fbpx
Wikipedia

Innovation

Innovation is the practical implementation of ideas that result in the introduction of new goods or services or improvement in offering goods or services.[1] ISO TC 279 in the standard ISO 56000:2020 [2] defines innovation as "a new or changed entity realizing or redistributing value". Others have different definitions; a common element in the definitions is a focus on newness, improvement, and spread of ideas or technologies.

Thomas Edison with phonograph. Edison was one of the most prolific inventors in history, holding 1,093 U.S. patents in his name.

Innovation often takes place through the development of more-effective products, processes, services, technologies, art works[3] or business models that innovators make available to markets, governments and society. Innovation is related to, but not the same as, invention:[4] innovation is more apt to involve the practical implementation of an invention (i.e. new / improved ability) to make a meaningful impact in a market or society,[5] and not all innovations require a new invention.[6]

Technical innovation often manifests itself via the engineering process when the problem being solved is of a technical or scientific nature. The opposite of innovation is exnovation.

Definition

Surveys of the literature on innovation have found a variety of definitions. In 2009, Baregheh et al. found around 60 definitions in different scientific papers, while a 2014 survey found over 40.[7] Based on their survey, Baragheh et al. attempted to define a multidisciplinary definition and arrived at the following definition:

"Innovation is the multi-stage process whereby organizations transform ideas into new/improved products, service or processes, in order to advance, compete and differentiate themselves successfully in their marketplace"[8]

In an industrial survey of how the software industry defined innovation, the following definition given by Crossan and Apaydin was considered to be the most complete, which builds on the Organisation for Economic Co-operation and Development (OECD) manual's definition:[7]

Innovation is production or adoption, assimilation, and exploitation of a value-added novelty in economic and social spheres; renewal and enlargement of products, services, and markets; development of new methods of production; and the establishment of new management systems. It is both a process and an outcome.

American sociologist Everett Rogers, defined it as follows:

"An idea, practice, or object that is perceived as new by an individual or other unit of adoption"[9]

According to Alan Altshuler and Robert D. Behn, innovation includes original invention and creative use and defines innovation as a generation, admission and realization of new ideas, products, services and processes.[10]

Two main dimensions of innovation are degree of novelty (i.e. whether an innovation is new to the firm, new to the market, new to the industry, or new to the world) and kind of innovation (i.e. whether it is process or product-service system innovation).[7] In organizational scholarship, researchers have also distinguished innovation to be separate from creativity, by providing an updated definition of these two related constructs:

Workplace creativity concerns the cognitive and behavioral processes applied when attempting to generate novel ideas. Workplace innovation concerns the processes applied when attempting to implement new ideas. Specifically, innovation involves some combination of problem/opportunity identification, the introduction, adoption or modification of new ideas germane to organizational needs, the promotion of these ideas, and the practical implementation of these ideas.[11]

Peter Drucker wrote:

Innovation is the specific function of entrepreneurship, whether in an existing business, a public service institution, or a new venture started by a lone individual in the family kitchen. It is the means by which the entrepreneur either creates new wealth-producing resources or endows existing resources with enhanced potential for creating wealth.[12]

Creativity and innovation

In general, innovation is distinguished from creativity by its emphasis on the implementation of creative ideas in an economic setting. Amabile and Pratt in 2016, drawing on the literature, distinguish between creativity ("the production of novel and useful ideas by an individual or small group of individuals working together") and innovation ("the successful implementation of creative ideas within an organization").[13]

Types

Several frameworks have been proposed for defining types of innovation.[14][15]

Sustaining vs disruptive innovation

One framework proposed by Clayton Christensen draws a distinction between sustaining and disruptive innovations.[16] Sustaining innovation is the improvement of a product or service based on the known needs of current customers (e.g. faster microprocessors, flat screen televisions). Disruptive innovation in contrast refers to a process by which a new product or service creates a new market (e.g. transistor radio, free crowdsourced encyclopedia, etc.), eventually displacing established competitors.[17][18] According to Christensen, disruptive innovations are critical to long-term success in business.[19]

