fbpx
Wikipedia

Rubber-tyred metro

A rubber-tyred metro or rubber-tired metro is a form of rapid transit system that uses a mix of road and rail technology. The vehicles have wheels with rubber tires that run on rolling pads inside guide bars for traction, as well as traditional railway steel wheels with deep flanges on steel tracks for guidance through conventional switches as well as guidance in case a tyre fails. Most rubber-tyred trains are purpose-built and designed for the system on which they operate. Guided buses are sometimes referred to as 'trams on tyres', and compared to rubber-tyred metros.[1]

5000 series central rail-guided rubber-tyred rolling stock operated by Sapporo City Transportation Bureau, Japan, and built by Kawasaki Heavy Industries Rolling Stock Company

History

The first idea for rubber-tyred railway vehicles was the work of Scotsman Robert William Thomson, the original inventor of the pneumatic tyre. In his patent of 1846[2] he describes his 'Aerial Wheels' as being equally suitable for, "the ground or rail or track on which they run".[3] The patent also included a drawing of such a railway, with the weight carried by pneumatic main wheels running on a flat board track and guidance provided by small horizontal steel wheels running on the sides of a central vertical guide rail.[3] A similar arrangement was patented by Alejandro Goicoechea, inventor of Talgo, in February 1936, patent ES 141056; in 1973, he built a development of this patent: 'Tren Vertebrado', Patent DE1755198; at Avenida Marítima, in Las Palmas de Gran Canaria.

During the World War II German occupation of Paris, the Metro system was used to capacity, with relatively little maintenance performed. At the end of the war, the system was so worn that thought was given as to how to renovate it. Rubber-tyred metro technology was first applied to the Paris Métro, developed by Michelin, who provided the tyres and guidance system, in collaboration with Renault, who provided the vehicles. Starting in 1951, an experimental vehicle, the MP 51, operated on a test track between Porte des Lilas and Pré Saint Gervais, a section of line not open to the public.

Line 11 ChâteletMairie des Lilas was the first line to be converted, in 1956, chosen because of its steep grades. This was followed by Line 1 Château de VincennesPont de Neuilly in 1964, and Line 4 Porte d'OrléansPorte de Clignancourt in 1967, converted because they had the heaviest traffic load of all Paris Métro lines. Finally, Line 6 Charles de Gaulle – ÉtoileNation was converted in 1974 to reduce train noise on its many elevated sections. Because of the high cost of converting existing rail-based lines, this is no longer done in Paris, or elsewhere. Now, rubber-tyred metros are used in new systems or lines only, including the new Paris Métro Line 14.

The first completely rubber-tyred metro system was built in Montreal, Quebec, Canada, in 1966. Santiago Metro and Mexico City Metro are based on Paris Métro rubber-tyred trains. A few more recent rubber-tyred systems have used automated, driverless trains; one of the first such systems, developed by Matra, opened in 1983 in Lille, and others have since been built in Toulouse and Rennes. Paris Metro Line 14 was automated from its beginning (1998), and Line 1 was converted to automatic in 2007–2011. The first automated rubber-tyred system opened in Kobe, Japan, in February 1981. It is the Port Liner linking Sannomiya railway station with Port Island.

Technology

Overview

 
VAL tracks on the Lille Metro.

Trains are usually in the form of electric multiple units. Just as on a conventional railway, the driver does not have to steer, with the system relying on some sort of guideway to direct the train. The type of guideway varies between networks. Most use two parallel roll ways, each the width of a tyre, which are made of various materials. The Montreal Metro, Lille Metro, Toulouse Metro, and most parts of Santiago Metro, use concrete. The Busan Subway Line 4 employs a concrete slab. The Paris Métro, Mexico City Metro, and the non-underground section of Santiago Metro, use H-Shaped hot rolled steel, and the Sapporo Municipal Subway uses flat steel. The Sapporo system and Lille Metro use a single central guide rail only.[4]

On some systems, such those in Paris, Montreal, and Mexico City, there is a conventional 1,435 mm (4 ft 8+12 in) standard gauge railway track between the roll ways. The bogies of the train include railway wheels with longer flanges than normal. These conventional wheels are normally just above the rails, but come into use in the case of a flat tyre, or at switches (points) and crossings. In Paris these rails were also used to enable mixed traffic, with rubber-tyred and steel-wheeled trains using the same track, particularly during conversion from normal railway track. The VAL system, used in Lille and Toulouse, has other sorts of flat-tyre compensation and switching methods.[clarification needed]

On most systems, the electric power is supplied from one of the guide bars, which serves as a third rail. The current is picked up by a separate lateral pickup shoe. The return current passes via a return shoe to one or both of the conventional railway tracks, which are part of most systems, or to the other guide bar.

