fbpx
Wikipedia

Fauna

Fauna is all of the animal life present in a particular region or time. The corresponding term for plants is flora, and for fungi, it is funga. Flora, fauna, funga and other forms of life are collectively referred to as biota. Zoologists and paleontologists use fauna to refer to a typical collection of animals found in a specific time or place, e.g. the "Sonoran Desert fauna" or the "Burgess Shale fauna". Paleontologists sometimes refer to a sequence of faunal stages, which is a series of rocks all containing similar fossils. The study of animals of a particular region is called faunistics.

Simplified schematic of an island's fauna – all its animal species, highlighted in boxes

Etymology

Fauna comes from the name Fauna, a Roman goddess of earth and fertility, the Roman god Faunus, and the related forest spirits called Fauns. All three words are cognates of the name of the Greek god Pan, and panis is the Greek equivalent of fauna. Fauna is also the word for a book that catalogues the animals in such a manner. The term was first used by Carl Linnaeus from Sweden in the title of his 1745[1] work Fauna Suecica.

Subdivisions on the basis of region

Cryofauna

Cryofauna refers to the animals that live in, or very close to, cold areas.

Cryptofauna

Cryptofauna are the fauna that exist in protected or concealed microhabitats.[2]

Epifauna

Epifauna, also called epibenthos, are aquatic animals that live on the bottom substratum as opposed to within it, that is, the benthic fauna that live on top of the sediment surface at the seafloor.

Infauna

This time-lapse movie shows images taken every hour during a two-week period. Worms, bacteria and fish are shown disturbing the sediment as they burrow and move through it.

Infauna are benthic organisms that live within the bottom substratum of a water body, especially within the bottom-most oceanic sediments, the layer of small particles at the bottom of a body of water, rather than on its surface. Bacteria and microalgae may also live in the interstices of bottom sediments. In general, infaunal animals become progressively smaller and less abundant with increasing water depth and distance from shore, whereas bacteria show more constancy in abundance, tending toward one million cells per milliliter of interstitial seawater.

Such creatures are found in the fossil record and include lingulata, trilobites and worms. They made burrows in the sediment as protection and may also have fed upon detritus or the mat of microbes which tended to grow on the surface of the sediment.[3] Today, a variety of organisms live in and disturb the sediment. The deepest burrowers are the ghost shrimps (Thalassinidea), which go as deep as 3 metres (10 ft) into the sediment at the bottom of the ocean.[4]

Limnofauna

Limnofauna refers to the animals that live in fresh water.

Macrofauna

Macrofauna are benthic or soil organisms which are retained on a 0.5 mm sieve. Studies in the deep sea define macrofauna as animals retained on a 0.3 mm sieve to account for the small size of many of the taxa.

Megafauna

 
Australian and New Zealand fauna. This image was likely first published in the first edition (1876–1899) of the Nordisk familjebok.

Megafauna are large animals of any particular region or time. For example, Australian megafauna.

Meiofauna

Meiofauna are small benthic invertebrates that live in both marine and freshwater environments. The term meiofauna loosely defines a group of organisms by their size, larger than microfauna but smaller than macrofauna, rather than a taxonomic grouping. One environment for meiofauna is between grains of damp sand (see Mystacocarida).

In practice these are metazoan animals that can pass unharmed through a 0.5 1 mm mesh but will be retained by a 30–45 μm mesh,[5] but the exact dimensions will vary from researcher to researcher. Whether an organism passes through a 1 mm mesh also depends upon whether it is alive or dead at the time of sorting.

Mesofauna

Mesofauna are macroscopic soil animals such as arthropods or nematodes. Mesofauna are extremely diverse; considering just the springtails (Collembola), as of 1998, approximately 6,500 species had been identified.[6]

Microfauna

Microfauna are microscopic or very small animals (usually including protozoans and very small animals such as rotifers). To qualify as microfauna, an organism must exhibit animal-like characteristics, as opposed to microflora, which are more plant-like.

Stygofauna

Stygofauna are any fauna that live in groundwater systems or aquifers, such as caves, fissures and vugs. Stygofauna and troglofauna are the two types of subterranean fauna (based on life-history). Both are associated with subterranean environments – stygofauna are associated with water, and troglofauna with caves and spaces above the water table. Stygofauna can live within freshwater aquifers and within the pore spaces of limestone, calcrete or laterite, whilst larger animals can be found in cave waters and wells. Stygofaunal animals, like troglofauna, are divided into three groups based on their life history - stygophiles, stygoxenes, and stygobites.[7]

Troglofauna

 
The microscopic cave snail Zospeum tholussum, found at depths of 743 to 1,392 m (2,438 to 4,567 ft) in the Lukina Jama–Trojama cave system of Croatia, is completely blind with a translucent shell

Troglofauna are small cave-dwelling animals that have adapted to their dark surroundings. Troglofauna and stygofauna are the two types of subterranean fauna (based on life-history). Both are associated with subterranean environments – troglofauna are associated with caves and spaces above the water table and stygofauna with water. Troglofaunal species include spiders, insects, myriapods and others. Some troglofauna live permanently underground and cannot survive outside the cave environment. Troglofauna adaptations and characteristics include a heightened sense of hearing, touch and smell.[8] Loss of under-used senses is apparent in the lack of pigmentation as well as eyesight in most troglofauna. Troglofauna insects may exhibit a lack of wings and longer appendages.

