.
  50. ^ Tran-Nguyen, LT; Kube, M; Schneider, B; Reinhardt, R; Gibb, KS (2008). "Comparative Genome Analysis of "Ca. Phytoplasma australiense" (Subgroup tuf-Australia I; rp-A) and "Ca. Phytoplasma asteris" Strains OY-M and AY-WB" (PDF). Journal of Bacteriology. 190 (11): 3979–91. doi:10.1128/JB.01301-07. PMC 2395047. PMID 18359806.
  51. ^ Kube, M; Schneider, B; Kuhl, H; Dandekar, T; Heitmann, K; Migdoll, AM; Reinhardt, R; Seemüller, E (2008). "The linear chromosome of the plant-pathogenic mycoplasma 'Candidatus Phytoplasma mali'". BMC Genomics. 9 (1): 306. doi:10.1186/1471-2164-9-306. PMC 2459194. PMID 18582369.
  52. ^ Dikinson, M. Molecular Plant Pathology (2003) BIOS Scientific Publishers
  53. ^ Marcone, C; Neimark, H; Ragozzino, A; Lauer, U; Seemüller, E (1999). "Chromosome Sizes of Phytoplasmas Composing Major Phylogenetic Groups and Subgroups". Phytopathology. 89 (9): 805–810. doi:10.1094/PHYTO.1999.89.9.805. PMID 18944709.
  54. ^ Nishigawa, Hisashi; Oshima, Kenro; Miyata, Shin-ichi; Ugaki, Masashi; Namba, Shigetou (2003). "Complete set of extrachromosomal DNAs from three pathogenic lines of onion yellows phytoplasma and use of PCR to differentiate each line". Journal of General Plant Pathology. 69 (3): 194–198. doi:10.1007/s10327-003-0035-1. ISSN 1345-2630. S2CID 46180540.
  55. ^ Razin, Shmuel; Yogev, David; Naot, Yehudith (1998). "Molecular Biology and Pathogenicity of Mycoplasmas". Microbiology and Molecular Biology Reviews. 62 (4): 1094–1156. doi:10.1128/MMBR.62.4.1094-1156.1998. ISSN 1092-2172. PMC 98941. PMID 9841667.
  56. ^ Jomantiene, Rasa; Davis, Robert E (2006). "Clusters of diverse genes existing as multiple, sequence variable mosaics in a phytoplasma genomes". FEMS Microbiology Letters. 255 (1): 59–65. doi:10.1111/j.1574-6968.2005.00057.x. PMID 16436062. S2CID 12057877.
  57. ^ Subcommittee on the Taxonomy of Mollicutes. Minutes of the Interim Meetings, 1 and 2 August, 1992, Ames, Iowa[permanent dead link] Int. J. Syst. Bacteriol. April 1993, p. 394–397; Vol. 43, No. 2 (see minutes 10 and 25)
  58. ^ Murray, R. G. E.; Stackebrandt, E. (1995). "Taxonomic Note: Implementation of the Provisional Status Candidatus for Incompletely Described Procaryotes". International Journal of Systematic Bacteriology. 45 (1): 186–187. doi:10.1099/00207713-45-1-186. ISSN 0020-7713. PMID 7857801.
  59. ^ Hodgetts, J; Ball, T; Boonham, N; Mumford, R; Dickinson, M (2007). "Taxonomic groupings based on the analysis on the 16s/23s spacer regions which shows greater variation than the normally used 16srRNA gene results in classification similar to that derived from 16s rRNA data but with more detailed subdivisions". Plant Pathology. 56 (3): 357–365. doi:10.1111/j.1365-3059.2006.01561.x.
  60. ^ Wei, Wei; Davis, Robert E.; Lee, Ing-Ming; Zhao, Yan (2007). "Computer-simulated RFLP analysis of 16S rRNA genes: identification of ten new phytoplasma groups". International Journal of Systematic and Evolutionary Microbiology. 57 (8): 1855–1867. doi:10.1099/ijs.0.65000-0. PMID 17684271.
  61. ^ Parte, A.C.; Sardà Carbasse, J.; Meier-Kolthoff, J.P.; Reimer, L.C.; Göker, M. (2020). "List of Prokaryotic names with Standing in Nomenclature (LPSN) moves to the DSMZ". International Journal of Systematic and Evolutionary Microbiology. 70 (11): 5607–5612. doi:10.1099/ijsem.0.004332. PMC 7723251. PMID 32701423.
  62. ^ "Phytoplasma classification". EPPO Global Database. 2020. Retrieved 22 November 2021.
  63. ^ "GTDB release 08-RS214". Genome Taxonomy Database. Retrieved 10 May 2023.
  64. ^ "bac120_r214.sp_label". Genome Taxonomy Database. Retrieved 10 May 2023.
  65. ^ "Taxon History". Genome Taxonomy Database. Retrieved 10 May 2023.
  66. ^ Yadav, A.; Bhale, U.; Thorat, V.; Shouche, Y. (2014). "First Report of new subgroup 16SrII- M 'Candidatus Phytoplasma aurantifolia' associated with witches' broom on Tephrosia purpurea in India". Plant Disease. 98 (7): 990. doi:10.1094/PDIS-11-13-1183-PDN. PMID 30708921.

External links edit

  • Phytoplasma Classification Iphyclassifier
  • First International Phytoplasmologist Working Group Meeting published in Vol. 60-2 2007 of Bulletin of Insectology
  • Photo gallery about plants infected of phytoplasma 2012-02-08 at the Wayback Machine
  • Phytoplasma Resource and phytoplasma classification database 2008-12-08 at the Wayback Machine
  • publishes an informative site on this topic.
  • includes several interesting articles on this topic.
  • Phytoplasma Genome Projects.
  • The Centre for Information on Coconut Lethal Yellowing with an associated Yahoo discussion group.
  • Video of Melia yellows symptoms
  • Video of maize bushy stunt symptoms
  • Phytoplasma universal detection kit Nippon Gene Co., Ltd.
  • Davis, R. E.; Sinclair, W. A. (1998). "Phytoplasma Identity and Disease Etiology". Phytopathology. 88 (12): 1372–1376. doi:10.1094/PHYTO.1998.88.12.1372. PMID 18944842.