Rubber tyres have higher rolling resistance than traditional steel railway wheels. There are some advantages and disadvantages to increased rolling resistance, causing them to not be used in certain countries.[1]

Advantages

Compared to steel wheel on steel rail, the advantages of rubber-tyred metro systems are:

  • Faster acceleration, along with the ability to climb or descend steeper slopes (approximately a gradient of 13%) than would be feasible with conventional rail tracks, which would likely need a rack instead.[a]
    • For example, the rubber-tyred Line 2 of the Lausanne Metro has grades of up to 12%.[5]
  • Shorter braking distances, allowing trains to be signalled closer together.
  • Quieter rides in open air (both inside and outside the train).
  • Greatly reduced rail wear with resulting reduced maintenance costs of those parts.

Disadvantages

The higher friction and increased rolling resistance cause disadvantages (compared to steel wheel on steel rail):

  • Higher energy consumption.
  • Worse ride, when compared with well-maintained steel-on-steel systems.[6]
  • Possibility of tyre blow-outs - not possible in railway wheels.
  • Normal operation generates more heat (from friction).
  • Weather variance. (Applicable only to above-ground installations)
    • Loss of the traction-advantage in inclement weather (snow and ice).[b]
  • Same expense of steel rails for switching purposes, to provide electricity or grounding to the trains and as a safety backup.[c]
  • Tyres that frequently need to be replaced; contrary to rails using steel wheels, which need to be replaced less often.[d]
  • Tyres break down during use and turn into particulate matter (dust), which can be hazardous air pollution, also coating surrounding surfaces in dirty rubber dust.[7]

Although it is a more complex technology, most rubber-tyred metro systems use quite simple techniques, in contrast to guided buses. Heat dissipation is an issue as eventually all traction energy consumed by the train — except the electric energy regenerated back into the substation during electrodynamic braking — will end up in losses (mostly heat). In frequently operated tunnels (typical metro operation) the extra heat from rubber tyres is a widespread problem, necessitating ventilation of the tunnels. As a result, some rubber-tyred metro systems do not have air-conditioned trains, as air conditioning would heat the tunnels to temperatures where operation is not possible.

Similar technologies

Automated driverless systems are not exclusively rubber-tyred; many have since been built using conventional rail technology, such as London's Docklands Light Railway, the Copenhagen metro and Vancouver's SkyTrain, the Hong Kong Disneyland Resort line, which uses converted rolling stocks from non-driverless trains, as well as AirTrain JFK, which links JFK Airport in New York City with local subway and commuter trains. Most monorail manufacturers prefer rubber tyres.