Xenofauna

Xenofauna, theoretically, are alien organisms that can be described as animal analogues. While no alien life forms, animal-like or otherwise, are known definitively, the concept of alien life remains a subject of great interest in fields like astronomy, astrobiology, biochemistry, evolutionary biology, science fiction, and philosophy.

Other

 
Examples of fauna in Olleros de Tera (Spain)

Other terms include avifauna, which means "bird fauna" and piscifauna (or ichthyofauna), which means "fish fauna".

Treatises

Classic faunas

See also

References

  1. ^ Wikisource:1911 Encyclopædia Britannica/Linnaeus
  2. ^ NCRI
  3. ^ Vermeij, Geerat (2009), Nature: An Economic History, Princeton University Press, ISBN 9781400826490. p. 266
  4. ^ Vermeij, Geerat (2009), Nature: An Economic History, Princeton University Press, ISBN 9781400826490. p. 267
  5. ^ Fauna of Sandy Beaches
  6. ^ Josef Rusek (1998). "Biodiversity of Collembola and their functional role in the ecosystem". Biodiversity and Conservation. 7 (9): 1207–1219. doi:10.1023/A:1008887817883. S2CID 22883809.
  7. ^ Rubens M. Lopes, Janet Warner Reid, Carlos Eduardo Falavigna Da Rocha (1999). "Copepoda: developments in ecology, biology and systematics: proceedings of the Seventh international conference on Copepoda, held in Curitiba". Hydrobiologia. Springer. 453/454: 576. ISBN 9780792370482.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. ^ Phil Chapman (1982). "The Origins of Troglobites" (PDF). Proceedings of the University of Bristol Spelæological Society. 16 (2): 133–141.

External links

  • "Biodiversity of Collembola and their functional role in the ecosystem"