phytoplasma, obligate, intracellular, parasites, plant, phloem, tissue, insect, vectors, that, involved, their, plant, plant, transmission, were, discovered, 1967, japanese, scientists, termed, them, mycoplasma, like, organisms, since, their, discovery, phytop. Phytoplasmas are obligate intracellular parasites of plant phloem tissue and of the insect vectors that are involved in their plant to plant transmission Phytoplasmas were discovered in 1967 by Japanese scientists who termed them mycoplasma like organisms 3 Since their discovery phytoplasmas have resisted all attempts at in vitro culture in any cell free medium routine cultivation in an artificial medium thus remains a major challenge Phytoplasmas are characterized by the lack of a cell wall a pleiomorphic or filamentous shape a diameter normally less than 1 mm and a very small genome Phytoplasma Phyllody induced by phytoplasma infection on a coneflower Echinacea purpurea Scientific classification Domain Bacteria Phylum Mycoplasmatota Class Mollicutes Order Acholeplasmatales Family Acholeplasmataceae Genus Candidatus PhytoplasmaFirrao et al 2004 1 2 Phytoplasmas are pathogens of agriculturally important plants including coconut sugarcane sandalwood and cannabis as well as horticultural crops like sweet cherry peaches and nectarines They cause a wide variety of symptoms ranging from mild yellowing small fruit and reduced sugar content to death Phytoplasmas are most prevalent in tropical and subtropical regions They are transmitted from plant to plant by vectors normally sap sucking insects such as leafhoppers in which they both survive and replicate Contents 1 History 2 Morphology 3 Symptoms 4 Effector virulence proteins 5 Transmission 5 1 Movement between plants 5 2 Movement within plants 6 Detection and diagnosis 7 Control 8 Genetics 9 Taxonomy 10 Species 11 Gallery 12 See also 13 References 14 External linksHistory editReferences to diseases now known to be caused by phytoplasmas can be found as far back as 1603 mulberry dwarf disease in Japan 4 Such diseases were originally thought to be caused by viruses which like phytoplasmas require insect vectors and cannot be cultured Viral and phytoplasmic infections share some symptoms 5 In 1967 phytoplasmas were discovered in ultrathin sections of plant phloem tissue and were termed mycoplasma like organisms due to their physiological resemblance 3 The organisms were renamed phytoplasmas in 1994 at the 10th Congress of the International Organization for Mycoplasmology 5 Morphology editPhytoplasmas are Mollicutes that are bound by a triple layered membrane rather than a cell wall 6 The phytoplasma cell membranes studied to date usually contain a single immunodominant protein of unknown function that constitutes most of the protein in the membrane 7 A typical phytoplasma is pleiomorphic or filamentous in shape and is less than 1 mm in diameter Like other prokaryotes phytoplasmic DNA is distributed throughout the cytoplasm instead of being concentrated in a nucleus citation needed Symptoms editPhytoplasmas can infect and cause various symptoms in more than 700 plant species One characteristic symptom is abnormal floral organ development including phyllody the production of leaf like structures in place of flowers virescence the development of green flowers attributable to a loss of pigment by petal cells 8 and fasciation abnormal change in the apical meristem structure 9 Phytoplasma harboring flowering plants may become sterile The expression of genes involved in maintaining the apical meristem or in the development of floral organs is altered in the morphologically affected floral organs of phytoplasma infected plants 10 11 A phytoplasma infection often triggers leaf yellowing probably due to the presence of phytoplasma cells in the phloem which can affect phloem function and carbohydrate transport 12 inhibit chlorophyll biosynthesis and trigger chlorophyll breakdown 6 These symptoms may be attributable to stress caused by the infection rather than a specific pathogenetic process citation needed Many phytoplasma infected plants develop a bushy or witches broom appearance due to changes in their normal growth patterns Most plants exhibit apical dominance but infection can trigger the proliferation of axillary side shoots and a reduction in internode size 8 Such symptoms are actually useful in the commercial production of poinsettias An infection triggers more axillary shoot production the poinsettia plants thus produce more than a single flower 13 Effector virulence proteins editMany plant pathogens produce virulence factors or effectors that modulate or interfere with normal host processes to the benefit of the pathogens The first phytoplasmal virulence factor a secreted protein termed tengu su inducer TENGU C0H5W6 was identified in 2009 from a phytoplasma causing yellowing of onions TENGU induces characteristic symptoms including witches broom and dwarfism 14 Transgenic expression of TENGU in Arabidopsis plants induced sterility in male and female flowers 15 TENGU contains a signal peptide at its N terminus After cleavage the mature protein is only 38 amino acids long 14 Although phytoplasmas are restricted to the phloem TENGU is transported from the phloem to other cells including those of the apical and axillary meristems 14 TENGU was suggested to inhibit both auxin and jasmonic acid related pathways thereby affecting plant development 14 15 Surprisingly the N terminal 11 amino acid region of the mature protein triggers symptom development in Nicotiana benthamiana plants 16 TENGU undergoes proteolytic processing by a plant serine protease in vivo suggesting that the N terminal peptide alone induces the observed symptoms TENGU homologs have been