fbpx
Wikipedia

Transistor count

The transistor count is the number of transistors in an electronic device (typically on a single substrate or "chip"). It is the most common measure of integrated circuit complexity (although the majority of transistors in modern microprocessors are contained in the cache memories, which consist mostly of the same memory cell circuits replicated many times). The rate at which MOS transistor counts have increased generally follows Moore's law, which observed that the transistor count doubles approximately every two years.[1] However, being directly proportional to the area of a chip, transistor count doesn't represent how advanced corresponding manufacturing technology is, which is better characterized by transistor density instead (ratio of transistor count of a chip to its area).

As of 2022, the largest transistor count in a commercially available microprocessor is 114 billion transistors, in Apple's ARM-based dual-die M1 Ultra system on a chip, which is fabricated using TSMC's 5 nm semiconductor manufacturing process.[2][3] As of 2022, the highest transistor count GPU is Nvidia's H100, built on TSMC's N4 process and totalling 80 billion MOSFETs. As of 2022, the highest transistor count in flash memory was Micron's 2 terabyte (3D-stacked) 16-die, 232-layer V-NAND flash memory chip, with 5.3 trillion floating-gate MOSFETs (3 bits per transistor). As of 2020, the highest transistor count in any IC chip is a deep learning engine called the Wafer Scale Engine 2 by Cerebras, using a special design to route around any non-functional core on the device; it has 2.6 trillion MOSFETs in 84 exposed fields (dies) on a wafer, manufactured using TSMC's 7 nm FinFET process.[4][5][6][7][8]

Year Component Name Number of MOSFETs
(in billions)
2022 microprocessor
(commercial)
M1 Ultra 114 (dual-die SoC; entire M1 Ultra is a multi-chip module)
2022 GPU Nvidia H100 80
2020 DLP Colossus Mk2 GC200 59.4
2020 any IC chip Wafer Scale Engine 2 2600 (wafer-scale design consisting of 84 exposed fields (dies))
2022 Flash memory Micron's V-NAND chip 5333 (stacked package of 16 232-layer 3D NAND dies)

In terms of computer systems that consist of numerous integrated circuits, the supercomputer with the highest transistor count as of 2016 is the Chinese-designed Sunway TaihuLight, which has for all CPUs/nodes combined "about 400 trillion transistors in the processing part of the hardware" and "the DRAM includes about 12 quadrillion transistors, and that's about 97 percent of all the transistors."[9] To compare, the smallest computer, as of 2018 dwarfed by a grain of rice, has on the order of 100,000 transistors. Early experimental solid-state computers had as few as 130 transistors but used large amounts of diode logic. The first carbon nanotube computer has 178 transistors and is a 1-bit one-instruction set computer, while a later one is 16-bit (its the instruction set is 32-bit RISC-V though).

Ionic transistor chips ("water-based" analog limited processor), have up to hundreds of such transistors.[10]

In terms of the total number of transistors in existence, it has been estimated that a total of 13 sextillion (1.3×1022) transistors have been manufactured worldwide between 1960 and 2018.

Transistor count

 
Plot of MOS transistor counts for microprocessors against dates of in­tro­duction. The curve shows counts doubling every two years, per Moore's law

Microprocessors

 
Part of an IBM 7070 card cage populated with Standard Modular System cards

A microprocessor incorporates the functions of a computer's central processing unit on a single integrated circuit. It is a multi-purpose, programmable device that accepts digital data as input, processes it according to instructions stored in its memory, and provides results as output.

The development of MOS integrated circuit technology in the 1960s led to the development of the first microprocessors.[11] The 20-bit MP944, developed by Garrett AiResearch for the U.S. Navy's F-14 Tomcat fighter in 1970, is considered by its designer Ray Holt to be the first microprocessor.[12] It was a multi-chip microprocessor, fabricated on six MOS chips. However, it was classified by the Navy until 1998. The 4-bit Intel 4004, released in 1971, was the first single-chip microprocessor.

Modern microprocessors typically include on-chip cache memories. The number of transistors used for these cache memories typically far exceeds the number of transistors used to implement the logic of the microprocessor (that is, excluding the cache). For example, the last DEC Alpha chip uses 90% of its transistors for cache.[13]

Processor Transistor count Date of
introduction
Designer Process
(nm)
Area (mm2) Transistor density, tr./mm2
MP944 (20-bit, 6-chip, 28 chips total) 74,442 (5,360 excl. ROM & RAM)[14][15] 1970[12][a] Garrett AiResearch ? ? ?
Intel 4004 (4-bit, 16-pin) 2,250 1971 Intel 10,000 nm 12 mm2 188
TMX 1795 (?-bit, 24-pin) 3,078[16] 1971 Texas Instruments ? 30.64 mm2 100.5
Intel 8008 (8-bit, 18-pin) 3,500 1972 Intel 10,000 nm 14 mm2 250
NEC μCOM-4 (4-bit, 42-pin) 2,500[17][18] 1973 NEC 7,500 nm[19] ? ?
Toshiba TLCS-12 (12-bit) 11,000+[20] 1973 Toshiba 6,000 nm 32 mm2 340+
Intel 4040 (4-bit, 16-pin) 3,000 1974 Intel 10,000 nm 12 mm2 250
Motorola 6800 (8-bit, 40-pin) 4,100 1974 Motorola 6,000 nm 16 mm2 256
Intel 8080 (8-bit, 40-pin) 6,000 1974 Intel 6,000 nm 20 mm2 300
TMS 1000 (4-bit, 28-pin) 8,000 1974[21] Texas Instruments 8,000 nm 11 mm2 730
MOS Technology 6502 (8-bit, 40-pin) 4,528[b][22] 1975 MOS Technology 8,000 nm 21 mm2 216
Intersil IM6100 (12-bit, 40-pin; clone of PDP-8) 4,000 1975 Intersil ? ? ?
CDP 1801 (8-bit, 2-chip, 40-pin) 5,000 1975 RCA ? ? ?
RCA 1802 (8-bit, 40-pin) 5,000 1976 RCA 5,000 nm 27 mm2 185
Zilog Z80 (8-bit, 4-bit ALU, 40-pin) 8,500[c] 1976 Zilog 4,000 nm 18 mm2 470
Intel 8085 (8-bit, 40-pin) 6,500 1976 Intel 3,000 nm 20 mm2 325
TMS9900 (16-bit) 8,000 1976 Texas Instruments ? ? ?
Bellmac-8 (8-bit) 7,000 1977 Bell Labs 5,000 nm ? ?
Motorola 6809 (8-bit with some 16-bit features, 40-pin) 9,000 1978 Motorola 5,000 nm 21 mm2 430
Intel 8086 (16-bit, 40-pin) 29,000 1978 Intel 3,000 nm 33 mm2 880
Zilog Z8000 (16-bit) 17,500[23] 1979 Zilog ? ? ?
Intel 8088 (16-bit, 8-bit data bus) 29,000 1979 Intel 3,000 nm 33 mm2 880
Motorola 68000 (16/32-bit, 32-bit registers, 16-bit ALU) 68,000[24] 1979 Motorola 3,500 nm 44 mm2 1550
Intel 8051 (8-bit, 40-pin) 50,000 1980 Intel ? ? ?
WDC 65C02 11,500[25] 1981 WDC 3,000 nm 6 mm2 1920
ROMP (32-bit) 45,000 1981 IBM 2,000 nm ? ?
Intel 80186 (16-bit, 68-pin) 55,000 1982 Intel 3,000 nm 60 mm2 920
Intel 80286 (16-bit, 68-pin) 134,000 1982 Intel 1,500 nm 49 mm2 2730
WDC 65C816 (8/16-bit) 22,000[26] 1983 WDC 3,000 nm[27] 9 mm2 2400
NEC V20 63,000 1984 NEC ? ? ?
Motorola 68020 (32-bit; 114 pins used) 190,000[28] 1984 Motorola 2,000 nm 85 mm2 2200
Intel 80386 (32-bit, 132-pin; no cache) 275,000 1985 Intel 1,500 nm 104 mm2 2640
ARM 1 (32-bit; no cache) 25,000[28] 1985 Acorn 3,000 nm 50 mm2 500
Novix NC4016 (16-bit) 16,000[29] 1985[30] Harris Corporation 3,000 nm[31] ? ?
SPARC MB86900 (32-bit; no cache) 110,000[32] 1986 Fujitsu 1,200 nm ? ?
NEC V60[33] (32-bit; no cache) 375,000 1986 NEC 1,500 nm ? ?
ARM 2 (32-bit, 84-pin; no cache) 27,000[34][28] 1986 Acorn 2,000 nm 30.25 mm2 890
Z80000 (32-bit; very small cache) 91,000 1986 Zilog ? ? ?
NEC V70[33] (32-bit; no cache) 385,000 1987 NEC 1,500 nm ? ?
Hitachi Gmicro/200[35] 730,000 1987 Hitachi 1,000 nm ? ?
Motorola 68030 (32-bit, very small caches) 273,000 1987 Motorola 800 nm 102 mm2 2680
TI Explorer's 32-bit Lisp machine chip 553,000[36] 1987 Texas Instruments 2,000 nm[37] ? ?
DEC WRL MultiTitan 180,000[38] 1988 DEC WRL 1,500 nm 61 mm2 2950
Intel i960 (32-bit, 33-bit memory subsystem, no cache) 250,000[39] 1988 Intel 1,500 nm[40] ? ?
Intel i960CA (32-bit, cache) 600,000[40] 1989 Intel 800 nm 143 mm2 4200
Intel i860 (32/64-bit, 128-bit SIMD, cache, VLIW) 1,000,000[41] 1989 Intel ? ? ?
Intel 80486 (32-bit, 4 KB cache) 1,180,235 1989 Intel 1000 nm 173 mm2 6822
ARM 3 (32-bit, 4 KB cache) 310,000 1989 Acorn 1,500 nm 87 mm2 3600
POWER1 (9-chip module, 72 kB of cache) 6,900,000[42] 1990 IBM 1000 nm 1283.61 mm2 5375
Motorola 68040 (32-bit, 8 KB caches) 1,200,000 1990 Motorola 650 nm 152 mm2 7900
R4000 (64-bit, 16 KB of caches) 1,350,000 1991 MIPS 1,000 nm 213 mm2 6340
ARM 6 (32-bit, no cache for this 60 variant) 35,000 1991 ARM 800 nm ? ?
Hitachi SH-1 (32-bit, no cache) 600,000[43] 1992[44] Hitachi 800 nm 10 mm2 60,000 (check)
Intel i960CF (32-bit, cache) 900,000[40] 1992 Intel ? 125 mm2 7200
DEC Alpha 21064 (64-bit, 290-pin; 16 KB of caches) 1,680,000 1992 DEC 750 nm 233.52 mm2 7190
Hitachi HARP-1 (32-bit, cache) 2,800,000[45] 1993 Hitachi 500 nm 267 mm2 10,500
Pentium (32-bit, 16 KB of caches) 3,100,000 1993 Intel 800 nm 294 mm2 10,500
POWER2 (8-chip module, 288 kB of cache) 23,037,000[46] 1993 IBM 720 nm 1217.39 mm2 18,923
ARM700 (32-bit; 8 KB cache) 578,977[47] 1994 ARM 700 nm 68.51 mm2 8451
MuP21 (21-bit,[48] 40-pin; includes video) 7,000[49] 1994 Offete Enterprises 1200 nm ? ?
Motorola 68060 (32-bit, 16 KB of caches) 2,500,000 1994 Motorola 600 nm 218 mm2 11,500
PowerPC 601 (32-bit, 32 KB of caches) 2,800,000[50] 1994 Apple/IBM/Motorola 600 nm 121 mm2 23,000
PowerPC 603 (32-bit, 16 KB of caches) 1,600,000[51] 1994 Apple/IBM/Motorola 500 nm 84.76 mm2 18,900
PowerPC 603e (32-bit, 32 KB of caches) 2,600,000[52] 1995 Apple/IBM/Motorola 500 nm 98 mm2 26,500
Alpha 21164 EV5 (64-bit, 112 kB cache) 9,300,000[53] 1995 DEC 500 nm 298.65 mm2 31,140
SA-110 (32-bit, 32 KB of caches) 2,500,000[28] 1995 Acorn/DEC/Apple 350 nm 50 mm2 50,000
Pentium Pro (32-bit, 16 KB of caches;[54] L2 cache on-package, but on separate die) 5,500,000[55] 1995 Intel 500 nm 307 mm2 18,000
PA-8000 64-bit, no cache 3,800,000[56] 1995 HP 500 nm 337.69 mm2 11,300
Alpha 21164A EV56 (64-bit, 112 kB cache) 9,660,000[57] 1996 DEC 350 nm 208.8 mm2 46,260
AMD K5 (32-bit, caches) 4,300,000 1996 AMD 500 nm 251 mm2 17,000
Hitachi SH-4 (32-bit, caches) 10,000,000[58] 1997 Hitachi 200 nm[59] 42 mm2[60] 238,000 (check)
Pentium II Klamath (32-bit, 64-bit SIMD, caches) 7,500,000 1997 Intel 350 nm 195 mm2 39,000
AMD K6 (32-bit, caches) 8,800,000 1997 AMD 350 nm 162 mm2 54,000
F21 (21-bit; includes e.g. video) 15,000 1997[49] Offete Enterprises ? ? ?
AVR (8-bit, 40-pin; w/memory) 140,000 (48,000 excl. memory[61]) 1997 Nordic VLSI/Atmel ? ? ?
Pentium II Deschutes (32-bit, large cache) 7,500,000 1998 Intel 250 nm 113 mm2 66,000
Alpha 21264 EV6 (64-bit) 15,200,000[62] 1998 DEC 350 nm 313.96 mm2 48,400
Alpha 21164PC PCA57 (64-bit, 48 kB cache) 5,700,000 1998 Samsung 280 nm 100.5 mm2 56,700
ARM 9TDMI (32-bit, no cache) 111,000[28] 1999 Acorn 350 nm 4.8 mm2 23,100
Pentium III Katmai (32-bit, 128-bit SIMD, caches) 9,500,000 1999 Intel 250 nm 128 mm2 74,000
Emotion Engine (64-bit, 128-bit SIMD, cache) 13,500,000[63] 1999 Sony/Toshiba 180 nm[64] 240 mm2[65] 56,300
Pentium II Mobile Dixon (32-bit, caches) 27,400,000 1999 Intel 180 nm 180 mm2 152,000
AMD K6-III (32-bit, caches) 21,300,000 1999 AMD 250 nm 118 mm2 181,000
AMD K7 (32-bit, caches) 22,000,000 1999 AMD 250 nm 184 mm2 120,000
Gekko (32-bit, large cache) 21,000,000[66] 2000 IBM/Nintendo 180 nm 43 mm2 490,000 (check)
Pentium III Coppermine (32-bit, large cache) 21,000,000 2000 Intel 180 nm 80 mm2 263,000
Pentium 4 Willamette (32-bit, large cache) 42,000,000 2000 Intel 180 nm 217 mm2 194,000
SPARC64 V (64-bit, large cache) 191,000,000[67] 2001 Fujitsu 130 nm[68] 290 mm2 659,000
Pentium III Tualatin (32-bit, large cache) 45,000,000 2001 Intel 130 nm 81 mm2 556,000
Pentium 4 Northwood (32-bit, large cache) 55,000,000 2002 Intel 130 nm 145 mm2 379,000
Itanium 2 McKinley (64-bit, large cache) 220,000,000 2002 Intel 180 nm 421 mm2 523,000
DEC Alpha 21364 (64-bit, 946-pin, SIMD, very large caches) 152,000,000[13] 2003 DEC 180 nm 397 mm2 383,000
Barton (32-bit, large cache) 54,300,000 2003 AMD 130 nm 101 mm2 538,000
AMD K8 (64-bit, large cache) 105,900,000 2003 AMD 130 nm 193 mm2 548,700
Itanium 2 Madison 6M (64-bit) 410,000,000 2003 Intel 130 nm 374 mm2 1,096,000
Pentium 4 Prescott (32-bit, large cache) 112,000,000 2004 Intel 90 nm 110 mm2 1,018,000
SPARC64 V+ (64-bit, large cache) 400,000,000[69] 2004 Fujitsu 90 nm 294 mm2 1,360,000
Itanium 2 (64-bit;9 MB cache) 592,000,000 2004 Intel 130 nm 432 mm2 1,370,000
Pentium 4 Prescott-2M (32-bit, large cache) 169,000,000 2005 Intel 90 nm 143 mm2 1,182,000
Pentium D Smithfield (64-bit, large cache) 228,000,000 2005 Intel 90 nm 206 mm2 1,107,000
Xenon (64-bit, 128-bit SIMD, large cache) 165,000,000 2005 IBM 90 nm ? ?
Cell (32-bit, cache) 250,000,000[70] 2005 Sony/IBM/Toshiba 90 nm 221 mm2 1,131,000
Pentium 4 Cedar Mill (32-bit, large cache) 184,000,000 2006 Intel 65 nm 90 mm2 2,044,000
Pentium D Presler (64-bit, large cache) 362,000,000 [71] 2006 Intel 65 nm 162 mm2 2,235,000
Core 2 Duo Conroe (dual-core 64-bit, large caches) 291,000,000 2006 Intel 65 nm 143 mm2 2,035,000
Dual-core Itanium 2 (64-bit, SIMD, large caches) 1,700,000,000[72] 2006 Intel 90 nm 596 mm2 2,852,000
AMD K10 quad-core 2M L3 (64-bit, large caches) 463,000,000[73] 2007 AMD 65 nm 283 mm2 1,636,000
ARM Cortex-A9 (32-bit, (optional) SIMD, caches) 26,000,000[74] 2007 ARM 45 nm 31 mm2 839,000
Core 2 Duo Wolfdale (dual-core 64-bit, SIMD, caches) 411,000,000 2007 Intel 45 nm 107 mm2 3,841,000
POWER6 (64-bit, large caches) 789,000,000 2007 IBM 65 nm 341 mm2 2,314,000
Core 2 Duo Allendale (dual-core 64-bit, SIMD, large caches) 169,000,000 2007 Intel 65 nm 111 mm2 1,523,000
Uniphier 250,000,000[75] 2007 Matsushita 45 nm ? ?
SPARC64 VI (64-bit, SIMD, large caches) 540,000,000 2007[76] Fujitsu 90 nm 421 mm2 1,283,000
Core 2 Duo Wolfdale 3M (dual-core 64-bit, SIMD, large caches) 230,000,000 2008 Intel 45 nm 83 mm2 2,771,000
Core i7 (quad-core 64-bit, SIMD, large caches) 731,000,000 2008 Intel 45 nm 263 mm2 2,779,000
AMD K10 quad-core 6M L3 (64-bit, SIMD, large caches) 758,000,000[73] 2008 AMD 45 nm 258 mm2 2,938,000
Atom (32-bit, large cache) 47,000,000 2008 Intel 45 nm 24 mm2 1,958,000
SPARC64 VII (64-bit, SIMD, large caches) 600,000,000 2008[77] Fujitsu 65 nm 445 mm2 1,348,000
Six-core Xeon 7400 (64-bit, SIMD, large caches) 1,900,000,000 2008 Intel 45 nm 503 mm2 3,777,000
Six-core Opteron 2400 (64-bit, SIMD, large caches) 904,000,000 2009 AMD 45 nm 346 mm2 2,613,000
SPARC64 VIIIfx (64-bit, SIMD, large caches) 760,000,000[78] 2009 Fujitsu 45 nm 513 mm2 1,481,000
SPARC T3 (16-core 64-bit, SIMD, large caches) 1,000,000,000[79] 2010 Sun/Oracle 40 nm 377 mm2 2,653,000
Six-core Core i7 (Gulftown) 1,170,000,000 2010 Intel 32 nm 240 mm2 4,875,000
POWER7 32M L3 (8-core 64-bit, SIMD, large caches) 1,200,000,000 2010 IBM 45 nm 567 mm2 2,116,000
Quad-core z196[80] (64-bit, very large caches) 1,400,000,000 2010 IBM 45 nm 512 mm2 2,734,000
Quad-core Itanium Tukwila (64-bit, SIMD, large caches) 2,000,000,000[81] 2010 Intel 65 nm 699 mm2 2,861,000
Xeon Nehalem-EX (8-core 64-bit, SIMD, large caches) 2,300,000,000[82] 2010 Intel 45 nm 684 mm2 3,363,000
SPARC64 IXfx (64-bit, SIMD, large caches) 1,870,000,000[83] 2011 Fujitsu 40 nm 484 mm2 3,864,000
Quad-core + GPU Core i7 (64-bit, SIMD, large caches) 1,160,000,000 2011 Intel 32 nm 216 mm2 5,370,000
Six-core Core i7/8-core Xeon E5
(Sandy Bridge-E/EP) (64-bit, SIMD, large caches)
2,270,000,000[84] 2011 Intel 32 nm 434 mm2 5,230,000
Xeon Westmere-EX (10-core 64-bit, SIMD, large caches) 2,600,000,000 2011 Intel 32 nm 512 mm2 5,078,000
Atom "Medfield" (64-bit) 432,000,000[85] 2012 Intel 32 nm 64 mm2 6,750,000
SPARC64 X (64-bit, SIMD, caches) 2,990,000,000[86] 2012 Fujitsu 28 nm 600 mm2 4,983,000
AMD Bulldozer (8-core 64-bit, SIMD, caches) 1,200,000,000[87] 2012 AMD 32 nm 315 mm2 3,810,000
Quad-core + GPU AMD Trinity (64-bit, SIMD, caches) 1,303,000,000 2012 AMD 32 nm 246 mm2 5,297,000
Quad-core + GPU Core i7 Ivy Bridge (64-bit, SIMD, caches) 1,400,000,000 2012 Intel 22 nm 160 mm2 8,750,000
POWER7+ (8-core 64-bit, SIMD, 80 MB L3 cache) 2,100,000,000 2012 IBM 32 nm 567 mm2 3,704,000
Six-core zEC12 (64-bit, SIMD, large caches) 2,750,000,000 2012 IBM 32 nm 597 mm2 4,606,000
Itanium Poulson (8-core 64-bit, SIMD, caches) 3,100,000,000 2012 Intel 32 nm 544 mm2 5,699,000
Xeon Phi (61-core 32-bit, 512-bit SIMD, caches) 5,000,000,000[88] 2012 Intel 22 nm 720 mm2 6,944,000
Apple A7 (dual-core 64/32-bit ARM64, "mobile SoC", SIMD, caches) 1,000,000,000 2013 Apple 28 nm 102 mm2 9,804,000
Six-core Core i7 Ivy Bridge E (64-bit, SIMD, caches) 1,860,000,000 2013 Intel 22 nm 256 mm2 7,266,000
POWER8 (12-core 64-bit, SIMD, caches) 4,200,000,000 2013 IBM 22 nm 650 mm2 6,462,000
Xbox One main SoC (64-bit, SIMD, caches) 5,000,000,000 2013 Microsoft/AMD 28 nm 363 mm2 13,770,000
Quad-core + GPU Core i7 Haswell (64-bit, SIMD, caches) 1,400,000,000[89] 2014 Intel 22 nm 177 mm2 7,910,000
Apple A8 (dual-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) 2,000,000,000 2014 Apple 20 nm 89 mm2 22,470,000
Core i7 Haswell-E (8-core 64-bit, SIMD, caches) 2,600,000,000[90] 2014 Intel 22 nm 355 mm2 7,324,000
Apple A8X (tri-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) 3,000,000,000[91] 2014 Apple 20 nm 128 mm2 23,440,000
Xeon Ivy Bridge-EX (15-core 64-bit, SIMD, caches) 4,310,000,000[92] 2014 Intel 22 nm 541 mm2 7,967,000
Xeon Haswell-E5 (18-core 64-bit, SIMD, caches) 5,560,000,000[93] 2014 Intel 22 nm 661 mm2 8,411,000
Quad-core + GPU GT2 Core i7 Skylake K (64-bit, SIMD, caches) 1,750,000,000 2015 Intel 14 nm 122 mm2 14,340,000
Dual-core + GPU Iris Core i7 Broadwell-U (64-bit, SIMD, caches) 1,900,000,000[94] 2015 Intel 14 nm 133 mm2 14,290,000
Apple A9 (dual-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) 2,000,000,000+ 2015 Apple 14 nm
(Samsung)
96 mm2
(Samsung)
20,800,000+
16 nm
(TSMC)
104.5 mm2
(TSMC)
19,100,000+
Apple A9X (dual core 64/32-bit ARM64 "mobile SoC", SIMD, caches) 3,000,000,000+ 2015 Apple 16 nm 143.9 mm2 20,800,000+
IBM z13 (64-bit, caches) 3,990,000,000 2015 IBM 22 nm 678 mm2 5,885,000
IBM z13 Storage Controller 7,100,000,000 2015 IBM 22 nm 678 mm2 10,472,000
SPARC M7 (32-core 64-bit, SIMD, caches) 10,000,000,000[95] 2015 Oracle 20 nm ? ?
Qualcomm Snapdragon 835 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) 3,000,000,000[96][97] 2016 Qualcomm 10 nm 72.3 mm2 41,490,000
Core i7 Broadwell-E (10-core 64-bit, SIMD, caches) 3,200,000,000[98] 2016 Intel 14 nm 246 mm2[99] 13,010,000
Apple A10 Fusion (quad-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) 3,300,000,000 2016 Apple 16 nm 125 mm2 26,400,000
HiSilicon Kirin 960 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) 4,000,000,000[100] 2016 Huawei 16 nm 110.00 mm2 36,360,000
Xeon Broadwell-E5 (22-core 64-bit, SIMD, caches) 7,200,000,000[101] 2016 Intel 14 nm 456 mm2 15,790,000
Xeon Phi (72-core 64-bit, 512-bit SIMD, caches) 8,000,000,000 2016 Intel 14 nm 683 mm2 11,710,000
Zip CPU (32-bit, for FPGAs) 1,286 6-LUTs[102] 2016 Gisselquist Technology ? ? ?
Qualcomm Snapdragon 845 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) 5,300,000,000[103] 2017 Qualcomm 10 nm 94 mm2 56,400,000
Qualcomm Snapdragon 850 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) 5,300,000,000[104] 2017 Qualcomm 10 nm 94 mm2 56,400,000
Apple A11 Bionic (hexa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) 4,300,000,000 2017 Apple 10 nm 89.23 mm2 48,190,000
Zeppelin SoC Ryzen (64-bit, SIMD, caches) 4,800,000,000[105] 2017 AMD 14 nm 192 mm2 25,000,000
Ryzen 5 1600 Ryzen (64-bit, SIMD, caches) 4,800,000,000[106] 2017 AMD 14 nm 213 mm2 22,530,000
Ryzen 5 1600 X Ryzen (64-bit, SIMD, caches) 4,800,000,000[107] 2017 AMD 14 nm 213 mm2 22,530,000
IBM z14 (64-bit, SIMD, caches) 6,100,000,000 2017 IBM 14 nm 696 mm2 8,764,000
IBM z14 Storage Controller (64-bit) 9,700,000,000 2017 IBM 14 nm 696 mm2 13,940,000
HiSilicon Kirin 970 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) 5,500,000,000[108] 2017 Huawei 10 nm 96.72 mm2 56,900,000
Xbox One X (Project Scorpio) main SoC (64-bit, SIMD, caches) 7,000,000,000[109] 2017 Microsoft/AMD 16 nm 360 mm2[109] 19,440,000
Xeon Platinum 8180 (28-core 64-bit, SIMD, caches) 8,000,000,000[110][disputed ] 2017 Intel 14 nm ? ?
POWER9 (64-bit, SIMD, caches) 8,000,000,000 2017 IBM 14 nm 695 mm2 11,500,000
Freedom U500 Base Platform Chip (E51, 4×U54) RISC-V (64-bit, caches) 250,000,000[111] 2017 SiFive 28 nm ~30 mm2 8,330,000
SPARC64 XII (12-core 64-bit, SIMD, caches) 5,450,000,000[112] 2017 Fujitsu 20 nm 795 mm2 6,850,000
Apple A10X Fusion (hexa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) 4,300,000,000[113] 2017 Apple 10 nm 96.40 mm2 44,600,000
Centriq 2400 (64/32-bit, SIMD, caches) 18,000,000,000[114] 2017 Qualcomm 10 nm 398 mm2 45,200,000
AMD Epyc (32-core 64-bit, SIMD, caches) 19,200,000,000 2017 AMD 14 nm 768 mm2 25,000,000
HiSilicon Kirin 710 (octa-core ARM64 "mobile SoC", SIMD, caches) 5,500,000,000[115] 2018 Huawei 12 nm ? ?
Apple A12 Bionic (hexa-core ARM64 "mobile SoC", SIMD, caches) 6,900,000,000[116][117] 2018 Apple 7 nm 83.27 mm2 82,900,000
HiSilicon Kirin 980 (octa-core ARM64 "mobile SoC", SIMD, caches) 6,900,000,000[118] 2018 Huawei 7 nm 74.13 mm2 93,100,000
Qualcomm Snapdragon 8cx / SCX8180 (octa-core ARM64 "mobile SoC", SIMD, caches) 8,500,000,000[119] 2018 Qualcomm 7 nm 112 mm2 75,900,000
Qualcomm Snapdragon 855 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) 6,700,000,000[120] 2019 Qualcomm 7 nm 73 mm² 91,800,000
Qualcomm Snapdragon 865 (octa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) 10,300,000,000[121] 2020 Qualcomm 7 nm 83.54 mm2[122] 123,300,000
Apple A12X Bionic (octa-core 64/32-bit ARM64 "mobile SoC", SIMD, caches) 10,000,000,000[123] 2018 Apple 7 nm 122 mm2 82,000,000
Fujitsu A64FX (64/32-bit, SIMD, caches) 8,786,000,000[124] 2018[125] Fujitsu 7 nm ? ?
Tegra Xavier SoC (64/32-bit) 9,000,000,000[126] 2018 Nvidia 12 nm 350 mm2 25,700,000
AMD Ryzen 7 3700X (64-bit, SIMD, caches, I/O die) 5,990,000,000[127][d] 2019 AMD 7 & 12 nm (TSMC) 199 (74+125) mm2 30,100,000
HiSilicon Kirin 990 4G 8,000,000,000[128] 2019 Huawei 7 nm 90.00 mm2 89,000,000
Apple A13 (hexa-core 64-bit ARM64 "mobile SoC", SIMD, caches) 8,500,000,000[129][130] 2019 Apple 7 nm 98.48 mm2 86,300,000
IBM z15 CP chip (12 cores, 256 MB L3 cache) 9,200,000,000[131] 2019 IBM 14 nm 696 mm2 13,220,000
IBM z15 SC chip (960 MB L4 cache) 12,200,000,000 2019 IBM 14 nm 696 mm2 17,530,000
AMD Ryzen 9 3900X (64-bit, SIMD, caches, I/O die) 9,890,000,000[132][133] 2019 AMD 7 & 12 nm (TSMC) 273 mm2 36,230,000
HiSilicon Kirin 990 5G 10,300,000,000[134] 2019 Huawei 7 nm 113.31 mm2 90,900,000
AWS Graviton2 (64-bit, 64-core ARM-based, SIMD, caches)[135][136] 30,000,000,000 2019 Amazon 7 nm ? ?
AMD Epyc Rome (64-bit, SIMD, caches) 39,540,000,000[132][133] 2019 AMD 7 & 12 nm (TSMC) 1008 mm2 39,226,000
TI Jacinto TDA4VM (ARM A72, DSP, SRAM) 3,500,000,000[137] 2020 Texas Instruments 16 nm ? ?
Apple A14 Bionic (hexa-core 64-bit ARM64 "mobile SoC", SIMD, caches) 11,800,000,000[138] 2020 Apple 5 nm 88 mm2 134,100,000
Apple M1 (octa-core 64-bit ARM64 SoC, SIMD, caches) 16,000,000,000[139] 2020 Apple 5 nm 119 mm2 134,500,000
HiSilicon Kirin 9000 15,300,000,000[140][141] 2020 Huawei 5 nm 114 mm2 134,200,000
AMD Ryzen 7 5800H (64-bit, SIMD, caches, I/O and GPU) 10,700,000,000[142] 2021 AMD 7 nm 180 mm2 59,440,000
AMD Epyc 7763 (Milan) (64-core, 64-bit) ? 2021 AMD 7 & 12 nm (TSMC) 1064 mm2 (8x81+416)[143] ?
Apple A15 15,000,000,000[144][145] 2021 Apple 5 nm 107.68 mm2 139,300,000
Apple M1 Pro (10-core, 64-bit) 33,700,000,000[146] 2021 Apple 5 nm 245mm2[147] 137,600,000
Apple M1 Max (10-core, 64-bit) 57,000,000,000[148][146] 2021 Apple 5 nm 420.2 mm2[149] 135,600,000
Power10 dual-chip module (30 SMT8 cores or 60 SMT4 cores) 36,000,000,000[150] 2021 IBM 7 nm 1204 mm2 29,900,000
Apple M1 Ultra (dual-chip module, 2×10 cores) 114,000,000,000[2][3] 2022 Apple 5 nm 840.5 mm2[149] 135,600,000
AMD Epyc 7773X (Milan-X) (multi-chip module, 64 cores, 768 MB L3 cache) 26,000,000,000 + Milan[151] 2022 AMD 7 & 12 nm (TSMC) 1352 mm2 (Milan + 8×36)[151] ?
IBM Telum dual-chip module (2×8 cores, 2×256 MB cache) 45,000,000,000[152][153] 2022 IBM 7 nm (Samsung) 1060 mm2 42,450,000
Apple M2 (deca-core 64-bit ARM64 SoC, SIMD, caches) 20,000,000,000[154] 2022 Apple 5 nm ? ?
Apple A16 (ARM64 SoC) 16,000,000,000[155][156][157] 2022 Apple 4 nm ? ?
Dimensity 9200 (ARM64 SoC) 17,000,000,000[158][159][160] 2022 Mediatek 4 nm (TSMC N4P) ? ?
Processor MOS transistor count Date of
introduction
Designer MOS process
(nm)
Area (mm2) Transistor density, tr./mm2

GPUs

A graphics processing unit (GPU) is a specialized electronic circuit designed to rapidly manipulate and alter memory to accelerate the building of images in a frame buffer intended for output to a display.