List of systems

Country/Region City/Region System Technology Year opened
  Canada Montreal Montreal Metro Bombardier MR-73 (Green, Blue, Yellow)
Alstom/Bombardier MPM-10 (Orange, Green)
1966
  Chile Santiago Santiago Metro (Lines 1, 2, and 5) Alstom NS-74 (5)
Concarril NS-88 (2)
Alstom NS-93 (1, 5)
Alstom NS-04 (2)
CAF NS-07 (1)
CAF NS-12 (1)
Alstom NS-16 (2, 5)
1975
  China Chongqing Bishan rubber-tyred tram BYD Skyshuttle 2021
Guangzhou Zhujiang New Town Automated People Mover System Bombardier Innovia APM 100 2010
Shanghai Shanghai Metro (Pujiang line) Bombardier Innovia APM 300 2018
  France Lille Lille Metro Matra VAL206
Siemens VAL208
1983
Lyon Lyon Metro (Lines A, B, and D) Alstom MPL 75 (A, B)
Alstom MPL 85 (D)
1978
Marseille Marseille Metro Alstom MPM 76 1977
Paris Paris Métro (Lines 1, 4, 6, 11, and 14) Michelin / Alstom, 1,435 mm between Rollways 1958[e]
Paris (Orly Airport) Orlyval Matra VAL206 1991
Paris (Charles de Gaulle Airport) CDGVAL Siemens VAL208 2007
Rennes Rennes Metro Siemens VAL208 2002
Toulouse Toulouse Metro Matra VAL206
Siemens VAL208
1993
  Germany Frankfurt Airport SkyLine Bombardier Innovia APM 100 (as Adtranz CX-100) 1994
Munich Airport Bombardier Innovia APM 300 2015
  Indonesia Soekarno–Hatta International Airport Soekarno–Hatta Airport Skytrain Woojin 2017
  Hong Kong Hong Kong (Chek Lap Kok Airport) Automated People Mover Mitsubishi Crystal Mover
Ishikawajima-Harima
1998
2007 (Phase II)
  Italy Turin Metrotorino Siemens VAL208 2006
  Japan Hiroshima Hiroshima Rapid Transit (Astram Line) Kawasaki
Mitsubishi
Niigata Transys
1994
Kobe Kobe New Transit (Port Island Line / Rokkō Island Line) Kawasaki 1981 (Port Island Line)
1990 (Rokkō Island Line)
Osaka Nankō Port Town Line Niigata Transys 1981
Saitama New Shuttle 1983
Sapporo Sapporo Municipal Subway Kawasaki 1971
Tokyo Yurikamome Mitsubishi
Niigata Transys
Nippon Sharyo
Tokyu
1995
Nippori-Toneri Liner Niigata Transys 2008
Tokorozawa / Higashimurayama Seibu Yamaguchi Line Niigata Transys 1985
Sakura Yamaman Yūkarigaoka Line Nippon Sharyo 1982
Yokohama Kanazawa Seaside Line Mitsubishi
Niigata Transys
Nippon Sharyo
Tokyu
1989
  South Korea Busan Busan Subway Line 4 Woojin 2011
Uijeongbu, Gyeonggi-do U Line Siemens VAL208 2012
Seoul Sillim Line K-AGT (Woojin) 2022
  Macau Taipa, Cotai Macau Light Rapid Transit Mitsubishi Crystal Mover 2019
  Malaysia Kuala Lumpur International Airport Aerotrain Bombardier Innovia APM 100 (as Adtranz CX-100) 1998
  Mexico Mexico City Mexico City Metro (All lines except A & 12) Michelin, 1,435 mm (4 ft 8+12 in) between Rollways 1969
  Singapore Singapore Light Rail Transit Bombardier Innovia APM 100 (C801 [as Adtranz CX-100] and C801A) and future APM 300R (C801B)
Mitsubishi Crystal Mover (C810 and C810A)
1999
  Switzerland Lausanne Lausanne Metro Line M2 Alstom MP 89 2008
  Taiwan Taipei Taipei Metro Brown Line Matra/GEC Alsthom VAL 256
Bombardier Innovia APM 256
1996
Taoyuan Airport Taoyuan International Airport Skytrain Niigata Transys 2018
  Thailand Bangkok Gold Line Bombardier Innovia APM 300 2020
  UAE Dubai International Airport Dubai International Airport Automated People Mover Mitsubishi Crystal Mover (Terminal 3)
Bombardier Innovia APM 300 (Terminal 1)
2013
  United Kingdom Gatwick Airport Terminal-Rail Shuttle Bombardier Innovia APM 100 (Replaced C-100s) 1988
Stansted, Essex (Stansted Airport) Stansted Airport Transit System Westinghouse/Adtranz C-100
Adtranz/Bombardier CX-100
1991
Heathrow Airport Heathrow Terminal 5 Transit Bombardier Innovia APM 200 2008
  United States Chicago, Illinois (O'Hare) Airport Transit System Bombardier Innovia APM 256 (Replaced VAL256s in 2019) 1993–2018 (VAL), 2021 (Innovia)
Dallas/Fort Worth, Texas (DFW Airport) DFW Skylink Bombardier Innovia APM 200 2007
Denver, Colorado (DEN Airport) Automated Guideway Transit System Bombardier Innovia APM 100 1995
Houston, Texas (George Bush Intercontinental Airport) Skyway Bombardier Innovia APM 100 (as Adtranz CX-100) 1999
Miami, Florida Metromover Bombardier Innovia APM 100 (Replaced C-100s late 2014) 1986
Phoenix, Arizona (Sky Harbor International Airport) PHX Sky Train Bombardier Innovia APM 200 2013
San Francisco, California (SFO Airport) AirTrain (SFO) Bombardier Innovia APM 100 2003
Hartsfield–Jackson Atlanta International Airport (ATL) The Plane Train Westinghouse C-100/Bombardier Innovia APM 100 1980
Washington, D.C. (Dulles International Airport) AeroTrain Mitsubishi Heavy Industries Crystal Mover 2010