identified in AY group phytoplasmas All such homologs undergo processing and can induce symptoms suggesting that the symptom inducing mechanism is conserved among TENGU homologs 16 In 2009 56 genes for secreted proteins were identified in the genome of aster yellows witches broom phytoplasma strain AY WB these were named secreted AY WB proteins SAPs and considered effectors 17 Also in 2009 effector SAP11 was shown to target plant cell nuclei and unload from phloem cells in AY WB infected plants 17 SAP11 was later found to induce changes in leaf shapes of plants and stem proliferations which resembled the witches broom symptoms of AY WB infected plants 18 In addition it was demonstrated that SAP11 interacts with and destabilizes plant class II TCP protein domain transcription factors that lead to shoot proliferation and leaf shape changes 18 19 TCPs also control the expression of lipoxygenase genes required for jasmonate biosynthesis 20 21 Jasmonate levels are decreased in phytoplasma infected Arabidopsis plants and plants that transgenically express the AY WB SAP11 effector The downregulation of jasmonate production is beneficial to phytoplasmas because jasmonate is involved in plant defenses against herbivorous insects such as leafhoppers 18 22 Leafhoppers lay increased numbers of eggs on AY WB infected plants at least in part because of SAP11 production For example the leafhopper Macrosteles quadrilineatus laid 30 more eggs on plants expressing SAP11 transgenically than control plants and 60 more eggs on plants infected with AY WB 23 Phytoplasmas cannot survive in the external environment and are dependent upon insects such as leafhoppers for transmission to new healthy plants Thus by compromising jasmonate production SAP11 encourages leafhoppers to lay more eggs on phytoplasma infected plants thereby ensuring that newly hatched leafhopper nymphs feed upon infected plants to become phytoplasma vectors SAP11 effectors are identified in a number of divergent phytoplasmas and these effectors also interact with TCPs and modulate plant defenses 24 25 26 27 SAP11 is the first phytoplasma virulence protein for which plant targets and effector functions were identified TCPs were found to be targeted by a number of other pathogen effectors 28 29 The AY WB phytoplasma effector SAP54 was shown to induce virescence and phyllody when expressed in plants and homologs of this effector were found in at least three other phytoplasmas 30 Two SAP54 homologs PHYL1 of the onion yellows phytoplasma and PHYL1PnWB of the peanut witches broom phytoplasma also induce phyllody like floral abnormalities 31 32 These results suggest that PHYL1 SAP54 and their homologs form a phyllody inducing gene family the members of which are termed phyllogens 31 MADS box transcription factors MTFs of the ABCE model play critical roles in floral organ development in Arabidopsis Phyllogens interact directly with class A and class E MTFs inducing protein degradation in a ubiquitin proteasome dependent manner that at least for SAP54 is dependent on interactions with the proteasome shuttle factor RAD23 31 33 34 Interestingly RAD23 mutants do not show phyllody when infected with phytoplasma indicating that RAD23 proteins are susceptibility factors i e phytoplasmas and SAP54 require these plant proteins to induce phyllody symptoms 35 The accumulation of mRNAs encoding class B MTFs the transcription of which is positively regulated by class A and class E MTFs is drastically decreased in Arabidopsis constitutively expressing PHYL1 31 Phyllogens induce abnormal floral organ development by inhibiting the functions of these MTFs RAD23 proteins are also required for promoting leafhopper vector egg laying on plants that express SAP54 and are infected with AY WB phytoplasma 35 36 Transmission editMovement between plants edit Phytoplasmas are spread principally by insects of the families Cicadellidae leafhoppers Fulgoridae planthoppers and Psyllidae jumping plant lice 37 which feed on the phloem of infected plants ingesting phytoplasmas and transmitting them to the next plant on which they feed Thus the host range of phytoplasmas is strongly dependent upon that of the insect vector Phytoplasmas contain a major antigenic protein constituting most of the cell surface protein This protein associates with insect microfilament complexes and is believed to control insect phytoplasma interactions 38 Phytoplasmas can overwinter in insect vectors or perennial plants Phytoplasmas can have varying effects on their insect hosts examples of both reduced and increased fitness have been noted 39 Phytoplasmas enter the insect body through the stylet pass through the intestine and then move to the hemolymph and colonize the salivary glands 39 The entire process can take up to 3 weeks 39 Once established in an insect host phytoplasmas are found in most major organs The time between ingestion by the insect and attainment of an infectious titer in the salivary glands is termed the latency period 39 Phytoplasmas can also be spread via dodders Cuscuta 40 or by vegetative propagation such as the grafting of infected plant tissue onto a healthy plant Movement within plants edit Phytoplasmas move within phloem from a source to a sink and can pass through sieve tube element However as phytoplasmas spread more slowly than solutes and for other reasons passive translocation within plants is thought to be unimportant 41 Detection and diagnosis editBefore the molecular era the diagnosis of diseases caused by phytoplasma was difficult because the organisms could not be cultured Thus classical diagnostic techniques including symptom observation were used Ultrathin sections of phloem tissue from plants with suspected phytoplasma infections