The designer refers to the technology company that designs the logic of the integrated circuit chip (such as Nvidia and AMD). The manufacturer refers to the semiconductor company that fabricates the chip using its semiconductor manufacturing process at a foundry (such as TSMC and Samsung Semiconductor). The transistor count in a chip is dependent on a manufacturer's fabrication process, with smaller semiconductor nodes typically enabling higher transistor density and thus higher transistor counts.

The random-access memory (RAM) that comes with GPUs (such as VRAM, SGRAM or HBM) greatly increase the total transistor count, with the memory typically accounting for the majority of transistors in a graphics card. For example, Nvidia's Tesla P100 has 15 billion FinFETs (16 nm) in the GPU in addition to 16 GB of HBM2 memory, totaling about 150 billion MOSFETs on the graphics card.[161] The following table does not include the memory. For memory transistor counts, see the Memory section below.

Processor Transistor count Year Designer(s) Fab(s) Process Area Transistor density, tr./mm2 Ref
µPD7220 GDC 40,000 1982 NEC NEC 5,000 nm ? ? [162]
ARTC HD63484 60,000 1984 Hitachi Hitachi ? ? ? [163]
CBM Agnus 21,000 1985 Commodore CSG 5,000 nm ? ? [164][165]
YM7101 VDP 100,000 1988 Yamaha, Sega Yamaha ? ? ? [166]
Tom & Jerry 750,000 1993 Flare IBM ? ? ? [166]
VDP1 1,000,000 1994 Sega Hitachi 500 nm ? ? [167][168]
Sony GPU 1,000,000 1994 Toshiba LSI 500 nm ? ? [169][170][171]
NV1 1,000,000 1995 Nvidia, Sega SGS 500 nm 90 mm2 11,000 [167]
Reality Coprocessor 2,600,000 1996 SGI NEC 350 nm 81 mm2 32,100 [172]
PowerVR 1,200,000 1996 VideoLogic NEC 350 nm ? ? [173]
Voodoo Graphics 1,000,000 1996 3dfx TSMC 500 nm ? ? [174][175]
Voodoo Rush 1,000,000 1997 3dfx TSMC 500 nm ? ? [174][175]
NV3 3,500,000 1997 Nvidia SGS, TSMC 350 nm 90 mm2 38,900 [176][177]
i740 3,500,000 1998 Intel, Real3D Real3D 350 nm ? ? [174][175]
Voodoo 2 4,000,000 1998 3dfx TSMC 350 nm ? ?
Voodoo Rush 4,000,000 1998 3dfx TSMC 350 nm ? ?
NV4 7,000,000 1998 Nvidia TSMC 350 nm 90 mm2 78,000 [174][177]
PowerVR2 CLX2 10,000,000 1998 VideoLogic NEC 250 nm 116 mm2 86,200 [58][178][179][60]
PowerVR2 PMX1 6,000,000 1999 VideoLogic NEC 250 nm ? ? [180]
Rage 128 8,000,000 1999 ATI TSMC, UMC 250 nm 70 mm2 114,000 [175]
Voodoo 3 8,100,000 1999 3dfx TSMC 250 nm ? ? [181]
Graphics Synthesizer 43,000,000 1999 Sony, Toshiba Sony, Toshiba 180 nm 279 mm2 154,000 [66][64][63][65]
NV5 15,000,000 1999 Nvidia TSMC 250 nm 90 mm2 167,000 [175]
NV10 17,000,000 1999 Nvidia TSMC 220 nm 111 mm2 153,000 [182][177]
NV11 20,000,000 2000 Nvidia TSMC 180 nm 65 mm2 308,000 [175]
NV15 25,000,000 2000 Nvidia TSMC 180 nm 81 mm2 309,000 [175]
Voodoo 4 14,000,000 2000 3dfx TSMC 220 nm ? ? [174][175]
Voodoo 5 28,000,000 2000 3dfx TSMC 220 nm ? ? [174][175]
R100 30,000,000 2000 ATI TSMC 180 nm 97 mm2 309,000 [175]
Flipper 51,000,000 2000 ArtX NEC 180 nm 106 mm2 481,000 [66][183]
PowerVR3 KYRO 14,000,000 2001 Imagination ST 250 nm ? ? [174][175]
PowerVR3 KYRO II 15,000,000 2001 Imagination ST 180 nm
NV2A 60,000,000 2001 Nvidia TSMC 150 nm ? ? [174][184]
NV20 57,000,000 2001 Nvidia TSMC 150 nm 128 mm2 445,000 [175]
NV25 63,000,000 2002 Nvidia TSMC 150 nm 142 mm2 444,000
NV28 36,000,000 2002 Nvidia TSMC 150 nm 101 mm2 356,000
NV17/18 29,000,000 2002 Nvidia TSMC 150 nm 65 mm2 446,000
R200 60,000,000 2001 ATI TSMC 150 nm 68 mm2 882,000
R300 107,000,000 2002 ATI TSMC 150 nm 218 mm2 490,800
R360 117,000,000 2003 ATI TSMC 150 nm 218 mm2 536,700
NV34 45,000,000 2003 Nvidia TSMC 150 nm 124 mm2 363,000
NV34b 45,000,000 2004 Nvidia TSMC 140 nm 91 mm2 495,000
NV30 125,000,000 2003 Nvidia TSMC 130 nm 199 mm2 628,000
NV31 80,000,000 2003 Nvidia TSMC 130 nm 121 mm2 661,000
NV35/38 135,000,000 2003 Nvidia TSMC 130 nm 207 mm2 652,000
NV36 82,000,000 2003 Nvidia IBM 130 nm 133 mm2 617,000
R480 160,000,000 2004 ATI TSMC 130 nm 297 mm2 538,700
NV40 222,000,000 2004 Nvidia IBM 130 nm 305 mm2 727,900
NV44 75,000,000 2004 Nvidia IBM 130 nm 110 mm2 681,800
NV41 222,000,000 2005 Nvidia TSMC 110 nm 225 mm2 986,700 [175]
NV42 198,000,000 2005 Nvidia TSMC 110 nm 222 mm2 891,900
NV43 146,000,000 2005 Nvidia TSMC 110 nm 154 mm2 948,100
G70 303,000,000 2005 Nvidia TSMC, Chartered 110 nm 333 mm2 909,900
Xenos 232,000,000 2005 ATI TSMC 90 nm 182 mm2 1,275,000 [185][186]
RSX Reality Synthesizer 300,000,000 2005 Nvidia, Sony Sony 90 nm 186 mm2 1,613,000 [187][188]
R520 321,000,000 2005 ATI TSMC 90 nm 288 mm2 1,115,000 [175]
RV530 157,000,000 2005 ATI TSMC 90 nm 150 mm2 1,047,000
RV515 107,000,000 2005 ATI TSMC 90 nm 100 mm2 1,070,000
R580 384,000,000 2006 ATI TSMC 90 nm 352 mm2 1,091,000
G71 278,000,000 2006 Nvidia TSMC 90 nm 196 mm2 1,418,000
G72 112,000,000 2006 Nvidia TSMC 90 nm 81 mm2 1,383,000
G73 177,000,000 2006 Nvidia TSMC 90 nm 125 mm2 1,416,000
G80 681,000,000 2006 Nvidia TSMC 90 nm 480 mm2 1,419,000
G86 Tesla 210,000,000 2007 Nvidia TSMC 80 nm 127 mm2 1,654,000
G84 Tesla 289,000,000 2007 Nvidia TSMC 80 nm 169 mm2 1,710,000
RV560 330,000,000 2006 ATI TSMC 80 nm 230 mm2 1,435,000
R600 700,000,000 2007 ATI TSMC 80 nm 420 mm2 1,667,000
RV610 180,000,000 2007 ATI TSMC 65 nm 85 mm2 2,118,000 [175]
RV630 390,000,000 2007 ATI TSMC 65 nm 153 mm2 2,549,000
G92 754,000,000 2007 Nvidia TSMC, UMC 65 nm 324 mm2 2,327,000
G94 Tesla 505,000,000 2008 Nvidia TSMC 65 nm 240 mm2 2,104,000
G96 Tesla 314,000,000 2008 Nvidia TSMC 65 nm 144 mm2 2,181,000
G98 Tesla 210,000,000 2008 Nvidia TSMC 65 nm 86 mm2 2,442,000
GT200[189] 1,400,000,000 2008 Nvidia TSMC 65 nm 576 mm2 2,431,000
RV620 181,000,000 2008 ATI TSMC 55 nm 67 mm2 2,701,000 [175]
RV635 378,000,000 2008 ATI TSMC 55 nm 135 mm2 2,800,000
RV710 242,000,000 2008 ATI TSMC 55 nm 73 mm2 3,315,000
RV730 514,000,000 2008 ATI TSMC 55 nm 146 mm2 3,521,000
RV670 666,000,000 2008 ATI TSMC 55 nm 192 mm2 3,469,000
RV770 956,000,000 2008 ATI TSMC 55 nm 256 mm2 3,734,000
RV790 959,000,000 2008 ATI TSMC 55 nm 282 mm2 3,401,000 [190][175]
G92b Tesla 754,000,000 2008 Nvidia TSMC, UMC 55 nm 260 mm2 2,900,000 [175]
G94b Tesla 505,000,000 2008 Nvidia TSMC, UMC 55 nm 196 mm2 2,577,000
G96b Tesla 314,000,000 2008 Nvidia TSMC, UMC 55 nm 121 mm2 2,595,000
GT200b Tesla 1,400,000,000 2008 Nvidia TSMC, UMC 55 nm 470 mm2 2,979,000
GT218 Tesla 260,000,000 2009 Nvidia TSMC 40 nm 57 mm2 4,561,000 [175]
GT216 Tesla 486,000,000 2009 Nvidia TSMC 40 nm 100 mm2 4,860,000
GT215 Tesla 727,000,000 2009 Nvidia TSMC 40 nm 144 mm2 5,049,000
RV740 826,000,000 2009 ATI TSMC 40 nm 137 mm2 6,029,000
Cypress RV870 2,154,000,000 2009 ATI TSMC 40 nm 334 mm2 6,449,000
Juniper RV840 1,040,000,000 2009 ATI TSMC 40 nm 166 mm2 6,265,000
Redwood RV830 627,000,000 2010 AMD (ATI) TSMC 40 nm 104 mm2 6,029,000 [175]
Cedar RV810 292,000,000 2010 AMD TSMC 40 nm 59 mm2 4,949,000
Cayman RV970 2,640,000,000 2010 AMD TSMC 40 nm 389 mm2 6,789,000
Barts RV940 1,700,000,000 2010 AMD TSMC 40 nm 255 mm2 6,667,000
Turks RV930 716,000,000 2011 AMD TSMC 40 nm 118 mm2 6,068,000
Caicos RV910 370,000,000 2011 AMD TSMC 40 nm 67 mm2 5,522,000
GF100 Fermi 3,200,000,000 2010 Nvidia TSMC 40 nm 526 mm2 6,084,000 [191]
GF110 Fermi 3,000,000,000 2010 Nvidia TSMC 40 nm 520 mm2 5,769,000 [191]
GF104 Fermi 1,950,000,000 2011 Nvidia TSMC 40 nm 332 mm2 5,873,000 [175]
GF106 Fermi 1,170,000,000 2010 Nvidia TSMC 40 nm 238 mm2 4,916,000 [175]
GF108 Fermi 585,000,000 2011 Nvidia TSMC 40 nm 116 mm2 5,043,000 [175]
GF119 Fermi 292,000,000 2011 Nvidia TSMC 40 nm 79 mm2 3,696,000 [175]
Tahiti GCN1 4,312,711,873 2011 AMD TSMC 28 nm 365 mm2 11,820,000 [192]
Cape Verde GCN1 1,500,000,000 2012 AMD TSMC 28 nm 123 mm2 12,200,000 [175]
Pitcairn GCN1 2,800,000,000 2012 AMD TSMC 28 nm 212 mm2 13,210,000 [175]
GK110 Kepler 7,080,000,000 2012 Nvidia TSMC 28 nm 561 mm2 12,620,000 [193][194]
GK104 Kepler 3,540,000,000 2012 Nvidia TSMC 28 nm 294 mm2 12,040,000 [195]
GK106 Kepler 2,540,000,000 2012 Nvidia TSMC 28 nm 221 mm2 11,490,000 [175]
GK107 Kepler 1,270,000,000 2012 Nvidia TSMC 28 nm 118 mm2 10,760,000 [175]
GK208 Kepler 1,020,000,000 2013 Nvidia TSMC 28 nm 79 mm2 12,910,000 [175]
Oland GCN1 1,040,000,000 2013 AMD TSMC 28 nm 90 mm2 11,560,000 [175]
Bonaire GCN2 2,080,000,000 2013 AMD TSMC 28 nm 160 mm2 13,000,000
Durango (Xbox One) 4,800,000,000 2013 AMD TSMC 28 nm 375 mm2 12,800,000 [196][197]
Liverpool (PlayStation 4) ? 2013 AMD TSMC 28 nm 348 mm2 ? [198]
Hawaii GCN2 6,300,000,000 2013 AMD TSMC 28 nm 438 mm2 14,380,000 [175]
GM200 Maxwell 8,000,000,000 2015 Nvidia TSMC 28 nm 601 mm2 13,310,000
GM204 Maxwell 5,200,000,000 2014 Nvidia TSMC 28 nm 398 mm2 13,070,000
GM206 Maxwell 2,940,000,000 2014 Nvidia TSMC 28 nm 228 mm2 12,890,000
GM107 Maxwell 1,870,000,000 2014 Nvidia TSMC 28 nm 148 mm2 12,640,000
Tonga GCN3 5,000,000,000 2014 AMD TSMC, GlobalFoundries 28 nm 366 mm2 13,660,000
Fiji GCN3 8,900,000,000 2015 AMD TSMC 28 nm 596 mm2 14,930,000
Durango 2 (Xbox One S) 5,000,000,000 2016 AMD TSMC 16 nm 240 mm2 20,830,000 [199]
Neo (PlayStation 4 Pro) 5,700,000,000 2016 AMD TSMC 16 nm 325 mm2 17,540,000 [200]
Ellesmere/Polaris 10 GCN4 5,700,000,000 2016 AMD Samsung, GlobalFoundries 14 nm 232 mm2 24,570,000 [201]
Baffin/Polaris 11 GCN4 3,000,000,000 2016 AMD Samsung, GlobalFoundries 14 nm 123 mm2 24,390,000 [175][202]
Lexa/Polaris 12 GCN4 2,200,000,000 2017 AMD Samsung, GlobalFoundries 14 nm 101 mm2 21,780,000 [175][202]
GP100 Pascal 15,300,000,000 2016 Nvidia TSMC, Samsung 16 nm 610 mm2 25,080,000 [203][204]
GP102 Pascal 11,800,000,000 2016 Nvidia TSMC, Samsung 16 nm 471 mm2 25,050,000 [175][204]
GP104 Pascal 7,200,000,000 2016 Nvidia TSMC 16 nm 314 mm2 22,930,000 [175][204]
GP106 Pascal 4,400,000,000 2016 Nvidia TSMC 16 nm 200 mm2 22,000,000 [175][204]
GP107 Pascal 3,300,000,000 2016 Nvidia Samsung 14 nm 132 mm2 25,000,000 [175][204]
GP108 Pascal 1,850,000,000 2017 Nvidia Samsung 14 nm 74 mm2 25,000,000 [175][204]
Scorpio (Xbox One X) 6,600,000,000 2017 AMD TSMC 16 nm 367 mm2 17,980,000 [196][205]
Vega 10 GCN5 12,500,000,000 2017 AMD Samsung, GlobalFoundries 14 nm 484 mm2 25,830,000 [206]
GV100 Volta 21,100,000,000 2017 Nvidia TSMC 12 nm 815 mm2 25,890,000 [207]
TU102 Turing 18,600,000,000 2018 Nvidia TSMC 12 nm 754 mm2 24,670,000 [208]
TU104 Turing 13,600,000,000 2018 Nvidia TSMC 12 nm 545 mm2 24,950,000
TU106 Turing 10,800,000,000 2018 Nvidia TSMC 12 nm 445 mm2 24,270,000
TU116 Turing 6,600,000,000 2019 Nvidia TSMC 12 nm 284 mm2 23,240,000 [209]
TU117 Turing 4,700,000,000 2019 Nvidia TSMC 12 nm 200 mm2 23,500,000 [210]
Vega 20 GCN5 13,230,000,000 2018 AMD TSMC 7 nm 331 mm2 39,970,000 [175]
Navi 10 RDNA1 10,300,000,000 2019 AMD TSMC 7 nm 251 mm2 41,040,000 [211]
Navi 12 RDNA1 ? 2020 AMD TSMC 7 nm ? ?
Navi 14 RDNA1 6,400,000,000 2019 AMD TSMC 7 nm 158 mm2 40,510,000 [212]
Arcturus CDNA1 25,600,000,000 2020 AMD TSMC 7 nm 750 mm2 34,100,000 [213]
GA100 Ampere 54,200,000,000 2020 Nvidia TSMC 7 nm 826 mm2 65,620,000 [214][215]
GA102 Ampere 28,300,000,000 2020 Nvidia Samsung 8 nm 628 mm2 45,035,000 [216][217]
GA104 Ampere 17,400,000,000 2020 Nvidia Samsung 8 nm 392 mm² 44,390,000 [218]
GA106 Ampere 13,250,000,000 2021 Nvidia Samsung 8 nm 276 mm² 48,010,000
Navi 21 RDNA2 26,800,000,000 2020 AMD TSMC 7 nm 520 mm² 51,540,000
Navi 22 RDNA2 17,200,000,000 2021 AMD TSMC 7 nm 335 mm² 51,340,000
Navi 23 RDNA2 11,060,000,000 2021 AMD TSMC 7 nm 237 mm² 46,670,000
Navi 24 RDNA2 5,400,000,000 2022 AMD TSMC 6 nm 107 mm² 50,470,000
Aldebaran CDNA2 58,200,000,000 2021 AMD TSMC 6 nm ? ? [219]
GH100 Hopper 80,000,000,000 2022 Nvidia TSMC 4 nm 814 mm² 98,280,000 [220]
AD102 Ada Lovelace 76,300,000,000 2022 Nvidia TSMC 4 nm 608.4 mm² 125,411,000 [221]
AD103 Ada Lovelace 45,900,000,000 2022 Nvidia TSMC 4 nm 378.6 mm² 121,240,000 [222]
AD104 Ada Lovelace 35,800,000,000 2022 Nvidia TSMC 4 nm 294.5 mm² 121,560,000 [222]
Navi 31 RDNA3 58,000,000,000 2022 AMD TSMC 5 nm (GCD) 6 nm (MCD) 531 mm² (MCM) 306 mm² (GCD) 6×37.5 mm² (MCD) 109,200,000 (MCM) 132,400,000 (GCD) [223][224]
Processor Transistor count Year Designer(s) Fab(s) MOS process Area Transistor density, tr./mm2 Ref

FPGA

A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by a customer or a designer after manufacturing.

FPGA Transistor count Date of introduction Designer Manufacturer Process Area Transistor density, tr./mm2 Ref
Virtex 70,000,000 1997 Xilinx
Virtex-E 200,000,000 1998 Xilinx
Virtex-II 350,000,000 2000 Xilinx 130 nm
Virtex-II PRO 430,000,000 2002 Xilinx
Virtex-4 1,000,000,000 2004 Xilinx 90 nm
Virtex-5 1,100,000,000 2006 Xilinx TSMC 65 nm [225]
Stratix IV 2,500,000,000 2008 Altera TSMC 40 nm [226]
Stratix V 3,800,000,000 2011 Altera TSMC 28 nm [227]
Arria 10 5,300,000,000 2014 Altera TSMC 20 nm [228]
Virtex-7 2000T 6,800,000,000 2011 Xilinx TSMC 28 nm [229]
Stratix 10 SX 2800 17,000,000,000 TBD Intel Intel 14 nm 560 mm2 30,400,000 [230][231]
Virtex-Ultrascale VU440 20,000,000,000 Q1 2015 Xilinx TSMC 20 nm [232][233]
Virtex-Ultrascale+ VU19P 35,000,000,000 2020 Xilinx TSMC 16 nm 900 mm2 [e] 38,900,000 [234][235][236]
Versal VC1902 37,000,000,000 2H 2019 Xilinx TSMC 7 nm [237][238][239]
Stratix 10 GX 10M 43,300,000,000 Q4 2019 Intel Intel 14 nm 1400 mm2 [e] 30,930,000 [240][241]
Versal VP1802 92,000,000,000 2021 ?[f] Xilinx TSMC 7 nm [242][243]

Memory

Semiconductor memory is an electronic data storage device, often used as computer memory, implemented on integrated circuits. Nearly all semiconductor memory since the 1970s have used MOSFETs (MOS transistors), replacing earlier bipolar junction transistors. There are two major types of semiconductor memory, random-access memory (RAM) and non-volatile memory (NVM). In turn, there are two major RAM types, dynamic random-access memory (DRAM) and static random-access memory (SRAM), as well as two major NVM types, flash memory and read-only memory (ROM).

Typical CMOS SRAM consists of six transistors per cell. For DRAM, 1T1C, which means one transistor and one capacitor structure, is common. Capacitor charged or not is used to store 1 or 0. For flash memory, the data is stored in floating gate, and the resistance of the transistor is sensed to interpret the data stored. Depending on how fine scale the resistance could be separated, one transistor could store up to 3-bits, meaning eight distinctive level of resistance possible per transistor. However, the fine the scale comes with cost of repeatability therefore reliability. Typically, low grade 2-bits MLC flash is used for flash drives, so a 16 GB flash drive contains roughly 64 billion transistors.

For SRAM chips, six-transistor cells (six transistors per bit) was the standard.[244] DRAM chips during the early 1970s had three-transistor cells (three transistors per bit), before single-transistor cells (one transistor per bit) became standard since the era of 4 Kb DRAM in the mid-1970s.[245][246] In single-level flash memory, each cell contains one floating-gate MOSFET (one transistor per bit),[247] whereas multi-level flash contains 2, 3 or 4 bits per transistor.

Flash memory chips are commonly stacked up in layers, up to 128-layer in production,[248] and 136-layer managed,[249] and available in end-user devices up to 69-layer from manufacturers.