Under construction

Defunct systems

Country/Region City/Region System Technology Year opened Year closed
  France Laon Poma 2000 Cable-driven 1989 2016
  Japan Komaki Peachliner Nippon Sharyo 1991 2006

See also

Notes

  1. ^ Rubber-tyred wheels have better adhesion than traditional rail wheels. Nonetheless, modern steel-on-steel rolling stock using distributed-traction with a high proportion of powered axles have narrowed the gap to the performance found in rubber-tyred rolling stock.
  2. ^ In order to reduce weather disruption, the Montreal Metro runs completely underground. On Paris Métro Line 6, upgrades of tyres (as used with cars) and special ribbed tracks have been tried out. The southernmost section of the Sapporo Municipal Subway Namboku Line is also elevated, but is covered by an aluminum shelter to reduce weather disruption.
  3. ^ In effect, there are two systems running in parallel so it is more expensive to build, install and maintain. This is in turn an advantage for conversions to this technology because it can be done with less service disruptions on an existing line, and allows to use more widespread railway components compared to VAL for example.
  4. ^ Since rubber tyres have higher wear rates, they need more frequent replacement, which makes them more expensive in the long run than steel wheelsets with higher first cost (that may be needed anyway as backup). Rubber tyres for guidance are needed.
  5. ^ The system opened in 1901, but was not converted to a rubber-tyred system until 1958.

References

  1. ^ a b "Rubber-Tyred Metro". Rail System. Retrieved 17 November 2021.
  2. ^ GB 10990, issued 10 June 1846 [dead link]
  3. ^ a b Tompkins, Eric (1981). "1: Invention". The History of the Pneumatic Tyre. Dunlop Archive Project. pp. 2–4. ISBN 0-903214-14-8.
  4. ^ . UrbanRail.Net. Archived from the original on 29 April 2008. Retrieved 15 April 2008.
  5. ^ . Montreal Gazette. 14 September 2005. Archived from the original on 17 May 2012. Retrieved 21 December 2011.
  6. ^ Harrison, Matthew C. (1974-02-01). "Rubber Tire vs. Steel Wheel Tradeoffs". SAE Technical Paper Series. Vol. 1. p. 740228. doi:10.4271/740228.
  7. ^ Pierson, W. R.; Brachaczek, Wanda W. (1 November 1974). "Airborne Particulate Debris from Rubber Tires". Rubber Chemistry and Technology. 47 (5): 1275–1299. doi:10.5254/1.3540499.
  • Bindi, A. & Lefeuvre, D. (1990). Le Métro de Paris: Histoire d'hier à demain, Rennes: Ouest-France. ISBN 2-7373-0204-8. (in French)
  • Gaillard, M. (1991). Du Madeleine-Bastille à Météor: Histoire des transports Parisiens, Amiens: Martelle. ISBN 2-87890-013-8. (in French)
  • Marc Dufour's "The principle behind the rubber-tired metro". (English)

