fbpx
Wikipedia

NMOS logic

N-type metal-oxide-semiconductor logic uses n-type (-) MOSFETs (metal-oxide-semiconductor field-effect transistors) to implement logic gates and other digital circuits. These nMOS transistors operate by creating an inversion layer in a p-type transistor body. This inversion layer, called the n-channel, can conduct electrons between n-type "source" and "drain" terminals. The n-channel is created by applying voltage to the third terminal, called the gate. Like other MOSFETs, nMOS transistors have four modes of operation: cut-off (or subthreshold), triode, saturation (sometimes called active), and velocity saturation.

For many years, NMOS circuits were much faster than comparable PMOS and CMOS circuits, which had to use much slower p-channel transistors. It was also easier to manufacture NMOS than CMOS, as the latter has to implement p-channel transistors in special n-wells on the p-substrate. The major drawback with NMOS (and most other logic families) is that a DC current must flow through a logic gate even when the output is in a steady state (low in the case of NMOS). This means static power dissipation, i.e. power drain even when the circuit is not switching.

Additionally, just like in diode–transistor logic, transistor–transistor logic, emitter-coupled logic etc., the asymmetric input logic levels make NMOS and PMOS circuits more susceptible to noise than CMOS. These disadvantages are why CMOS logic has supplanted most of these types in most high-speed digital circuits such as microprocessors despite the fact that CMOS was originally very slow compared to logic gates built with bipolar transistors.

Overview

MOS stands for metal-oxide-semiconductor, reflecting the way MOS-transistors were originally constructed, predominantly before the 1970s, with gates of metal, typically aluminium. Since around 1970, however, most MOS circuits have used self-aligned gates made of polycrystalline silicon, a technology first developed by Federico Faggin at Fairchild Semiconductor. These silicon gates are still used in most types of MOSFET based integrated circuits, although metal gates (Al or Cu) started to reappear in the early 2000s for certain types of high speed circuits, such as high performance microprocessors.

The MOSFETs are n-type enhancement mode transistors, arranged in a so-called "pull-down network" (PDN) between the logic gate output and negative supply voltage (typically the ground). A pull up (i.e. a "load" that can be thought of as a resistor, see below) is placed between the positive supply voltage and each logic gate output. Any logic gate, including the logical inverter, can then be implemented by designing a network of parallel and/or series circuits, such that if the desired output for a certain combination of boolean input values is zero (or false), the PDN will be active, meaning that at least one transistor is allowing a current path between the negative supply and the output. This causes a voltage drop over the load, and thus a low voltage at the output, representing the zero.

 
The R-pulled circuit acts like an inverted NOR gate that sinks OUT to the GND.

As an example, here is a NOR gate implemented in schematic NMOS. If either input A or input B is high (logic 1, = True), the respective MOS transistor acts as a very low resistance between the output and the negative supply, forcing the output to be low (logic 0, = False). When both A and B are high, both transistors are conductive, creating an even lower resistance path to ground. The only case where the output is high is when both transistors are off, which occurs only when both A and B are low, thus satisfying the truth table of a NOR gate:

A B A NOR B
0 0 1
0 1 0
1 0 0
1 1 0

A MOSFET can be made to operate as a resistor, so the whole circuit can be made with n-channel MOSFETs only. NMOS circuits are slow to transition from low to high. When transitioning from high to low, the transistors provide low resistance, and the capacitive charge at the output drains away very quickly (similar to discharging a capacitor through a very low resistor). But the resistance between the output and the positive supply rail is much greater, so the low to high transition takes longer (similar to charging a capacitor through a high value resistor). Using a resistor of lower value will speed up the process but also increases static power dissipation. However, a better (and the most common) way to make the gates faster is to use depletion-mode transistors instead of enhancement-mode transistors as loads. This is called depletion-load NMOS logic.

History

The MOSFET was invented by Egyptian engineer Mohamed M. Atalla and Korean engineer Dawon Kahng at Bell Labs in 1959, and demonstrated in 1960.[1] They fabricated both PMOS and NMOS devices with a 20 µm process. However, the NMOS devices were impractical, and only the PMOS type were practical devices.[2]

In 1965, Chih-Tang Sah, Otto Leistiko and A.S. Grove at Fairchild Semiconductor fabricated several NMOS devices with channel lengths between 8 µm and 65 µm.[3] Dale L. Critchlow and Robert H. Dennard at IBM also fabricated NMOS devices in the 1960s. The first IBM NMOS product was a memory chip with 1 kb data and 50–100 ns access time, which entered large-scale manufacturing in the early 1970s. This led to MOS semiconductor memory replacing earlier bipolar and ferrite-core memory technologies in the 1970s.[4]