Random-access memory (RAM)
Chip name Capacity (bits) RAM type Transistor count Date of introduction Manufacturer(s) Process Area Transistor density, tr./mm2 Ref
1-bit SRAM (cell) 6 1963 Fairchild ? [250]
1-bit DRAM (cell) 1 1965 Toshiba ? [251][252]
? 8-bit SRAM (bipolar) 48 1965 SDS, Signetics ? ? ? [250]
SP95 16-bit SRAM (bipolar) 80 1965 IBM ? ? ? [253]
TMC3162 16-bit SRAM (TTL) 96 1966 Transitron ? ? [246]
? ? SRAM (MOS) ? 1966 NEC ? ? ? [245]
256-bit DRAM (IC) 256 1968 Fairchild ? ? ? [246]
64-bit SRAM (PMOS) 384 1968 Fairchild ? ? ? [245]
144-bit SRAM (NMOS) 864 1968 NEC
1101 256-bit SRAM (PMOS) 1,536 1969 Intel 12,000 nm ? ? [254][255][256]
1102 1 Kb DRAM (PMOS) 3,072 1970 Intel, Honeywell ? ? ? [245]
1103 1 Kb DRAM (PMOS) 3,072 1970 Intel 8,000 nm 10 mm2 307 [257][244][258][246]
μPD403 1 Kb DRAM (NMOS) 3,072 1971 NEC ? ? ? [259]
? 2 Kb DRAM (PMOS) 6,144 1971 General Instrument ? 12.7 mm2 484 [260]
2102 1 Kb SRAM (NMOS) 6,144 1972 Intel ? ? ? [254][261]
? 8 Kb DRAM (PMOS) 8,192 1973 IBM ? 18.8 mm2 436 [260]
5101 1 Kb SRAM (CMOS) 6,144 1974 Intel ? ? ? [254]
2116 16 Kb DRAM (NMOS) 16,384 1975 Intel ? ? ? [262][246]
2114 4 Kb SRAM (NMOS) 24,576 1976 Intel ? ? ? [254][263]
? 4 Kb SRAM (CMOS) 24,576 1977 Toshiba ? ? ? [255]
64 Kb DRAM (NMOS) 65,536 1977 NTT ? 35.4 mm2 1851 [260]
DRAM (VMOS) 65,536 1979 Siemens ? 25.2 mm2 2601 [260]
16 Kb SRAM (CMOS) 98,304 1980 Hitachi, Toshiba ? ? ? [264]
256 Kb DRAM (NMOS) 262,144 1980 NEC 1,500 nm 41.6 mm2 6302 [260]
NTT 1,000 nm 34.4 mm2 7620 [260]
64 Kb SRAM (CMOS) 393,216 1980 Matsushita ? ? ? [264]
288 Kb DRAM 294,912 1981 IBM ? 25 mm2 11,800 [265]
64 Kb SRAM (NMOS) 393,216 1982 Intel 1,500 nm ? ? [264]
256 Kb SRAM (CMOS) 1,572,864 1984 Toshiba 1,200 nm ? ? [264][256]
8 Mb DRAM 8,388,608 January 5, 1984 Hitachi ? ? ? [266][267]
16 Mb DRAM (CMOS) 16,777,216 1987 NTT 700 nm 148 mm2 113,400 [260]
4 Mb SRAM (CMOS) 25,165,824 1990 NEC, Toshiba, Hitachi, Mitsubishi ? ? ? [264]
64 Mb DRAM (CMOS) 67,108,864 1991 Matsushita, Mitsubishi, Fujitsu, Toshiba 400 nm
KM48SL2000 16 Mb SDRAM 16,777,216 1992 Samsung ? ? ? [268][269]
? 16 Mb SRAM (CMOS) 100,663,296 1992 Fujitsu, NEC 400 nm ? ? [264]
256 Mb DRAM (CMOS) 268,435,456 1993 Hitachi, NEC 250 nm
1 Gb DRAM 1,073,741,824 January 9, 1995 NEC 250 nm ? ? [270][271]
Hitachi 160 nm ? ?
SDRAM 1,073,741,824 1996 Mitsubishi 150 nm ? ? [264]
SDRAM (SOI) 1,073,741,824 1997 Hyundai ? ? ? [272]
4 Gb DRAM (4-bit) 1,073,741,824 1997 NEC 150 nm ? ? [264]
DRAM 4,294,967,296 1998 Hyundai ? ? ? [272]
8 Gb SDRAM (DDR3) 8,589,934,592 April 2008 Samsung 50 nm ? ? [273]
16 Gb SDRAM (DDR3) 17,179,869,184 2008
32 Gb SDRAM (HBM2) 34,359,738,368 2016 Samsung 20 nm ? ? [274]
64 Gb SDRAM (HBM2) 68,719,476,736 2017
128 Gb SDRAM (DDR4) 137,438,953,472 2018 Samsung 10 nm ? ? [275]
? RRAM[276] (3DSoC)[277] ? 2019 SkyWater Technology[278] 90 nm ? ?
Flash memory
Chip name Capacity (bits) Flash type FGMOS transistor count Date of introduction Manufacturer(s) Process Area Transistor density, tr./mm2 Ref
? 256 Kb NOR 262,144 1985 Toshiba 2,000 nm ? ? [264]
1 Mb NOR 1,048,576 1989 Seeq, Intel ?
4 Mb NAND 4,194,304 1989 Toshiba 1,000 nm
16 Mb NOR 16,777,216 1991 Mitsubishi 600 nm
DD28F032SA 32 Mb NOR 33,554,432 1993 Intel ? 280 mm2 120,000 [254][279]
? 64 Mb NOR 67,108,864 1994 NEC 400 nm ? ? [264]
NAND 67,108,864 1996 Hitachi
128 Mb NAND 134,217,728 1996 Samsung, Hitachi ?
256 Mb NAND 268,435,456 1999 Hitachi, Toshiba 250 nm
512 Mb NAND 536,870,912 2000 Toshiba ? ? ? [280]
1 Gb 2-bit NAND 536,870,912 2001 Samsung ? ? ? [264]
Toshiba, SanDisk 160 nm ? ? [281]
2 Gb NAND 2,147,483,648 2002 Samsung, Toshiba ? ? ? [282][283]
8 Gb NAND 8,589,934,592 2004 Samsung 60 nm ? ? [282]
16 Gb NAND 17,179,869,184 2005 Samsung 50 nm ? ? [284]
32 Gb NAND 34,359,738,368 2006 Samsung 40 nm
THGAM 128 Gb Stacked NAND 128,000,000,000 April 2007 Toshiba 56 nm 252 mm2 507,900,000 [285]
THGBM 256 Gb Stacked NAND 256,000,000,000 2008 Toshiba 43 nm 353 mm2 725,200,000 [286]
THGBM2 1 Tb Stacked 4-bit NAND 256,000,000,000 2010 Toshiba 32 nm 374 mm2 684,500,000 [287]
KLMCG8GE4A 512 Gb Stacked 2-bit NAND 256,000,000,000 2011 Samsung ? 192 mm2 1,333,000,000 [288]
KLUFG8R1EM 4 Tb Stacked 3-bit V-NAND 1,365,333,333,504 2017 Samsung ? 150 mm2 9,102,000,000 [289]
eUFS (1 TB) 8 Tb Stacked 4-bit V-NAND 2,048,000,000,000 2019 Samsung ? 150 mm2 13,650,000,000 [290][291]
? 1 Tb 232L TLC NAND die 333,333,333,333 2022 Micron ? 68.5 mm2 (memory array) 4,870,000,000 (14.6 Gbit/mm2) [292][293][294]
? 16 Tb 232L package 5,333,333,333,333 2022 Micron ? 68.5 mm2 (memory array) 77,900,000,000 (16× 14.6 Gbit/mm2)
Read-only memory (ROM)
Chip name Capacity (bits) ROM type Transistor count Date of introduction Manufacturer(s) Process Area Ref
? ? PROM ? 1956 Arma ? [295][296]
1 Kb ROM (MOS) 1,024 1965 General Microelectronics ? ? [297]
3301 1 Kb ROM (bipolar) 1,024 1969 Intel ? [297]
1702 2 Kb EPROM (MOS) 2,048 1971 Intel ? 15 mm2 [298]
? 4 Kb ROM (MOS) 4,096 1974 AMD, General Instrument ? ? [297]
2708 8 Kb EPROM (MOS) 8,192 1975 Intel ? ? [254]
? 2 Kb EEPROM (MOS) 2,048 1976 Toshiba ? ? [299]
µCOM-43 ROM 16 Kb PROM (PMOS) 16,000 1977 NEC ? ? [300]
2716 16 Kb EPROM (TTL) 16,384 1977 Intel ? [257][301]
EA8316F 16 Kb ROM (NMOS) 16,384 1978 Electronic Arrays ? 436 mm2 [297][302]
2732 32 Kb EPROM 32,768 1978 Intel ? ? [254]
2364 64 Kb ROM 65,536 1978 Intel ? ? [303]
2764 64 Kb EPROM 65,536 1981 Intel 3,500 nm ? [254][264]
27128 128 Kb EPROM 131,072 1982 Intel ?
27256 256 Kb EPROM (HMOS) 262,144 1983 Intel ? ? [254][304]
? 256 Kb EPROM (CMOS) 262,144 1983 Fujitsu ? ? [305]
512 Kb EPROM (NMOS) 524,288 1984 AMD 1,700 nm ? [264]
27512 512 Kb EPROM (HMOS) 524,288 1984 Intel ? ? [254][306]
? 1 Mb EPROM (CMOS) 1,048,576 1984 NEC 1,200 nm ? [264]
4 Mb EPROM (CMOS) 4,194,304 1987 Toshiba 800 nm
16 Mb EPROM (CMOS) 16,777,216 1990 NEC 600 nm
MROM 16,777,216 1995 AKM, Hitachi ? ? [271]

Transistor computers

Before transistors were invented, relays were used in commercial tabulating machines and experimental early computers. The world's first working programmable, fully automatic digital computer,[307] the 1941 Z3 22-bit word length computer, had 2,600 relays, and operated at a clock frequency of about 4–5 Hz. The 1940 Complex Number Computer had fewer than 500 relays,[308] but it was not fully programmable. The earliest practical computers used vacuum tubes and solid-state diode logic. ENIAC had 18,000 vacuum tubes, 7,200 crystal diodes, and 1,500 relays, with many of the vacuum tubes containing two triode elements.

The second generation of computers were transistor computers that featured boards filled with discrete transistors, solid-state diodes and magnetic memory cores. The experimental 1953 48-bit Transistor Computer, developed at the University of Manchester, is widely believed to be the first transistor computer to come into operation anywhere in the world (the prototype had 92 point-contact transistors and 550 diodes).[309] A later version the 1955 machine had a total of 250 junction transistors and 1300 point-contact diodes. The Computer also used a small number of tubes in its clock generator, so it was not the first fully transistorized. The ETL Mark III, developed at the Electrotechnical Laboratory in 1956, may have been the first transistor-based electronic computer using the stored program method. It had about "130 point-contact transistors and about 1,800 germanium diodes were used for logic elements, and these were housed on 300 plug-in packages which could be slipped in and out."[310] The 1958 decimal architecture IBM 7070 was the first transistor computer to be fully programmable. It had about 30,000 alloy-junction germanium transistors and 22,000 germanium diodes, on approximately 14,000 Standard Modular System (SMS) cards. The 1959 MOBIDIC, short for "MOBIle DIgital Computer", at 12,000 pounds (6.0 short tons) mounted in the trailer of a semi-trailer truck, was a transistorized computer for battlefield data.

The third generation of computers used integrated circuits (ICs).[311] The 1962 15-bit Apollo Guidance Computer used "about 4,000 "Type-G" (3-input NOR gate) circuits" for about 12,000 transistors plus 32,000 resistors.[312] The IBM System/360, introduced 1964, used discrete transistors in hybrid circuit packs.[311] The 1965 12-bit PDP-8 CPU had 1409 discrete transistors and over 10,000 diodes, on many cards. Later versions, starting with the 1968 PDP-8/I, used integrated circuits. The PDP-8 was later reimplemented as a microprocessor as the Intersil 6100, see below.[313]

The next generation of computers were the microcomputers, starting with the 1971 Intel 4004. which used MOS transistors. These were used in home computers or personal computers (PCs).

This list includes early transistorized computers (second generation) and IC-based computers (third generation) from the 1950s and 1960s.

Computer Transistor count Year Manufacturer Notes Ref
Transistor Computer 92 1953 University of Manchester Point-contact transistors, 550 diodes. Lacked stored program capability. [309]
TRADIC 700 1954 Bell Labs Point-contact transistors [309]
Transistor Computer (full size) 250 1955 University of Manchester Discrete point-contact transistors, 1,300 diodes [309]
IBM 608 3,000 1955 IBM Germanium transistors [314]
ETL Mark III 130 1956 Electrotechnical Laboratory Point-contact transistors, 1,800 diodes, stored program capability [309][310]
Metrovick 950 200 1956 Metropolitan-Vickers Discrete junction transistors
NEC NEAC-2201 600 1958 NEC Germanium transistors [315]
Hitachi MARS-1 1,000 1958 Hitachi [316]
IBM 7070 30,000 1958 IBM Alloy-junction germanium transistors, 22,000 diodes [317]
Matsushita MADIC-I 400 1959 Matsushita Bipolar transistors [318]
NEC NEAC-2203 2,579 1959 NEC [319]
Toshiba TOSBAC-2100 5,000 1959 Toshiba [320]
IBM 7090 50,000 1959 IBM Discrete germanium transistors [321]
PDP-1 2,700 1959 Digital Equipment Corporation Discrete transistors
Olivetti Elea 9003 ? 1959 Olivetti 300,000 (?) discrete transistors and diodes [322]
Mitsubishi MELCOM 1101 3,500 1960 Mitsubishi Germanium transistors [323]
M18 FADAC 1,600 1960 Autonetics Discrete transistors
CPU of IBM 7030 Stretch 169,100 1961 IBM World's fastest computer from 1961 to 1964 [324]
D-17B 1,521 1962 Autonetics Discrete transistors
NEC NEAC-L2 16,000 1964 NEC Ge transistors [325]
CDC 6600 (entire computer) 400,000 1964 Control Data Corporation World's fastest computer from 1964 to 1969 [326]
IBM System/360 ? 1964 IBM Hybrid circuits
PDP-8 "Straight-8" 1409[313] 1965 Digital Equipment Corporation discrete transistors, 10,000 diodes
PDP-8/S 1001[327][328][329] 1966 Digital Equipment Corporation discrete transistors, diodes
PDP-8/I 1409[citation needed] 1968[330] Digital Equipment Corporation 74 series TTL circuits[331]
Apollo Guidance Computer Block I 12,300 1966 Raytheon / MIT Instrumentation Laboratory 4,100 ICs, each containing a 3-transistor, 3-input NOR gate. (Block II had 2,800 dual 3-input NOR gates ICs.)

Logic functions

Transistor count for generic logic functions is based on static CMOS implementation.[332]

Function Transistor count Ref
NOT 2
Buffer 4
NAND 2-input 4
NOR 2-input 4
AND 2-input 6
OR 2-input 6
NAND 3-input 6
NOR 3-input 6
XOR 2-input 6
XNOR 2-input 8
MUX 2-input with TG 6
MUX 4-input with TG 18
NOT MUX 2-input 8
MUX 4-input 24
1-bit full adder 24
1-bit adder–subtractor 48
AND-OR-INVERT 6 [333]
Latch, D gated 8
Flip-flop, edge triggered dynamic D with reset 12
8-bit multiplier 3,000
16-bit multiplier 9,000
32-bit multiplier 21,000 [citation needed]
small-scale integration 2–100 [334]
medium-scale integration 100–500 [334]
large-scale integration 500–20,000 [334]
very-large-scale integration 20,000–1,000,000 [334]
ultra-large scale integration >1,000,000

Parallel systems

Historically, each processing element in earlier parallel systems—like all CPUs of that time—was a serial computer built out of multiple chips. As transistor counts per chip increases, each processing element could be built out of fewer chips, and then later each multi-core processor chip could contain more processing elements.[335]

Goodyear MPP: (1983?) 8 pixel processors per chip, 3,000 to 8,000 transistors per chip.[335]

Brunel University Scape (single-chip array-processing element): (1983) 256 pixel processors per chip, 120,000 to 140,000 transistors per chip.[335]

Cell Broadband Engine: (2006) with 9 cores per chip, had 234 million transistors per chip.[336]

Other devices

Device type Device name Transistor count Date of introduction Designer(s) Manufacturer(s) MOS process Area Transistor density, tr./mm2 Ref
Deep learning engine / IPU[g] Colossus GC2 23,600,000,000 2018 Graphcore TSMC 16 nm ~800 mm2 29,500,000 [337][338][339][better source needed]
Deep learning engine / IPU Wafer Scale Engine 1,200,000,000,000 2019 Cerebras TSMC 16 nm 46,225 mm2 25,960,000 [4][5][6][7]
Deep learning engine / IPU Wafer Scale Engine 2 2,600,000,000,000 2020 Cerebras TSMC 7 nm 46,225 mm2 56,250,000 [8][340][341]
Network switch NVLink4 NVSwitch 25,100,000,000 2022 Nvidia TSMC N4 (4 nm) 294 mm2 85,370,000 [342]

Transistor density

The transistor density is the number of transistors that are fabricated per unit area, typically measured in terms of the number of transistors per square millimeter (mm2). The transistor density usually correlates with the gate length of a semiconductor node (also known as a semiconductor manufacturing process), typically measured in nanometers (nm). As of 2019, the semiconductor node with the highest transistor density is TSMC's 5 nanometer node, with 171.3 million transistors per square millimeter (note this corresponds to a transistor-transistor spacing of 76.4 nm, far greater than the relative meaningless "5nm")[343]

MOSFET nodes

Semiconductor nodes
Node name Transistor density (transistors/mm2) Production year Process MOSFET Manufacturer(s) Ref
? ? 1960 20,000 nm PMOS Bell Labs [344][345]
? ? 1960 20,000 nm NMOS
? ? 1963 ? CMOS Fairchild [346]
? ? 1964 ? PMOS General Microelectronics [347]
? ? 1968 20,000 nm CMOS RCA [348]
? ? 1969 12,000 nm PMOS Intel [264][256]
? ? 1970 10,000 nm CMOS RCA [348]
? 300 1970 8,000 nm PMOS Intel [258][246]
? ? 1971 10,000 nm PMOS Intel [349]
? 480 1971 ? PMOS General Instrument [260]
? ? 1973 ? NMOS Texas Instruments [260]
? 220 1973 ? NMOS Mostek [260]
? ? 1973 7,500 nm NMOS NEC [19][18]
? ? 1973 6,000 nm PMOS Toshiba [20][350]
? ? 1976 5,000 nm NMOS Hitachi, Intel [260]
? ? 1976 5,000 nm CMOS RCA
? ? 1976 4,000 nm NMOS Zilog
? ? 1976 3,000 nm NMOS Intel [351]
? 1,850 1977 ? NMOS NTT [260]
? ? 1978 3,000 nm CMOS Hitachi [352]
? ? 1978 2,500 nm NMOS Texas Instruments [260]
? ? 1978 2,000 nm NMOS NEC, NTT
? 2,600 1979 ? VMOS Siemens
? 7,280 1979 1,000 nm NMOS NTT
? 7,620 1980 1,000 nm NMOS NTT
? ? 1983 2,000 nm CMOS Toshiba [264]
? ? 1983 1,500 nm CMOS Intel [260]
? ? 1983 1,200 nm CMOS Intel
? ? 1984 800 nm CMOS NTT
? ? 1987 700 nm CMOS Fujitsu
? ? 1989 600 nm CMOS Mitsubishi, NEC, Toshiba [264]
? ? 1989 500 nm CMOS Hitachi, Mitsubishi, NEC, Toshiba
? ? 1991 400 nm CMOS Matsushita, Mitsubishi, Fujitsu, Toshiba
? ? 1993 350 nm CMOS Sony
? ? 1993 250 nm CMOS Hitachi, NEC
3LM 32,000 1994 350 nm CMOS NEC [172]
? ? 1995 160 nm CMOS Hitachi [264]
? ? 1996 150 nm CMOS Mitsubishi
TSMC 180 nm ? 1998 180 nm CMOS TSMC [353]
CS80 ? 1999 180 nm CMOS Fujitsu [354]
? ? 1999 180 nm CMOS Intel, Sony, Toshiba [254][64]
CS85 ? 1999 170 nm CMOS Fujitsu [355]
Samsung 140 nm ? 1999 140 nm CMOS Samsung [264]
? ? 2001 130 nm CMOS Fujitsu, Intel [354][254]
Samsung 100 nm ? 2001 100 nm CMOS Samsung [264]
? ? 2002 90 nm CMOS Sony, Toshiba, Samsung [64][282]
CS100 ? 2003 90 nm CMOS Fujitsu [354]
Intel 90 nm 1,450,000 2004 90 nm CMOS Intel [356][254]
Samsung 80 nm ? 2004 80 nm CMOS Samsung [357]
? ? 2004 65 nm CMOS Fujitsu, Toshiba [358]
Samsung 60 nm ? 2004 60 nm CMOS Samsung [282]
TSMC 45 nm ? 2004 45 nm CMOS TSMC
Elpida 90 nm ? 2005 90 nm CMOS Elpida Memory [359]
CS200 ? 2005 65 nm CMOS Fujitsu [360][354]
Samsung 50 nm ? 2005 50 nm CMOS Samsung [284]
Intel 65 nm 2,080,000 2006 65 nm CMOS Intel [356]
Samsung 40 nm ? 2006 40 nm CMOS Samsung [284]
Toshiba 56 nm ? 2007 56 nm CMOS Toshiba [285]
Matsushita 45 nm ? 2007 45 nm CMOS Matsushita [75]
Intel 45 nm 3,300,000 2008 45 nm CMOS Intel [361]
Toshiba 43 nm ? 2008 43 nm CMOS Toshiba [286]
TSMC 40 nm ? 2008 40 nm CMOS TSMC [362]
Toshiba 32 nm ? 2009 32 nm CMOS Toshiba [363]
Intel 32 nm 7,500,000 2010 32 nm CMOS Intel [361]
? ? 2010 20 nm CMOS Hynix, Samsung [364][284]
Intel 22 nm 15,300,000 2012 22 nm CMOS Intel [361]
IMFT 20 nm ? 2012 20 nm CMOS IMFT [365]
Toshiba 19 nm ? 2012 19 nm CMOS Toshiba
Hynix 16 nm ? 2013 16 nm FinFET SK Hynix [364]
TSMC 16 nm 28,880,000 2013 16 nm FinFET TSMC [366][367]
Samsung 10 nm 51,820,000 2013 10 nm FinFET Samsung [368][369]
Intel 14 nm 37,500,000 2014 14 nm FinFET Intel [361]
14LP 32,940,000 2015 14 nm FinFET Samsung [368]
TSMC 10 nm 52,510,000 2016 10 nm FinFET TSMC [366][370]
12LP 36,710,000 2017 12 nm FinFET GlobalFoundries, Samsung [202]
N7FF 96,500,000

101,850,000[371]

2017 7 nm FinFET TSMC [372][373][374]
8LPP 61,180,000 2018 8 nm FinFET Samsung [368]
7LPE 95,300,000 2018 7 nm FinFET Samsung [373]
Intel 10 nm 100,760,000

106,100,000[371]

2018 10 nm FinFET Intel [375]
5LPE 126,530,000

133,560,000[371] 134,900,000[376]

2018 5 nm FinFET Samsung [377][378]
N7FF+ 113,900,000 2019 7 nm FinFET TSMC [372][373]
CLN5FF 171,300,000

185,460,000[371]

2019 5 nm FinFET TSMC [343]
Intel 7 100,760,000

106,100,000[371]

2021 7 nm FinFET Intel
4LPE 145,700,000[376] 2021 4 nm FinFET Samsung [379][380][381]
N4 196,600,000[371][382] 2021 4 nm FinFET TSMC [383]
N4P 196,600,000[371][382] 2022 4 nm FinFET TSMC [384]
3GAE 202,850,000[371] 2022 3 nm MBCFET Samsung [385][379][386]
N3 314,730,000[371] 2022 3 nm FinFET TSMC [387][388]
N4X ? 2023 4 nm FinFET TSMC [389][390][391]
N3E ? 2023 3 nm FinFET TSMC [388][392]
3GAP ? 2023 3 nm MBCFET Samsung [379]
Intel 4 160,000,000[393] 2023 4 nm FinFET Intel [394][395][396]
Intel 3 ? 2023 3 nm FinFET Intel [395][396]
Intel 20A ? 2024 2 nm RibbonFET Intel [395][396]
Intel 18A ? 2025 sub-2 nm RibbonFET Intel [395]
2GAP ? 2025 2 nm MBCFET Samsung [379]
N2 ? 2025 2 nm GAAFET TSMC [388][392]
Samsung 1.4 nm ? 2027 1.4 nm ? Samsung [397]

See also

Notes

  1. ^ Declassified 1998
  2. ^ 3,510 without depletion mode pull-up transistors
  3. ^ 6,813 without depletion mode pull-up transistors
  4. ^ 3,900,000,000 core chiplet die, 2,090,000,000 I/O die
  5. ^ a b Estimate
  6. ^ Versal Premium are confirmed to be shipping in 1H 2021 but nothing was mentioned about the VP1802 in particular. Usually Xilinx makes separate news for the release of its biggest devices so the VP1802 is likely to be released later.
  7. ^ "Intelligence Processing Unit"