External links

  • Visual dictionary
    • TRUCK (bogie)
  • Rail system


rubber, tyred, metro, confused, with, rubber, tyred, tram, been, suggested, that, roll, merged, into, this, article, discuss, proposed, since, january, 2023, been, suggested, that, guide, merged, into, this, article, discuss, proposed, since, january, 2023, th. Not to be confused with Rubber tyred tram It has been suggested that Roll way be merged into this article Discuss Proposed since January 2023 It has been suggested that Guide bar be merged into this article Discuss Proposed since January 2023 This article may be expanded with text translated from the corresponding article in French September 2020 Click show for important translation instructions Machine translation like DeepL or Google Translate is a useful starting point for translations but translators must revise errors as necessary and confirm that the translation is accurate rather than simply copy pasting machine translated text into the English Wikipedia Do not translate text that appears unreliable or low quality If possible verify the text with references provided in the foreign language article You must provide copyright attribution in the edit summary accompanying your translation by providing an interlanguage link to the source of your translation A model attribution edit summary is Content in this edit is translated from the existing French Wikipedia article at fr Metro sur pneumatiques see its history for attribution You should also add the template Translated fr Metro sur pneumatiques to the talk page For more guidance see Wikipedia Translation A rubber tyred metro or rubber tired metro is a form of rapid transit system that uses a mix of road and rail technology The vehicles have wheels with rubber tires that run on rolling pads inside guide bars for traction as well as traditional railway steel wheels with deep flanges on steel tracks for guidance through conventional switches as well as guidance in case a tyre fails Most rubber tyred trains are purpose built and designed for the system on which they operate Guided buses are sometimes referred to as trams on tyres and compared to rubber tyred metros 1 5000 series central rail guided rubber tyred rolling stock operated by Sapporo City Transportation Bureau Japan and built by Kawasaki Heavy Industries Rolling Stock Company Contents 1 History 2 Technology 2 1 Overview 2 2 Advantages 2 3 Disadvantages 3 Similar technologies 4 List of systems 4 1 Under construction 4 2 Defunct systems 5 See also 6 Notes 7 References 8 External linksHistory EditThe first idea for rubber tyred railway vehicles was the work of Scotsman Robert William Thomson the original inventor of the pneumatic tyre In his patent of 1846 2 he describes his Aerial Wheels as being equally suitable for the ground or rail or track on which they run 3 The patent also included a drawing of such a railway with the weight carried by pneumatic main wheels running on a flat board track and guidance provided by small horizontal steel wheels running on the sides of a central vertical guide rail 3 A similar arrangement was patented by Alejandro Goicoechea inventor of Talgo in February 1936 patent ES 141056 in 1973 he built a development of this patent Tren Vertebrado Patent DE1755198 at Avenida Maritima in Las Palmas de Gran Canaria During the World War II German occupation of Paris the Metro system was used to capacity with relatively little maintenance performed At the end of the war the system was so worn that thought was given as to how to renovate it Rubber tyred metro technology was first applied to the Paris Metro developed by Michelin who provided the tyres and guidance system in collaboration with Renault who provided the vehicles Starting in 1951 an experimental vehicle the MP 51 operated on a test track between Porte des Lilas and Pre Saint Gervais a section of line not open to the public Line 11 Chatelet Mairie des Lilas was the first line to be converted in 1956 chosen because of its steep grades This was followed by Line 1 Chateau de Vincennes Pont de Neuilly in 1964 and Line 4 Porte d Orleans Porte de Clignancourt in 1967 converted because they had the heaviest traffic load of all Paris Metro lines Finally Line 6 Charles de Gaulle Etoile Nation was converted in 1974 to reduce train noise on its many elevated sections