were also studied 3 The empirical use of antibiotics such as tetracycline was additionally employed citation needed Molecular diagnostic techniques for phytoplasma detection began to emerge in the 1980s and included enzyme linked immunosorbent assay ELISA based methods In the early 1990s polymerase chain reaction PCR based techniques were developed These are far more sensitive than ELISAs and restriction fragment length polymorphism RFLP analysis allowed the accurate identification of various phytoplasma strains and species 42 More recent techniques allow infection levels to be assessed Both quantitative PCR and bioimaging can effectively quantify phytoplasma titers within plants 41 In addition loop mediated isothermal amplification LAMP is now available as a commercial kit allowing all known phytoplasma species to be detected in about 1 h including the DNA extraction step citation needed Although phytoplasmas have recently been reported to be grown in a specific artificial medium experimental repetition has yet to be reported 43 Control editPhytoplasmas are normally controlled by the breeding and planting of disease resistant crop varieties and by the control of insect vectors 8 Tissue culture can be used to produce healthy clones of phytoplasma infected plants Cryotherapy the freezing of plant samples in liquid nitrogen prior to tissue culture increases the probability of producing healthy plants in this manner 44 Plantibodies targeting phytoplasmas have also been developed 45 Tetracyclines are bacteriostatic to phytoplasmas 46 However disease symptoms reappear in the absence of continuous antibiotic application Thus tetracycline is not a viable agricultural control agent but it is used to protect ornamental coconut trees 47 Genetics editThe genomes of four phytoplasmas have been sequenced onion yellows 48 aster yellows witches broom Candidatus Phytoplasma asteris 49 Ca Phytoplasma australiense 50 and Ca Phytoplasma mali 51 Phytoplasmas have very small genomes with extremely low GC content sometimes as little as 23 which is thought to be the lower threshold for a viable genome 52 In fact the Bermuda grass white leaf phytoplasma Ca P cynodontis has a genome size of only 530 kb one of the smallest known genomes of all living organisms 53 The larger phytoplasma genomes are around 1350 kb in size The small genome size of phytoplasma is attributable to reductive evolution from Bacillus Clostridium dubious discuss ancestors Phytoplasmas have lost 75 of their original genes and can thus no longer survive outside of insects or plant phloem Some phytoplasmas contain extrachromosomal DNA such as plasmids 54 Despite their small genomes many predicted phytoplasma genes are present in multiple copies Phytoplasmas lack many genes encoding standard metabolic functions and have no functioning homologous recombination pathway but they do have a sec transport pathway 49 Many phytoplasmas contain two rRNA operons Unlike other Mollicutes the triplet code of UGA is used as a stop codon in phytoplasmas 55 Phytoplasma genomes contain large numbers of transposons and insertion sequences as well as a unique family of repetitive extragenic palindromes termed PhREPS for which no role is known It is theorized that the stem loop structures in PhREPS play a role in transcription termination or genome stability 56 Taxonomy editPhytoplasmas belong to the monotypic order Acholeplasmatales 8 In 1992 the Subcommittee on the Taxonomy of Mollicutes proposed the use of Phytoplasma rather than mycoplasma like organisms for reference to the phytopathogenic mollicutes 57 In 2004 the generic name Phytoplasma was adopted and is currently of Candidatus Ca status 2 used for bacteria that cannot be cultured 58 As phytoplasma cannot be cultured methods normally used to classify prokaryotes are not available 8 Phytoplasma taxonomic groups are based on differences in fragment sizes produced by restriction digests of 16S ribosomal RNA gene sequences RFLPs or by comparisons of DNA sequences from 16S 23S spacer regions 59 The actual number of taxonomic groups remains unclear recent work on computer simulated restriction digests of the 16Sr gene suggested up to 28 groups 60 whereas others have proposed fewer groups with more subgroups Each group includes at least one Ca Phytoplasma species characterized by distinctive biological phytopathological and genetic properties citation needed Species editAs of November 2021 update the following names and type strains are from LPSN 1 the List of Prokaryotic names with Standing in Nomenclature 61 The associated diseases and 16Sr group subgroup classifications are from various sources 62 Phylogeny of Ca Phytoplasma 63 64 65 Ca P tritici 16SrI 16SrXIII Ca P hispanica Ca P meliae 16SrXII Ca P australiense Ca P solani Ca P mali 16SrX 16SrII Ca P australasiatica Ca P citri Ca P pruni 16SrIII 16SrIX Ca P phoenicia 16SrXI Ca P oryzae Ca P sacchari Ca P pini 16SrXXI 16SrVIII Ca P luffae 16SrV Ca P vitis Ca P ziziphi Candidatus Phytoplasma species Species name Associated disease Type strain 16Sr group subgroup Ca P aculeata Soto et al 2021 16SrIV Ca P allocasuarinae Marcone et al 2004 Allocasuarina yellows AlloY 16SrXXXIII A Ca P americanum Lee et al 2006 American potato purple top wilt APPTW12 NE PPT12 NE 16SrXVIII A Ca P asteris Lee et al 2004 Aster yellows MIAY OAY 16SrI B Ca P australamericanum corrig Davis et al 2012 Ca P sudamericanum Davis et al 2012 Passionfruit witches broom PassWB Br3 PassWB Br3R 16SrVI I Ca P australasiaticum corrig White et al 1998 Ca P australasia White et al 1998 Papaya mosaic PpYC 16SrII D Ca P australiense Davis et al 1997 Australian grapevine yellows none 16SrXII B Ca P balanitis corrig Win et al 2013 Ca P balanitae Win et al 2013 Balanites