The earliest microprocessors in the early 1970s were PMOS processors, which initially dominated the early microprocessor industry.[5] In 1973, NEC's μCOM-4 was an early NMOS microprocessor, fabricated by the NEC LSI team, consisting of five researchers led by Sohichi Suzuki.[6][7] By the late 1970s, NMOS microprocessors had overtaken PMOS processors.[5] CMOS microprocessors were introduced in 1975.[5][8][9] However, CMOS processors did not become dominant until the 1980s.[5]

CMOS was initially slower than NMOS logic, thus NMOS was more widely used for computers in the 1970s.[10] The Intel 5101 (1 kb SRAM) CMOS memory chip (1974) had an access time of 800 ns,[11][12] whereas the fastest NMOS chip at the time, the Intel 2147 (4 kb SRAM) HMOS memory chip (1976), had an access time of 55/70 ns.[10][12] In 1978, a Hitachi research team led by Toshiaki Masuhara introduced the twin-well Hi-CMOS process, with its HM6147 (4 kb SRAM) memory chip, manufactured with a 3 µm process.[10][13] The Hitachi HM6147 chip was able to match the performance (55/70 ns access) of the Intel 2147 HMOS chip, while the HM6147 also consumed significantly less power (15 mA) than the 2147 (110 mA). With comparable performance and much less power consumption, the twin-well CMOS process eventually overtook NMOS as the most common semiconductor manufacturing process for computers in the 1980s.[10]

In the 1980s, CMOS microprocessors overtook NMOS microprocessors.[5]

See also

  • PMOS logic
  • Depletion-load NMOS logic (including the processes called HMOS (high density, short channel MOS), HMOS-II, HMOS-III, etc. A family of high performance manufacturing processes for depletion-load NMOS logic circuits that was developed by Intel in the late 1970s and used for many years. Several CMOS manufacturing processes such as CHMOS, CHMOS-II, CHMOS-III, etc., descended directly from these NMOS-processes.

References

  1. ^ "1960 - Metal Oxide Semiconductor (MOS) Transistor Demonstrated". The Silicon Engine. Computer History Museum.
  2. ^ Lojek, Bo (2007). History of Semiconductor Engineering. Springer Science & Business Media. pp. 321–3. ISBN 9783540342588.
  3. ^ Sah, Chih-Tang; Leistiko, Otto; Grove, A. S. (May 1965). "Electron and hole mobilities in inversion layers on thermally oxidized silicon surfaces". IEEE Transactions on Electron Devices. 12 (5): 248–254. Bibcode:1965ITED...12..248L. doi:10.1109/T-ED.1965.15489.
  4. ^ Critchlow, D. L. (2007). "Recollections on MOSFET Scaling". IEEE Solid-State Circuits Society Newsletter. 12 (1): 19–22. doi:10.1109/N-SSC.2007.4785536.
  5. ^ a b c d e Kuhn, Kelin (2018). "CMOS and Beyond CMOS: Scaling Challenges". High Mobility Materials for CMOS Applications. Woodhead Publishing. p. 1. ISBN 9780081020623.
  6. ^ "1970s: Development and evolution of microprocessors" (PDF). Semiconductor History Museum of Japan. Retrieved 27 June 2019.
  7. ^ . The Antique Chip Collector's Page. Archived from the original on 2011-05-25. Retrieved 2010-06-11.
  8. ^ Cushman, Robert H. (20 September 1975). (PDF). EDN. Archived from the original (PDF) on 24 April 2016. Retrieved 15 September 2019.
  9. ^ "CDP 1800 μP Commercially available" (PDF). Microcomputer Digest. 2 (4): 1–3. October 1975.
  10. ^ a b c d (PDF). Semiconductor History Museum of Japan. Archived from the original (PDF) on 5 July 2019. Retrieved 5 July 2019.
  11. ^ "Silicon Gate MOS 2102A". Intel. Retrieved 27 June 2019.
  12. ^ a b (PDF). Intel museum. Intel Corporation. July 2005. Archived from the original (PDF) on August 9, 2007. Retrieved July 31, 2007.
  13. ^ Masuhara, Toshiaki; Minato, O.; Sasaki, T.; Sakai, Y.; Kubo, M.; Yasui, T. (1978). A high-speed, low-power Hi-CMOS 4K static RAM. 1978 IEEE International Solid-State Circuits Conference. Digest of Technical Papers. Vol. XXI. pp. 110–111. doi:10.1109/ISSCC.1978.1155749.