Because of the high cost of converting existing rail based lines this is no longer done in Paris or elsewhere Now rubber tyred metros are used in new systems or lines only including the new Paris Metro Line 14 The first completely rubber tyred metro system was built in Montreal Quebec Canada in 1966 Santiago Metro and Mexico City Metro are based on Paris Metro rubber tyred trains A few more recent rubber tyred systems have used automated driverless trains one of the first such systems developed by Matra opened in 1983 in Lille and others have since been built in Toulouse and Rennes Paris Metro Line 14 was automated from its beginning 1998 and Line 1 was converted to automatic in 2007 2011 The first automated rubber tyred system opened in Kobe Japan in February 1981 It is the Port Liner linking Sannomiya railway station with Port Island Technology EditOverview Edit VAL tracks on the Lille Metro Sapporo Subway guide rail and flat steel roll ways Trains are usually in the form of electric multiple units Just as on a conventional railway the driver does not have to steer with the system relying on some sort of guideway to direct the train The type of guideway varies between networks Most use two parallel roll ways each the width of a tyre which are made of various materials The Montreal Metro Lille Metro Toulouse Metro and most parts of Santiago Metro use concrete The Busan Subway Line 4 employs a concrete slab The Paris Metro Mexico City Metro and the non underground section of Santiago Metro use H Shaped hot rolled steel and the Sapporo Municipal Subway uses flat steel The Sapporo system and Lille Metro use a single central guide rail only 4 On some systems such those in Paris Montreal and Mexico City there is a conventional 1 435 mm 4 ft 8 1 2 in standard gauge railway track between the roll ways The bogies of the train include railway wheels with longer flanges than normal These conventional wheels are normally just above the rails but come into use in the case of a flat tyre or at switches points and crossings In Paris these rails were also used to enable mixed traffic with rubber tyred and steel wheeled trains using the same track particularly during conversion from normal railway track The VAL system used in Lille and Toulouse has other sorts of flat tyre compensation and switching methods clarification needed On most systems the electric power is supplied from one of the guide bars which serves as a third rail The current is picked up by a separate lateral pickup shoe The return current passes via a return shoe to one or both of the conventional railway tracks which are part of most systems or to the other guide bar Rubber tyres have higher rolling resistance than traditional steel railway wheels There are some advantages and disadvantages to increased rolling resistance causing them to not be used in certain countries 1 Advantages Edit Compared to steel wheel on steel rail the advantages of rubber tyred metro systems are Faster acceleration along with the ability to climb or descend steeper slopes approximately a gradient of 13 than would be feasible with conventional rail tracks which would likely need a rack instead a For example the rubber tyred Line 2 of the Lausanne Metro has grades of up to 12 5 Shorter braking distances allowing trains to be signalled closer together Quieter rides in open air both inside and outside the train Greatly reduced rail wear with resulting reduced maintenance costs of those parts Disadvantages Edit The higher friction and increased rolling resistance cause disadvantages compared to steel wheel on steel rail Higher energy consumption Worse ride when compared with well maintained steel on steel systems 6 Possibility of tyre blow outs not possible in railway wheels Normal operation generates more heat from friction Weather variance Applicable only to above ground installations Loss of the traction advantage in inclement weather snow and ice b Same expense of steel rails for switching purposes to provide electricity or grounding to the trains and as a safety backup c Tyres that frequently need to be replaced contrary to rails using steel wheels which need to be replaced less often d Tyres break down during use and turn into particulate matter dust which can be hazardous air pollution also coating surrounding surfaces in dirty rubber dust 7 