witches broom none 16SrV F Ca P bonamiae Rodrigues Jardim et al 2023 none Ca P brasiliense Montano et al 2001 Hibiscus witches broom HibWB26 16SrXV A Ca P caricae Arocha et al 2005 Papaya bunchy top PAY 16SrXVII A Ca P castaneae Jung et al 2002 Chestnut witches broom CnWB 16SrXIX A Ca P cirsii Safarova et al 2016 Cirsium yellows and stunting CirYS 16SrXI E Ca P citri corrig Zreik et al 1995 Ca P aurantifolia Zreik et al 1995 Lime witches broom WBDL 16SrII B Ca P cocoinigeriae corrig Firrao et al 2004 Ca P cocoitanzaniae corrig Firrao et al 2004 16SrIV Ca P convolvuli Martini et al 2012 Bindweed yellows BY S57 11 16SrXII H Ca P costaricanum Lee et al 2011 Soybean stunt SoyST1c1 16SrXXXI A Ca P cynodontis Marcone et al 2004 Bermuda grass white leaf BGWL C1 16SrXIV A Ca P dypsidis Jones et al 2021 RID7692 16SrIV Ca P fabacearum Rodrigues Jardim et al 2023 none Ca P fragariae Valiunas et al 2006 Strawberry yellows StrawY StrawYR 16SrXII E Ca P fraxini Griffiths et al 1999 Ash yellows AshY1 Ashy lT 16SrVII A Ca P graminis Arocha et al 2005 Sugarcane yellow leaf SCYLP 16SrXVI A Ca P hispanicum Davis et al 2016 Mexican periwinkle virescence MPV MPVR 16SrXIII A Ca P hispanola Soto et al 2021 16SrIV Ca P japonicum Sawayanagi et al 1999 Japanese hydrangea phyllody none 16SrXII D Ca P luffae Davis et al 2017 Loofah witches broom LfWB LfWBR 16SrVIII A Ca P lycopersici Arocha et al 2007 Tomato brote grande THP 16SrI Y Ca P malaysianum Nejat et al 2013 Malaysian periwinkle virescence MaPV MaPVR 16SrXXXII A Ca P mali Seemuller and Schneider 2004 Apple proliferation AP15 16SrX A Ca P meliae Fernandez et al 2016 Chinaberry yellowing ChTY Mo3 16SrXIII G Ca P noviguineense Miyazaki et al 2018 Bogia coconut syndrome BCS Bo BCS BoR Ca P omanense Al Saady et al 2008 Cassia witches broom IM 1 16SrXXIX A Ca P oryzae Jung et al 2003 Rice yellow dwarf RYD Th 16SrXI A Ca P palmae Firrao et al 2004 Palm lethal yellowing 16SrIV D Ca P palmicola Harrison et al 2014 Coconut lethal yellowing LYDM 178 LYDM 178R 16SrXXII A Ca P persicae Jones et al 2004 16SrXII Ca P phoenicium Verdin et al 2003 Almond witches broom A4 16SrIX B Ca P pini Schneider et al 2005 Pine witches broom Pin127S Pin127SR 16SrXXI A Ca P planchoniae Rodrigues Jardim et al 2023 none Ca P pruni Davis et al 2013 Peach X disease PX11Ct1 PX11CT1R 16SrIII A Ca P prunorum Seemuller and Schneider 2004 European stone fruit yellows ESFY G1 16SrX B Ca P pyri Seemuller and Schneider 2004 Pear decline PD1 16SrX C Ca P rhamni Marcone et al 2004 Rhamnus witches broom BAWB BWB 16SrXX A Ca P rubi Malembic Maher et al 2011 Rubus stunt RuS 16SrV E Ca P sacchari Kirdat et al 2021 Sugarcane Grassy Shoot Disease SCGS 16SrXI B Ca P solani Quaglino et al 2013 Stolbur STOL STOL11R 16SrXII A Ca P spartii Marcone et al 2004 Spartium witches broom SpaWB 16SrX D Ca P stylosanthis Rodrigues Jardim et al 2021 Stylosanthes little leaf phytoplasma VPRI 43683 16SrXXXVII A Ca P tamaricis Zhao et al 2009 Salt cedar witches broom SCWB1 SCWB1R 16SrXXX A Ca P taraxaca corrig Matiashova 2017 16SrIII Ca P trifolii Hiruki and Wang 2004 Clover proliferation CP 16SrVI A Ca P tritici Zhao et al 2021 WBD R 16SrI C Ca P ulmi Lee et al 2004 Elm yellows EY1 16SrV A Ca P vitis Firrao et al 2004 none 16SrV Ca P wodyetiae Naderali et al 2017 Foxtail palm yellow decline Bangi 2 FPYD Bangi 2R 16SrXXXVI A Ca P ziziphi Jung et al 2003 Jujube witches broom JWB JWB Ky 16SrV BGallery edit nbsp A grape vine with Candidatus bois noir phytoplasma disease nbsp A grape vine with flavescence doree phytoplasma disease nbsp Coconut palms dying of lethal yellowing disease nbsp Symptoms of aster yellows on marigold nbsp Tephrosia purpurea witches broom 66 nbsp Symptoms of elm phloem necrosis phytoplasma nbsp Brinjal Little leaf phytoplasma nbsp Trees dying of ash yellows phytoplasma nbsp Parthenium hysterophorus showing symptoms of witches broom nbsp Phyllody caused by phytoplasma infection on Cosmos spp nbsp Little leaf disease of Cleome viscosa nbsp Symptoms of sweet potato little leaf phytoplasma on Catharanthus roseus nbsp Phyllody of goldenrod nbsp Soybean Phytoplasma nbsp A flower of China Aster showing phyllody symptoms nbsp Sugarcane grassy shoot disease nbsp A palm tree dying of lethal yellowing phytoplasma nbsp A cabbage tree killed by Phytoplasma australiense nbsp Witches broom on bamboo Dendrocalamus strictus nbsp Trillium grandiflorum with virescent petalsSee also editCherry X disease Elm yellows Grapevine yellows List of taxa with candidatus status Milkweed yellows phytoplasma List of bacterial orders List of bacteria generaReferences edit a b Genus Candidatus Phytoplasma List of Prokaryotic names with Standing in Nomenclature Retrieved 21 November 2021 a b The IRPCM Phytoplasma Spiroplasma Working Team Phytoplasma taxonomy group 2004 Candidatus Phytoplasma a taxon for the wall less non helical prokaryotes that colonize plant phloem and insects Int J Syst Evol Microbiol 54 Pt 4 1243 1255 doi 10 1099 ijs 0 02854 0 PMID 15280299 a b c Doi Yoji Teranaka Michiaki Yora Kiyoshi Asuyama Hidefumi 1967 Mycoplasma or PLT Group like Microorganisms Found in the Phloem Elements of Plants Infected with Mulberry Dwarf Potato Witches Broom Aster Yellows or Paulownia Witches Broom Annals of the Phytopathological Society of Japan in Japanese 33 4 259 266 doi 10 3186 jjphytopath 33 259 Okuda S 1972 Occurrence of diseases caused by mycoplasma like organisms in Japan Plant Protection 26 180 183 a b Hogenhout Saskia A Oshima Kenro Ammar El Desouky Kakizawa Shigeyuki Kingdom Heather N Namba Shigetou 2008 Phytoplasmas bacteria that manipulate plants and insects Molecular Plant Pathology 9 4 403 423 doi 10 1111 j 1364 3703 2008 00472 x PMC 6640453 PMID 18705857 a b Bertamini M Grando M S