Disruptive innovation is often enabled by disruptive technology. Marco Iansiti and Karim R. Lakhani define foundational technology as having the potential to create new foundations for global technology systems over the longer term. Foundational technology tends to transform business operating models as entirely new business models emerge over many years, with gradual and steady adoption of the innovation leading to waves of technological and institutional change that gain momentum more slowly.[20][additional citation(s) needed] The advent of the packet-switched communication protocol TCP/IP—originally introduced in 1972 to support a single use case for United States Department of Defense electronic communication (email), and which gained widespread adoption only in the mid-1990s with the advent of the World Wide Web—is a foundational technology.[20]

Four types innovation model

Another framework was suggested by Henderson and Clark. They divide innovation into four types;

  • Radical innovation: "establishes a new dominant design and, hence, a new set of core design concepts embodied in components that are linked together in a new architecture." (p. 11)[21]
  • Incremental innovation: "refines and extends an established design. Improvement occurs in individual components, but the underlying core design concepts, and the links between them, remain the same." (p. 11)[21]
  • Architectural innovation: "innovation that changes only the relationships between them [the core design concepts]" (p. 12)[21]
  • Modular Innovation: "innovation that changes only the core design concepts of a technology" (p. 12)[21]

While Henderson and Clark as well as Christensen talk about technical innovation there are other kinds of innovation as well, such as service innovation and organizational innovation.

Non-economic innovation

The classical definition of innovation being limited to the primary goal of generating profit for a firm, has led others to define other types of innovation such as: social innovation, sustainable innovation (or green innovation), and responsible innovation.[22][23]

Open innovation

One type of innovation that has been the focus of recent literature is open innovation or "crowd sourcing." Open innovation refers to the use of individuals outside of an organizational context who have no expertise in a given area to solve complex problems.[24]

User innovation

Similar to open innovation, user innovation is when companies rely on users of their goods and services to come up with, help to develop, and even help to implement new ideas.[24]

History

The word "innovation" once had a quite different meaning. The first full-length discussion about innovation is the account[which?] by the Greek philosopher and historian Xenophon (430–355 BCE). He viewed the concept as multifaceted and connected it to political action. The word for innovation that he uses, 'kainotomia', had previously occurred in two plays by Aristophanes (c. 446c.  386 BCE). Plato (died c.  348 BCE) discussed innovation in his Laws dialogue and was not very fond of the concept. He was skeptical to it both in culture (dancing and art) and in education (he did not believe in introducing new games and toys to the kids).[25] Aristotle (384–322 BCE) did not like organizational innovations: he believed that all possible forms of organization had been discovered.[26]

Before the 4th century in Rome, the words novitas and res nova / nova res were used with either negative or positive judgment on the innovator. This concept meant "renewing" and was incorporated into the new Latin verb word innovo ("I renew" or "I restore") in the centuries that followed. The Vulgate version of the Bible (late 4th century CE) used the word in spiritual as well as political contexts. It also appeared in poetry, mainly with spiritual connotations, but was also connected to political, material and cultural aspects.[25]

Machiavelli's The Prince (1513), discusses innovation in a political setting. Machiavelli portrays it as a strategy a Prince may employ in order to cope with a constantly changing world as well as the corruption within it. Here innovation is described as introducing change in government (new laws and institutions); Machiavelli's later book The Discourses (1528) characterises innovation as imitation, as a return to the original that has been corrupted by people and by time.[citation needed] Thus for Machiavelli innovation came with positive connotations. This is however an exception in the usage of the concept of innovation from the 16th century and onward. No innovator from the renaissance until the late 19th century ever thought of applying the word innovator upon themselves, it was a word used to attack enemies.[25]

From the 1400s[citation needed] through the 1600s, the concept of innovation was pejorative – the term was an early-modern synonym for "rebellion", "revolt" and "heresy".[27][28][29][30][31] In the 1800s[timeframe?] people promoting capitalism saw socialism as an innovation and spent a lot of energy working against it. For instance, Goldwin Smith (1823-1910) saw the spread of social innovations as an attack on money and banks. These social innovations were socialism, communism, nationalization, cooperative associations.[25]

In the 20th century the concept of innovation did not become popular until after the Second World War of 1939-1945. This is the point in time when people started to talk about technological product innovation and tie it to the idea of economic growth and competitive advantage.[32] Joseph Schumpeter (1883–1950) is often[quantify] credited as the one who made the term popular - he contributed greatly to the study of innovation economics,