References

  1. ^ Khosla, Robin (2017). Alternate high-k dielectrics for next-generation CMOS logic and memory technology (PhD). IIT Mandi.
  2. ^ a b "Apple unveils M1 Ultra, the world's most powerful chip for a personal computer". Apple Newsroom. Retrieved March 9, 2022.
  3. ^ a b Shankland, Stephen. "Meet Apple's Enormous 20-Core M1 Ultra Processor, the Brains in the New Mac Studio Machine". CNET. Retrieved March 9, 2022.
  4. ^ a b Hruska, Joel (August 2019). "Cerebras Systems Unveils 1.2 Trillion Transistor Wafer-Scale Processor for AI". extremetech.com. Retrieved September 6, 2019.
  5. ^ a b Feldman, Michael (August 2019). "Machine Learning chip breaks new ground with waferscale integration". nextplatform.com. Retrieved September 6, 2019.
  6. ^ a b Cutress, Ian (August 2019). "Hot Chips 31 Live Blogs: Cerebras' 1.2 Trillion Transistor Deep Learning Processor". anandtech.com. Retrieved September 6, 2019.
  7. ^ a b "A Look at Cerebras Wafer-Scale Engine: Half Square Foot Silicon Chip". WikiChip Fuse. November 16, 2019. Retrieved December 2, 2019.
  8. ^ a b Everett, Joseph (August 26, 2020). "World's largest CPU has 850,000 7 nm cores that are optimized for AI and 2.6 trillion transistors". TechReportArticles.
  9. ^ "John Gustafson's answer to How many individual transistors are in the world's most powerful supercomputer?". Quora. Retrieved August 22, 2019.
  10. ^ Pires, Francisco (October 5, 2022). "Water-Based Chips Could be Breakthrough for Neural Networking, AI: Wetware has gained an entirely new meaning". Tom's Hardware. Retrieved October 5, 2022.
  11. ^ "1971: Microprocessor Integrates CPU Function onto a Single Chip". The Silicon Engine. Computer History Museum. Retrieved September 4, 2019.
  12. ^ a b Holt, Ray. "World's First Microprocessor". Retrieved March 5, 2016. 1st fully integrated chip set microprocessor
  13. ^ a b "Alpha 21364 - Microarchitectures - Compaq - WikiChip". en.wikichip.org. Retrieved September 8, 2019.
  14. ^ Holt, Ray M. (1998). The F14A Central Air Data Computer and the LSI Technology State-of-the-Art in 1968. p. 8.
  15. ^ Holt, Ray M. (2013). "F14 TomCat MOS-LSI Chip Set". First Microprocessor. from the original on November 6, 2020. Retrieved November 6, 2020.
  16. ^ Ken Shirriff. "The Texas Instruments TMX 1795: the (almost) first, forgotten microprocessor". 2015.
  17. ^ Ryoichi Mori; Hiroaki Tajima; Morihiko Tajima; Yoshikuni Okada (October 1977). "Microprocessors in Japan". Euromicro Newsletter. 3 (4): 50–7. doi:10.1016/0303-1268(77)90111-0.
  18. ^ a b . The Antique Chip Collector's Page. Archived from the original on May 25, 2011. Retrieved June 11, 2010.
  19. ^ a b (PDF). Semiconductor History Museum of Japan. Archived from the original (PDF) on June 27, 2019. Retrieved June 27, 2019.
  20. ^ a b (PDF). Semiconductor History Museum of Japan. Archived from the original (PDF) on June 27, 2019. Retrieved June 27, 2019.
  21. ^ "Low Bandwidth Timeline – Semiconductor". Texas Instruments. Retrieved June 22, 2016.
  22. ^ "The MOS 6502 and the Best Layout Guy in the World". research.swtch.com. January 3, 2011. Retrieved September 3, 2019.
  23. ^ "Digital History: ZILOG Z8000 (APRIL 1979)". OLD-COMPUTERS.COM : The Museum. Retrieved June 19, 2019.
  24. ^ "Chip Hall of Fame: Motorola MC68000 Microprocessor". IEEE Spectrum. Institute of Electrical and Electronics Engineers. June 30, 2017. Retrieved June 19, 2019.
  25. ^ Microprocessors: 1971 to 1976 Christiansen
  26. ^ "Microprocessors 1976 to 1981". weber.edu. Retrieved August 9, 2014.
  27. ^ "W65C816S 16-bit Core". www.westerndesigncenter.com. Retrieved September 12, 2017.
  28. ^ a b c d e Demone, Paul (November 9, 2000). "ARM's Race to World Domination". real world technologies. Retrieved July 20, 2015.
  29. ^ Hand, Tom. "The Harris RTX 2000 Microcontroller" (PDF). mpeforth.com. Retrieved August 9, 2014.
  30. ^ "Forth chips list". UltraTechnology. March 15, 2001. Retrieved August 9, 2014.
  31. ^ Koopman, Philip J. (1989). "4.4 Architecture of the Novix NC4016". Stack Computers: the new wave. Ellis Horwood Series in Computers and Their Applications. Carnegie Mellon University. ISBN 978-0745804187. Retrieved August 9, 2014.
  32. ^ "Fujitsu SPARC". cpu-collection.de. Retrieved June 30, 2019.
  33. ^ a b Kimura S, Komoto Y, Yano Y (1988). "Implementation of the V60/V70 and its FRM function". IEEE Micro. 8 (2): 22–36. doi:10.1109/40.527. S2CID 9507994.
  34. ^ "VL2333 - VTI - WikiChip". en.wikichip.org. Retrieved August 31, 2019.
  35. ^ Inayoshi H, Kawasaki I, Nishimukai T, Sakamura K (1988). "Realization of Gmicro/200". IEEE Micro. 8 (2): 12–21. doi:10.1109/40.526. S2CID 36938046.
  36. ^ Bosshart, P.; Hewes, C.; Mi-Chang Chang; Kwok-Kit Chau; Hoac, C.; Houston, T.; Kalyan, V.; Lusky, S.; Mahant-Shetti, S.; Matzke, D.; Ruparel, K.; Ching-Hao Shaw; Sridhar, T.; Stark, D. (October 1987). "A 553K-Transistor LISP Processor Chip". IEEE Journal of Solid-State Circuits. 22 (5): 202–3. doi:10.1109/ISSCC.1987.1157084. S2CID 195841103.
  37. ^ Fahlén, Lennart E.; Stockholm International Peace Research Institute (1987). "3. Hardware requirements for artificial intelligence § Lisp Machines: TI Explorer". Arms and Artificial Intelligence: Weapon and Arms Control Applications of Advanced Computing. SIPRI Monograph Series. Oxford University Press. p. 57. ISBN 978-0-19-829122-0.
  38. ^ Jouppi, Norman P.; Tang, Jeffrey Y. F. (July 1989). "A 20-MIPS Sustained 32-bit CMOS Microprocessor with High Ratio of Sustained to Peak Performance". IEEE Journal of Solid-State Circuits. 24 (5): i. Bibcode:1989IJSSC..24.1348J. CiteSeerX 10.1.1.85.988. doi:10.1109/JSSC.1989.572612. WRL Research Report 89/11.
  39. ^ "The CPU shack museum". CPUshack.com. May 15, 2005. Retrieved August 9, 2014.
  40. ^ a b c . National High Magnetic Field Laboratory. Florida State University. March 3, 2003. Archived from the original on March 3, 2003. Retrieved June 29, 2019.
  41. ^ Venkatasawmy, Rama (2013). The Digitization of Cinematic Visual Effects: Hollywood's Coming of Age. Rowman & Littlefield. p. 198. ISBN 9780739176214.
  42. ^ Bakoglu, Grohoski, and Montoye. "The IBM RISC System/6000 processor: Hardware overview." IBM J. Research and Development. Vol. 34 No. 1, January 1990, pp. 12-22.
  43. ^ (PDF). Semiconductor History Museum of Japan. Archived from the original (PDF) on June 27, 2019. Retrieved June 27, 2019.
  44. ^ "SH2: A Low Power RISC Micro for Consumer Applications" (PDF). Hitachi. Retrieved June 27, 2019.
  45. ^ (PDF). Hitachi. Archived from the original (PDF) on April 23, 2016. Retrieved June 19, 2019.
  46. ^ White and Dhawan. "POWER2: next generation of the RISC System/6000 family" IBM J. Research and Development. Vol. 38 No. 5, September 1994, pp. 493-502.
  47. ^ "ARM7 Statistics". Poppyfields.net. May 27, 1994. Retrieved August 9, 2014.
  48. ^ "Forth Multiprocessor Chip MuP21". www.ultratechnology.com. Retrieved September 6, 2019. MuP21 has a 21-bit CPU core, a memory coprocessor, and a video coprocessor
  49. ^ a b "F21 CPU". www.ultratechnology.com. Retrieved September 6, 2019. F21 offers video I/O, analog I/O, serial network I/O, and a parallel I/O port on chip. F21 has a transistor count of about 15,000 vs about 7,000 for MuP21.
  50. ^ "Ars Technica: PowerPC on Apple: An Architectural History, Part I - Page 2 - (8/2004)". archive.arstechnica.com. Retrieved August 11, 2020.
  51. ^ Gary et al. (1994). "The PowerPC 603 microprocessor: a low-power design for portable applications." Proceedings of COMPCON 94. DOI: 10.1109/CMPCON.1994.282894
  52. ^ Slaton et al. (1995). "The PowerPC 603e microprocessor: an enhanced, low-power, superscalar microprocessor." Proceedings of ICCD '95 International Conference on Computer Design. DOI: 10.1109/ICCD.1995.528810
  53. ^ Bowhill, William J. et al. (1995). "Circuit Implementation of a 300-MHz 64-bit Second-generation CMOS Alpha CPU". Digital Technical Journal, Volume 7, Number 1, pp. 100–118.
  54. ^ "Intel Pentium Pro 180". hw-museum.cz. Retrieved September 8, 2019.
  55. ^ . PCGuide.com. April 17, 2001. Archived from the original on April 14, 2001. Retrieved August 9, 2014.
  56. ^ Gaddis, N.; Lotz, J. (November 1996). "A 64-b quad-issue CMOS RISC microprocessor". IEEE Journal of Solid-State Circuits 31 (11): pp. 1697–1702.
  57. ^ Bouchard, Gregg. . IEEE Hot Chips Symposium, August 1996, IEEE Computer Society.
  58. ^ a b "Remembering the Sega Dreamcast". Bit-Tech. September 29, 2009. Retrieved June 18, 2019.
  59. ^ (PDF). Hitachi Review. Hitachi. 48 (2): 58–63. 1999. S2CID 44852046. Archived from the original (PDF) on February 21, 2019. Retrieved June 27, 2019.
  60. ^ a b Hagiwara, Shiro; Oliver, Ian (November–December 1999). "Sega Dreamcast: Creating a Unified Entertainment World". IEEE Micro. IEEE Computer Society. 19 (6): 29–35. doi:10.1109/40.809375. Archived from the original on August 23, 2000. Retrieved June 27, 2019.
  61. ^ Ulf Samuelsson. "Transistor count of common uCs?". www.embeddedrelated.com. Retrieved September 8, 2019. IIRC, The AVR core is 12,000 gates, and the megaAVR core is 20,000 gates. Each gate is 4 transistors. The chip is considerably larger since the memory uses quite a lot.
  62. ^ Gronowski, Paul E. et al. (May 1998). "High-performance microprocessor design". IEEE Journal of Solid-State Circuits 33 (5): pp. 676–686.
  63. ^ a b Hennessy, John L.; Patterson, David A. (May 29, 2002). Computer Architecture: A Quantitative Approach (3 ed.). Morgan Kaufmann. p. 491. ISBN 978-0-08-050252-6. Retrieved April 9, 2013.
  64. ^ a b c d "EMOTION ENGINE® AND GRAPHICS SYNTHESIZER USED IN THE CORE OF PLAYSTATION® BECOME ONE CHIP" (PDF). Sony. April 21, 2003. Retrieved June 26, 2019.
  65. ^ a b Diefendorff, Keith (April 19, 1999). (PDF). Microprocessor Report. 13 (5). S2CID 29649747. Archived from the original (PDF) on February 28, 2019. Retrieved June 19, 2019.
  66. ^ a b c "NVIDIA GeForce 7800 GTX GPU Review". PC Perspective. June 22, 2005. Retrieved June 18, 2019.
  67. ^ Ando, H.; Yoshida, Y.; Inoue, A.; Sugiyama, I.; Asakawa, T.; Morita, K.; Muta, T.; otokurumada, T.; Okada, S.; Yamashita, H.; Satsukawa, Y.; Konmoto, A.; Yamashita, R.; Sugiyama, H. (2003). "A 1.3GHz fifth generation SPARC64 microprocessor". Proceedings of the 40th Annual Design Automation Conference. Design Automation Conference. pp. 702–705. doi:10.1145/775832.776010. ISBN 1-58113-688-9.
  68. ^ Krewell, Kevin (21 October 2002). "Fujitsu's SPARC64 V Is Real Deal". Microprocessor Report.
  69. ^ Fujitsu Limited (August 2004). SPARC64 V Processor For UNIX Server.
  70. ^ "A Glimpse Inside The Cell Processor". Gamasutra. July 13, 2006. Retrieved June 19, 2019.
  71. ^ "Intel Pentium D Processor 920". Intel. Retrieved January 5, 2023.
  72. ^ "PRESS KIT — Dual-core Intel Itanium Processor". Intel. Retrieved August 9, 2014.
  73. ^ a b Toepelt, Bert (January 8, 2009). "AMD Phenom II X4: 45nm Benchmarked — The Phenom II And AMD's Dragon Platform". TomsHardware.com. Retrieved August 9, 2014.
  74. ^ "ARM (Advanced RISC Machines) Processors". EngineersGarage.com. Retrieved August 9, 2014.
  75. ^ a b "Panasonic starts to sell a New-generation UniPhier System LSI". Panasonic. October 10, 2007. Retrieved July 2, 2019.
  76. ^ "SPARC64 VI Extensions" page 56, Fujitsu Limited, Release 1.3, 27 March 2007
  77. ^ Morgan, Timothy Prickett (17 July 2008). . The Unix Guardian, Vol. 8, No. 27.
  78. ^ Takumi Maruyama (2009). (PDF). Proceedings of Hot Chips 21. IEEE Computer Society. Archived from the original (PDF) on October 8, 2010. Retrieved June 30, 2019.
  79. ^ Stokes, Jon (February 10, 2010). "Sun's 1 billion-transistor, 16-core Niagara 3 processor". ArsTechnica.com. Retrieved August 9, 2014.
  80. ^ "IBM to Ship World's Fastest Microprocessor". IBM. September 1, 2010. Retrieved August 9, 2014.
  81. ^ . AFP. February 5, 2008. Archived from the original on May 20, 2011. Retrieved February 5, 2008.
  82. ^ "Intel Previews Intel Xeon 'Nehalem-EX' Processor." May 26, 2009. Retrieved on May 28, 2009.
  83. ^ Morgan, Timothy Prickett (November 21, 2011), "Fujitsu parades 16-core Sparc64 super stunner", The Register, retrieved December 8, 2011
  84. ^ Angelini, Chris (November 14, 2011). "Intel Core i7-3960X Review: Sandy Bridge-E And X79 Express". TomsHardware.com. Retrieved August 9, 2014.
  85. ^ "IDF2012 Mark Bohr, Intel Senior Fellow" (PDF).
  86. ^ "Images of SPARC64" (PDF). fujitsu.com. Retrieved August 29, 2017.
  87. ^ "Intel's Atom Architecture: The Journey Begins". AnandTech. Retrieved April 4, 2010.
  88. ^ "Intel Xeon Phi SE10X". TechPowerUp. Retrieved July 20, 2015.
  89. ^ Shimpi, Lal. "The Haswell Review: Intel Core i7-4770K & i5-4670K Tested". anandtech. Retrieved November 20, 2014.
  90. ^ "Dimmick, Frank (August 29, 2014). "Intel Core i7 5960X Extreme Edition Review". Overclockers Club. Retrieved August 29, 2014.
  91. ^ "Apple A8X". NotebookCheck. Retrieved July 20, 2015.
  92. ^ "Intel Readying 15-core Xeon E7 v2". AnandTech. Retrieved August 9, 2014.
  93. ^ "Intel Xeon E5-2600 v3 Processor Overview: Haswell-EP Up to 18 Cores". pcper. September 8, 2014. Retrieved January 29, 2015.
  94. ^ "Intel's Broadwell-U arrives aboard 15W, 28W mobile processors". TechReport. January 5, 2015. Retrieved January 5, 2015.
  95. ^ "Oracle Cranks up the Cores to 32 with Sparc M7 Chip". August 13, 2014.
  96. ^ "Qualcomm Snapdragon 835 (8998)". NotebookCheck. Retrieved September 23, 2017.
  97. ^ Takahashi, Dean (January 3, 2017). "Qualcomm's Snapdragon 835 will debut with 3 billion transistors and a 10nm manufacturing process". VentureBeat.
  98. ^ "Broadwell-E: Intel Core i7-6950X, 6900K, 6850K & 6800K Review". Tom's Hardware. May 30, 2016. Retrieved April 12, 2017.
  99. ^ "The Broadwell-E Review". PC Gamer. July 8, 2016. Retrieved April 12, 2017.
  100. ^ "HUAWEI TO UNVEIL KIRIN 970 SOC WITH AI UNIT, 5.5 BILLION TRANSISTORS AND 1.2 GBPS LTE SPEED AT IFA 2017". firstpost.com. September 1, 2017. Retrieved November 18, 2018.
  101. ^ "Broadwell-EP Architecture - Intel Xeon E5-2600 v4 Broadwell-EP Review". Tom's Hardware. March 31, 2016. Retrieved April 4, 2016.
  102. ^ "About the ZipCPU". zipcpu.com. Retrieved September 10, 2019. As of ORCONF, 2016, the ZipCPU used between 1286 and 4926 6-LUTs, depending upon how it is configured.
  103. ^ "Qualcomm Snapdragon 1000 for laptops could pack 8.5 billion transistors". techradar. Retrieved September 23, 2017.
  104. ^ "Spotted: Qualcomm Snapdragon 8cx Wafer on 7nm". AnandTech. Retrieved December 6, 2018.
  105. ^ Cutress, Ian (February 22, 2017). "AMD Launches Zen". Anandtech.com. Retrieved February 22, 2017.
  106. ^ "Ryzen 5 1600 - AMD". Wikichip.org. April 20, 2018. Retrieved December 9, 2018.
  107. ^ "Ryzen 5 1600X – AMD". Wikichip.org. October 26, 2018. Retrieved December 9, 2018.
  108. ^ "Kirin 970 – HiSilicon". Wikichip. March 1, 2018. Retrieved November 8, 2018.
  109. ^ a b Leadbetter, Richard (April 6, 2017). "Inside the next Xbox: Project Scorpio tech revealed". Eurogamer. Retrieved May 3, 2017.
  110. ^ "Intel Xeon Platinum 8180". TechPowerUp. December 1, 2018. Retrieved December 2, 2018.
  111. ^ Lee, Y. "SiFive Freedom SoCs : Industry's First Open Source RISC V Chips" (PDF). HotChips 29 IOT/Embedded.
  112. ^ "Documents at Fujitsu" (PDF). fujitsu.com. Retrieved August 29, 2017.
  113. ^ Schmerer, Kai (November 5, 2018). "iPad Pro 2018: A12X-Prozessor bietet deutlich mehr Leistung". ZDNet.de (in German).
  114. ^ "Qualcomm Datacenter Technologies Announces Commercial Shipment of Qualcomm Centriq 2400 – The World's First 10nm Server Processor and Highest Performance Arm-based Server Processor Family Ever Designed". Qualcomm. Retrieved November 9, 2017.
  115. ^ "HiSilicon Kirin 710". Notebookcheck. September 19, 2018. Retrieved November 24, 2018.
  116. ^ Yang, Daniel; Wegner, Stacy (September 21, 2018). "Apple iPhone Xs Max Teardown". TechInsights. Retrieved September 21, 2018.
  117. ^ "Apple's A12 Bionic is the first 7-nanometer smartphone chip". Engadget. Retrieved September 26, 2018.
  118. ^ "Kirin 980 – HiSilicon". Wikichip. November 8, 2018. Retrieved November 8, 2018.
  119. ^ "Qualcomm Snapdragon 8180: 7nm SoC SDM1000 With 8.5 Billion Transistors To Challenge Apple A12 Bionic Chipset". dailyhunt. Retrieved September 21, 2018.
  120. ^ Frumusanu, Andrei. "The Samsung Galaxy S10+ Snapdragon & Exynos Review: Almost Perfect, Yet So Flawed". www.anandtech.com. Retrieved February 19, 2021.
  121. ^ Friedman, Alan. "Qualcomm will reportedly introduce the Snapdragon 865 SoC as soon as next month". Phone Arena. Retrieved February 19, 2021.
  122. ^ "Xiaomi Mi 10 Teardown Analysis | TechInsights". www.techinsights.com. Retrieved February 19, 2021.
  123. ^ Zafar, Ramish (October 30, 2018). "Apple's A12X Has 10 Billion Transistors, 90% Performance Boost & 7-Core GPU". Wccftech.
  124. ^ "Fujitsu began to produce Japan's billions of super-calculations with the strongest ARM processor A64FX". firstxw.com. April 16, 2019. Retrieved June 19, 2019.
  125. ^ "Fujitsu Successfully Triples the Power Output of Gallium-Nitride Transistors". Fujitsu. August 22, 2018. Retrieved June 19, 2019.
  126. ^ "Hot Chips 30: Nvidia Xavier SoC". fuse.wikichip.org. September 18, 2018. Retrieved December 6, 2018.
  127. ^ "AMD Ryzen 9 3900X and Ryzen 7 3700X Review: Zen 2 and 7nm Unleashed". Tom's Hardware. July 7, 2019. Retrieved October 19, 2019.
  128. ^ Frumusanu, Andrei. "The Huawei Mate 30 Pro Review: Top Hardware without Google?". AnandTech. Retrieved January 2, 2020.
  129. ^ Zafar, Ramish (September 10, 2019). "Apple A13 For iPhone 11 Has 8.5 Billion Transistors, Quad-Core GPU". Wccftech. Retrieved September 11, 2019.
  130. ^ Introducing iPhone 11 Pro — Apple Youtube Video, retrieved September 11, 2019[dead YouTube link]
  131. ^ "Hot Chips 2020 Live Blog: IBM z15". AnandTech. August 17, 2020.
  132. ^ a b Broekhuijsen, Niels (October 23, 2019). "AMD's 64-Core EPYC and Ryzen CPUs Stripped: A Detailed Inside Look". Retrieved October 24, 2019.
  133. ^ a b Mujtaba, Hassan (October 22, 2019). "AMD 2nd Gen EPYC Rome Processors Feature A Gargantuan 39.54 Billion Transistors, IO Die Pictured in Detail". Retrieved October 24, 2019.
  134. ^ Friedman, Alan. "5nm Kirin 1020 SoC tipped for next year's Huawei Mate 40 line". Phone Arena. Retrieved December 23, 2019.
  135. ^ CPUs, Arne Verheyde 2019-12-05T19:12:44Z (December 5, 2019). "Amazon Compares 64-core ARM Graviton2 to Intel's Xeon". Tom's Hardware. Retrieved December 6, 2019.
  136. ^ Morgan, Timothy Prickett (December 3, 2019). "Finally: AWS Gives Servers A Real Shot In The Arm". The Next Platform. Retrieved December 6, 2019.
  137. ^ "The Linley Group - TI Jacinto Accelerates Level 3 ADAS". www.linleygroup.com. Retrieved February 12, 2021.
  138. ^ "Apple unveils A14 Bionic processor with 40% faster CPU and 11.8 billion transistors". Venturebeat. November 10, 2020. Retrieved November 24, 2020.
  139. ^ "Apple says new Arm-based M1 chip offers the 'longest battery life ever in a Mac'". The Verge. November 10, 2020. Retrieved November 11, 2020.
  140. ^ Ikoba, Jed John (October 23, 2020). "Multiple benchmark tests rank the Kirin 9000 as one of the most-powerful chipset yet". Gizmochina. Retrieved November 14, 2020.
  141. ^ Frumusanu, Andrei. "Huawei Announces Mate 40 Series: Powered by 15.3bn Transistors 5nm Kirin 9000". www.anandtech.com. Retrieved November 14, 2020.
  142. ^ "AMD Ryzen 7 5800H Specs". TechPowerUp. Retrieved September 20, 2021.
  143. ^ "AMD Epyc 7763 specifications".
  144. ^ Shankland, Stephen. "Apple's A15 Bionic chip powers iPhone 13 with 15 billion transistors, new graphics and AI". CNET. Retrieved September 20, 2021.
  145. ^ "Apple iPhone 13 Pro Teardown | TechInsights". www.techinsights.com. Retrieved September 29, 2021.
  146. ^ a b "Apple unveils M1 Pro and M1 Max chips for latest MacBook Pro laptops". VentureBeat. October 18, 2021.
  147. ^ "Apple Announces M1 Pro & M1 Max: Giant New Arm SoCs with All-Out Performance". AnanadTech. Retrieved December 2, 2021.
  148. ^ "Apple unveils new computer chips amid shortage". BBC News. October 19, 2021.
  149. ^ a b "Apple Joins 3D-Fabric Portfolio with M1 Ultra?". TechInsights. Retrieved July 8, 2022.
  150. ^ "Hot Chips 2020 live blog". AnandTech. August 17, 2020.
  151. ^ a b "AMD releases Milan-X CPUs". AnandTech. March 21, 2022.
  152. ^ "IBM Telum Hot Chips slide deck" (PDF). August 23, 2021.
  153. ^ "IBM z16 announcement". April 5, 2022.
  154. ^ "Apple unveils M2, taking the breakthrough performance and capabilities of M1 even further". Apple. June 6, 2022.
  155. ^ "Apple A16 Bionic announced for the iPhone 14 Pro and iPhone 14 Pro Max". NotebookCheck. September 7, 2022.
  156. ^ "iPhone 14 Pro and Pro Max Only Models to Get New A16 Chip". CNET. September 7, 2022.
  157. ^ "The Apple 2022 Fall iPhone Event Live Blog". AnandTech. September 7, 2022.
  158. ^ "MediaTek Dimensity 9200: New flagship chipset debuts with ARM Cortex-X3 CPU and Immortalis-G715 GPU cores built around TSMC N4P node". NotebookCheck. November 8, 2022.
  159. ^ "Dimensity 9200 specs". Mediatek. November 8, 2022.
  160. ^ "Dimensity 9200 presentation". Mediatek. November 8, 2022.
  161. ^ Williams, Chris. "Nvidia's Tesla P100 has 15 billion transistors, 21TFLOPS". www.theregister.co.uk. Retrieved August 12, 2019.
  162. ^ "Famous Graphics Chips: NEC µPD7220 Graphics Display Controller". IEEE Computer Society. Institute of Electrical and Electronics Engineers. August 22, 2018. Retrieved June 21, 2019.
  163. ^ "GPU History: Hitachi ARTC HD63484. The second graphics processor". IEEE Computer Society. Institute of Electrical and Electronics Engineers. Retrieved June 21, 2019.
  164. ^ "Big Book of Amiga Hardware".
  165. ^ MOS Technology Agnus. ISBN 5511916846.
  166. ^ a b "30 Years of Console Gaming". Klinger Photography. August 20, 2017. Retrieved June 19, 2019.
  167. ^ a b "Diamond Edge 3D (nVidia NV1+Sega Saturn)". Naver. February 24, 2017. Retrieved June 19, 2019.
  168. ^ "Sega Saturn". MAME. Retrieved July 18, 2019.
  169. ^ "ASIC CHIPS ARE INDUSTRY'S GAME WINNERS". The Washington Post. September 18, 1995. Retrieved June 19, 2019.
  170. ^ "Is it Time to Rename the GPU?". Jon Peddie Research. IEEE Computer Society. July 9, 2018. Retrieved June 19, 2019.
  171. ^ "FastForward Sony Taps LSI Logic for PlayStation Video Game CPU Chip". FastForward. Retrieved January 29, 2014.
  172. ^ a b (PDF). Silicon Graphics. August 26, 1997. Archived from the original (PDF) on May 19, 2020. Retrieved June 18, 2019.
  173. ^ "Imagination PowerVR PCX2 GPU". VideoCardz.net. Retrieved June 19, 2019.
  174. ^ a b c d e f g h Lilly, Paul (May 19, 2009). "From Voodoo to GeForce: The Awesome History of 3D Graphics". PC Gamer. Retrieved June 19, 2019.
  175. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am "3D accelerator database". Vintage 3D. Retrieved July 21, 2019.
  176. ^ "RIVA128 Datasheet". SGS Thomson Microelectronics. Retrieved July 21, 2019.
  177. ^ a b c Singer, Graham (April 3, 2013). "History of the Modern Graphics Processor, Part 2". TechSpot. Retrieved July 21, 2019.
  178. ^ Weinberg, Neil (September 7, 1998). "Comeback kid". Forbes. Retrieved June 19, 2019.
  179. ^ Charles, Bertie (1998). "Sega's New Dimension". Forbes. Forbes Incorporated. 162 (5–9): 206. The chip, etched in 0.25-micron detail — state-of-the-art for graphics processors — fits 10 million transistors
  180. ^ "VideoLogic Neon 250 4MB". VideoCardz.net. Retrieved June 19, 2019.
  181. ^ Shimpi, Anand Lal (November 21, 1998). "Fall Comdex '98 Coverage". AnandTech. Retrieved June 19, 2019.
  182. ^ "NVIDIA NV10 A3 GPU Specs". TechPowerUp. Retrieved June 19, 2019.
  183. ^ IGN Staff (November 4, 2000). "Gamecube Versus PlayStation 2". IGN. Retrieved November 22, 2015.
  184. ^ "NVIDIA NV2A GPU Specs". TechPowerUp. Retrieved July 21, 2019.
  185. ^ "ATI Xenos GPU Specs". TechPowerUp. Retrieved June 21, 2019.
  186. ^ International, GamesIndustry (July 14, 2005). "TSMC to manufacture X360 GPU". Eurogamer. Retrieved August 22, 2006.
  187. ^ "NVIDIA Playstation 3 RSX 65nm Specs". TechPowerUp. Retrieved June 21, 2019.
  188. ^ . Edge Online. June 26, 2008. Archived from the original on July 25, 2008.
  189. ^ "NVIDIA's 1.4 Billion Transistor GPU: GT200 Arrives as the GeForce GTX 280 & 260". AnandTech.com. Retrieved August 9, 2014.
  190. ^ "The Radeon HD 4850 & 4870: AMD Wins at $199 and $299". AnandTech.com. Retrieved August 9, 2014.
  191. ^ a b Glaskowsky, Peter. . CNET. Archived from the original on January 27, 2012. Retrieved August 9, 2014.
  192. ^ Woligroski, Don (December 22, 2011). "AMD Radeon HD 7970". TomsHardware.com. Retrieved August 9, 2014.
  193. ^ http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf[bare URL PDF]
  194. ^ Smith, Ryan (November 12, 2012). "NVIDIA Launches Tesla K20 & K20X: GK110 Arrives At Last". AnandTech.
  195. ^ (PDF). NVIDIA. 2012. Archived from the original (PDF) on April 17, 2012.
  196. ^ a b Kan, Michael (August 18, 2020). "Xbox Series X May Give Your Wallet a Workout Due to High Chip Manufacturing Costs". PCMag. Retrieved September 5, 2020.
  197. ^ "AMD Xbox One GPU". www.techpowerup.com. Retrieved February 5, 2020.
  198. ^ "AMD PlayStation 4 GPU". www.techpowerup.com. Retrieved February 5, 2020.
  199. ^ "AMD Xbox One S GPU". www.techpowerup.com. Retrieved February 5, 2020.
  200. ^ "AMD PlayStation 4 Pro GPU". www.techpowerup.com. Retrieved February 5, 2020.
  201. ^ Smith, Ryan (June 29, 2016). "The AMD RX 480 Preview". Anandtech.com. Retrieved February 22, 2017.
  202. ^ a b c Schor, David (July 22, 2018). "VLSI 2018: GlobalFoundries 12nm Leading-Performance, 12LP". WikiChip Fuse. Retrieved May 31, 2019.
  203. ^ Harris, Mark (April 5, 2016). "Inside Pascal: NVIDIA's Newest Computing Platform". Nvidia developer blog.
  204. ^ a b c d e f "GPU Database: Pascal". TechPowerUp.
  205. ^ "AMD Xbox One X GPU". www.techpowerup.com. Retrieved February 5, 2020.
  206. ^ "Radeon's next-generation Vega architecture" (PDF).
  207. ^ Durant, Luke; Giroux, Olivier; Harris, Mark; Stam, Nick (May 10, 2017). "Inside Volta: The World's Most Advanced Data Center GPU". Nvidia developer blog.
  208. ^ "NVIDIA TURING GPU ARCHITECTURE: Graphics Reinvented" (PDF). Nvidia. 2018. Retrieved June 28, 2019.
  209. ^ "NVIDIA GeForce GTX 1650". www.techpowerup.com. Retrieved February 5, 2020.
  210. ^ "NVIDIA GeForce GTX 1660 Ti". www.techpowerup.com. Retrieved February 5, 2020.
  211. ^ "AMD Radeon RX 5700 XT". www.techpowerup.com. Retrieved February 5, 2020.
  212. ^ "AMD Radeon RX 5500 XT". www.techpowerup.com. Retrieved February 5, 2020.
  213. ^ "AMD Arcturus GPU Specs". TechPowerUp. Retrieved November 10, 2022.
  214. ^ Walton, Jared (May 14, 2020). "Nvidia Unveils Its Next-Generation 7nm Ampere A100 GPU for Data Centers, and It's Absolutely Massive". Tom's Hardware.
  215. ^ "Nvidia Ampere Architecture". www.nvidia.com. Retrieved May 15, 2020.
  216. ^ "NVIDIA GA102 GPU Specs". Techpowerup. Retrieved September 5, 2020.
  217. ^ "'Giant Step into the Future': NVIDIA CEO Unveils GeForce RTX 30 Series GPUs". www.nvidia.com. September 2020. Retrieved September 5, 2020.
  218. ^ "NVIDIA GeForce RTX 3070 Specs". TechPowerUp. Retrieved September 20, 2021.
  219. ^ "AMD Radeon Instinct MI250 Specs". TechPowerUp. Retrieved November 9, 2021.
  220. ^ "Nvidia Launches Hopper H100 GPU, New DGXs and Grace Superchips". HPCWire. March 22, 2022. Retrieved March 23, 2022.
  221. ^ "NVIDIA details AD102 GPU, up to 18432 CUDA cores, 76.3B transistors and 608 mm²". VideoCardz. September 20, 2022.
  222. ^ a b "NVIDIA confirms Ada 102/103/104 GPU specs, AD104 has more transistors than GA102". VideoCardz. September 23, 2022.
  223. ^ "AMD Unveils World's Most Advanced Gaming Graphics Cards, Built on Groundbreaking AMD RDNA 3 Architecture with Chiplet Design". AMD (Press release). November 3, 2022.
  224. ^ "AMD Announces the $999 Radeon RX 7900 XTX... (endnote RX-819)". TechPowerUp. November 4, 2022.
  225. ^ "." SDA-ASIA Thursday, November 9, 2006.
  226. ^ ". pldesignline.com. Archived from the original on June 19, 2010. Retrieved January 22, 2009.
  227. ^ "Altera unveils 28-nm Stratix V FPGA family". April 20, 2010. Retrieved April 20, 2010.
  228. ^ "Design of a High-Density SoC FPGA at 20nm" (PDF). 2014. Retrieved July 16, 2017.
  229. ^ Maxfield, Clive (October 2011). "New Xilinx Virtex-7 2000T FPGA provides equivalent of 20 million ASIC gates". EETimes. AspenCore. Retrieved September 4, 2019.
  230. ^ Greenhill, D.; Ho, R.; Lewis, D.; Schmit, H.; Chan, K. H.; Tong, A.; Atsatt, S.; How, D.; McElheny, P. (February 2017). "3.3 A 14nm 1GHz FPGA with 2.5D transceiver integration". 2017 IEEE International Solid-State Circuits Conference (ISSCC): 54–55. doi:10.1109/ISSCC.2017.7870257. ISBN 978-1-5090-3758-2. S2CID 2135354.
  231. ^ . May 17, 2017. Archived from the original on May 17, 2017. Retrieved September 19, 2019.
  232. ^ Santarini, Mike (May 2014). "Xilinx Ships Industry's First 20-nm All Programmable Devices" (PDF). Xcell journal. No. 86. Xilinx. p. 14. Retrieved June 3, 2014.
  233. ^ Gianelli, Silvia (January 2015). "Xilinx Delivers the Industry's First 4M Logic Cell Device, Offering >50M Equivalent ASIC Gates and 4X More Capacity than Competitive Alternatives". www.xilinx.com. Retrieved August 22, 2019.
  234. ^ Sims, Tara (August 2019). "Xilinx Announces the World's Largest FPGA Featuring 9 Million System Logic Cells". www.xilinx.com. Retrieved August 22, 2019.
  235. ^ Verheyde, Arne (August 2019). "Xilinx Introduces World's Largest FPGA With 35 Billion Transistors". www.tomshardware.com. Retrieved August 23, 2019.
  236. ^ Cutress, Ian (August 2019). "Xilinx Announces World Largest FPGA: Virtex Ultrascale+ VU19P with 9m Cells". www.anandtech.com. Retrieved September 25, 2019.
  237. ^ Abazovic, Fuad (May 2019). "Xilinx 7nm Versal taped out last year". Retrieved September 30, 2019.
  238. ^ Cutress, Ian (August 2019). "Hot Chips 31 Live Blogs: Xilinx Versal AI Engine". Retrieved September 30, 2019.
  239. ^ Krewell, Kevin (August 2019). "Hot Chips 2019 highlights new AI strategies". Retrieved September 30, 2019.
  240. ^ Leibson, Steven (November 6, 2019). "Intel announces Intel Stratix 10 GX 10M FPGA, worlds highest capacity with 10.2 million logic elements". Retrieved November 7, 2019.
  241. ^ Verheyde, Arne (November 6, 2019). "Intel Introduces World's Largest FPGA With 43.3 Billion Transistors". Retrieved November 7, 2019.
  242. ^ Cutress, Ian (August 2020). "Hot Chips 2020 Live Blog: Xilinx Versal ACAPs". Retrieved September 9, 2020.
  243. ^ "Xilinx Announces Full Production Shipments of 7nm Versal AI Core and Versal Prime Series Devices". April 27, 2021. Retrieved May 8, 2021.
  244. ^ a b The DRAM memory of Robert Dennard history-computer.com
  245. ^ a b c d "Late 1960s: Beginnings of MOS memory" (PDF). Semiconductor History Museum of Japan. January 23, 2019. Retrieved June 27, 2019.
  246. ^ a b c d e f "1970: Semiconductors compete with magnetic cores". Computer History Museum. Retrieved June 19, 2019.
  247. ^ "2.1.1 Flash Memory". TU Wien. Retrieved June 20, 2019.
  248. ^ Shilov, Anton. "SK Hynix Starts Production of 128-Layer 4D NAND, 176-Layer Being Developed". www.anandtech.com. Retrieved September 16, 2019.
  249. ^ "Samsung Begins Production of 100+ Layer Sixth-Generation V-NAND Flash". PC Perspective. August 11, 2019. Retrieved September 16, 2019.
  250. ^ a b "1966: Semiconductor RAMs Serve High-speed Storage Needs". Computer History Museum. Retrieved June 19, 2019.
  251. ^ "Specifications for Toshiba "TOSCAL" BC-1411". Old Calculator Web Museum. from the original on July 3, 2017. Retrieved May 8, 2018.
  252. ^ "Toshiba "Toscal" BC-1411 Desktop Calculator". Old Calculator Web Museum. from the original on May 20, 2007.
  253. ^ IBM first in IC memory. Computer History Museum. IBM Corporation. 1965. Retrieved June 19, 2019.
  254. ^ a b c d e f g h i j k l m (PDF). Intel museum. Intel Corporation. July 2005. Archived from the original (PDF) on August 9, 2007. Retrieved July 31, 2007.
  255. ^ a b "1970s: SRAM evolution" (PDF). Semiconductor History Museum of Japan. Retrieved June 27, 2019.
  256. ^ a b c Pimbley, J. (2012). Advanced CMOS Process Technology. Elsevier. p. 7. ISBN 9780323156806.
  257. ^ a b "Intel: 35 Years of Innovation (1968–2003)" (PDF). Intel. 2003. Retrieved June 26, 2019.
  258. ^ a b Lojek, Bo (2007). History of Semiconductor Engineering. Springer Science & Business Media. pp. 362–363. ISBN 9783540342588. The i1103 was manufactured on a 6-mask silicon-gate P-MOS process with 8 μm minimum features. The resulting product had a 2,400 µm2 memory cell size, a die size just under 10 mm2, and sold for around $21.
  259. ^ "Manufacturers in Japan enter the DRAM market and integration densities are improved" (PDF). Semiconductor History Museum of Japan. Retrieved June 27, 2019.
  260. ^ a b c d e f g h i j k l m n Gealow, Jeffrey Carl (August 10, 1990). "Impact of Processing Technology on DRAM Sense Amplifier Design" (PDF). Massachusetts Institute of Technology. pp. 149–166. Retrieved June 25, 2019 – via CORE.
  261. ^ "Silicon Gate MOS 2102A". Intel. Retrieved June 27, 2019.
  262. ^ "One of the Most Successful 16K Dynamic RAMs: The 4116". National Museum of American History. Smithsonian Institution. Retrieved June 20, 2019.
  263. ^ Component Data Catalog (PDF). Intel. 1978. pp. 3–94. Retrieved June 27, 2019.
  264. ^ a b c d e f g h i j k l m n o p q r s t "Memory". STOL (Semiconductor Technology Online). Retrieved June 25, 2019.
  265. ^ "The Cutting Edge of IC Technology: The First 294,912-Bit (288K) Dynamic RAM". National Museum of American History. Smithsonian Institution. Retrieved June 20, 2019.
  266. ^ "Computer History for 1984". Computer Hope. Retrieved June 25, 2019.
  267. ^ "Japanese Technical Abstracts". Japanese Technical Abstracts. University Microfilms. 2 (3–4): 161. 1987. The announcement of 1M DRAM in 1984 began the era of megabytes.
  268. ^ "KM48SL2000-7 Datasheet". Samsung. August 1992. Retrieved June 19, 2019.
  269. ^ "Electronic Design". Electronic Design. Hayden Publishing Company. 41 (15–21). 1993. The first commercial synchronous DRAM, the Samsung 16-Mbit KM48SL2000, employs a single-bank architecture that lets system designers easily transition from asynchronous to synchronous systems.
  270. ^ Highbeam Business, January 9, 1995
  271. ^ a b "Japanese Company Profiles" (PDF). Smithsonian Institution. 1996. Retrieved June 27, 2019.
  272. ^ a b "History: 1990s". SK Hynix. Retrieved July 6, 2019.
  273. ^ "Samsung 50nm 2GB DDR3 chips are industry's smallest". SlashGear. September 29, 2008. Retrieved June 25, 2019.
  274. ^ Shilov, Anton (July 19, 2017). "Samsung Increases Production Volumes of 8 GB HBM2 Chips Due to Growing Demand". AnandTech. Retrieved June 29, 2019.
  275. ^ "Samsung Unleashes a Roomy DDR4 256GB RAM". Tom's Hardware. September 6, 2018. Retrieved June 21, 2019.
  276. ^ "First 3D Nanotube and RRAM ICs Come Out of Foundry". IEEE Spectrum: Technology, Engineering, and Science News. July 19, 2019. Retrieved September 16, 2019. This wafer was made just last Friday… and it's the first monolithic 3D IC ever fabricated within a foundry
  277. ^ "Three Dimensional Monolithic System-on-a-Chip". www.darpa.mil. Retrieved September 16, 2019.
  278. ^ "DARPA 3DSoC Initiative Completes First Year, Update Provided at ERI Summit on Key Steps Achieved to Transfer Technology into SkyWater's 200mm U.S. Foundry". Skywater Technology Foundry (Press re