fauna, other, uses, disambiguation, this, article, needs, additional, citations, verification, please, help, improve, this, article, adding, citations, reliable, sources, unsourced, material, challenged, removed, find, sources, news, newspapers, books, scholar. For other uses see Fauna disambiguation This article needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed Find sources Fauna news newspapers books scholar JSTOR April 2012 Learn how and when to remove this template message Fauna is all of the animal life present in a particular region or time The corresponding term for plants is flora and for fungi it is funga Flora fauna funga and other forms of life are collectively referred to as biota Zoologists and paleontologists use fauna to refer to a typical collection of animals found in a specific time or place e g the Sonoran Desert fauna or the Burgess Shale fauna Paleontologists sometimes refer to a sequence of faunal stages which is a series of rocks all containing similar fossils The study of animals of a particular region is called faunistics Simplified schematic of an island s fauna all its animal species highlighted in boxes Contents 1 Etymology 2 Subdivisions on the basis of region 2 1 Cryofauna 2 2 Cryptofauna 2 3 Epifauna 2 4 Infauna 2 5 Limnofauna 2 6 Macrofauna 2 7 Megafauna 2 8 Meiofauna 2 9 Mesofauna 2 10 Microfauna 2 11 Stygofauna 2 12 Troglofauna 2 13 Xenofauna 2 14 Other 3 Treatises 3 1 Classic faunas 4 See also 5 References 6 External linksEtymology EditFauna comes from the name Fauna a Roman goddess of earth and fertility the Roman god Faunus and the related forest spirits called Fauns All three words are cognates of the name of the Greek god Pan and panis is the Greek equivalent of fauna Fauna is also the word for a book that catalogues the animals in such a manner The term was first used by Carl Linnaeus from Sweden in the title of his 1745 1 work Fauna Suecica Subdivisions on the basis of region EditCryofauna Edit Cryofauna refers to the animals that live in or very close to cold areas Cryptofauna Edit Cryptofauna are the fauna that exist in protected or concealed microhabitats 2 Epifauna Edit Epifauna also called epibenthos are aquatic animals that live on the bottom substratum as opposed to within it that is the benthic fauna that live on top of the sediment surface at the seafloor Infauna Edit source source source source source source source source This time lapse movie shows images taken every hour during a two week period Worms bacteria and fish are shown disturbing the sediment as they burrow and move through it Infauna are benthic organisms that live within the bottom substratum of a water body especially within the bottom most oceanic sediments the layer of small particles at the bottom of a body of water rather than on its surface Bacteria and microalgae may also live in the interstices of bottom sediments In general infaunal animals become progressively smaller and less abundant with increasing water depth and distance from shore whereas bacteria show more constancy in abundance tending toward one million cells per milliliter of interstitial seawater Such creatures are found in the fossil record and include lingulata trilobites and worms They made burrows in the sediment as protection and may also have fed upon detritus or the mat of microbes which tended to grow on the surface of the sediment 3 Today a variety of organisms live in and disturb the sediment The deepest burrowers are the ghost shrimps Thalassinidea which go as deep as 3 metres 10 ft into the sediment at the bottom of the ocean 4 Limnofauna Edit Limnofauna refers to the animals that live in fresh water Macrofauna Edit Macrofauna are benthic or soil organisms which are retained on a 0 5 mm sieve Studies in the deep sea define macrofauna as animals retained on a 0 3 mm sieve to account for the small size of many of the taxa Megafauna Edit Main article Megafauna Australian and New Zealand fauna This image was likely first published in the first edition 1876 1899 of the Nordisk familjebok Megafauna are large animals of any particular region or time For example Australian megafauna Meiofauna Edit Main article Meiobenthos Meiofauna are small benthic invertebrates that live in both marine and freshwater environments The term meiofauna loosely defines a group of organisms by their size larger than microfauna but smaller than macrofauna rather than a taxonomic grouping One environment for meiofauna is between grains of damp sand see Mystacocarida In practice these are metazoan animals that can pass unharmed through a 0 5 1 mm mesh but will be retained by a 30 45 mm mesh 5 but the exact dimensions will vary from researcher to researcher Whether an organism passes through a 1 mm mesh also depends upon whether it is alive or dead at the time of sorting Mesofauna Edit Main article Soil mesofauna Mesofauna are macroscopic soil animals such as arthropods or nematodes Mesofauna are extremely diverse considering just the springtails Collembola as of 1998 approximately 6 500 species had been identified 6 Microfauna Edit Main article Microfauna Microfauna are microscopic or very small animals usually including protozoans and very small animals such as rotifers To qualify as microfauna an organism must exhibit animal like characteristics as opposed to microflora which are more plant like Stygofauna Edit Main article Stygofauna Stygofauna are any fauna that live in groundwater systems or aquifers such as caves fissures and vugs Stygofauna and troglofauna are the two types of subterranean fauna based on life history Both are associated with subterranean environments stygofauna are associated with water and troglofauna with caves and spaces above the water table Stygofauna can live within freshwater aquifers and within the pore spaces of limestone calcrete or laterite whilst larger animals can be found in cave waters and wells Stygofaunal animals like troglofauna are divided into three groups based on their life history stygophiles stygoxenes and stygobites 7 Troglofauna Edit Main article Troglofauna The microscopic cave snail Zospeum tholussum found at depths of 743 to 1 392 m 2 438 to 4 567 ft in the Lukina Jama Trojama cave system of Croatia is completely blind with a translucent shell Troglofauna are small cave dwelling animals that have adapted to their dark surroundings Troglofauna and stygofauna are the two types of subterranean fauna based on life history Both are associated with subterranean environments troglofauna are associated with caves and spaces above the water table and stygofauna with water Troglofaunal species include spiders insects myriapods and others Some troglofauna live permanently underground and cannot survive outside the cave environment Troglofauna adaptations and characteristics include a heightened sense of hearing touch and smell 8 Loss of under used senses is apparent in the lack of pigmentation as well as eyesight in most troglofauna Troglofauna insects may exhibit a lack of wings and longer appendages Xenofauna Edit Main article Extraterrestrial life Xenofauna theoretically are alien organisms that can be described as animal analogues While no alien life forms animal like or otherwise are known definitively the concept of alien life remains a subject of great interest in fields like astronomy astrobiology biochemistry evolutionary biology science fiction and philosophy Other Edit Examples of fauna in Olleros de Tera Spain Other terms include avifauna which means bird fauna and piscifauna or ichthyofauna which means fish fauna Treatises EditClassic faunas Edit Linnaeus Carolus Fauna Suecica 1746See also Edit Environment portal Ecology portal Earth sciences portalBiodiversity Biome Ecology Ecosystem Environmental movement Fauna and Flora Preservation Society Gene pool Genetic erosion Genetic pollution Natural environment Soil zoologyReferences Edit Wikisource 1911 Encyclopaedia Britannica Linnaeus NCRI Vermeij Geerat 2009 Nature An Economic History Princeton University Press ISBN 9781400826490 p 266 Vermeij Geerat 2009 Nature An Economic History Princeton University Press ISBN 9781400826490 p 267 Fauna of Sandy Beaches Josef Rusek 1998 Biodiversity of Collembola and their functional role in the ecosystem Biodiversity and Conservation 7 9 1207 1219 doi 10 1023 A 1008887817883 S2CID 22883809 Rubens M Lopes Janet Warner Reid Carlos Eduardo Falavigna Da Rocha 1999 Copepoda developments in ecology biology and systematics proceedings of the Seventh international conference on Copepoda held in Curitiba Hydrobiologia Springer 453 454 576 ISBN 9780792370482 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link Phil Chapman 1982 The Origins of Troglobites PDF Proceedings of the University of Bristol Spelaeological Society 16 2 133 141 External links Edit Look up fauna in Wiktionary the free dictionary Biodiversity of Collembola and their functional role in the ecosystem Retrieved from https en wikipedia org w index php title Fauna amp oldid 1127551504, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.