Although it is a more complex technology most rubber tyred metro systems use quite simple techniques in contrast to guided buses Heat dissipation is an issue as eventually all traction energy consumed by the train except the electric energy regenerated back into the substation during electrodynamic braking will end up in losses mostly heat In frequently operated tunnels typical metro operation the extra heat from rubber tyres is a widespread problem necessitating ventilation of the tunnels As a result some rubber tyred metro systems do not have air conditioned trains as air conditioning would heat the tunnels to temperatures where operation is not possible Similar technologies EditAutomated driverless systems are not exclusively rubber tyred many have since been built using conventional rail technology such as London s Docklands Light Railway the Copenhagen metro and Vancouver s SkyTrain the Hong Kong Disneyland Resort line which uses converted rolling stocks from non driverless trains as well as AirTrain JFK which links JFK Airport in New York City with local subway and commuter trains Most monorail manufacturers prefer rubber tyres List of systems EditCountry Region City Region System Technology Year opened Canada Montreal Montreal Metro Bombardier MR 73 Green Blue Yellow Alstom Bombardier MPM 10 Orange Green 1966 Chile Santiago Santiago Metro Lines 1 2 and 5 Alstom NS 74 5 Concarril NS 88 2 Alstom NS 93 1 5 Alstom NS 04 2 CAF NS 07 1 CAF NS 12 1 Alstom NS 16 2 5 1975 China Chongqing Bishan rubber tyred tram BYD Skyshuttle 2021Guangzhou Zhujiang New Town Automated People Mover System Bombardier Innovia APM 100 2010Shanghai Shanghai Metro Pujiang line Bombardier Innovia APM 300 2018 France Lille Lille Metro Matra VAL206Siemens VAL208 1983Lyon Lyon Metro Lines A B and D Alstom MPL 75 A B Alstom MPL 85 D 1978Marseille Marseille Metro Alstom MPM 76 1977Paris Paris Metro Lines 1 4 6 11 and 14 Michelin Alstom 1 435 mm between Rollways 1958 e Paris Orly Airport Orlyval Matra VAL206 1991Paris Charles de Gaulle Airport CDGVAL Siemens VAL208 2007Rennes Rennes Metro Siemens VAL208 2002Toulouse Toulouse Metro Matra VAL206Siemens VAL208 1993 Germany Frankfurt Airport SkyLine Bombardier Innovia APM 100 as Adtranz CX 100 1994Munich Airport Bombardier Innovia APM 300 2015 Indonesia Soekarno Hatta International Airport Soekarno Hatta Airport Skytrain Woojin 2017 Hong Kong Hong Kong Chek Lap Kok Airport Automated People Mover Mitsubishi Crystal MoverIshikawajima Harima 1998 2007 Phase II Italy Turin Metrotorino Siemens VAL208 2006 Japan Hiroshima Hiroshima Rapid Transit Astram Line KawasakiMitsubishiNiigata Transys 1994Kobe Kobe New Transit Port Island Line Rokkō Island Line Kawasaki 1981 Port Island Line 1990 Rokkō Island Line Osaka Nankō Port Town Line Niigata Transys 1981Saitama New Shuttle 1983Sapporo Sapporo Municipal Subway Kawasaki 1971Tokyo Yurikamome MitsubishiNiigata TransysNippon SharyoTokyu 1995Nippori Toneri Liner Niigata Transys 2008Tokorozawa Higashimurayama Seibu Yamaguchi Line Niigata Transys 1985Sakura Yamaman Yukarigaoka Line Nippon Sharyo 1982Yokohama Kanazawa Seaside Line MitsubishiNiigata TransysNippon SharyoTokyu 1989 South Korea Busan Busan Subway Line 4 Woojin 2011Uijeongbu Gyeonggi do U Line Siemens VAL208 2012Seoul Sillim Line K AGT Woojin 2022 Macau Taipa Cotai Macau Light Rapid Transit Mitsubishi Crystal Mover 2019 Malaysia Kuala Lumpur International Airport Aerotrain Bombardier Innovia APM 100 as Adtranz CX 100 1998 Mexico Mexico City Mexico City Metro All lines except A amp 12 Michelin 1 435 mm 4 ft 8 1 2 in between Rollways 1969 Singapore Singapore Light Rail Transit Bombardier Innovia APM 100 C801 as Adtranz CX 100 and C801A and future APM 300R C801B Mitsubishi Crystal Mover C810 and C810A 1999 Switzerland Lausanne Lausanne Metro Line M2 Alstom MP 89 2008 Taiwan Taipei Taipei Metro Brown Line Matra GEC Alsthom VAL 256Bombardier Innovia APM 256 1996Taoyuan Airport Taoyuan International Airport Skytrain Niigata Transys 2018 Thailand Bangkok Gold Line Bombardier Innovia APM 300 2020 UAE Dubai International Airport Dubai International Airport Automated People Mover Mitsubishi Crystal Mover Terminal 3 Bombardier Innovia APM 300 Terminal 1 2013 United Kingdom Gatwick Airport Terminal Rail Shuttle Bombardier Innovia APM 100 Replaced C 100s 1988Stansted Essex Stansted