transistor, count, transistor, count, number, transistors, electronic, device, typically, single, substrate, chip, most, common, measure, integrated, circuit, complexity, although, majority, transistors, modern, microprocessors, contained, cache, memories, whi. The transistor count is the number of transistors in an electronic device typically on a single substrate or chip It is the most common measure of integrated circuit complexity although the majority of transistors in modern microprocessors are contained in the cache memories which consist mostly of the same memory cell circuits replicated many times The rate at which MOS transistor counts have increased generally follows Moore s law which observed that the transistor count doubles approximately every two years 1 However being directly proportional to the area of a chip transistor count doesn t represent how advanced corresponding manufacturing technology is which is better characterized by transistor density instead ratio of transistor count of a chip to its area As of 2022 update the largest transistor count in a commercially available microprocessor is 114 billion transistors in Apple s ARM based dual die M1 Ultra system on a chip which is fabricated using TSMC s 5 nm semiconductor manufacturing process 2 3 As of 2022 update the highest transistor count GPU is Nvidia s H100 built on TSMC s N4 process and totalling 80 billion MOSFETs As of 2022 update the highest transistor count in flash memory was Micron s 2 terabyte 3D stacked 16 die 232 layer V NAND flash memory chip with 5 3 trillion floating gate MOSFETs 3 bits per transistor As of 2020 update the highest transistor count in any IC chip is a deep learning engine called the Wafer Scale Engine 2 by Cerebras using a special design to route around any non functional core on the device it has 2 6 trillion MOSFETs in 84 exposed fields dies on a wafer manufactured using TSMC s 7 nm FinFET process 4 5 6 7 8 Year Component Name Number of MOSFETs in billions 2022 microprocessor commercial M1 Ultra 114 dual die SoC entire M1 Ultra is a multi chip module 2022 GPU Nvidia H100 802020 DLP Colossus Mk2 GC200 59 42020 any IC chip Wafer Scale Engine 2 2600 wafer scale design consisting of 84 exposed fields dies 2022 Flash memory Micron s V NAND chip 5333 stacked package of 16 232 layer 3D NAND dies In terms of computer systems that consist of numerous integrated circuits the supercomputer with the highest transistor count as of 2016 update is the Chinese designed Sunway TaihuLight which has for all CPUs nodes combined about 400 trillion transistors in the processing part of the hardware and the DRAM includes about 12 quadrillion transistors and that s about 97 percent of all the transistors 9 To compare the smallest computer as of 2018 update dwarfed by a grain of rice has on the order of 100 000 transistors Early experimental solid state computers had as few as 130 transistors but used large amounts of diode logic The first carbon nanotube computer has 178 transistors and is a 1 bit one instruction set computer while a later one is 16 bit its the instruction set is 32 bit RISC V though Ionic transistor chips water based analog limited processor have up to hundreds of such transistors 10 In terms of the total number of transistors in existence it has been estimated that a total of 13 sextillion 1 3 1022 transistors have been manufactured worldwide between 1960 and 2018 Contents 1 Transistor count 1 1 Microprocessors 1 2 GPUs 1 3 FPGA 1 4 Memory 1 5 Transistor computers 1 6 Logic functions 1 7 Parallel systems 1 8 Other devices 2 Transistor density 2 1 MOSFET nodes 3 See also 4 Notes 5 References 6 External linksTransistor count Edit Plot of MOS transistor counts for microprocessors against dates of in tro duction The curve shows counts doubling every two years per Moore s law Microprocessors Edit Part of an IBM 7070 card cage populated with Standard Modular System cards See also Microprocessor chronology and Microcontroller This subsection needs additional citations for verification Relevant discussion may be found on the talk page Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed Find sources Transistor count news newspapers books scholar JSTOR December 2019 Learn how and when to remove this template message A microprocessor incorporates the functions of a computer s central processing unit on a single integrated circuit It is a multi purpose programmable device that accepts digital data as input processes it according to instructions stored in its memory and provides results as output The development of MOS integrated circuit technology in the 1960s led to the development of the first microprocessors 11 The 20 bit MP944 developed by Garrett AiResearch for the U S Navy s F 14 Tomcat fighter in 1970 is considered by its designer Ray Holt to be the first microprocessor 12 It was a multi chip microprocessor fabricated on six MOS chips However it was classified by the Navy until 1998 The 4 bit Intel 4004 released in 1971 was the first single chip microprocessor Modern microprocessors typically include on chip cache memories The number of transistors used for these cache memories typically far exceeds the number of transistors used to implement the logic of the microprocessor that is excluding the cache For example the last DEC Alpha chip uses 90 of its transistors for cache 13 Processor Transistor count Date ofintroduction Designer Process nm Area mm2 Transistor density tr mm2MP944 20 bit 6 chip 28 chips total 74 442 5 360 excl ROM amp RAM 14 15 1970 12 a Garrett AiResearch Intel 4004 4 bit 16 pin 2 250 1971 Intel 10 000 nm 12 mm2 188TMX 1795 bit 24 pin 3 078 16 1971 Texas Instruments 30 64 mm2 100 5Intel 8008 8 bit 18 pin 3 500 1972 Intel 10 000 nm 14 mm2 250NEC mCOM 4 4 bit 42 pin 2 500 17 18 1973 NEC 7 500 nm 19 Toshiba TLCS 12 12 bit 11 000 20 1973 Toshiba 6 000 nm 32 mm2 340 Intel 4040 4 bit 16 pin 3 000 1974 Intel 10 000 nm 12 mm2 250Motorola 6800 8 bit 40 pin 4 100 1974 Motorola 6 000 nm 16 mm2 256Intel 8080 8 bit 40 pin 6 000 1974 Intel 6 000 nm 20 mm2 300TMS 1000 4 bit 28 pin 8 000 1974 21 Texas Instruments 8 000 nm 11 mm2 730MOS Technology 6502 8 bit 40 pin 4 528 b 22 1975 MOS Technology 8 000 nm 21 mm2 216Intersil IM6100 12 bit 40 pin clone of PDP 8 4 000 1975 Intersil CDP 1801 8 bit 2 chip 40 pin 5 000 1975 RCA RCA 1802 8 bit 40 pin 5 000 1976 RCA 5 000 nm 27 mm2 185Zilog Z80 8 bit 4 bit ALU 40 pin 8 500 c 1976 Zilog 4 000 nm 18 mm2 470Intel 8085 8 bit 40 pin 6 500 1976 Intel 3 000 nm 20 mm2 325TMS9900 16 bit 8 000 1976 Texas Instruments Bellmac 8 8 bit 7 000 1977 Bell Labs 5 000 nm Motorola 6809 8 bit with some 16 bit features 40 pin 9 000 1978 Motorola 5 000 nm 21 mm2 430Intel 8086 16 bit 40 pin 29 000 1978 Intel 3 000 nm 33 mm2 880Zilog Z8000 16 bit 17 500 23 1979 Zilog Intel 8088 16 bit 8 bit data bus 29 000 1979 Intel 3 000 nm 33 mm2 880Motorola 68000 16 32 bit 32 bit registers 16 bit ALU 68 000 24 1979 Motorola 3 500 nm 44 mm2 1550Intel 8051 8 bit 40 pin 50 000 1980 Intel WDC 65C02 11 500 25 1981 WDC 3 000 nm 6 mm2 1920ROMP 32 bit 45 000 1981 IBM 2 000 nm Intel 80186 16 bit 68 pin 55 000 1982 Intel 3 000 nm 60 mm2 920Intel 80286 16 bit 68 pin 134 000 1982 Intel 1 500 nm 49 mm2 2730WDC 65C816 8 16 bit 22 000 26 1983 WDC 3 000 nm 27 9 mm2 2400NEC V20 63 000 1984 NEC Motorola 68020 32 bit 114 pins used 190 000 28 1984 Motorola 2 000 nm 85 mm2 2200Intel 80386 32 bit 132 pin no cache 275 000 1985 Intel 1 500 nm 104 mm2 2640ARM 1 32 bit no cache 25 000 28 1985 Acorn 3 000 nm 50 mm2 500Novix NC4016 16 bit 16 000 29 1985 30 Harris Corporation 3 000 nm 31 SPARC MB86900 32 bit no cache 110 000 32 1986 Fujitsu 1 200 nm NEC V60 33 32 bit no cache 375 000 1986 NEC 1 500 nm ARM 2 32 bit 84 pin no cache 27 000 34 28 1986 Acorn 2 000 nm 30 25 mm2 890Z80000 32 bit very small cache 91 000 1986 Zilog NEC V70 33 32 bit no cache 385 000 1987 NEC 1 500 nm Hitachi Gmicro 200 35 730 000 1987 Hitachi 1 000 nm Motorola 68030 32 bit very small caches 273 000 1987 Motorola 800 nm 102 mm2 2680TI Explorer s 32 bit Lisp machine chip 553 000 36 1987 Texas Instruments 2 000 nm 37 DEC WRL MultiTitan 180 000 38 1988 DEC WRL 1 500 nm 61 mm2 2950Intel i960 32 bit 33 bit memory subsystem no cache 250 000 39 1988 Intel 1 500 nm 40 Intel i960CA 32 bit cache 600 000 40 1989 Intel 800 nm 143 mm2 4200Intel i860 32 64 bit 128 bit SIMD cache VLIW 1 000 000 41 1989 Intel Intel 80486 32 bit 4 KB cache 1 180 235 1989 Intel 1000 nm 173 mm2 6822ARM 3 32 bit 4 KB cache 310 000 1989 Acorn 1 500 nm 87 mm2 3600POWER1 9 chip module 72 kB of cache 6 900 000 42 1990 IBM 1000 nm 1283 61 mm2 5375Motorola 68040 32 bit 8 KB caches 1 200 000 1990 Motorola 650 nm 152 mm2 7900R4000 64 bit 16 KB of caches 1 350 000 1991 MIPS 1 000 nm 213 mm2 6340ARM 6 32 bit no cache for this 60 variant 35 000 1991 ARM 800 nm Hitachi SH 1 32 bit no cache 600 000 43 1992 44 Hitachi 800 nm 10 mm2 60 000 check Intel i960CF 32 bit cache 900 000 40 1992 Intel 125 mm2 7200DEC Alpha 21064 64 bit 290 pin 16 KB of caches 1 680 000 1992 DEC 750 nm 233 52 mm2 7190Hitachi HARP 1 32 bit cache 2 800 000 45 1993 Hitachi 500 nm 267 mm2 10 500Pentium 32 bit 16 KB of caches 3 100 000 1993 Intel 800 nm 294 mm2 10 500POWER2 8 chip module 288 kB of cache 23 037 000 46 1993 IBM 720 nm 1217 39 mm2 18 923ARM700 32 bit 8 KB cache 578 977 47 1994 ARM 700 nm 68 51 mm2 8451MuP21 21 bit 48 40 pin includes video 7 000 49 1994 Offete Enterprises 1200 nm Motorola 68060 32 bit 16 KB of caches 2 500 000 1994 Motorola 600 nm 218 mm2 11 500PowerPC 601 32 bit 32 KB of caches 2 800 000 50 1994 Apple IBM Motorola 600 nm 121 mm2 23 000PowerPC 603 32 bit 16 KB of caches 1 600 000 51 1994 Apple IBM Motorola 500 nm 84 76 mm2 18 900PowerPC 603e 32 bit 32 KB of caches 2 600 000 52 1995 Apple IBM Motorola 500 nm 98 mm2 26 500Alpha 21164 EV5 64 bit 112 kB cache 9 300 000 53 1995 DEC 500 nm 298 65 mm2 31 140SA 110 32 bit 32 KB of caches 2 500 000 28 1995 Acorn DEC Apple 350 nm 50 mm2 50 000Pentium Pro 32 bit 16 KB of caches 54 L2 cache on package but on separate die 5 500 000 55 1995 Intel 500 nm 307 mm2 18 000PA 8000 64 bit no cache 3 800 000 56 1995 HP 500 nm 337 69 mm2 11 300Alpha 21164A EV56 64 bit 112 kB cache 9 660 000 57 1996 DEC 350 nm 208 8 mm2 46 260AMD K5 32 bit caches 4 300 000 1996 AMD 500 nm 251 mm2 17 000Hitachi SH 4 32 bit caches 10 000 000 58 1997 Hitachi 200 nm 59 42 mm2 60 238 000 check Pentium II Klamath 32 bit 64 bit SIMD caches 7 500 000 1997 Intel 350 nm 195 mm2 39 000AMD K6 32 bit caches 8 800 000 1997 AMD 350 nm 162 mm2 54 000F21 21 bit includes e g video 15 000 1997 49 Offete Enterprises AVR 8 bit 40 pin w memory 140 000 48 000 excl memory 61 1997 Nordic VLSI Atmel Pentium II Deschutes 32 bit large cache 7 500 000 1998 Intel 250 nm 113 mm2 66 000Alpha 21264 EV6 64 bit 15 200 000 62 1998 DEC 350 nm 313 96 mm2 48 400Alpha 21164PC PCA57 64 bit 48 kB cache 5 700 000 1998 Samsung 280 nm 100 5 mm2 56 700ARM 9TDMI 32 bit no cache 111 000 28 1999 Acorn 350 nm 4 8 mm2 23 100Pentium III Katmai 32 bit 128 bit SIMD caches 9 500 000 1999 Intel 250 nm 128 mm2 74 000Emotion Engine 64 bit 128 bit SIMD cache 13 500 000 63 1999 Sony Toshiba 180 nm 64 240 mm2 65 56 300Pentium II Mobile Dixon 32 bit caches 27 400 000 1999 Intel 180 nm 180 mm2 152 000AMD K6 III 32 bit caches 21 300 000 1999 AMD 250 nm 118 mm2 181 000AMD K7 32 bit caches 22 000 000 1999 AMD 250 nm 184 mm2 120 000Gekko 32 bit large cache 21 000 000 66 2000 IBM Nintendo 180 nm 43 mm2 490 000 check Pentium III Coppermine 32 bit large cache 21 000 000 2000 Intel 180 nm 80 mm2 263 000Pentium 4 Willamette 32 bit large cache 42 000 000 2000 Intel 180 nm 217 mm2 194 000SPARC64 V 64 bit large cache 191 000 000 67 2001 Fujitsu 130 nm 68 290 mm2 659 000Pentium III Tualatin 32 bit large cache 45 000 000 2001 Intel 130 nm 81 mm2 556 000Pentium 4 Northwood 32 bit large cache 55 000 000 2002 Intel 130 nm 145 mm2 379 000Itanium 2 McKinley 64 bit large cache 220 000 000 2002 Intel 180 nm 421 mm2 523 000DEC Alpha 21364 64 bit 946 pin SIMD very large caches 152 000 000 13 2003 DEC 180 nm 397 mm2 383 000Barton 32 bit large cache 54 300 000 2003 AMD 130 nm 101 mm2 538 000AMD K8 64 bit large cache 105 900 000 2003 AMD 130 nm 193 mm2 548 700Itanium 2 Madison 6M 64 bit 410 000 000 2003 Intel 130 nm 374 mm2 1 096 000Pentium 4 Prescott 32 bit large cache 112 000 000 2004 Intel 90 nm 110 mm2 1 018 000SPARC64 V 64 bit large cache 400 000 000 69 2004 Fujitsu 90 nm 294 mm2 1 360 000Itanium 2 64 bit 9 MB cache 592 000 000 2004 Intel 130 nm 432 mm2 1 370 000Pentium 4 Prescott 2M 32 bit large cache 169 000 000 2005 Intel 90 nm 143 mm2 1 182 000Pentium D Smithfield 64 bit large cache 228 000 000 2005 Intel 90 nm 206 mm2 1 107 000Xenon 64 bit 128 bit SIMD large cache 165 000 000 2005 IBM 90 nm Cell 32 bit cache 250 000 000 70 2005 Sony IBM Toshiba 90 nm 221 mm2 1 131 000Pentium 4 Cedar Mill 32 bit large cache 184 000 000 2006 Intel 65 nm 90 mm2 2 044 000Pentium D Presler 64 bit large cache 362 000 000 71 2006 Intel 65 nm 162 mm2 2 235 000Core 2 Duo Conroe dual core 64 bit large caches 291 000 000 2006 Intel 65 nm 143 mm2 2 035 000Dual core Itanium 2 64 bit SIMD large caches 1 700 000 000 72 2006 Intel 90 nm 596 mm2 2 852 000AMD K10 quad core 2M L3 64 bit large caches 463 000 000 73 2007 AMD 65 nm 283 mm2 1 636 000ARM Cortex A9 32 bit optional SIMD caches 26 000 000 74 2007 ARM 45 nm 31 mm2 839 000Core 2 Duo Wolfdale dual core 64 bit SIMD caches 411 000 000 2007 Intel 45 nm 107 mm2 3 841 000POWER6 64 bit large caches 789 000 000 2007 IBM 65 nm 341 mm2 2 314 000Core 2 Duo Allendale dual core 64 bit SIMD large caches 169 000 000 2007 Intel 65 nm 111 mm2 1 523 000Uniphier 250 000 000 75 2007 Matsushita 45 nm SPARC64 VI 64 bit SIMD large caches 540 000 000 2007 76 Fujitsu 90 nm 421 mm2 1 283 000Core 2 Duo Wolfdale 3M dual core 64 bit SIMD large caches 230 000 000 2008 Intel 45 nm 83 mm2 2 771 000Core i7 quad core 64 bit SIMD large caches 731 000 000 2008 Intel 45 nm 263 mm2 2 779 000AMD K10 quad core 6M L3 64 bit SIMD large caches 758 000 000 73 2008 AMD 45 nm 258 mm2 2 938 000Atom 32 bit large cache 47 000 000 2008 Intel 45 nm 24 mm2 1 958 000SPARC64 VII 64 bit SIMD large caches 600 000 000 2008 77 Fujitsu 65 nm 445 mm2 1 348 000Six core Xeon 7400 64 bit SIMD large caches 1 900 000 000 2008 Intel 45 nm 503 mm2 3 777 000Six core Opteron 2400 64 bit SIMD large caches 904 000 000 2009 AMD 45 nm 346 mm2 2 613 000SPARC64 VIIIfx 64 bit SIMD large caches 760 000 000 78 2009 Fujitsu 45 nm 513 mm2 1 481 000SPARC T3 16 core 64 bit SIMD large caches 1 000 000 000 79 2010 Sun Oracle 40 nm 377 mm2 2 653 000Six core Core i7 Gulftown 1 170 000 000 2010 Intel 32 nm 240 mm2 4 875 000POWER7 32M L3 8 core 64 bit SIMD large caches 1 200 000 000 2010 IBM 45 nm 567 mm2 2 116 000Quad core z196 80 64 bit very large caches 1 400 000 000 2010 IBM 45 nm 512 mm2 2 734 000Quad core Itanium Tukwila 64 bit SIMD large caches 2 000 000 000 81 2010 Intel 65 nm 699 mm2 2 861 000Xeon Nehalem EX 8 core 64 bit SIMD large caches 2 300 000 000 82 2010 Intel 45 nm 684 mm2 3 363 000SPARC64 IXfx 64 bit SIMD large caches 1 870 000 000 83 2011 Fujitsu 40 nm 484 mm2 3 864 000Quad core GPU Core i7 64 bit SIMD large caches 1 160 000 000 2011 Intel 32 nm 216 mm2 5 370 000Six core Core i7 8 core Xeon E5 Sandy Bridge E EP 64 bit SIMD large caches 2 270 000 000 84 2011 Intel 32 nm 434 mm2 5 230 000Xeon Westmere EX 10 core 64 bit SIMD large caches 2 600 000 000 2011 Intel 32 nm 512 mm2 5 078 000Atom Medfield 64 bit 432 000 000 85 2012 Intel 32 nm 64 mm2 6 750 000SPARC64 X 64 bit SIMD caches 2 990 000 000 86 2012 Fujitsu 28 nm 600 mm2 4 983 000AMD Bulldozer 8 core 64 bit SIMD caches 1 200 000 000 87 2012 AMD 32 nm 315 mm2 3 810 000Quad core GPU AMD Trinity 64 bit SIMD caches 1 303 000 000 2012 AMD 32 nm 246 mm2 5 297 000Quad core GPU Core i7 Ivy Bridge 64 bit SIMD caches 1 400 000 000 2012 Intel 22 nm 160 mm2 8 750 000POWER7 8 core 64 bit SIMD 80 MB L3 cache 2 100 000 000 2012 IBM 32 nm 567 mm2 3 704 000Six core zEC12 64 bit SIMD large caches 2 750 000 000 2012 IBM 32 nm 597 mm2 4 606 000Itanium Poulson 8 core 64 bit SIMD caches 3 100 000 000 2012 Intel 32 nm 544 mm2 5 699 000Xeon Phi 61 core 32 bit 512 bit SIMD caches 5 000 000 000 88 2012 Intel 22 nm 720 mm2 6 944 000Apple A7 dual core 64 32 bit ARM64 mobile SoC SIMD caches 1 000 000 000 2013 Apple 28 nm 102 mm2 9 804 000Six core Core i7 Ivy Bridge E 64 bit SIMD caches 1 860 000 000 2013 Intel 22 nm 256 mm2 7 266 000POWER8 12 core 64 bit SIMD caches 4 200 000 000 2013 IBM 22 nm 650 mm2 6 462 000Xbox One main SoC 64 bit SIMD caches 5 000 000 000 2013 Microsoft AMD 28 nm 363 mm2 13 770 000Quad core GPU Core i7 Haswell 64 bit SIMD caches 1 400 000 000 89 2014 Intel 22 nm 177 mm2 7 910 000Apple A8 dual core 64 32 bit ARM64 mobile SoC SIMD caches 2 000 000 000 2014 Apple 20 nm 89 mm2 22 470 000Core i7 Haswell E 8 core 64 bit SIMD caches 2 600 000 000 90 2014 Intel 22 nm 355 mm2 7 324 000Apple A8X tri core 64 32 bit ARM64 mobile SoC SIMD caches 3 000 000 000 91 2014 Apple 20 nm 128 mm2 23 440 000Xeon Ivy Bridge EX 15 core 64 bit SIMD caches 4 310 000 000 92 2014 Intel 22 nm 541 mm2 7 967 000Xeon Haswell E5 18 core 64 bit SIMD caches 5 560 000 000 93 2014 Intel 22 nm 661 mm2 8 411 000Quad core GPU GT2 Core i7 Skylake K 64 bit SIMD caches 1 750 000 000 2015 Intel 14 nm 122 mm2 14 340 000Dual core GPU Iris Core i7 Broadwell U 64 bit SIMD caches 1 900 000 000 94 2015 Intel 14 nm 133 mm2 14 290 000Apple A9 dual core 64 32 bit ARM64 mobile SoC SIMD caches 2 000 000 000 2015 Apple 14 nm Samsung 96 mm2 Samsung 20 800 000 16 nm TSMC 104 5 mm2 TSMC 19 100 000 Apple A9X dual core 64 32 bit ARM64 mobile SoC SIMD caches 3 000 000 000 2015 Apple 16 nm 143 9 mm2 20 800 000 IBM z13 64 bit caches 3 990 000 000 2015 IBM 22 nm 678 mm2 5 885 000IBM z13 Storage Controller 7 100 000 000 2015 IBM 22 nm 678 mm2 10 472 000SPARC M7 32 core 64 bit SIMD caches 10 000 000 000 95 2015 Oracle 20 nm Qualcomm Snapdragon 835 octa core 64 32 bit ARM64 mobile SoC SIMD caches 3 000 000 000 96 97 2016 Qualcomm 10 nm 72 3 mm2 41 490 000Core i7 Broadwell E 10 core 64 bit SIMD caches 3 200 000 000 98 2016 Intel 14 nm 246 mm2 99 13 010 000Apple A10 Fusion quad core 64 32 bit ARM64 mobile SoC SIMD caches 3 300 000 000 2016 Apple 16 nm 125 mm2 26 400 000HiSilicon Kirin 960 octa core 64 32 bit ARM64 mobile SoC SIMD caches 4 000 000 000 100 2016 Huawei 16 nm 110 00 mm2 36 360 000Xeon Broadwell E5 22 core 64 bit SIMD caches 7 200 000 000 101 2016 Intel 14 nm 456 mm2 15 790 000Xeon Phi 72 core 64 bit 512 bit SIMD caches 8 000 000 000 2016 Intel 14 nm 683 mm2 11 710 000Zip CPU 32 bit for FPGAs 1 286 6 LUTs 102 2016 Gisselquist Technology Qualcomm Snapdragon 845 octa core 64 32 bit ARM64 mobile SoC SIMD caches 5 300 000 000 103 2017 Qualcomm 10 nm 94 mm2 56 400 000Qualcomm Snapdragon 850 octa core 64 32 bit ARM64 mobile SoC SIMD caches 5 300 000 000 104 2017 Qualcomm 10 nm 94 mm2 56 400 000Apple A11 Bionic hexa core 64 32 bit ARM64 mobile SoC SIMD caches 4 300 000 000 2017 Apple 10 nm 89 23 mm2 48 190 000Zeppelin SoC Ryzen 64 bit SIMD caches 4 800 000 000 105 2017 AMD 14 nm 192 mm2 25 000 000Ryzen 5 1600 Ryzen 64 bit SIMD caches 4 800 000 000 106 2017 AMD 14 nm 213 mm2 22 530 000Ryzen 5 1600 X Ryzen 64 bit SIMD caches 4 800 000 000 107 2017 AMD 14 nm 213 mm2 22 530 000IBM z14 64 bit SIMD caches 6 100 000 000 2017 IBM 14 nm 696 mm2 8 764 000IBM z14 Storage Controller 64 bit 9 700 000 000 2017 IBM 14 nm 696 mm2 13 940 000HiSilicon Kirin 970 octa core 64 32 bit ARM64 mobile SoC SIMD caches 5 500 000 000 108 2017 Huawei 10 nm 96 72 mm2 56 900 000Xbox One X Project Scorpio main SoC 64 bit SIMD caches 7 000 000 000 109 2017 Microsoft AMD 16 nm 360 mm2 109 19 440 000Xeon Platinum 8180 28 core 64 bit SIMD caches 8 000 000 000 110 disputed discuss 2017 Intel 14 nm POWER9 64 bit SIMD caches 8 000 000 000 2017 IBM 14 nm 695 mm2 11 500 000Freedom U500 Base Platform Chip E51 4 U54 RISC V 64 bit caches 250 000 000 111 2017 SiFive 28 nm 30 mm2 8 330 000SPARC64 XII 12 core 64 bit SIMD caches 5 450 000 000 112 2017 Fujitsu 20 nm 795 mm2 6 850 000Apple A10X Fusion hexa core 64 32 bit ARM64 mobile SoC SIMD caches 4 300 000 000 113 2017 Apple 10 nm 96 40 mm2 44 600 000Centriq 2400 64 32 bit SIMD caches 18 000 000 000 114 2017 Qualcomm 10 nm 398 mm2 45 200 000AMD Epyc 32 core 64 bit SIMD caches 19 200 000 000 2017 AMD 14 nm 768 mm2 25 000 000HiSilicon Kirin 710 octa core ARM64 mobile SoC SIMD caches 5 500 000 000 115 2018 Huawei 12 nm Apple A12 Bionic hexa core ARM64 mobile SoC SIMD caches 6 900 000 000 116 117 2018 Apple 7 nm 83 27 mm2 82 900 000HiSilicon Kirin 980 octa core ARM64 mobile SoC SIMD caches 6 900 000 000 118 2018 Huawei 7 nm 74 13 mm2 93 100 000Qualcomm Snapdragon 8cx SCX8180 octa core ARM64 mobile SoC SIMD caches 8 500 000 000 119 2018 Qualcomm 7 nm 112 mm2 75 900 000Qualcomm Snapdragon 855 octa core 64 32 bit ARM64 mobile SoC SIMD caches 6 700 000 000 120 2019 Qualcomm 7 nm 73 mm 91 800 000Qualcomm Snapdragon 865 octa core 64 32 bit ARM64 mobile SoC SIMD caches 10 300 000 000 121 2020 Qualcomm 7 nm 83 54 mm2 122 123 300 000Apple A12X Bionic octa core 64 32 bit ARM64 mobile SoC SIMD caches 10 000 000 000 123 2018 Apple 7 nm 122 mm2 82 000 000Fujitsu A64FX 64 32 bit SIMD caches 8 786 000 000 124 2018 125 Fujitsu 7 nm Tegra Xavier SoC 64 32 bit 9 000 000 000 126 2018 Nvidia 12 nm 350 mm2 25 700 000AMD Ryzen 7 3700X 64 bit SIMD caches I O die 5 990 000 000 127 d 2019 AMD 7 amp 12 nm TSMC 199 74 125 mm2 30 100 000HiSilicon Kirin 990 4G 8 000 000 000 128 2019 Huawei 7 nm 90 00 mm2 89 000 000Apple A13 hexa core 64 bit ARM64 mobile SoC SIMD caches 8 500 000 000 129 130 2019 Apple 7 nm 98 48 mm2 86 300 000IBM z15 CP chip 12 cores 256 MB L3 cache 9 200 000 000 131 2019 IBM 14 nm 696 mm2 13 220 000IBM z15 SC chip 960 MB L4 cache 12 200 000 000 2019 IBM 14 nm 696 mm2 17 530 000AMD Ryzen 9 3900X 64 bit SIMD caches I O die 9 890 000 000 132 133 2019 AMD 7 amp 12 nm TSMC 273 mm2 36 230 000HiSilicon Kirin 990 5G 10 300 000 000 134 2019 Huawei 7 nm 113 31 mm2 90 900 000AWS Graviton2 64 bit 64 core ARM based SIMD caches 135 136 