Muthuchelian K Nedunchezhian N 2004 Effect of phytoplasmal infection on photosystem II efficiency and thylakoid membrane protein changes in field grown apple Malus pumila leaves Physiological and Molecular Plant Pathology 47 2 237 242 doi 10 1006 pmpp 2003 0450 Berg Michael Davies David L Clark Michael F Vetten H Joseph Maie Gernot Marcone Carmine Seemuller Erich 1999 Isolation of the gene encoding an immunodominant membrane protein of the apple proliferation phytoplasma and expression and characterization of the gene product Microbiology 145 8 1939 1943 doi 10 1099 13500872 145 8 1937 PMID 10463160 a b c d e Lee Ing Ming Davis Robert E Gundersen Rindal Dawn E 2000 Phytoplasma Phytopathogenic Mollicutes Annual Review of Microbiology 54 221 255 doi 10 1146 annurev micro 54 1 221 PMID 11018129 Klingaman Gerald February 22 2008 Plant of the Week Fasciated Plants Crested Plants The University of Arkansas System Division of Agriculture Retrieved 20 May 2023 Pracros P Renaudin J Eveillard S Mouras A Hernould M 2006 Tomato Flower Abnormalities Induced by Stolbur Phytoplasma Infection Are Associated with Changes of Expression of Floral Development Genes Molecular Plant Microbe Interactions 19 1 62 68 doi 10 1094 MPMI 19 0062 PMID 16404954 Himeno Misako Neriya Yutaro Minato Nami Miura Chihiro Sugawara Kyoko Ishii Yoshiko Yamaji Yasuyuki Kakizawa Shigeyuki Oshima Kenro Namba Shigetou 2011 Unique morphological changes in plant pathogenic phytoplasma infected petunia flowers are related to transcriptional regulation of floral homeotic genes in an organ specific manner Plant Journal 67 6 971 979 doi 10 1111 j 1365 313X 2011 04650 x PMID 21605209 Muast BE Espadas F Talavera C Aguilar M Santamaria JM Oropeza C 2003 Changes in carbohydrate metabolism in coconut palms infected with the lethal yellowing phytoplasma Phytopathology 93 8 976 981 doi 10 1094 PHYTO 2003 93 8 976 PMID 18943864 Lee Ing Ming Klopmeyer Michael Bartoszyk Irena M Gundersen Rindal Dawn E Chou Tau San Thomson Karen L Eisenreich Robert 1997 Phytoplasma induced free branching in commercial poinsettia cultivars Nature Biotechnology 15 2 178 182 doi 10 1038 nbt0297 178 PMID 9035146 S2CID 11228113 a b c d Hoshi Ayaka Oshima Kenro Kakizawa Shigeyuki Ishii Yoshiko Ozeki Johji Hashimoto Masayoshi Komatsu Ken Kagiwada Satoshi Yamaji Yasuyuki Namba Shigetou 2009 A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium Proceedings of the National Academy of Sciences 106 15 6416 6421 Bibcode 2009PNAS 106 6416H doi 10 1073 pnas 0813038106 PMC 2669400 PMID 19329488 a b Minato Nami Himeno Misako Hoshi Ayaka Maejima Kensaku Komatsu Ken Takebayashi Yumiko Kasahara Hiroyuki Yusa Akira Yamaji Yasuyuki Oshima Kenro Kamiya Yuji Namba Shigetou 2014 The phytoplasmal virulence factor TENGU causes plant sterility by downregulating of the jasmonic acid and auxin pathways Scientific Reports 4 7399 Bibcode 2014NatSR 4E7399M doi 10 1038 srep07399 PMC 4261181 PMID 25492247 a b Sugawara Kyoko Honma Youhei Komatsu Ken Himeno Misako Oshima Kenro Namba Shigetou 2013 The alteration of plant morphology by small peptides released from the proteolytic processing of the bacterial peptide TENGU Plant Physiology 162 4 2004 2015 doi 10 1104 pp 113 218586 PMC 3729778 PMID 23784461 a b Bai Xiaodong Correa Valdir R Toruno Tania Y Ammar El Desouky Kamoun Sophien Hogenhout Saskia A January 2009 AY WB phytoplasma secretes a protein that targets plant cell nuclei Molecular Plant Microbe Interactions 22 1 18 30 doi 10 1094 MPMI 22 1 0018 PMID 19061399 a b c Sugio A Kingdom HN MacLean AM Grieve VM Hogenhout SA 29 November 2011 Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis Proceedings of the National Academy of Sciences of the United States of America 108 48 E1254 63 doi 10 1073 pnas 1105664108 PMC 3228479 PMID 22065743 Sugio A MacLean AM Hogenhout SA May 2014 The small phytoplasma virulence effector SAP11 contains distinct domains required for nuclear targeting and CIN TCP binding and destabilization The New Phytologist 202 3 838 48 doi 10 1111 nph 12721 PMC 4235307 PMID 24552625 Schommer C Debernardi JM Bresso EG Rodriguez RE Palatnik JF October 2014 Repression of cell proliferation by miR319 regulated TCP4 Molecular Plant 7 10 1533 44 doi 10 1093 mp ssu084 hdl 11336 29605 PMID 25053833 Danisman S van der Wal F Dhondt S Waites R de Folter S Bimbo A van Dijk AD Muino JM Cutri L Dornelas MC Angenent GC Immink RG August 2012 Arabidopsis class I and class II TCP transcription factors regulate jasmonic acid metabolism and leaf development antagonistically Plant Physiology 159 4 1511 23 doi 10 1104 pp 112 200303 PMC 3425195 PMID 22718775 Kallenbach M Bonaventure G Gilardoni PA Wissgott A Baldwin IT 12 June 2012 Empoasca leafhoppers attack wild tobacco plants in a jasmonate dependent manner and identify jasmonate mutants in natural populations Proceedings of the National Academy of Sciences of the United States of America 109 24 E1548 57 Bibcode 2012PNAS 109E1548K doi 10 1073 pnas 1200363109 PMC 3386116 PMID 22615404 Sugio A Kingdom HN MacLean AM Grieve VM Hogenhout SA 2011 Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis Proceedings of the National Academy of Sciences 108 48 E1254 E1263 doi 10 1073 pnas 1105664108 PMC 3228479 PMID 22065743 Janik K Mithofer A Raffeiner M Stellmach H Hause B Schlink K April 2017 An effector of apple proliferation phytoplasma targets TCP transcription factors a generalized virulence strategy of phytoplasma Molecular Plant Pathology 18 3 435 442 doi 10 1111 mpp 12409 PMC 6638208 PMID 27037957 Tan CM Li CH Tsao NW Su LW Lu YT Chang SH Lin YY Liou JC Hsieh LC Yu JZ Sheue CR Wang SY Lee CF Yang JY July 2016 Phytoplasma SAP11 alters 3 isobutyl 2 methoxypyrazine biosynthesis in Nicotiana benthamiana by suppressing