In business and in economics, innovation can provide a catalyst for growth in an enterprise or even in an industry. With rapid advances in transportation and communications over the past few decades, the old concepts of factor endowments and comparative advantage which focused on an area's unique inputs are outmoded in today's global economy.[citation needed] Schumpeter argued that industries must incessantly revolutionize the economic structure from within, that is: innovate with better or more effective processes and products, as well as with market distribution (such as the transition from the craft shop to factory). He famously asserted that "creative destruction is the essential fact about capitalism".[33] Entrepreneurs continuously search for better ways to satisfy their consumer base with improved quality, durability, service and price - searches which may come to fruition in innovation with advanced technologies and organizational strategies.[34]

A prime example of innovation involved the boom of Silicon Valley start-ups out of the Stanford Industrial Park. In 1957, dissatisfied employees of Shockley Semiconductor, the company of Nobel laureate and co-inventor of the transistor William Shockley, left to form an independent firm, Fairchild Semiconductor. After several years, Fairchild developed into a formidable presence in the sector.[which?] Eventually, these founders left to start their own companies based on their own unique ideas, and then leading employees started their own firms. Over the next 20 years this process resulted in the momentous startup-company explosion of information-technology firms.[citation needed] Silicon Valley began as 65 new enterprises born out of Shockley's eight former employees.[35]

Another example involves business incubators – a phenomenon introduced in 1959 and subsequently nurtured by governments around the world. Such "incubators", located close to knowledge clusters (mostly research-based) like universities or other government excellence centres – aim primarily to channel generated knowledge to applied innovation outcomes in order to stimulate regional or national economic growth.[36]

In the 21st century the Islamic State (IS) movement, while decrying religious innovations, has innovated in military tactics, recruitment, ideology and geopolitical activity.[37][38]

Process of innovation

An early model included only three phases of innovation. According to Utterback (1971), these phases were: 1) idea generation, 2) problem solving, and 3) implementation.[39] By the time one completed phase 2, one had an invention, but until one got it to the point of having an economic impact, one didn't have an innovation. Diffusion wasn't considered a phase of innovation. Focus at this point in time was on manufacturing.

All organizations can innovate, including for example hospitals, universities, and local governments.[40] The organization requires a proper structure in order to retain competitive advantage. Organizations can also improve profits and performance by providing work groups opportunities and resources to innovate, in addition to employee's core job tasks.[41] Executives and managers have been advised to break away from traditional ways of thinking and use change to their advantage.[42] The world of work is changing with the increased use of technology and companies are becoming increasingly competitive. Companies will have to downsize or reengineer their operations to remain competitive. This will affect employment as businesses will be forced to reduce the number of people employed while accomplishing the same amount of work if not more.[43]

For instance, former Mayor Martin O’Malley pushed the City of Baltimore to use CitiStat, a performance-measurement data and management system that allows city officials to maintain statistics on several areas from crime trends to the conditions of potholes. This system aided in better evaluation of policies and procedures with accountability and efficiency in terms of time and money. In its first year, CitiStat saved the city $13.2 million.[44] Even mass transit systems have innovated with hybrid bus fleets to real-time tracking at bus stands. In addition, the growing use of mobile data terminals in vehicles, that serve as communication hubs between vehicles and a control center, automatically send data on location, passenger counts, engine performance, mileage and other information. This tool helps to deliver and manage transportation systems.[45]

Still other innovative strategies include hospitals digitizing medical information in electronic medical records. For example, the U.S. Department of Housing and Urban Development's HOPE VI initiatives turned severely distressed public housing in urban areas into revitalized, mixed-income environments; the Harlem Children’s Zone used a community-based approach to educate local area children; and the Environmental Protection Agency's brownfield grants facilitates turning over brownfields for environmental protection, green spaces, community and commercial development.