External links

  •   Media related to MOS at Wikimedia Commons

nmos, logic, this, article, needs, additional, citations, verification, please, help, improve, this, article, adding, citations, reliable, sources, unsourced, material, challenged, removed, find, sources, news, newspapers, books, scholar, jstor, december, 2009. This article needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed Find sources NMOS logic news newspapers books scholar JSTOR December 2009 Learn how and when to remove this template message N type metal oxide semiconductor logic uses n type MOSFETs metal oxide semiconductor field effect transistors to implement logic gates and other digital circuits These nMOS transistors operate by creating an inversion layer in a p type transistor body This inversion layer called the n channel can conduct electrons between n type source and drain terminals The n channel is created by applying voltage to the third terminal called the gate Like other MOSFETs nMOS transistors have four modes of operation cut off or subthreshold triode saturation sometimes called active and velocity saturation For many years NMOS circuits were much faster than comparable PMOS and CMOS circuits which had to use much slower p channel transistors It was also easier to manufacture NMOS than CMOS as the latter has to implement p channel transistors in special n wells on the p substrate The major drawback with NMOS and most other logic families is that a DC current must flow through a logic gate even when the output is in a steady state low in the case of NMOS This means static power dissipation i e power drain even when the circuit is not switching Additionally just like in diode transistor logic transistor transistor logic emitter coupled logic etc the asymmetric input logic levels make NMOS and PMOS circuits more susceptible to noise than CMOS These disadvantages are why CMOS logic has supplanted most of these types in most high speed digital circuits such as microprocessors despite the fact that CMOS was originally very slow compared to logic gates built with bipolar transistors Contents 1 Overview 2 History 3 See also 4 References 5 External linksOverview EditMOS stands for metal oxide semiconductor reflecting the way MOS transistors were originally constructed predominantly before the 1970s with gates of metal typically aluminium Since around 1970 however most MOS circuits have used self aligned gates made of polycrystalline silicon a technology first developed by Federico Faggin at Fairchild Semiconductor These silicon gates are still used in most types of MOSFET based integrated circuits although metal gates Al or Cu started to reappear in the early 2000s for certain types of high speed circuits such as high performance microprocessors The MOSFETs are n type enhancement mode transistors arranged in a so called pull down network PDN between the logic gate output and negative supply voltage typically the ground A pull up i e a load that can be thought of as a resistor see below is placed between the positive supply voltage and each logic gate output Any logic gate including the logical inverter can then be implemented by designing a network of parallel and or series circuits such that if the desired output for a certain combination of boolean input values is zero or false the PDN will be active meaning that at least one transistor is allowing a current path between the negative supply and the output This causes a voltage drop over the load and thus a low voltage at the output representing the zero The R pulled circuit acts like an inverted NOR gate that sinks OUT to the GND As an example here is a NOR gate implemented in schematic NMOS If either input A or input B is high logic 1 True the respective MOS transistor acts as a very low resistance between the output and the negative supply forcing the output to be low logic 0 False When both A and B are high both transistors are conductive creating an even lower resistance path to ground The only case where the output is high is when both transistors are off which occurs only when both A and B are low thus satisfying the truth table of a NOR gate A B A NOR B0 0 10 1 01 0 01 1 0A MOSFET can be made to operate as a resistor so the whole circuit can be made with n channel MOSFETs only NMOS circuits are slow to transition from low to high When transitioning from high to low the transistors provide low resistance and the capacitive charge at the output drains away very quickly similar to discharging a capacitor through a very low resistor But the resistance between the output and the positive supply rail is much greater so the low to high transition takes longer similar to charging a capacitor through a high value resistor Using a resistor of lower value will speed up the process but also increases static power dissipation However a better and the most common way to make the gates faster