30 000 000 000 2019 Amazon 7 nm AMD Epyc Rome 64 bit SIMD caches 39 540 000 000 132 133 2019 AMD 7 amp 12 nm TSMC 1008 mm2 39 226 000TI Jacinto TDA4VM ARM A72 DSP SRAM 3 500 000 000 137 2020 Texas Instruments 16 nm Apple A14 Bionic hexa core 64 bit ARM64 mobile SoC SIMD caches 11 800 000 000 138 2020 Apple 5 nm 88 mm2 134 100 000Apple M1 octa core 64 bit ARM64 SoC SIMD caches 16 000 000 000 139 2020 Apple 5 nm 119 mm2 134 500 000HiSilicon Kirin 9000 15 300 000 000 140 141 2020 Huawei 5 nm 114 mm2 134 200 000AMD Ryzen 7 5800H 64 bit SIMD caches I O and GPU 10 700 000 000 142 2021 AMD 7 nm 180 mm2 59 440 000AMD Epyc 7763 Milan 64 core 64 bit 2021 AMD 7 amp 12 nm TSMC 1064 mm2 8x81 416 143 Apple A15 15 000 000 000 144 145 2021 Apple 5 nm 107 68 mm2 139 300 000Apple M1 Pro 10 core 64 bit 33 700 000 000 146 2021 Apple 5 nm 245mm2 147 137 600 000Apple M1 Max 10 core 64 bit 57 000 000 000 148 146 2021 Apple 5 nm 420 2 mm2 149 135 600 000Power10 dual chip module 30 SMT8 cores or 60 SMT4 cores 36 000 000 000 150 2021 IBM 7 nm 1204 mm2 29 900 000Apple M1 Ultra dual chip module 2 10 cores 114 000 000 000 2 3 2022 Apple 5 nm 840 5 mm2 149 135 600 000AMD Epyc 7773X Milan X multi chip module 64 cores 768 MB L3 cache 26 000 000 000 Milan 151 2022 AMD 7 amp 12 nm TSMC 1352 mm2 Milan 8 36 151 IBM Telum dual chip module 2 8 cores 2 256 MB cache 45 000 000 000 152 153 2022 IBM 7 nm Samsung 1060 mm2 42 450 000Apple M2 deca core 64 bit ARM64 SoC SIMD caches 20 000 000 000 154 2022 Apple 5 nm Apple A16 ARM64 SoC 16 000 000 000 155 156 157 2022 Apple 4 nm Dimensity 9200 ARM64 SoC 17 000 000 000 158 159 160 2022 Mediatek 4 nm TSMC N4P Processor MOS transistor count Date ofintroduction Designer MOS process nm Area mm2 Transistor density tr mm2GPUs Edit A graphics processing unit GPU is a specialized electronic circuit designed to rapidly manipulate and alter memory to accelerate the building of images in a frame buffer intended for output to a display The designer refers to the technology company that designs the logic of the integrated circuit chip such as Nvidia and AMD The manufacturer refers to the semiconductor company that fabricates the chip using its semiconductor manufacturing process at a foundry such as TSMC and Samsung Semiconductor The transistor count in a chip is dependent on a manufacturer s fabrication process with smaller semiconductor nodes typically enabling higher transistor density and thus higher transistor counts The random access memory RAM that comes with GPUs such as VRAM SGRAM or HBM greatly increase the total transistor count with the memory typically accounting for the majority of transistors in a graphics card For example Nvidia s Tesla P100 has 15 billion FinFETs 16 nm in the GPU in addition to 16 GB of HBM2 memory totaling about 150 billion MOSFETs on the graphics card 161 The following table does not include the memory For memory transistor counts see the Memory section below Processor Transistor count Year Designer s Fab s Process Area Transistor density tr mm2 RefµPD7220 GDC 40 000 1982 NEC NEC 5 000 nm 162 ARTC HD63484 60 000 1984 Hitachi Hitachi 163 CBM Agnus 21 000 1985 Commodore CSG 5 000 nm 164 165 YM7101 VDP 100 000 1988 Yamaha Sega Yamaha 166 Tom amp Jerry 750 000 1993 Flare IBM 166 VDP1 1 000 000 1994 Sega Hitachi 500 nm 167 168 Sony GPU 1 000 000 1994 Toshiba LSI 500 nm 169 170 171 NV1 1 000 000 1995 Nvidia Sega SGS 500 nm 90 mm2 11 000 167 Reality Coprocessor 2 600 000 1996 SGI NEC 350 nm 81 mm2 32 100 172 PowerVR 1 200 000 1996 VideoLogic NEC 350 nm 173 Voodoo Graphics 1 000 000 1996 3dfx TSMC 500 nm 174 175 Voodoo Rush 1 000 000 1997 3dfx TSMC 500 nm 174 175 NV3 3 500 000 1997 Nvidia SGS TSMC 350 nm 90 mm2 38 900 176 177 i740 3 500 000 1998 Intel Real3D Real3D 350 nm 174 175 Voodoo 2 4 000 000 1998 3dfx TSMC 350 nm Voodoo Rush 4 000 000 1998 3dfx TSMC 350 nm NV4 7 000 000 1998 Nvidia TSMC 350 nm 90 mm2 78 000 174 177 PowerVR2 CLX2 10 000 000 1998 VideoLogic NEC 250 nm 116 mm2 86 200 58 178 179 60 PowerVR2 PMX1 6 000 000 1999 VideoLogic NEC 250 nm 180 Rage 128 8 000 000 1999 ATI TSMC UMC 250 nm 70 mm2 114 000 175 Voodoo 3 8 100 000 1999 3dfx TSMC 250 nm 181 Graphics Synthesizer 43 000 000 1999 Sony Toshiba Sony Toshiba 180 nm 279 mm2 154 000 66 64 63 65 NV5 15 000 000 1999 Nvidia TSMC 250 nm 90 mm2 167 000 175 NV10 17 000 000 1999 Nvidia TSMC 220 nm 111 mm2 153 000 182 177 NV11 20 000 000 2000 Nvidia TSMC 180 nm 65 mm2 308 000 175 NV15 25 000 000 2000 Nvidia TSMC 180 nm 81 mm2 309 000 175 Voodoo 4 14 000 000 2000 3dfx TSMC 220 nm 174 175 Voodoo 5 28 000 000 2000 3dfx TSMC 220 nm 174 175 R100 30 000 000 2000 ATI TSMC 180 nm 97 mm2 309 000 175 Flipper 51 000 000 2000 ArtX NEC 180 nm 106 mm2 481 000 66 183 PowerVR3 KYRO 14 000 000 2001 Imagination ST 250 nm 174 175 PowerVR3 KYRO II 15 000 000 2001 Imagination ST 180 nmNV2A 60 000 000 2001 Nvidia TSMC 150 nm 174 184 NV20 57 000 000 2001 Nvidia TSMC 150 nm 128 mm2 445 000 175 NV25 63 000 000 2002 Nvidia TSMC 150 nm 142 mm2 444 000NV28 36 000 000 2002 Nvidia TSMC 150 nm 101 mm2 356 000NV17 18 29 000 000 2002 Nvidia TSMC 150 nm 65 mm2 446 000R200 60 000 000 2001 ATI TSMC 150 nm 68 mm2 882 000R300 107 000 000 2002 ATI TSMC 150 nm 218 mm2 490 800R360 117 000 000 2003 ATI TSMC 150 nm 218 mm2 536 700NV34 45 000 000 2003 Nvidia TSMC 150 nm 124 mm2 363 000NV34b 45 000 000 2004 Nvidia TSMC 140 nm 91 mm2 495 000NV30 125 000 000 2003 Nvidia TSMC 130 nm 199 mm2 628 000NV31 80 000 000 2003 Nvidia TSMC 130 nm 121 mm2 661 000NV35 38 135 000 000 2003 Nvidia TSMC 130 nm 207 mm2 652 000NV36 82 000 000 2003 Nvidia IBM 130 nm 133 mm2 617 000R480 160 000 000 2004 ATI TSMC 130 nm 297 mm2 538 700NV40 222 000 000 2004 Nvidia IBM 130 nm 305 mm2 727 900NV44 75 000 000 2004 Nvidia IBM 130 nm 110 mm2 681 800NV41 222 000 000 2005 Nvidia TSMC 110 nm 225 mm2 986 700 175 NV42 198 000 000 2005 Nvidia TSMC 110 nm 222 mm2 891 900NV43 146 000 000 2005 Nvidia TSMC 110 nm 154 mm2 948 100G70 303 000 000 2005 Nvidia TSMC Chartered 110 nm 333 mm2 909 900Xenos 232 000 000 2005 ATI TSMC 90 nm 182 mm2 1 275 000 185 186 RSX Reality Synthesizer 300 000 000 2005 Nvidia Sony Sony 90 nm 186 mm2 1 613 000 187 188 R520 321 000 000 2005 ATI TSMC 90 nm 288 mm2 1 115 000 175 RV530 157 000 000 2005 ATI TSMC 90 nm 150 mm2 1 047 000RV515 107 000 000 2005 ATI TSMC 90 nm 100 mm2 1 070 000R580 384 000 000 2006 ATI TSMC 90 nm 352 mm2 1 091 000G71 278 000 000 2006 Nvidia TSMC 90 nm 196 mm2 1 418 000G72 112 000 000 2006 Nvidia TSMC 90 nm 81 mm2 1 383 000G73 177 000 000 2006 Nvidia TSMC 90 nm 125 mm2 1 416 000G80 681 000 000 2006 Nvidia TSMC 90 nm 480 mm2 1 419 000G86 Tesla 210 000 000 2007 Nvidia TSMC 80 nm 127 mm2 1 654 000G84 Tesla 289 000 000 2007 Nvidia TSMC 80 nm 169 mm2 1 710 000RV560 330 000 000 2006 ATI TSMC 80 nm 230 mm2 1 435 000R600 700 000 000 2007 ATI TSMC 80 nm 420 mm2 1 667 000RV610 180 000 000 2007 ATI TSMC 65 nm 85 mm2 2 118 000 175 RV630 390 000 000 2007 ATI TSMC 65 nm 153 mm2 2 549 000G92 754 000 000 2007 Nvidia TSMC UMC 65 nm 324 mm2 2 327 000G94 Tesla 505 000 000 2008 Nvidia TSMC 65 nm 240 mm2 2 104 000G96 Tesla 314 000 000 2008 Nvidia TSMC 65 nm 144 mm2 2 181 000G98 Tesla 210 000 000 2008 Nvidia TSMC 65 nm 86 mm2 2 442 000GT200 189 1 400 000 000 2008 Nvidia TSMC 65 nm 576 mm2 2 431 000RV620 181 000 000 2008 ATI TSMC 55 nm 67 mm2 2 701 000 175 RV635 378 000 000 2008 ATI TSMC 55 nm 135 mm2 2 800 000RV710 242 000 000 2008 ATI TSMC 55 nm 73 mm2 3 315 000RV730 514 000 000 2008 ATI TSMC 55 nm 146 mm2 3 521 000RV670 666 000 000 2008 ATI TSMC 55 nm 192 mm2 3 469 000RV770 956 000 000 2008 ATI TSMC 55 nm 256 mm2 3 734 000RV790 959 000 000 2008 ATI TSMC 55 nm 282 mm2 3 401 000 190 175 G92b Tesla 754 000 000 2008 Nvidia TSMC UMC 55 nm 260 mm2 2 900 000 175 G94b Tesla 505 000 000 2008 Nvidia TSMC UMC 55 nm 196 mm2 2 577 000G96b Tesla 314 000 000 2008 Nvidia TSMC UMC 55 nm 121 mm2 2 595 000GT200b Tesla 1 400 000 000 2008 Nvidia TSMC UMC 55 nm 470 mm2 2 979 000GT218 Tesla 260 000 000 2009 Nvidia TSMC 40 nm 57 mm2 4 561 000 175 GT216 Tesla 486 000 000 2009 Nvidia TSMC 40 nm 100 mm2 4 860 000GT215 Tesla 727 000 000 2009 Nvidia TSMC 40 nm 144 mm2 5 049 000RV740 826 000 000 2009 ATI TSMC 40 nm 137 mm2 6 029 000Cypress RV870 2 154 000 000 2009 ATI TSMC 40 nm 334 mm2 6 449 000Juniper RV840 1 040 000 000 2009 ATI TSMC 40 nm 166 mm2 6 265 000Redwood RV830 627 000 000 2010 AMD ATI TSMC 40 nm 104 mm2 6 029 000 175 Cedar RV810 292 000 000 2010 AMD TSMC 40 nm 59 mm2 4 949 000Cayman RV970 2 640 000 000 2010 AMD TSMC 40 nm 389 mm2 6 789 000Barts RV940 1 700 000 000 2010 AMD TSMC 40 nm 255 mm2 6 667 000Turks RV930 716 000 000 2011 AMD TSMC 40 nm 118 mm2 6 068 000Caicos RV910 370 000 000 2011 AMD TSMC 40 nm 67 mm2 5 522 000GF100 Fermi 3 200 000 000 2010 Nvidia TSMC 40 nm 526 mm2 6 084 000 191 GF110 Fermi 3 000 000 000 2010 Nvidia TSMC 40 nm 520 mm2 5 769 000 191 GF104 Fermi 1 950 000 000 2011 Nvidia TSMC 40 nm 332 mm2 5 873 000 175 GF106 Fermi 1 170 000 000 2010 Nvidia TSMC 40 nm 238 mm2 4 916 000 175 GF108 Fermi 585 000 000 2011 Nvidia TSMC 40 nm 116 mm2 5 043 000 175 GF119 Fermi 292 000 000 2011 Nvidia TSMC 40 nm 79 mm2 3 696 000 175 Tahiti GCN1 4 312 711 873 2011 AMD TSMC 28 nm 365 mm2 11 820 000 192 Cape Verde GCN1 1 500 000 000 2012 AMD TSMC 28 nm 123 mm2 12 200 000 175 Pitcairn GCN1 2 800 000 000 2012 AMD TSMC 28 nm 212 mm2 13 210 000 175 GK110 Kepler 7 080 000 000 2012 Nvidia TSMC 28 nm 561 mm2 12 620 000 193 194 GK104 Kepler 3 540 000 000 2012 Nvidia TSMC 28 nm 294 mm2 12 040 000 195 GK106 Kepler 2 540 000 000 2012 Nvidia TSMC 28 nm 221 mm2 11 490 000 175 GK107 Kepler 1 270 000 000 2012 Nvidia TSMC 28 nm 118 mm2 10 760 000 175 GK208 Kepler 1 020 000 000 2013 Nvidia TSMC 28 nm 79 mm2 12 910 000 175 Oland GCN1 1 040 000 000 2013 AMD TSMC 28 nm 90 mm2 11 560 000 175 Bonaire GCN2 2 080 000 000 2013 AMD TSMC 28 nm 160 mm2 13 000 000Durango Xbox One 4 800 000 000 2013 AMD TSMC 28 nm 375 mm2 12 800 000 196 197 Liverpool PlayStation 4 2013 AMD TSMC 28 nm 348 mm2 198 Hawaii GCN2 6 300 000 000 2013 AMD TSMC 28 nm 438 mm2 14 380 000 175 GM200 Maxwell 8 000 000 000 2015 Nvidia TSMC 28 nm 601 mm2 13 310 000GM204 Maxwell 5 200 000 000 2014 Nvidia TSMC 28 nm 398 mm2 13 070 000GM206 Maxwell 2 940 000 000 2014 Nvidia TSMC 28 nm 228 mm2 12 890 000GM107 Maxwell 1 870 000 000 2014 Nvidia TSMC 28 nm 148 mm2 12 640 000Tonga GCN3 5 000 000 000 2014 AMD TSMC GlobalFoundries 28 nm 366 mm2 13 660 000Fiji GCN3 8 900 000 000 2015 AMD TSMC 28 nm 596 mm2 14 930 000Durango 2 Xbox One S 5 000 000 000 2016 AMD TSMC 16 nm 240 mm2 20 830 000 199 Neo PlayStation 4 Pro 5 700 000 000 2016 AMD TSMC 16 nm 325 mm2 17 540 000 200 Ellesmere Polaris 10 GCN4 5 700 000 000 2016 AMD Samsung GlobalFoundries 14 nm 232 mm2 24 570 000 201 Baffin Polaris 11 GCN4 3 000 000 000 2016 AMD Samsung GlobalFoundries 14 nm 123 mm2 24 390 000 175 202 Lexa Polaris 12 GCN4 2 200 000 000 2017 AMD Samsung GlobalFoundries 14 nm 101 mm2 21 780 000 175 202 GP100 Pascal 15 300 000 000 2016 Nvidia TSMC Samsung 16 nm 610 mm2 25 080 000 203 204 GP102 Pascal 11 800 000 000 2016 Nvidia TSMC Samsung 16 nm 471 mm2 25 050 000 175 204 GP104 Pascal 7 200 000 000 2016 Nvidia TSMC 16 nm 314 mm2 22 930 000 175 204 GP106 Pascal 4 400 000 000 2016 Nvidia TSMC 16 nm 200 mm2 22 000 000 175 204 GP107 Pascal 3 300 000 000 2016 Nvidia Samsung 14 nm 132 mm2 25 000 000 175 204 GP108 Pascal 1 850 000 000 2017 Nvidia Samsung 14 nm 74 mm2 25 000 000 175 204 Scorpio Xbox One X 6 600 000 000 2017 AMD TSMC 16 nm 367 mm2 17 980 000 196 205 Vega 10 GCN5 12 500 000 000 2017 AMD Samsung GlobalFoundries 14 nm 484 mm2 25 830 000 206 GV100 Volta 21 100 000 000 2017 Nvidia TSMC 12 nm 815 mm2 25 890 000 207 TU102 Turing 18 600 000 000 2018 Nvidia TSMC 12 nm 754 mm2 24 670 000 208 TU104 Turing 13 600 000 000 2018 Nvidia TSMC 12 nm 545 mm2 24 950 000TU106 Turing 10 800 000 000 2018 Nvidia TSMC 12 nm 445 mm2 24 270 000TU116 Turing 6 600 000 000 2019 Nvidia TSMC 12 nm 284 mm2 23 240 000 209 TU117 Turing 4 700 000 000 2019 Nvidia TSMC 12 nm 200 mm2 23 500 000 210 Vega 20 GCN5 13 230 000 000 2018 AMD TSMC 7 nm 331 mm2 39 970 000 175 Navi 10 RDNA1 10 300 000 000 2019 AMD TSMC 7 nm 251 mm2 41 040 000 211 Navi 12 RDNA1 2020 AMD TSMC 7 nm Navi 14 RDNA1 6 400 000 000 2019 AMD TSMC 7 nm 158 mm2 40 510 000 212 Arcturus CDNA1 25 600 000 000 2020 AMD TSMC 7 nm 750 mm2 34 100 000 213 GA100 Ampere 54 200 000 000 2020 Nvidia TSMC 7 nm 826 mm2 65 620 000 214 215 GA102 Ampere 28 300 000 000 2020 Nvidia Samsung 8 nm 628 mm2 45 035 000 216 217 GA104 Ampere 17 400 000 000 2020 Nvidia Samsung 8 nm 392 mm 44 390 000 218 GA106 Ampere 13 250 000 000 2021 Nvidia Samsung 8 nm 276 mm 48 010 000Navi 21 RDNA2 26 800 000 000 2020 AMD TSMC 7 nm 520 mm 51 540 000Navi 22 RDNA2 17 200 000 000 2021 AMD TSMC 7 nm 335 mm 51 340 000Navi 23 RDNA2 11 060 000 000 2021 AMD TSMC 7 nm 237 mm 46 670 000Navi 24 RDNA2 5 400 000 000 2022 AMD TSMC 6 nm 107 mm 50 470 000Aldebaran CDNA2 58 200 000 000 2021 AMD TSMC 6 nm 219 GH100 Hopper 80 000 000 000 2022 Nvidia TSMC 4 nm 814 mm 98 280 000 220 AD102 Ada Lovelace 76 300 000 000 2022 Nvidia TSMC 4 nm 608 4 mm 125 411 000 221 AD103 Ada Lovelace 45 900 000 000 2022 Nvidia TSMC 4 nm 378 6 mm 121 240 000 222 AD104 Ada Lovelace 35 800 000 000 2022 Nvidia TSMC 4 nm 294 5 mm 121 560 000 222 Navi 31 RDNA3 58 000 000 000 2022 AMD TSMC 5 nm GCD 6 nm MCD 531 mm MCM 306 mm GCD 6 37 5 mm MCD 109 200 000 MCM 132 400 000 GCD 223 224 Processor Transistor count Year Designer s Fab s MOS process Area Transistor density tr mm2 RefFPGA Edit A field programmable gate array FPGA is an integrated circuit designed to be configured by a customer or a designer after manufacturing FPGA Transistor count Date of introduction Designer Manufacturer Process Area Transistor density tr mm2 RefVirtex 70 000 000 1997 XilinxVirtex E 200 000 000 1998 XilinxVirtex II 350 000 000 2000 Xilinx 130 nmVirtex II PRO 430 000 000 2002 XilinxVirtex 4 1 000 000 000 2004 Xilinx 90 nmVirtex 5 1 100 000 000 2006 Xilinx TSMC 65 nm 225 Stratix IV 2 500 000 000 2008 Altera TSMC 40 nm 226 Stratix V 3 800 000 000 2011 Altera TSMC 28 nm 227 Arria 10 5 300 000 000 2014 Altera TSMC 20 nm 228 Virtex 7 2000T 6 800 000 000 2011 Xilinx TSMC 28 nm 229 Stratix 10 SX 2800 17 000 000 000 TBD Intel Intel 14 nm 560 mm2 30 400 000 230 231 Virtex Ultrascale VU440 20 000 000 000 Q1 2015 Xilinx TSMC 20 nm 232 233 Virtex Ultrascale VU19P 35 000 000 000 2020 Xilinx TSMC 16 nm 900 mm2 e 38 900 000 234 235 236 Versal VC1902 37 000 000 000 2H 2019 Xilinx TSMC 7 nm 237 238 239 Stratix 10 GX 10M 43 300 000 000 Q4 2019 Intel Intel 14 nm 1400 mm2 e 30 930 000 240 241 Versal VP1802 92 000 000 000 2021 f Xilinx TSMC 7 nm 242 243 Memory Edit See also Random access memory Timeline flash memory Timeline and read only memory Timeline Semiconductor memory is an electronic data storage device often used as computer memory implemented on integrated circuits Nearly all semiconductor memory since the 1970s have used MOSFETs MOS transistors replacing earlier bipolar junction transistors There are two major types of semiconductor memory random access memory RAM and non volatile memory NVM In turn there are two major RAM types dynamic random access memory DRAM and static random access memory SRAM as well as two major NVM types flash memory and read only memory ROM Typical CMOS SRAM consists of six transistors per cell For DRAM 1T1C which means one transistor and one capacitor structure is common Capacitor charged or not is used to store 1 or 0 For flash memory the data is stored in floating gate and the resistance of the transistor is sensed to interpret the data stored Depending on how fine scale the resistance could be separated one transistor could store up to 3 bits meaning eight distinctive level of resistance possible per transistor However the fine the scale comes with cost of repeatability therefore reliability Typically low grade 2 bits MLC flash is used for flash drives so a 16 GB flash drive contains roughly 64 billion transistors For SRAM chips six transistor cells six transistors per bit was the standard 244 DRAM chips during the early 1970s had three transistor cells three transistors per bit before single transistor cells one transistor per bit became standard since the era of 4 Kb DRAM in the mid 1970s 245 246 In single level flash memory each cell contains one floating gate MOSFET one transistor per bit 247 whereas multi level flash contains 2 3 or 4 bits per transistor Flash memory chips are commonly stacked up in layers up to 128 layer in production 248 and 136 layer managed 249 and available in end user devices up to 69 layer from manufacturers Random access memory RAM Chip name Capacity bits RAM type Transistor count Date of introduction Manufacturer s Process Area Transistor density tr mm2 Ref 1 bit SRAM cell 6 1963 Fairchild 250 1 bit DRAM cell 1 1965 Toshiba 251 252 8 bit SRAM bipolar 48 1965 SDS Signetics 250 SP95 16 bit SRAM bipolar 80 1965 IBM 253 TMC3162 16 bit SRAM TTL 96 1966 Transitron 246 SRAM MOS 1966 NEC 245 256 bit DRAM IC 256 1968 Fairchild 246 64 bit SRAM PMOS 384 1968 Fairchild 245 144 bit SRAM NMOS 864 1968 NEC1101 256 bit SRAM PMOS 1 536 1969 Intel 12 000 nm 254 255 256 1102 1 Kb DRAM PMOS 3 072 1970 Intel Honeywell 245 1103 1 Kb DRAM PMOS 3 072 1970 Intel 8 000 nm 10 mm2 307 257 244 258 246 mPD403 1 Kb DRAM NMOS 3 072 1971 NEC 259 2 Kb DRAM PMOS 6 144 1971 General Instrument 12 7 mm2 484 260 2102 1 Kb SRAM NMOS 6 144 1972 Intel 254 261 8 Kb DRAM PMOS 8 192 1973 IBM 18 8 mm2 436 260 5101 1 Kb SRAM CMOS 6 144 1974 Intel 254 2116 16 Kb DRAM NMOS 16 384 1975 Intel 262 246 2114 4 Kb SRAM NMOS 24 576 1976 Intel 254 263 4 Kb SRAM CMOS 24 576 1977 Toshiba 255 64 Kb DRAM NMOS 65 536 1977 NTT 35 4 mm2 1851 260 DRAM VMOS 65 536 1979 Siemens 25 2 mm2 2601 260 16 Kb SRAM CMOS 98 304 1980 Hitachi Toshiba 264 256 Kb DRAM NMOS 262 144 1980 NEC 1 500 nm 41 6 mm2 6302 260 NTT 1 000 nm 34 4 mm2 7620 260 64 Kb SRAM CMOS 393 216 1980 Matsushita 264 288 Kb DRAM 294 912 1981 IBM 25 mm2 11 800 265 64 Kb SRAM NMOS 393 216 1982 Intel 1 500 nm 264 256 Kb SRAM CMOS 1 572 864 1984 Toshiba 1 200 nm 264 256 8 Mb DRAM 8 388 608 January 5 1984 Hitachi 266 267 16 Mb DRAM CMOS 16 777 216 1987 NTT 700 nm 148 mm2 113 400 260 4 Mb SRAM CMOS 25 165 824 1990 NEC Toshiba Hitachi Mitsubishi 264 64 Mb DRAM CMOS 67 108 864 1991 Matsushita Mitsubishi Fujitsu Toshiba 400 nmKM48SL2000 16 Mb SDRAM 16 777 216 1992 Samsung 268 269 16 Mb SRAM CMOS 100 663 296 1992 Fujitsu NEC 400 nm 264 256 Mb DRAM CMOS 268 435 456 1993 Hitachi NEC 250 nm1 Gb DRAM 1 073 741 824 January 9 1995 NEC 250 nm 270 271 Hitachi 160 nm SDRAM 1 073 741 824 1996 Mitsubishi 150 nm 264 SDRAM SOI 1 073 741 824 1997 Hyundai 272 4 Gb DRAM 4 bit 1 073 741 824 1997 NEC 150 nm 264 DRAM 4 294 967 296 1998 Hyundai 272 8 Gb SDRAM DDR3 8 589 934 592 April 2008 Samsung 50 nm 273 16 Gb SDRAM DDR3 17 179 869 184 200832 Gb SDRAM HBM2 34 359 738 368 2016 Samsung 20 nm 274 64 Gb SDRAM HBM2 68 719 476 736 2017128 Gb SDRAM DDR4 137 438 953 472 2018 Samsung 10 nm 275 RRAM 276 3DSoC 277 2019 SkyWater Technology 278 90 nm Flash memory Chip name Capacity bits Flash type FGMOS transistor count Date of introduction Manufacturer s Process Area Transistor density tr mm2 Ref 256 Kb NOR 262 144 1985 Toshiba 2 000 nm 264 1 Mb NOR 1 048 576 1989 Seeq Intel 4 Mb NAND 4 194 304 1989 Toshiba 1 000 nm16 Mb NOR 16 777 216 1991 Mitsubishi 600 nmDD28F032SA 32 Mb NOR 33 554 432 1993 Intel 280 mm2 120 000 254 279 64 Mb NOR 67 108 864 1994 NEC 400 nm 264 NAND 67 108 864 1996 Hitachi128 Mb NAND 134 217 728 1996 Samsung Hitachi 256 Mb NAND 268 435 456 1999 Hitachi Toshiba 250 nm512 Mb NAND 536 870 912 2000 Toshiba 280 1 Gb 2 bit NAND 536 870 912 2001 Samsung 264 Toshiba SanDisk 160 nm 281 2 Gb NAND 2 147 483 648 2002 Samsung Toshiba 282 283 8 Gb NAND 8 589 934 592 2004 Samsung 60 nm 282 16 Gb NAND 17 179 869 184 2005 Samsung 50 nm 284 32 Gb NAND 34 359 738 368 2006 Samsung 40 nmTHGAM 128 Gb Stacked NAND 128 000 000 000 April 2007 Toshiba 56 nm 252 mm2 507 900 000 285 THGBM 256 Gb Stacked NAND 256 000 000 000 2008 Toshiba 43 nm 353 mm2 725 200 000 286 THGBM2 1 Tb Stacked 4 bit NAND 256 000 000 000 2010 Toshiba 32 nm 374 mm2 684 500 000 287 KLMCG8GE4A 512 Gb Stacked 2 bit NAND 256 000 000 000 2011 Samsung 192 mm2 1 333 000 000 288 KLUFG8R1EM 4 Tb Stacked 3 bit V NAND 1 365 333 333 504 2017 Samsung 150 mm2 9 102 000 000 289 eUFS 1 TB 8 Tb Stacked 4 bit V NAND 2 048 000 000 000 2019 Samsung 150 mm2 13 650 000 000 290 291 1 Tb 232L TLC NAND die 333 333 333 333 2022 Micron 68 5 mm2 memory array 4 870 000 000 14 6 Gbit mm2 292 293 294 16 Tb 232L package 5 333 333 333 333 2022 Micron 68 5 mm2 memory array 77 900 000 000 16 14 6 Gbit mm2 Read only memory ROM Chip name Capacity bits ROM type Transistor count Date of introduction Manufacturer s Process Area Ref PROM 1956 Arma 295 296 1 Kb ROM MOS 1 024 1965 General Microelectronics 297 3301 1 Kb ROM bipolar 1 024 1969 Intel 297 1702 2 Kb EPROM MOS 2 048 1971 Intel 15 mm2 298 4 Kb ROM MOS 4 096 1974 AMD General Instrument 297 2708 8 Kb EPROM MOS 8 192 1975 Intel 254 2 Kb EEPROM MOS 2 048 1976 Toshiba 299 µCOM 43 ROM 16 Kb PROM PMOS 16 000 1977 NEC 300 2716 16 Kb EPROM TTL 16 384 1977 Intel 257 301 EA8316F 16 Kb ROM NMOS 16 384 1978 Electronic Arrays 436 mm2 297 302 2732 32 Kb EPROM 32 768 1978 Intel 254 2364 64 Kb ROM 65 536 1978 Intel 303 2764 64 Kb EPROM 65 536 1981 Intel 3 500 nm 254 264 27128 128 Kb EPROM 131 072 1982 Intel 27256 256 Kb EPROM HMOS 262 144 1983 Intel 254 304 256 Kb EPROM CMOS 262 144 1983 Fujitsu 305 512 Kb EPROM NMOS 524 288 1984 AMD 1 700 nm 264 27512 512 Kb EPROM HMOS 524 288 1984 Intel 254 306 1 Mb EPROM CMOS 1 048 576 1984 NEC 1 200 nm 264 4 Mb EPROM CMOS 4 194 304 1987 Toshiba 800 nm16 Mb EPROM CMOS 16 777 216 1990 NEC 600 nmMROM 16 777 216 1995 AKM Hitachi 271 Transistor computers Edit Main article transistor computer Before transistors were invented relays were used in commercial tabulating machines and experimental early computers The world s first working programmable fully automatic digital computer 307 the 1941 Z3 22 bit word length computer had 2 600 relays and operated at a clock