Airport Stansted Airport Transit System Westinghouse Adtranz C 100Adtranz Bombardier CX 100 1991Heathrow Airport Heathrow Terminal 5 Transit Bombardier Innovia APM 200 2008 United States Chicago Illinois O Hare Airport Transit System Bombardier Innovia APM 256 Replaced VAL256s in 2019 1993 2018 VAL 2021 Innovia Dallas Fort Worth Texas DFW Airport DFW Skylink Bombardier Innovia APM 200 2007Denver Colorado DEN Airport Automated Guideway Transit System Bombardier Innovia APM 100 1995Houston Texas George Bush Intercontinental Airport Skyway Bombardier Innovia APM 100 as Adtranz CX 100 1999Miami Florida Metromover Bombardier Innovia APM 100 Replaced C 100s late 2014 1986Phoenix Arizona Sky Harbor International Airport PHX Sky Train Bombardier Innovia APM 200 2013San Francisco California SFO Airport AirTrain SFO Bombardier Innovia APM 100 2003Hartsfield Jackson Atlanta International Airport ATL The Plane Train Westinghouse C 100 Bombardier Innovia APM 100 1980Washington D C Dulles International Airport AeroTrain Mitsubishi Heavy Industries Crystal Mover 2010Under construction Edit Country Region City Region System South Korea Busan Busan Metro Line 5 United States Los Angeles California LAX Airport LAX Automated People MoverDefunct systems Edit Country Region City Region System Technology Year opened Year closed France Laon Poma 2000 Cable driven 1989 2016 Japan Komaki Peachliner Nippon Sharyo 1991 2006See also Edit Wikimedia Commons has media related to Rubber tyred metro Budd Michelin rubber tired rail cars Flat tire Guided bus Hybrid systems Medium capacity rail transport system Micheline Outline of tires Railway electrification system Rubber tyred trams Tyre Toronto Zoo Domain Ride Tunel a rubber tyred funicular in Istanbul Turkey VAL Vehicule Automatique Leger Notes Edit Rubber tyred wheels have better adhesion than traditional rail wheels Nonetheless modern steel on steel rolling stock using distributed traction with a high proportion of powered axles have narrowed the gap to the performance found in rubber tyred rolling stock In order to reduce weather disruption the Montreal Metro runs completely underground On Paris Metro Line 6 upgrades of tyres as used with cars and special ribbed tracks have been tried out The southernmost section of the Sapporo Municipal Subway Namboku Line is also elevated but is covered by an aluminum shelter to reduce weather disruption In effect there are two systems running in parallel so it is more expensive to build install and maintain This is in turn an advantage for conversions to this technology because it can be done with less service disruptions on an existing line and allows to use more widespread railway components compared to VAL for example Since rubber tyres have higher wear rates they need more frequent replacement which makes them more expensive in the long run than steel wheelsets with higher first cost that may be needed anyway as backup Rubber tyres for guidance are needed The system opened in 1901 but was not converted to a rubber tyred system until 1958 References Edit a b Rubber Tyred Metro Rail System Retrieved 17 November 2021 GB 10990 issued 10 June 1846 dead link a b Tompkins Eric 1981 1 Invention The History of the Pneumatic Tyre Dunlop Archive Project pp 2 4 ISBN 0 903214 14 8 Sapporo Subway UrbanRail Net Archived from the original on 29 April 2008 Retrieved 15 April 2008 Sticking with rubber Montreal Gazette 14 September 2005 Archived from the original on 17 May 2012 Retrieved 21 December 2011 Harrison Matthew C 1974 02 01 Rubber Tire vs Steel Wheel Tradeoffs SAE Technical Paper Series Vol 1 p 740228 doi 10 4271 740228 Pierson W R Brachaczek Wanda W 1 November 1974 Airborne Particulate Debris from Rubber Tires Rubber Chemistry and Technology 47 5 1275 1299 doi 10 5254 1 3540499 Bindi A amp Lefeuvre D 1990 Le Metro de Paris Histoire d hier a demain Rennes Ouest France ISBN 2 7373 0204 8 in French Gaillard M 1991 Du Madeleine Bastille a Meteor Histoire des transports Parisiens Amiens Martelle ISBN 2 87890 013 8 in French Marc Dufour s The principle behind the rubber tired metro English External links EditVisual dictionary TRUCK bogie Rail system Jane s Urban Transit Systems Retrieved from https en wikipedia org w index php title Rubber tyred metro amp oldid 1150770065, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.