NbOMT1 Journal of Experimental Botany 67 14 4415 25 doi 10 1093 jxb erw225 PMC 5301940 PMID 27279277 Wang N Yang H Yin Z Liu W Sun L Wu Y December 2018 Phytoplasma effector SWP1 induces witches broom symptom by destabilizing the TCP transcription factor BRANCHED1 Molecular Plant Pathology 19 12 2623 2634 doi 10 1111 mpp 12733 PMC 6638060 PMID 30047227 Chang SH Tan CM Wu CT Lin TH Jiang SY Liu RC Tsai MC Su LW Yang JY 26 November 2018 Alterations of plant architecture and phase transition by the phytoplasma virulence factor SAP11 Journal of Experimental Botany 69 22 5389 5401 doi 10 1093 jxb ery318 PMC 6255702 PMID 30165491 Mukhtar MS Carvunis AR Dreze M Epple P Steinbrenner J Moore J Tasan M Galli M Hao T Nishimura MT Pevzner SJ Donovan SE Ghamsari L Santhanam B Romero V Poulin MM Gebreab F Gutierrez BJ Tam S Monachello D Boxem M Harbort CJ McDonald N Gai L Chen H He Y European Union Effectoromics Consortium Vandenhaute J Roth FP Hill DE Ecker JR Vidal M Beynon J Braun P Dangl JL 29 July 2011 Independently evolved virulence effectors converge onto hubs in a plant immune system network Science 333 6042 596 601 Bibcode 2011Sci 333 596M doi 10 1126 science 1203659 PMC 3170753 PMID 21798943 Yang L Teixeira PJ Biswas S Finkel OM He Y Salas Gonzalez I English ME Epple P Mieczkowski P Dangl JL 8 February 2017 Pseudomonas syringae Type III Effector HopBB1 Promotes Host Transcriptional Repressor Degradation to Regulate Phytohormone Responses and Virulence Cell Host amp Microbe 21 2 156 168 doi 10 1016 j chom 2017 01 003 PMC 5314207 PMID 28132837 MacLean A M Sugio A Makarova O V Findlay K C Grieve V M Toth R Nicolaisen M Hogenhout S A 2011 Phytoplasma effector SAP54 induces indeterminate leaf like flower development in Arabidopsis plants Plant Physiology 157 2 831 841 doi 10 1104 pp 111 181586 PMC 3192582 PMID 21849514 a b c d Maejima K Iwai R Himeno M Komatsu K Kitazawa Y Fujita N Ishikawa K Fukuoka M Minato N Yamaji Y Oshima K Namba S 2014 Recognition of floral homeotic MADS domain transcription factors by a phytoplasmal effector phyllogen induces phyllody Plant Journal 78 4 541 554 doi 10 1111 tpj 12495 PMC 4282529 PMID 24597566 Yang Chiao Yin Huang Yu Hsin Lin Chan Pin Lin Yen Yu Hsu Hao Chun Wang Chun Neng Liu Li Yu Shen Bing Nan Lin Shih Shun 2015 MiR396 targeted SHORT VEGETATIVE PHASE is required to repress flowering and is related to the development of abnormal flower symptoms by the PHYL1 effector Plant Physiology 168 4 1702 1716 doi 10 1104 pp 15 00307 PMC 4528741 PMID 26103992 MacLean Allyson M Orlovskis Zigmunds Kowitwanich Krissana Zdziarska Anna M Angenent Gerco C Immink Richard G H Hogenhout Saskia A 2014 Phytoplasma Effector SAP54 Hijacks Plant Reproduction by Degrading MADS box Proteins and Promotes Insect Colonization in a RAD23 Dependent Manner PLOS Biology 12 4 e1001835 doi 10 1371 journal pbio 1001835 PMC 3979655 PMID 24714165 Maejima Kensaku Kitazawa Yugo Tomomitsu Tatsuya Yusa Akira Neriya Yutaro Himeno Misako Yamaji Yasuyuki Oshima Kenro Namba Shigetou 2015 Degradation of class E MADS domain transcription factors in Arabidopsis by a phytoplasmal effector phyllogen Plant Signaling amp Behavior 10 8 e1042635 Bibcode 2015PlSiB 10E2635M doi 10 1080 15592324 2015 1042635 PMC 4623417 PMID 26179462 a b MacLean Allyson M Sugio Akiko Makarova Olga V Findlay Kim C Grieve Victoria M Toth Reka Nicolaisen Mogens Hogenhout Saskia A October 2011 Phytoplasma effector SAP54 induces indeterminate leaf like flower development in Arabidopsis plants Plant Physiology 157 2 831 41 doi 10 1104 pp 111 181586 PMC 3192582 PMID 21849514 Orlovskis Zigmunds Hogenhout Saskia A 2016 A Bacterial Parasite Effector Mediates Insect Vector Attraction in Host Plants Independently of Developmental Changes Frontiers in Plant Science 7 885 doi 10 3389 fpls 2016 00885 PMC 4917533 PMID 27446117 Weintraub Phyllis G Beanland LeAnn 2006 Insect vectors of phytoplasmas Annual Review of Entomology 51 91 111 doi 10 1146 annurev ento 51 110104 151039 PMID 16332205 Suzuki S Oshima K Kakizawa S Arashida R Jung H Y Yamaji Y Nishigawa H Ugaki M Namba S 2006 Interactions between a membrane protein of a pathogen and insect microfilament complex determines insect vector specificity Proceedings of the National Academy of Sciences 103 11 4252 4257 doi 10 1073 pnas 0508668103 PMC 1449679 PMID 16537517 a b c d Christensen N Axelsen K Nicolaisen M Schulz A 2005 Phytoplasmas and their interactions with their hosts Trends in Plant Science 10 11 526 535 doi 10 1016 j tplants 2005 09 008 PMID 16226054 Carraro L Loi N Favali M A Favali M A 1991 Transmission characteristics of the clover phyllody agent by dodder Journal of Phytopathology 133 15 22 doi 10 1111 j 1439 0434 1991 tb00132 x a b Christensen Nynne Meyn Nicolaisen Mogens Hansen Michael Schulz Alexander 2004 Distribution of phytoplasmas in infected plants as revealed by real time PCR and bioimaging Molecular Plant Microbe Interactions 17 11 1175 1184 doi 10 1094 MPMI 2004 17 11 1175 PMID 15553243 Chen TA Lei JD Lin CP 1989 Detection and identification of plant and insect mollicutes In Whitcomb RF Tully JG eds The Mycoplasmas Vol 5 pp 393 424 doi 10 1016 B978 0 12 078405 9 50016 1 ISBN 978 0 12 078405 9 Contaldo Nicoletta Bertaccini Assunta Paltrinieri Samanta Windsor Helena Windsor G 2012 Axenic culture of plant pathogenic phytoplasmas Phytopathologia Mediterranea 51 3 607 617 doi 10 14601 Phytopathol Mediterr 11773 inactive 31 January 2024 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint DOI inactive as of January 2024 link Wang Qiaochun Valkonen J P T 2008 Efficient elimination of sweetpotato little leaf phytoplasma from sweetpotato by cryotherapy of shoot tips Plant Pathology 57 2 338 347 doi 10 1111 j 1365 3059 2007 01710 x ISSN 