frequency of about 4 5 Hz The 1940 Complex Number Computer had fewer than 500 relays 308 but it was not fully programmable The earliest practical computers used vacuum tubes and solid state diode logic ENIAC had 18 000 vacuum tubes 7 200 crystal diodes and 1 500 relays with many of the vacuum tubes containing two triode elements The second generation of computers were transistor computers that featured boards filled with discrete transistors solid state diodes and magnetic memory cores The experimental 1953 48 bit Transistor Computer developed at the University of Manchester is widely believed to be the first transistor computer to come into operation anywhere in the world the prototype had 92 point contact transistors and 550 diodes 309 A later version the 1955 machine had a total of 250 junction transistors and 1300 point contact diodes The Computer also used a small number of tubes in its clock generator so it was not the first fully transistorized The ETL Mark III developed at the Electrotechnical Laboratory in 1956 may have been the first transistor based electronic computer using the stored program method It had about 130 point contact transistors and about 1 800 germanium diodes were used for logic elements and these were housed on 300 plug in packages which could be slipped in and out 310 The 1958 decimal architecture IBM 7070 was the first transistor computer to be fully programmable It had about 30 000 alloy junction germanium transistors and 22 000 germanium diodes on approximately 14 000 Standard Modular System SMS cards The 1959 MOBIDIC short for MOBIle DIgital Computer at 12 000 pounds 6 0 short tons mounted in the trailer of a semi trailer truck was a transistorized computer for battlefield data The third generation of computers used integrated circuits ICs 311 The 1962 15 bit Apollo Guidance Computer used about 4 000 Type G 3 input NOR gate circuits for about 12 000 transistors plus 32 000 resistors 312 The IBM System 360 introduced 1964 used discrete transistors in hybrid circuit packs 311 The 1965 12 bit PDP 8 CPU had 1409 discrete transistors and over 10 000 diodes on many cards Later versions starting with the 1968 PDP 8 I used integrated circuits The PDP 8 was later reimplemented as a microprocessor as the Intersil 6100 see below 313 The next generation of computers were the microcomputers starting with the 1971 Intel 4004 which used MOS transistors These were used in home computers or personal computers PCs This list includes early transistorized computers second generation and IC based computers third generation from the 1950s and 1960s Computer Transistor count Year Manufacturer Notes RefTransistor Computer 92 1953 University of Manchester Point contact transistors 550 diodes Lacked stored program capability 309 TRADIC 700 1954 Bell Labs Point contact transistors 309 Transistor Computer full size 250 1955 University of Manchester Discrete point contact transistors 1 300 diodes 309 IBM 608 3 000 1955 IBM Germanium transistors 314 ETL Mark III 130 1956 Electrotechnical Laboratory Point contact transistors 1 800 diodes stored program capability 309 310 Metrovick 950 200 1956 Metropolitan Vickers Discrete junction transistorsNEC NEAC 2201 600 1958 NEC Germanium transistors 315 Hitachi MARS 1 1 000 1958 Hitachi 316 IBM 7070 30 000 1958 IBM Alloy junction germanium transistors 22 000 diodes 317 Matsushita MADIC I 400 1959 Matsushita Bipolar transistors 318 NEC NEAC 2203 2 579 1959 NEC 319 Toshiba TOSBAC 2100 5 000 1959 Toshiba 320 IBM 7090 50 000 1959 IBM Discrete germanium transistors 321 PDP 1 2 700 1959 Digital Equipment Corporation Discrete transistorsOlivetti Elea 9003 1959 Olivetti 300 000 discrete transistors and diodes 322 Mitsubishi MELCOM 1101 3 500 1960 Mitsubishi Germanium transistors 323 M18 FADAC 1 600 1960 Autonetics Discrete transistorsCPU of IBM 7030 Stretch 169 100 1961 IBM World s fastest computer from 1961 to 1964 324 D 17B 1 521 1962 Autonetics Discrete transistorsNEC NEAC L2 16 000 1964 NEC Ge transistors 325 CDC 6600 entire computer 400 000 1964 Control Data Corporation World s fastest computer from 1964 to 1969 326 IBM System 360 1964 IBM Hybrid circuitsPDP 8 Straight 8 1409 313 1965 Digital Equipment Corporation discrete transistors 10 000 diodesPDP 8 S 1001 327 328 329 1966 Digital Equipment Corporation discrete transistors diodesPDP 8 I 1409 citation needed 1968 330 Digital Equipment Corporation 74 series TTL circuits 331 Apollo Guidance Computer Block I 12 300 1966 Raytheon MIT Instrumentation Laboratory 4 100 ICs each containing a 3 transistor 3 input NOR gate Block II had 2 800 dual 3 input NOR gates ICs Logic functions Edit Transistor count for generic logic functions is based on static CMOS implementation 332 Function Transistor count RefNOT 2Buffer 4NAND 2 input 4NOR 2 input 4AND 2 input 6OR 2 input 6NAND 3 input 6NOR 3 input 6XOR 2 input 6XNOR 2 input 8MUX 2 input with TG 6MUX 4 input with TG 18NOT MUX 2 input 8MUX 4 input 241 bit full adder 241 bit adder subtractor 48AND OR INVERT 6 333 Latch D gated 8Flip flop edge triggered dynamic D with reset 128 bit multiplier 3 00016 bit multiplier 9 00032 bit multiplier 21 000 citation needed small scale integration 2 100 334 medium scale integration 100 500 334 large scale integration 500 20 000 334 very large scale integration 20 000 1 000 000 334 ultra large scale integration gt 1 000 000Parallel systems Edit Historically each processing element in earlier parallel systems like all CPUs of that time was a serial computer built out of multiple chips As transistor counts per chip increases each processing element could be built out of fewer chips and then later each multi core processor chip could contain more processing elements 335 Goodyear MPP 1983 8 pixel processors per chip 3 000 to 8 000 transistors per chip 335 Brunel University Scape single chip array processing element 1983 256 pixel processors per chip 120 000 to 140 000 transistors per chip 335 Cell Broadband Engine 2006 with 9 cores per chip had 234 million transistors per chip 336 Other devices Edit Device type Device name Transistor count Date of introduction Designer s Manufacturer s MOS process Area Transistor density tr mm2 RefDeep learning engine IPU g Colossus GC2 23 600 000 000 2018 Graphcore TSMC 16 nm 800 mm2 29 500 000 337 338 339 better source needed Deep learning engine IPU Wafer Scale Engine 1 200 000 000 000 2019 Cerebras TSMC 16 nm 46 225 mm2 25 960 000 4 5 6 7 Deep learning engine IPU Wafer Scale Engine 2 2 600 000 000 000 2020 Cerebras TSMC 7 nm 46 225 mm2 56 250 000 8 340 341 Network switch NVLink4 NVSwitch 25 100 000 000 2022 Nvidia TSMC N4 4 nm 294 mm2 85 370 000 342 Transistor density EditThe transistor density is the number of transistors that are fabricated per unit area typically measured in terms of the number of transistors per square millimeter mm2 The transistor density usually correlates with the gate length of a semiconductor node also known as a semiconductor manufacturing process typically measured in nanometers nm As of 2019 update the semiconductor node with the highest transistor density is TSMC s 5 nanometer node with 171 3 million transistors per square millimeter note this corresponds to a transistor transistor spacing of 76 4 nm far greater than the relative meaningless 5nm 343 MOSFET nodes Edit Further information List of semiconductor scale examples Semiconductor nodes Node name Transistor density transistors mm2 Production year Process MOSFET Manufacturer s Ref 1960 20 000 nm PMOS Bell Labs 344 345 1960 20 000 nm NMOS 1963 CMOS Fairchild 346 1964 PMOS General Microelectronics 347 1968 20 000 nm CMOS RCA 348 1969 12 000 nm PMOS Intel 264 256 1970 10 000 nm CMOS RCA 348 300 1970 8 000 nm PMOS Intel 258 246 1971 10 000 nm PMOS Intel 349 480 1971 PMOS General Instrument 260 1973 NMOS Texas Instruments 260 220 1973 NMOS Mostek 260 1973 7 500 nm NMOS NEC 19 18 1973 6 000 nm PMOS Toshiba 20 350 1976 5 000 nm NMOS Hitachi Intel 260 1976 5 000 nm CMOS RCA 1976 4 000 nm NMOS Zilog 1976 3 000 nm NMOS Intel 351 1 850 1977 NMOS NTT 260 1978 3 000 nm CMOS Hitachi 352 1978 2 500 nm NMOS Texas Instruments 260 1978 2 000 nm NMOS NEC NTT 2 600 1979 VMOS Siemens 7 280 1979 1 000 nm NMOS NTT 7 620 1980 1 000 nm NMOS NTT 1983 2 000 nm CMOS Toshiba 264 1983 1 500 nm CMOS Intel 260 1983 1 200 nm CMOS Intel 1984 800 nm CMOS NTT 1987 700 nm CMOS Fujitsu 1989 600 nm CMOS Mitsubishi NEC Toshiba 264 1989 500 nm CMOS Hitachi Mitsubishi NEC Toshiba 1991 400 nm CMOS Matsushita Mitsubishi Fujitsu Toshiba 1993 350 nm CMOS Sony 1993 250 nm CMOS Hitachi NEC3LM 32 000 1994 350 nm CMOS NEC 172 1995 160 nm CMOS Hitachi 264 1996 150 nm CMOS MitsubishiTSMC 180 nm 1998 180 nm CMOS TSMC 353 CS80 1999 180 nm CMOS Fujitsu 354 1999 180 nm CMOS Intel Sony Toshiba 254 64 CS85 1999 170 nm CMOS Fujitsu 355 Samsung 140 nm 1999 140 nm CMOS Samsung 264 2001 130 nm CMOS Fujitsu Intel 354 254 Samsung 100 nm 2001 100 nm CMOS Samsung 264 2002 90 nm CMOS Sony Toshiba Samsung 64 282 CS100 2003 90 nm CMOS Fujitsu 354 Intel 90 nm 1 450 000 2004 90 nm CMOS Intel 356 254 Samsung 80 nm 2004 80 nm CMOS Samsung 357 2004 65 nm CMOS Fujitsu Toshiba 358 Samsung 60 nm 2004 60 nm CMOS Samsung 282 TSMC 45 nm 2004 45 nm CMOS TSMCElpida 90 nm 2005 90 nm CMOS Elpida Memory 359 CS200 2005 65 nm CMOS Fujitsu 360 354 Samsung 50 nm 2005 50 nm CMOS Samsung 284 Intel 65 nm 2 080 000 2006 65 nm CMOS Intel 356 Samsung 40 nm 2006 40 nm CMOS Samsung 284 Toshiba 56 nm 2007 56 nm CMOS Toshiba 285 Matsushita 45 nm 2007 45 nm CMOS Matsushita 75 Intel 45 nm 3 300 000 2008 45 nm CMOS Intel 361 Toshiba 43 nm 2008 43 nm CMOS Toshiba 286 TSMC 40 nm 2008 40 nm CMOS TSMC 362 Toshiba 32 nm 2009 32 nm CMOS Toshiba 363 Intel 32 nm 7 500 000 2010 32 nm CMOS Intel 361 2010 20 nm CMOS Hynix Samsung 364 284 Intel 22 nm 15 300 000 2012 22 nm CMOS Intel 361 IMFT 20 nm 2012 20 nm CMOS IMFT 365 Toshiba 19 nm 2012 19 nm CMOS ToshibaHynix 16 nm 2013 16 nm FinFET SK Hynix 364 TSMC 16 nm 28 880 000 2013 16 nm FinFET TSMC 366 367 Samsung 10 nm 51 820 000 2013 10 nm FinFET Samsung 368 369 Intel 14 nm 37 500 000 2014 14 nm FinFET Intel 361 14LP 32 940 000 2015 14 nm FinFET Samsung 368 TSMC 10 nm 52 510 000 2016 10 nm FinFET TSMC 366 370 12LP 36 710 000 2017 12 nm FinFET GlobalFoundries Samsung 202 N7FF 96 500 000 101 850 000 371 2017 7 nm FinFET TSMC 372 373 374 8LPP 61 180 000 2018 8 nm FinFET Samsung 368 7LPE 95 300 000 2018 7 nm FinFET Samsung 373 Intel 10 nm 100 760 000 106 100 000 371 2018 10 nm FinFET Intel 375 5LPE 126 530 000 133 560 000 371 134 900 000 376 2018 5 nm FinFET Samsung 377 378 N7FF 113 900 000 2019 7 nm FinFET TSMC 372 373 CLN5FF 171 300 000 185 460 000 371 2019 5 nm FinFET TSMC 343 Intel 7 100 760 000 106 100 000 371 2021 7 nm FinFET Intel4LPE 145 700 000 376 2021 4 nm FinFET Samsung 379 380 381 N4 196 600 000 371 382 2021 4 nm FinFET TSMC 383 N4P 196 600 000 371 382 2022 4 nm FinFET TSMC 384 3GAE 202 850 000 371 2022 3 nm MBCFET Samsung 385 379 386 N3 314 730 000 371 2022 3 nm FinFET TSMC 387 388 N4X 2023 4 nm FinFET TSMC 389 390 391 N3E 2023 3 nm FinFET TSMC 388 392 3GAP 2023 3 nm MBCFET Samsung 379 Intel 4 160 000 000 393 2023 4 nm FinFET Intel 394 395 396 Intel 3 2023 3 nm FinFET Intel 395 396 Intel 20A 2024 2 nm RibbonFET Intel 395 396 Intel 18A 2025 sub 2 nm RibbonFET Intel 395 2GAP 2025 2 nm MBCFET Samsung 379 N2 2025 2 nm GAAFET TSMC 388 392 Samsung 1 4 nm 2027 1 4 nm Samsung 397 See also EditGate count an alternate metric Dennard scaling Electronics industry Integrated circuit List of best selling electronic devices List of semiconductor scale examples MOSFET Semiconductor Semiconductor device Semiconductor device fabrication Semiconductor industry Transistor Cerebras SystemsNotes Edit Declassified 1998 3 510 without depletion mode pull up transistors 6 813 without depletion mode pull up transistors 3 900 000 000 core chiplet die 2 090 000 000 I O die a b Estimate Versal Premium are confirmed to be shipping in 1H 2021 but nothing was mentioned about the VP1802 in particular Usually Xilinx makes separate news for the release of its biggest devices so the VP1802 is likely to be released later Intelligence Processing Unit References Edit Khosla Robin 2017 Alternate high k dielectrics for next generation CMOS logic and memory technology PhD IIT Mandi a b Apple unveils M1 Ultra the world s most powerful chip for a personal computer Apple Newsroom Retrieved March 9 2022 a b Shankland Stephen Meet Apple s Enormous 20 Core M1 Ultra Processor the Brains in the New Mac Studio Machine CNET Retrieved March 9 2022 a b Hruska Joel August 2019 Cerebras Systems Unveils 1 2 Trillion Transistor Wafer Scale Processor for AI extremetech com Retrieved September 6 2019 a b Feldman Michael August 2019 Machine Learning chip breaks new ground with waferscale integration nextplatform com Retrieved September 6 2019 a b Cutress Ian August 2019 Hot Chips 31 Live Blogs Cerebras 1 2 Trillion Transistor Deep Learning Processor anandtech com Retrieved September 6 2019 a b A Look at Cerebras Wafer Scale Engine Half Square Foot Silicon Chip WikiChip Fuse November 16 2019 Retrieved December 2 2019 a b Everett Joseph August 26 2020 World s largest CPU has 850 000 7 nm cores that are optimized for AI and 2 6 trillion transistors TechReportArticles John Gustafson s answer to How many individual transistors are in the world s most powerful supercomputer Quora Retrieved August 22 2019 Pires Francisco October 5 2022 Water Based Chips Could be Breakthrough for Neural Networking AI Wetware has gained an entirely new meaning Tom s Hardware Retrieved October 5 2022 1971 Microprocessor Integrates CPU Function onto a Single Chip The Silicon Engine Computer History Museum Retrieved September 4 2019 a b Holt Ray World s First Microprocessor Retrieved March 5 2016 1st fully integrated chip set microprocessor a b Alpha 21364 Microarchitectures Compaq WikiChip en wikichip org Retrieved September 8 2019 Holt Ray M 1998 The F14A Central Air Data Computer and the LSI Technology State of the Art in 1968 p 8 Holt Ray M 2013 F14 TomCat MOS LSI Chip Set First Microprocessor Archived from the original on November 6 2020 Retrieved November 6 2020 Ken Shirriff The Texas Instruments TMX 1795 the almost first forgotten microprocessor 2015 Ryoichi Mori Hiroaki Tajima Morihiko Tajima Yoshikuni Okada October 1977 Microprocessors in Japan Euromicro Newsletter 3 4 50 7 doi 10 1016 0303 1268 77 90111 0 a b NEC 751 uCOM 4 The Antique Chip Collector s Page Archived from the original on May 25 2011 Retrieved June 11 2010 a b 1970s Development and evolution of microprocessors PDF Semiconductor History Museum of Japan Archived from the original PDF on June 27 2019 Retrieved June 27 2019 a b 1973 12 bit engine control microprocessor Toshiba PDF Semiconductor History Museum of Japan Archived from the original PDF on June 27 2019 Retrieved June 27 2019 Low Bandwidth Timeline Semiconductor Texas Instruments Retrieved June 22 2016 The MOS 6502 and the Best Layout Guy in the World research swtch com January 3 2011 Retrieved September 3 2019 Digital History ZILOG Z8000 APRIL 1979 OLD COMPUTERS COM The Museum Retrieved June 19 2019 Chip Hall of Fame Motorola MC68000 Microprocessor IEEE Spectrum Institute of Electrical and Electronics Engineers June 30 2017 Retrieved June 19 2019 Microprocessors 1971 to 1976 Christiansen Microprocessors 1976 to 1981 weber edu Retrieved August 9 2014 W65C816S 16 bit Core www westerndesigncenter com Retrieved September 12 2017 a b c d e Demone Paul November 9 2000 ARM s Race to World Domination real world technologies Retrieved July 20 2015 Hand Tom The Harris RTX 2000 Microcontroller PDF mpeforth com Retrieved August 9 2014 Forth chips list UltraTechnology March 15 2001 Retrieved August 9 2014 Koopman Philip J 1989 4 4 Architecture of the Novix NC4016 Stack Computers the new wave Ellis Horwood Series in Computers and Their Applications Carnegie Mellon University ISBN 978 0745804187 Retrieved August 9 2014 Fujitsu SPARC cpu collection de Retrieved June 30 2019 a b Kimura S Komoto Y Yano Y 1988 Implementation of the V60 V70 and its FRM function IEEE Micro 8 2 22 36 doi 10 1109 40 527 S2CID 9507994 VL2333 VTI WikiChip en wikichip org Retrieved August 31 2019 Inayoshi H Kawasaki I Nishimukai T Sakamura K 1988 Realization of Gmicro 200 IEEE Micro 8 2 12 21 doi 10 1109 40 526 S2CID 36938046 Bosshart P Hewes C Mi Chang Chang Kwok Kit Chau Hoac C Houston T Kalyan V Lusky S Mahant Shetti S Matzke D Ruparel K Ching Hao Shaw Sridhar T Stark D October 1987 A 553K Transistor LISP Processor Chip IEEE Journal of Solid State Circuits 22 5 202 3 doi 10 1109 ISSCC 1987 1157084 S2CID 195841103 Fahlen Lennart E Stockholm International Peace Research Institute 1987 3 Hardware requirements for artificial intelligence Lisp Machines TI Explorer Arms and Artificial Intelligence Weapon and Arms Control Applications of Advanced Computing SIPRI Monograph Series Oxford University Press p 57 ISBN 978 0 19 829122 0 Jouppi Norman P Tang Jeffrey Y F July 1989 A 20 MIPS Sustained 32 bit CMOS Microprocessor with High Ratio of Sustained to Peak Performance IEEE Journal of Solid State Circuits 24 5 i Bibcode 1989IJSSC 24 1348J CiteSeerX 10 1 1 85 988 doi 10 1109 JSSC 1989 572612 WRL Research Report 89 11 The CPU shack museum CPUshack com May 15 2005 Retrieved August 9 2014 a b c Intel i960 Embedded Microprocessor National High Magnetic Field Laboratory Florida State University March 3 2003 Archived from the original on March 3 2003 Retrieved June 29 2019 Venkatasawmy Rama 2013 The Digitization of Cinematic Visual Effects Hollywood s Coming of Age Rowman amp Littlefield p 198 ISBN 9780739176214 Bakoglu Grohoski and Montoye The IBM RISC System 6000 processor Hardware overview IBM J Research and Development Vol 34 No 1 January 1990 pp 12 22 SH Microprocessor Leading the Nomadic Era PDF Semiconductor History Museum of Japan Archived from the original PDF on June 27 2019 Retrieved June 27 2019 SH2 A Low Power RISC Micro for Consumer Applications PDF Hitachi Retrieved June 27 2019 HARP 1 A 120 MHz Superscalar PA RISC Processor PDF Hitachi Archived from the original PDF on April 23 2016 Retrieved June 19 2019 White and Dhawan POWER2 next generation of the RISC System 6000 family IBM J Research and Development Vol 38 No 5 September 1994 pp 493 502 ARM7 Statistics Poppyfields net May 27 1994 Retrieved August 9 2014 Forth Multiprocessor Chip MuP21 www ultratechnology com Retrieved September 6 2019 MuP21 has a 21 bit CPU core a memory coprocessor and a video coprocessor a b F21 CPU www ultratechnology com Retrieved September 6 2019 F21 offers video I O analog I O serial network I O and a parallel I O port on chip F21 has a transistor count of about 15 000 vs about 7 000 for MuP21 Ars Technica PowerPC on Apple An Architectural History Part I Page 2 8 2004 archive arstechnica com Retrieved August 11 2020 Gary et al 1994 The PowerPC 603 microprocessor a low power design for portable applications Proceedings of COMPCON 94 DOI 10 1109 CMPCON 1994 282894 Slaton et al 1995 The PowerPC 603e microprocessor an enhanced low power superscalar microprocessor Proceedings of ICCD 95 International Conference on Computer Design DOI 10 1109 ICCD 1995 528810 Bowhill William J et al 1995 Circuit Implementation of a 300 MHz 64 bit Second generation CMOS Alpha CPU Digital Technical Journal Volume 7 Number 1 pp 100 118 Intel Pentium Pro 180 hw museum cz Retrieved September 8 2019 PC Guide Intel Pentium Pro P6 PCGuide com April 17 2001 Archived from the original on April 14 2001 Retrieved August 9 2014 Gaddis N Lotz J November 1996 A 64 b quad issue CMOS RISC microprocessor IEEE Journal of Solid State Circuits 31 11 pp 1697 1702 Bouchard Gregg Design objectives of the 0 35 mm Alpha 21164 Microprocessor IEEE Hot Chips Symposium August 1996 IEEE Computer Society a b Remembering the Sega Dreamcast Bit Tech September 29 2009 Retrieved June 18 2019 Entertainment Systems and High Performance Processor SH 4 PDF Hitachi Review Hitachi 48 2 58 63 1999 S2CID 44852046 Archived from the original PDF on February 21 2019 Retrieved June 27 2019 a b Hagiwara Shiro Oliver Ian November December 1999 Sega Dreamcast Creating a Unified Entertainment World IEEE Micro IEEE Computer Society 19 6 29 35 doi 10 1109 40 809375 Archived from the original on August 23 2000 Retrieved June 27 2019 Ulf Samuelsson Transistor count of common uCs www embeddedrelated com Retrieved September 8 2019 IIRC The AVR core is 12 000 gates and the megaAVR core is 20 000 gates Each gate is 4 transistors The chip is considerably larger since the memory uses quite a lot Gronowski Paul E et al May 1998 High performance microprocessor design IEEE Journal of Solid State Circuits 33 5 pp 676 686 a b Hennessy John L Patterson David A May 29 2002 Computer Architecture A Quantitative Approach 3 ed Morgan Kaufmann p 491 ISBN 978 0 08 050252 6 Retrieved April 9 2013 a b c d EMOTION ENGINE AND GRAPHICS SYNTHESIZER USED IN THE CORE OF PLAYSTATION BECOME ONE CHIP PDF Sony April 21 2003 Retrieved June 26 2019 a b Diefendorff Keith April 19 1999 Sony s Emotionally Charged Chip Killer Floating Point Emotion Engine To Power PlayStation 2000 PDF Microprocessor Report 13 5 S2CID 29649747 Archived from the original PDF on February 28 2019 Retrieved June 19 2019 a b c NVIDIA GeForce 7800 GTX GPU Review PC Perspective June 22 2005 Retrieved June 18 2019 Ando H Yoshida Y Inoue A Sugiyama I Asakawa T Morita K Muta T otokurumada T Okada S Yamashita H Satsukawa Y Konmoto A Yamashita R Sugiyama H 2003 A 1 3GHz fifth generation SPARC64 microprocessor Proceedings of the 40th Annual Design Automation Conference Design Automation Conference pp 702 705 doi 10 1145 775832 776010 ISBN 1 58113 688 9 Krewell Kevin 21 October 2002 Fujitsu s SPARC64 V Is Real Deal Microprocessor Report Fujitsu Limited August 2004 SPARC64 V Processor For UNIX Server A Glimpse Inside The Cell Processor Gamasutra July 13 2006 Retrieved June 19 2019 Intel Pentium D Processor 920 Intel Retrieved January 5 2023 PRESS KIT Dual core Intel Itanium Processor Intel Retrieved August 9 2014 a