is to use depletion mode transistors instead of enhancement mode transistors as loads This is called depletion load NMOS logic History EditSee also Depletion load NMOS logic History and background The MOSFET was invented by Egyptian engineer Mohamed M Atalla and Korean engineer Dawon Kahng at Bell Labs in 1959 and demonstrated in 1960 1 They fabricated both PMOS and NMOS devices with a 20 µm process However the NMOS devices were impractical and only the PMOS type were practical devices 2 In 1965 Chih Tang Sah Otto Leistiko and A S Grove at Fairchild Semiconductor fabricated several NMOS devices with channel lengths between 8 µm and 65 µm 3 Dale L Critchlow and Robert H Dennard at IBM also fabricated NMOS devices in the 1960s The first IBM NMOS product was a memory chip with 1 kb data and 50 100 ns access time which entered large scale manufacturing in the early 1970s This led to MOS semiconductor memory replacing earlier bipolar and ferrite core memory technologies in the 1970s 4 The earliest microprocessors in the early 1970s were PMOS processors which initially dominated the early microprocessor industry 5 In 1973 NEC s mCOM 4 was an early NMOS microprocessor fabricated by the NEC LSI team consisting of five researchers led by Sohichi Suzuki 6 7 By the late 1970s NMOS microprocessors had overtaken PMOS processors 5 CMOS microprocessors were introduced in 1975 5 8 9 However CMOS processors did not become dominant until the 1980s 5 CMOS was initially slower than NMOS logic thus NMOS was more widely used for computers in the 1970s 10 The Intel 5101 1 kb SRAM CMOS memory chip 1974 had an access time of 800 ns 11 12 whereas the fastest NMOS chip at the time the Intel 2147 4 kb SRAM HMOS memory chip 1976 had an access time of 55 70 ns 10 12 In 1978 a Hitachi research team led by Toshiaki Masuhara introduced the twin well Hi CMOS process with its HM6147 4 kb SRAM memory chip manufactured with a 3 µm process 10 13 The Hitachi HM6147 chip was able to match the performance 55 70 ns access of the Intel 2147 HMOS chip while the HM6147 also consumed significantly less power 15 mA than the 2147 110 mA With comparable performance and much less power consumption the twin well CMOS process eventually overtook NMOS as the most common semiconductor manufacturing process for computers in the 1980s 10 In the 1980s CMOS microprocessors overtook NMOS microprocessors 5 See also EditPMOS logic Depletion load NMOS logic including the processes called HMOS high density short channel MOS HMOS II HMOS III etc A family of high performance manufacturing processes for depletion load NMOS logic circuits that was developed by Intel in the late 1970s and used for many years Several CMOS manufacturing processes such as CHMOS CHMOS II CHMOS III etc descended directly from these NMOS processes References Edit 1960 Metal Oxide Semiconductor MOS Transistor Demonstrated The Silicon Engine Computer History Museum Lojek Bo 2007 History of Semiconductor Engineering Springer Science amp Business Media pp 321 3 ISBN 9783540342588 Sah Chih Tang Leistiko Otto Grove A S May 1965 Electron and hole mobilities in inversion layers on thermally oxidized silicon surfaces IEEE Transactions on Electron Devices 12 5 248 254 Bibcode 1965ITED 12 248L doi 10 1109 T ED 1965 15489 Critchlow D L 2007 Recollections on MOSFET Scaling IEEE Solid State Circuits Society Newsletter 12 1 19 22 doi 10 1109 N SSC 2007 4785536 a b c d e Kuhn Kelin 2018 CMOS and Beyond CMOS Scaling Challenges High Mobility Materials for CMOS Applications Woodhead Publishing p 1 ISBN 9780081020623 1970s Development and evolution of microprocessors PDF Semiconductor History Museum of Japan Retrieved 27 June 2019 NEC 751 uCOM 4 The Antique Chip Collector s Page Archived from the original on 2011 05 25 Retrieved 2010 06 11 Cushman Robert H 20 September 1975 2 1 2 generation mP s 10 parts that perform like low end mini s PDF EDN Archived from the original PDF on 24 April 2016 Retrieved 15 September 2019 CDP 1800 mP Commercially available PDF Microcomputer Digest 2 4 1 3 October 1975 a b c d 1978 Double well fast CMOS SRAM Hitachi PDF Semiconductor History Museum of Japan Archived from the original PDF on 5 July 2019 Retrieved 5 July 2019 Silicon Gate MOS 2102A Intel Retrieved 27 June 2019 a b A chronological list of Intel products The products are sorted by date PDF Intel museum Intel Corporation July 2005 Archived from the original PDF on August 9 2007 Retrieved July 31 2007 Masuhara Toshiaki Minato O Sasaki T Sakai Y Kubo M Yasui T 1978 A high speed low power Hi CMOS 4K static RAM 1978 IEEE International Solid State Circuits Conference Digest of Technical Papers Vol XXI pp 110 111 doi 10 1109 ISSCC 1978 1155749 External links Edit Media related to MOS at Wikimedia Commons Retrieved from https en wikipedia org w index php title NMOS logic amp oldid 1107545196, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.