0032 0862 Chen Y D Chen T A 1998 Expression of engineered antibodies in plants A possible tool for spiroplasma and phytoplasma disease control Phytopathology 88 12 1367 1371 doi 10 1094 PHYTO 1998 88 12 1367 PMID 18944841 Davies R E Whitcomb R F Steere R L 1968 Remission of aster yellows disease by antibiotics Science 161 3843 793 794 Bibcode 1968Sci 161 793D doi 10 1126 science 161 3843 793 PMID 5663807 S2CID 46249624 Pace Eric July 19 1983 DRUG FOR HUMANS CHECKS PALM TREE DISEASE The New York Times via NYTimes com Oshima K Kakizawa S Nishigawa H Jung HY Wei W Suzuki S Arashida R Nakata D et al 2004 Reductive evolution suggested from the complete genome sequence of a plant pathogenic phytoplasma Nature Genetics 36 1 27 29 doi 10 1038 ng1277 PMID 14661021 S2CID 572757 a b Bai X Zhang J Ewing A Miller SA Jancso Radek A Shevchenko DV Tsukerman K Walunas T et al 2006 Living with Genome Instability the Adaptation of Phytoplasmas to Diverse Environments of Their Insect and Plant Hosts Journal of Bacteriology 188 10 3682 3696 doi 10 1128 JB 188 10 3682 3696 2006 PMC 1482866 PMID 16672622 Tran Nguyen LT Kube M Schneider B Reinhardt R Gibb KS 2008 Comparative Genome Analysis of Ca Phytoplasma australiense Subgroup tuf Australia I rp A and Ca Phytoplasma asteris Strains OY M and AY WB PDF Journal of Bacteriology 190 11 3979 91 doi 10 1128 JB 01301 07 PMC 2395047 PMID 18359806 Kube M Schneider B Kuhl H Dandekar T Heitmann K Migdoll AM Reinhardt R Seemuller E 2008 The linear chromosome of the plant pathogenic mycoplasma Candidatus Phytoplasma mali BMC Genomics 9 1 306 doi 10 1186 1471 2164 9 306 PMC 2459194 PMID 18582369 Dikinson M Molecular Plant Pathology 2003 BIOS Scientific Publishers Marcone C Neimark H Ragozzino A Lauer U Seemuller E 1999 Chromosome Sizes of Phytoplasmas Composing Major Phylogenetic Groups and Subgroups Phytopathology 89 9 805 810 doi 10 1094 PHYTO 1999 89 9 805 PMID 18944709 Nishigawa Hisashi Oshima Kenro Miyata Shin ichi Ugaki Masashi Namba Shigetou 2003 Complete set of extrachromosomal DNAs from three pathogenic lines of onion yellows phytoplasma and use of PCR to differentiate each line Journal of General Plant Pathology 69 3 194 198 doi 10 1007 s10327 003 0035 1 ISSN 1345 2630 S2CID 46180540 Razin Shmuel Yogev David Naot Yehudith 1998 Molecular Biology and Pathogenicity of Mycoplasmas Microbiology and Molecular Biology Reviews 62 4 1094 1156 doi 10 1128 MMBR 62 4 1094 1156 1998 ISSN 1092 2172 PMC 98941 PMID 9841667 Jomantiene Rasa Davis Robert E 2006 Clusters of diverse genes existing as multiple sequence variable mosaics in a phytoplasma genomes FEMS Microbiology Letters 255 1 59 65 doi 10 1111 j 1574 6968 2005 00057 x PMID 16436062 S2CID 12057877 Subcommittee on the Taxonomy of Mollicutes Minutes of the Interim Meetings 1 and 2 August 1992 Ames Iowa permanent dead link Int J Syst Bacteriol April 1993 p 394 397 Vol 43 No 2 see minutes 10 and 25 Murray R G E Stackebrandt E 1995 Taxonomic Note Implementation of the Provisional Status Candidatus for Incompletely Described Procaryotes International Journal of Systematic Bacteriology 45 1 186 187 doi 10 1099 00207713 45 1 186 ISSN 0020 7713 PMID 7857801 Hodgetts J Ball T Boonham N Mumford R Dickinson M 2007 Taxonomic groupings based on the analysis on the 16s 23s spacer regions which shows greater variation than the normally used 16srRNA gene results in classification similar to that derived from 16s rRNA data but with more detailed subdivisions Plant Pathology 56 3 357 365 doi 10 1111 j 1365 3059 2006 01561 x Wei Wei Davis Robert E Lee Ing Ming Zhao Yan 2007 Computer simulated RFLP analysis of 16S rRNA genes identification of ten new phytoplasma groups International Journal of Systematic and Evolutionary Microbiology 57 8 1855 1867 doi 10 1099 ijs 0 65000 0 PMID 17684271 Parte A C Sarda Carbasse J Meier Kolthoff J P Reimer L C Goker M 2020 List of Prokaryotic names with Standing in Nomenclature LPSN moves to the DSMZ International Journal of Systematic and Evolutionary Microbiology 70 11 5607 5612 doi 10 1099 ijsem 0 004332 PMC 7723251 PMID 32701423 Phytoplasma classification EPPO Global Database 2020 Retrieved 22 November 2021 GTDB release 08 RS214 Genome Taxonomy Database Retrieved 10 May 2023 bac120 r214 sp label Genome Taxonomy Database Retrieved 10 May 2023 Taxon History Genome Taxonomy Database Retrieved 10 May 2023 Yadav A Bhale U Thorat V Shouche Y 2014 First Report of new subgroup 16SrII M Candidatus Phytoplasma aurantifolia associated with witches broom on Tephrosia purpurea in India Plant Disease 98 7 990 doi 10 1094 PDIS 11 13 1183 PDN PMID 30708921 External links editPhytoplasma Classification Iphyclassifier First International Phytoplasmologist Working Group Meeting published in Vol 60 2 2007 of Bulletin of Insectology Photo gallery about plants infected of phytoplasma Archived 2012 02 08 at the Wayback Machine Phytoplasma Resource and phytoplasma classification database Archived 2008 12 08 at the Wayback Machine Ohio State University publishes an informative site on this topic First Internet Conference of Phytopathogenic Mollicutes includes several interesting articles on this topic Phytoplasma Genome Projects The Centre for Information on Coconut Lethal Yellowing with an associated Yahoo discussion group Video of Melia yellows symptoms Video of maize bushy stunt symptoms Current research on Phytoplasmas at the Norwich Research Park Phytoplasma universal detection kit Nippon Gene Co Ltd Davis R E Sinclair W A 1998 Phytoplasma Identity and Disease Etiology Phytopathology 88 12 1372 1376 doi 10 1094 PHYTO 1998 88 12 1372 PMID 18944842 Retrieved from https en wikipedia org w index php title Phytoplasma amp oldid 1217874830, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.