b Toepelt Bert January 8 2009 AMD Phenom II X4 45nm Benchmarked The Phenom II And AMD s Dragon Platform TomsHardware com Retrieved August 9 2014 ARM Advanced RISC Machines Processors EngineersGarage com Retrieved August 9 2014 a b Panasonic starts to sell a New generation UniPhier System LSI Panasonic October 10 2007 Retrieved July 2 2019 SPARC64 VI Extensions page 56 Fujitsu Limited Release 1 3 27 March 2007 Morgan Timothy Prickett 17 July 2008 Fujitsu and Sun Flex Their Quads with New Sparc Server Lineup The Unix Guardian Vol 8 No 27 Takumi Maruyama 2009 SPARC64 VIIIfx Fujitsu s New Generation Octo Core Processor for PETA Scale computing PDF Proceedings of Hot Chips 21 IEEE Computer Society Archived from the original PDF on October 8 2010 Retrieved June 30 2019 Stokes Jon February 10 2010 Sun s 1 billion transistor 16 core Niagara 3 processor ArsTechnica com Retrieved August 9 2014 IBM to Ship World s Fastest Microprocessor IBM September 1 2010 Retrieved August 9 2014 Intel to deliver first computer chip with two billion transistors AFP February 5 2008 Archived from the original on May 20 2011 Retrieved February 5 2008 Intel Previews Intel Xeon Nehalem EX Processor May 26 2009 Retrieved on May 28 2009 Morgan Timothy Prickett November 21 2011 Fujitsu parades 16 core Sparc64 super stunner The Register retrieved December 8 2011 Angelini Chris November 14 2011 Intel Core i7 3960X Review Sandy Bridge E And X79 Express TomsHardware com Retrieved August 9 2014 IDF2012 Mark Bohr Intel Senior Fellow PDF Images of SPARC64 PDF fujitsu com Retrieved August 29 2017 Intel s Atom Architecture The Journey Begins AnandTech Retrieved April 4 2010 Intel Xeon Phi SE10X TechPowerUp Retrieved July 20 2015 Shimpi Lal The Haswell Review Intel Core i7 4770K amp i5 4670K Tested anandtech Retrieved November 20 2014 Dimmick Frank August 29 2014 Intel Core i7 5960X Extreme Edition Review Overclockers Club Retrieved August 29 2014 Apple A8X NotebookCheck Retrieved July 20 2015 Intel Readying 15 core Xeon E7 v2 AnandTech Retrieved August 9 2014 Intel Xeon E5 2600 v3 Processor Overview Haswell EP Up to 18 Cores pcper September 8 2014 Retrieved January 29 2015 Intel s Broadwell U arrives aboard 15W 28W mobile processors TechReport January 5 2015 Retrieved January 5 2015 Oracle Cranks up the Cores to 32 with Sparc M7 Chip August 13 2014 Qualcomm Snapdragon 835 8998 NotebookCheck Retrieved September 23 2017 Takahashi Dean January 3 2017 Qualcomm s Snapdragon 835 will debut with 3 billion transistors and a 10nm manufacturing process VentureBeat Broadwell E Intel Core i7 6950X 6900K 6850K amp 6800K Review Tom s Hardware May 30 2016 Retrieved April 12 2017 The Broadwell E Review PC Gamer July 8 2016 Retrieved April 12 2017 HUAWEI TO UNVEIL KIRIN 970 SOC WITH AI UNIT 5 5 BILLION TRANSISTORS AND 1 2 GBPS LTE SPEED AT IFA 2017 firstpost com September 1 2017 Retrieved November 18 2018 Broadwell EP Architecture Intel Xeon E5 2600 v4 Broadwell EP Review Tom s Hardware March 31 2016 Retrieved April 4 2016 About the ZipCPU zipcpu com Retrieved September 10 2019 As of ORCONF 2016 the ZipCPU used between 1286 and 4926 6 LUTs depending upon how it is configured Qualcomm Snapdragon 1000 for laptops could pack 8 5 billion transistors techradar Retrieved September 23 2017 Spotted Qualcomm Snapdragon 8cx Wafer on 7nm AnandTech Retrieved December 6 2018 Cutress Ian February 22 2017 AMD Launches Zen Anandtech com Retrieved February 22 2017 Ryzen 5 1600 AMD Wikichip org April 20 2018 Retrieved December 9 2018 Ryzen 5 1600X AMD Wikichip org October 26 2018 Retrieved December 9 2018 Kirin 970 HiSilicon Wikichip March 1 2018 Retrieved November 8 2018 a b Leadbetter Richard April 6 2017 Inside the next Xbox Project Scorpio tech revealed Eurogamer Retrieved May 3 2017 Intel Xeon Platinum 8180 TechPowerUp December 1 2018 Retrieved December 2 2018 Lee Y SiFive Freedom SoCs Industry s First Open Source RISC V Chips PDF HotChips 29 IOT Embedded Documents at Fujitsu PDF fujitsu com Retrieved August 29 2017 Schmerer Kai November 5 2018 iPad Pro 2018 A12X Prozessor bietet deutlich mehr Leistung ZDNet de in German Qualcomm Datacenter Technologies Announces Commercial Shipment of Qualcomm Centriq 2400 The World s First 10nm Server Processor and Highest Performance Arm based Server Processor Family Ever Designed Qualcomm Retrieved November 9 2017 HiSilicon Kirin 710 Notebookcheck September 19 2018 Retrieved November 24 2018 Yang Daniel Wegner Stacy September 21 2018 Apple iPhone Xs Max Teardown TechInsights Retrieved September 21 2018 Apple s A12 Bionic is the first 7 nanometer smartphone chip Engadget Retrieved September 26 2018 Kirin 980 HiSilicon Wikichip November 8 2018 Retrieved November 8 2018 Qualcomm Snapdragon 8180 7nm SoC SDM1000 With 8 5 Billion Transistors To Challenge Apple A12 Bionic Chipset dailyhunt Retrieved September 21 2018 Frumusanu Andrei The Samsung Galaxy S10 Snapdragon amp Exynos Review Almost Perfect Yet So Flawed www anandtech com Retrieved February 19 2021 Friedman Alan Qualcomm will reportedly introduce the Snapdragon 865 SoC as soon as next month Phone Arena Retrieved February 19 2021 Xiaomi Mi 10 Teardown Analysis TechInsights www techinsights com Retrieved February 19 2021 Zafar Ramish October 30 2018 Apple s A12X Has 10 Billion Transistors 90 Performance Boost amp 7 Core GPU Wccftech Fujitsu began to produce Japan s billions of super calculations with the strongest ARM processor A64FX firstxw com April 16 2019 Retrieved June 19 2019 Fujitsu Successfully Triples the Power Output of Gallium Nitride Transistors Fujitsu August 22 2018 Retrieved June 19 2019 Hot Chips 30 Nvidia Xavier SoC fuse wikichip org September 18 2018 Retrieved December 6 2018 AMD Ryzen 9 3900X and Ryzen 7 3700X Review Zen 2 and 7nm Unleashed Tom s Hardware July 7 2019 Retrieved October 19 2019 Frumusanu Andrei The Huawei Mate 30 Pro Review Top Hardware without Google AnandTech Retrieved January 2 2020 Zafar Ramish September 10 2019 Apple A13 For iPhone 11 Has 8 5 Billion Transistors Quad Core GPU Wccftech Retrieved September 11 2019 Introducing iPhone 11 Pro Apple Youtube Video retrieved September 11 2019 dead YouTube link Hot Chips 2020 Live Blog IBM z15 AnandTech August 17 2020 a b Broekhuijsen Niels October 23 2019 AMD s 64 Core EPYC and Ryzen CPUs Stripped A Detailed Inside Look Retrieved October 24 2019 a b Mujtaba Hassan October 22 2019 AMD 2nd Gen EPYC Rome Processors Feature A Gargantuan 39 54 Billion Transistors IO Die Pictured in Detail Retrieved October 24 2019 Friedman Alan 5nm Kirin 1020 SoC tipped for next year s Huawei Mate 40 line Phone Arena Retrieved December 23 2019 CPUs Arne Verheyde 2019 12 05T19 12 44Z December 5 2019 Amazon Compares 64 core ARM Graviton2 to Intel s Xeon Tom s Hardware Retrieved December 6 2019 Morgan Timothy Prickett December 3 2019 Finally AWS Gives Servers A Real Shot In The Arm The Next Platform Retrieved December 6 2019 The Linley Group TI Jacinto Accelerates Level 3 ADAS www linleygroup com Retrieved February 12 2021 Apple unveils A14 Bionic processor with 40 faster CPU and 11 8 billion transistors Venturebeat November 10 2020 Retrieved November 24 2020 Apple says new Arm based M1 chip offers the longest battery life ever in a Mac The Verge November 10 2020 Retrieved November 11 2020 Ikoba Jed John October 23 2020 Multiple benchmark tests rank the Kirin 9000 as one of the most powerful chipset yet Gizmochina Retrieved November 14 2020 Frumusanu Andrei Huawei Announces Mate 40 Series Powered by 15 3bn Transistors 5nm Kirin 9000 www anandtech com Retrieved November 14 2020 AMD Ryzen 7 5800H Specs TechPowerUp Retrieved September 20 2021 AMD Epyc 7763 specifications Shankland Stephen Apple s A15 Bionic chip powers iPhone 13 with 15 billion transistors new graphics and AI CNET Retrieved September 20 2021 Apple iPhone 13 Pro Teardown TechInsights www techinsights com Retrieved September 29 2021 a b Apple unveils M1 Pro and M1 Max chips for latest MacBook Pro laptops VentureBeat October 18 2021 Apple Announces M1 Pro amp M1 Max Giant New Arm SoCs with All Out Performance AnanadTech Retrieved December 2 2021 Apple unveils new computer chips amid shortage BBC News October 19 2021 a b Apple Joins 3D Fabric Portfolio with M1 Ultra TechInsights Retrieved July 8 2022 Hot Chips 2020 live blog AnandTech August 17 2020 a b AMD releases Milan X CPUs AnandTech March 21 2022 IBM Telum Hot Chips slide deck PDF August 23 2021 IBM z16 announcement April 5 2022 Apple unveils M2 taking the breakthrough performance and capabilities of M1 even further Apple June 6 2022 Apple A16 Bionic announced for the iPhone 14 Pro and iPhone 14 Pro Max NotebookCheck September 7 2022 iPhone 14 Pro and Pro Max Only Models to Get New A16 Chip CNET September 7 2022 The Apple 2022 Fall iPhone Event Live Blog AnandTech September 7 2022 MediaTek Dimensity 9200 New flagship chipset debuts with ARM Cortex X3 CPU and Immortalis G715 GPU cores built around TSMC N4P node NotebookCheck November 8 2022 Dimensity 9200 specs Mediatek November 8 2022 Dimensity 9200 presentation Mediatek November 8 2022 Williams Chris Nvidia s Tesla P100 has 15 billion transistors 21TFLOPS www theregister co uk Retrieved August 12 2019 Famous Graphics Chips NEC µPD7220 Graphics Display Controller IEEE Computer Society Institute of Electrical and Electronics Engineers August 22 2018 Retrieved June 21 2019 GPU History Hitachi ARTC HD63484 The second graphics processor IEEE Computer Society Institute of Electrical and Electronics Engineers Retrieved June 21 2019 Big Book of Amiga Hardware MOS Technology Agnus ISBN 5511916846 a b 30 Years of Console Gaming Klinger Photography August 20 2017 Retrieved June 19 2019 a b Diamond Edge 3D nVidia NV1 Sega Saturn Naver February 24 2017 Retrieved June 19 2019 Sega Saturn MAME Retrieved July 18 2019 ASIC CHIPS ARE INDUSTRY S GAME WINNERS The Washington Post September 18 1995 Retrieved June 19 2019 Is it Time to Rename the GPU Jon Peddie Research IEEE Computer Society July 9 2018 Retrieved June 19 2019 FastForward Sony Taps LSI Logic for PlayStation Video Game CPU Chip FastForward Retrieved January 29 2014 a b Reality Co Processor The Power In Nintendo64 PDF Silicon Graphics August 26 1997 Archived from the original PDF on May 19 2020 Retrieved June 18 2019 Imagination PowerVR PCX2 GPU VideoCardz net Retrieved June 19 2019 a b c d e f g h Lilly Paul May 19 2009 From Voodoo to GeForce The Awesome History of 3D Graphics PC Gamer Retrieved June 19 2019 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am 3D accelerator database Vintage 3D Retrieved July 21 2019 RIVA128 Datasheet SGS Thomson Microelectronics Retrieved July 21 2019 a b c Singer Graham April 3 2013 History of the Modern Graphics Processor Part 2 TechSpot Retrieved July 21 2019 Weinberg Neil September 7 1998 Comeback kid Forbes Retrieved June 19 2019 Charles Bertie 1998 Sega s New Dimension Forbes Forbes Incorporated 162 5 9 206 The chip etched in 0 25 micron detail state of the art for graphics processors fits 10 million transistors VideoLogic Neon 250 4MB VideoCardz net Retrieved June 19 2019 Shimpi Anand Lal November 21 1998 Fall Comdex 98 Coverage AnandTech Retrieved June 19 2019 NVIDIA NV10 A3 GPU Specs TechPowerUp Retrieved June 19 2019 IGN Staff November 4 2000 Gamecube Versus PlayStation 2 IGN Retrieved November 22 2015 NVIDIA NV2A GPU Specs TechPowerUp Retrieved July 21 2019 ATI Xenos GPU Specs TechPowerUp Retrieved June 21 2019 International GamesIndustry July 14 2005 TSMC to manufacture X360 GPU Eurogamer Retrieved August 22 2006 NVIDIA Playstation 3 RSX 65nm Specs TechPowerUp Retrieved June 21 2019 PS3 Graphics Chip Goes 65nm in Fall Edge Online June 26 2008 Archived from the original on July 25 2008 NVIDIA s 1 4 Billion Transistor GPU GT200 Arrives as the GeForce GTX 280 amp 260 AnandTech com Retrieved August 9 2014 The Radeon HD 4850 amp 4870 AMD Wins at 199 and 299 AnandTech com Retrieved August 9 2014 a b Glaskowsky Peter ATI and Nvidia face off obliquely CNET Archived from the original on January 27 2012 Retrieved August 9 2014 Woligroski Don December 22 2011 AMD Radeon HD 7970 TomsHardware com Retrieved August 9 2014 http www nvidia com content PDF kepler NVIDIA Kepler GK110 Architecture Whitepaper pdf bare URL PDF Smith Ryan November 12 2012 NVIDIA Launches Tesla K20 amp K20X GK110 Arrives At Last AnandTech Whitepaper NVIDIA GeForce GTX 680 PDF NVIDIA 2012 Archived from the original PDF on April 17 2012 a b Kan Michael August 18 2020 Xbox Series X May Give Your Wallet a Workout Due to High Chip Manufacturing Costs PCMag Retrieved September 5 2020 AMD Xbox One GPU www techpowerup com Retrieved February 5 2020 AMD PlayStation 4 GPU www techpowerup com Retrieved February 5 2020 AMD Xbox One S GPU www techpowerup com Retrieved February 5 2020 AMD PlayStation 4 Pro GPU www techpowerup com Retrieved February 5 2020 Smith Ryan June 29 2016 The AMD RX 480 Preview Anandtech com Retrieved February 22 2017 a b c Schor David July 22 2018 VLSI 2018 GlobalFoundries 12nm Leading Performance 12LP WikiChip Fuse Retrieved May 31 2019 Harris Mark April 5 2016 Inside Pascal NVIDIA s Newest Computing Platform Nvidia developer blog a b c d e f GPU Database Pascal TechPowerUp AMD Xbox One X GPU www techpowerup com Retrieved February 5 2020 Radeon s next generation Vega architecture PDF Durant Luke Giroux Olivier Harris Mark Stam Nick May 10 2017 Inside Volta The World s Most Advanced Data Center GPU Nvidia developer blog NVIDIA TURING GPU ARCHITECTURE Graphics Reinvented PDF Nvidia 2018 Retrieved June 28 2019 NVIDIA GeForce GTX 1650 www techpowerup com Retrieved February 5 2020 NVIDIA GeForce GTX 1660 Ti www techpowerup com Retrieved February 5 2020 AMD Radeon RX 5700 XT www techpowerup com Retrieved February 5 2020 AMD Radeon RX 5500 XT www techpowerup com Retrieved February 5 2020 AMD Arcturus GPU Specs TechPowerUp Retrieved November 10 2022 Walton Jared May 14 2020 Nvidia Unveils Its Next Generation 7nm Ampere A100 GPU for Data Centers and It s Absolutely Massive Tom s Hardware Nvidia Ampere Architecture www nvidia com Retrieved May 15 2020 NVIDIA GA102 GPU Specs Techpowerup Retrieved September 5 2020 Giant Step into the Future NVIDIA CEO Unveils GeForce RTX 30 Series GPUs www nvidia com September 2020 Retrieved September 5 2020 NVIDIA GeForce RTX 3070 Specs TechPowerUp Retrieved September 20 2021 AMD Radeon Instinct MI250 Specs TechPowerUp Retrieved November 9 2021 Nvidia Launches Hopper H100 GPU New DGXs and Grace Superchips HPCWire March 22 2022 Retrieved March 23 2022 NVIDIA details AD102 GPU up to 18432 CUDA cores 76 3B transistors and 608 mm VideoCardz September 20 2022 a b NVIDIA confirms Ada 102 103 104 GPU specs AD104 has more transistors than GA102 VideoCardz September 23 2022 AMD Unveils World s Most Advanced Gaming Graphics Cards Built on Groundbreaking AMD RDNA 3 Architecture with Chiplet Design AMD Press release November 3 2022 AMD Announces the 999 Radeon RX 7900 XTX endnote RX 819 TechPowerUp November 4 2022 Taiwan Company UMC Delivers 65nm FPGAs to Xilinx SDA ASIA Thursday November 9 2006 Altera s new 40nm FPGAs 2 5 billion transistors pldesignline com Archived from the original on June 19 2010 Retrieved January 22 2009 Altera unveils 28 nm Stratix V FPGA family April 20 2010 Retrieved April 20 2010 Design of a High Density SoC FPGA at 20nm PDF 2014 Retrieved July 16 2017 Maxfield Clive October 2011 New Xilinx Virtex 7 2000T FPGA provides equivalent of 20 million ASIC gates EETimes AspenCore Retrieved September 4 2019 Greenhill D Ho R Lewis D Schmit H Chan K H Tong A Atsatt S How D McElheny P February 2017 3 3 A 14nm 1GHz FPGA with 2 5D transceiver integration 2017 IEEE International Solid State Circuits Conference ISSCC 54 55 doi 10 1109 ISSCC 2017 7870257 ISBN 978 1 5090 3758 2 S2CID 2135354 3 3 A 14nm 1GHz FPGA with 2 5D transceiver integration DeepDyve May 17 2017 Archived from the original on May 17 2017 Retrieved September 19 2019 Santarini Mike May 2014 Xilinx Ships Industry s First 20 nm All Programmable Devices PDF Xcell journal No 86 Xilinx p 14 Retrieved June 3 2014 Gianelli Silvia January 2015 Xilinx Delivers the Industry s First 4M Logic Cell Device Offering gt 50M Equivalent ASIC Gates and 4X More Capacity than Competitive Alternatives www xilinx com Retrieved August 22 2019 Sims Tara August 2019 Xilinx Announces the World s Largest FPGA Featuring 9 Million System Logic Cells www xilinx com Retrieved August 22 2019 Verheyde Arne August 2019 Xilinx Introduces World s Largest FPGA With 35 Billion Transistors www tomshardware com Retrieved August 23 2019 Cutress Ian August 2019 Xilinx Announces World Largest FPGA Virtex Ultrascale VU19P with 9m Cells www anandtech com Retrieved September 25 2019 Abazovic Fuad May 2019 Xilinx 7nm Versal taped out last year Retrieved September 30 2019 Cutress Ian August 2019 Hot Chips 31 Live Blogs Xilinx Versal AI Engine Retrieved September 30 2019 Krewell Kevin August 2019 Hot Chips 2019 highlights new AI strategies Retrieved September 30 2019 Leibson Steven November 6 2019 Intel announces Intel Stratix 10 GX 10M FPGA worlds highest capacity with 10 2 million logic elements Retrieved November 7 2019 Verheyde Arne November 6 2019 Intel Introduces World s Largest FPGA With 43 3 Billion Transistors Retrieved November 7 2019 Cutress Ian August 2020 Hot Chips 2020 Live Blog Xilinx Versal ACAPs Retrieved September 9 2020 Xilinx Announces Full Production Shipments of 7nm Versal AI Core and Versal Prime Series Devices April 27 2021 Retrieved May 8 2021 a b The DRAM memory of Robert Dennard history computer com a b c d Late 1960s Beginnings of MOS memory PDF Semiconductor History Museum of Japan January 23 2019 Retrieved June 27 2019 a b c d e f 1970 Semiconductors compete with magnetic cores Computer History Museum Retrieved June 19 2019 2 1 1 Flash Memory TU Wien Retrieved June 20 2019 Shilov Anton SK Hynix Starts Production of 128 Layer 4D NAND 176 Layer Being Developed www anandtech com Retrieved September 16 2019 Samsung Begins Production of 100 Layer Sixth Generation V NAND Flash PC Perspective August 11 2019 Retrieved September 16 2019 a b 1966 Semiconductor RAMs Serve High speed Storage Needs Computer History Museum Retrieved June 19 2019 Specifications for Toshiba TOSCAL BC 1411 Old Calculator Web Museum Archived from the original on July 3 2017 Retrieved May 8 2018 Toshiba Toscal BC 1411 Desktop Calculator Old Calculator Web Museum Archived from the original on May 20 2007 IBM first in IC memory Computer History Museum IBM Corporation 1965 Retrieved June 19 2019 a b c d e f g h i j k l m A chronological list of Intel products The products are sorted by date PDF Intel museum Intel Corporation July 2005 Archived from the original PDF on August 9 2007 Retrieved July 31 2007 a b 1970s SRAM evolution PDF Semiconductor History Museum of Japan Retrieved June 27 2019 a b c Pimbley J 2012 Advanced CMOS Process Technology Elsevier p 7 ISBN 9780323156806 a b Intel 35 Years of Innovation 1968 2003 PDF Intel 2003 Retrieved June 26 2019 a b Lojek Bo 2007 History of Semiconductor Engineering Springer Science amp Business Media pp 362 363 ISBN 9783540342588 The i1103 was manufactured on a 6 mask silicon gate P MOS process with 8 mm minimum features The resulting product had a 2 400 µm2 memory cell size a die size just under 10 mm2 and sold for around 21 Manufacturers in Japan enter the DRAM market and integration densities are improved PDF Semiconductor History Museum of Japan Retrieved June 27 2019 a b c d e f g h i j k l m n Gealow Jeffrey Carl August 10 1990 Impact of Processing Technology on DRAM Sense Amplifier Design PDF Massachusetts Institute of Technology pp 149 166 Retrieved June 25 2019 via CORE Silicon Gate MOS 2102A Intel Retrieved June 27 2019 One of the Most Successful 16K Dynamic RAMs The 4116 National Museum of American History Smithsonian Institution Retrieved June 20 2019 Component Data Catalog PDF Intel 1978 pp 3 94 Retrieved June 27 2019 a b c d e f g h i j k l m n o p q r s t Memory STOL Semiconductor Technology Online Retrieved June 25 2019 The Cutting Edge of IC Technology The First 294 912 Bit 288K Dynamic RAM National Museum of American History Smithsonian Institution Retrieved June 20 2019 Computer History for 1984 Computer Hope Retrieved June 25 2019 Japanese Technical Abstracts Japanese Technical Abstracts University Microfilms 2 3 4 161 1987 The announcement of 1M DRAM in 1984 began the era of megabytes KM48SL2000 7 Datasheet Samsung August 1992 Retrieved June 19 2019 Electronic Design Electronic Design Hayden Publishing Company 41 15 21 1993 The first commercial synchronous DRAM the Samsung 16 Mbit KM48SL2000 employs a single bank architecture that lets system designers easily transition from asynchronous to synchronous systems Breaking the gigabit barrier DRAMs at ISSCC portend major system design impact dynamic random access memory International Solid State Circuits Conference Hitachi Ltd and NEC Corp research and development Highbeam Business January 9 1995 a b Japanese Company Profiles PDF Smithsonian Institution 1996 Retrieved June 27 2019 a b History 1990s SK Hynix Retrieved July 6 2019 Samsung 50nm 2GB DDR3 chips are industry s smallest SlashGear September 29 2008 Retrieved June 25 2019 Shilov Anton July 19 2017 Samsung Increases Production Volumes of 8 GB HBM2 Chips Due to Growing Demand AnandTech Retrieved June 29 2019 Samsung Unleashes a Roomy DDR4 256GB RAM Tom s Hardware September 6 2018 Retrieved June 21 2019 First 3D Nanotube and RRAM ICs Come Out of Foundry IEEE Spectrum Technology Engineering and Science News July 19 2019 Retrieved September 16 2019 This wafer was made just last Friday and it s the first monolithic 3D IC ever fabricated within a foundry Three Dimensional Monolithic System on a Chip www darpa mil Retrieved September 16 2019 DARPA 3DSoC Initiative Completes First Year Update Provided at ERI Summit on Key Steps Achieved to Transfer Technology into SkyWater s 200mm U S Foundry Skywater Technology Foundry Press re, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.