Sources of innovation

Innovation may occur due to effort from a range of different agents, by chance, or as a result of a major system failure. According to Peter F. Drucker, the general sources of innovations are changes in industry structure, in market structure, in local and global demographics, in human perception, in the amount of available scientific knowledge, etc.[12]

 
Original model of three phases of the process of Technological Change

In the simplest linear model of innovation the traditionally recognized source is manufacturer innovation. This is where an agent (person or business) innovates in order to sell the innovation. Specifically, R&D measurement is the commonly used input for innovation, in particular in the business sector, named Business Expenditure on R&D (BERD) that grew over the years on the expenses of the declining R&D invested by the public sector.[46]

Another source of innovation, only now becoming widely recognized, is end-user innovation. This is where an agent (person or company) develops an innovation for their own (personal or in-house) use because existing products do not meet their needs. MIT economist Eric von Hippel has identified end-user innovation as, by far, the most important and critical in his classic book on the subject, "The Sources of Innovation".[47]

The robotics engineer Joseph F. Engelberger asserts that innovations require only three things:

  1. a recognized need
  2. competent people with relevant technology
  3. financial support[48]

The Kline chain-linked model of innovation[49] places emphasis on potential market needs as drivers of the innovation process, and describes the complex and often iterative feedback loops between marketing, design, manufacturing, and R&D.

Facilitating innovation

Innovation by businesses is achieved in many ways, with much attention now given to formal research and development (R&D) for "breakthrough innovations". R&D help spur on patents and other scientific innovations that leads to productive growth in such areas as industry, medicine, engineering, and government.[50] Yet, innovations can be developed by less formal on-the-job modifications of practice, through exchange and combination of professional experience and by many other routes. Investigation of relationship between the concepts of innovation and technology transfer revealed overlap.[51] The more radical and revolutionary innovations tend to emerge from R&D, while more incremental innovations may emerge from practice – but there are many exceptions to each of these trends.

Information technology and changing business processes and management style can produce a work climate favorable to innovation.[52] For example, the software tool company Atlassian conducts quarterly "ShipIt Days" in which employees may work on anything related to the company's products.[53] Google employees work on self-directed projects for 20% of their time (known as Innovation Time Off). Both companies cite these bottom-up processes as major sources for new products and features.

An important innovation factor includes customers buying products or using services. As a result, organizations may incorporate users in focus groups (user centered approach), work closely with so-called lead users (lead user approach), or users might adapt their products themselves. The lead user method focuses on idea generation based on leading users to develop breakthrough innovations. U-STIR, a project to innovate Europe's surface transportation system, employs such workshops.[54] Regarding this user innovation, a great deal of innovation is done by those actually implementing and using technologies and products as part of their normal activities. Sometimes user-innovators may become entrepreneurs, selling their product, they may choose to trade their innovation in exchange for other innovations, or they may be adopted by their suppliers. Nowadays, they may also choose to freely reveal their innovations, using methods like open source. In such networks of innovation the users or communities of users can further develop technologies and reinvent their social meaning.[55][56]

One technique for innovating a solution to an identified problem is to actually attempt an experiment with many possible solutions.[57] This technique was famously used by Thomas Edison's laboratory to find a version of the incandescent light bulb economically viable for home use, which involved searching through thousands of possible filament designs before settling on carbonized bamboo.

This technique is sometimes used in pharmaceutical drug discovery. Thousands of chemical compounds are subjected to high-throughput screening to see if they have any activity against a target molecule which has been identified as biologically significant to a disease. Promising compounds can then be studied; modified to improve efficacy and reduce side effects, evaluated for cost of manufacture; and if successful turned into treatments.

The related technique of A/B testing is often used to help optimize the design of web sites and mobile apps. This is used by major sites such as amazon.com, Facebook, Google, and Netflix.[58] Procter & Gamble uses computer-simulated products and online user panels to conduct larger numbers of experiments to guide the design, packaging, and shelf placement of consumer products.[59] Capital One uses this technique to drive credit card marketing offers.[58]

Goals and failures

Programs of organizational innovation are typically tightly linked to organizational goals and growth objectives, to the business plan, and to market competitive positioning. Davila et al. (2006) note, "Companies cannot grow through cost reduction and reengineering alone... Innovation is the key element in providing aggressive top-line growth, and for increasing bottom-line results".[60]

One survey across a large number of manufacturing and services organizations found that systematic programs of organizational innovation are most frequently driven by: improved quality, creation of new markets, extension of the product range, reduced labor costs, improved production processes, reduced materials cost, reduced environmental damage, replacement of products/services, reduced energy consumption, and conformance to regulations.[60]

Different goals are appropriate for different products, processes, and services. According to Andrea Vaona and Mario Pianta, some example goals of innovation could stem from two different types of technological strategies: technological competitiveness and active price competitiveness. Technological competitiveness may have a tendency to be pursued by smaller firms and can be characterized as "efforts for market-oriented innovation, such as a strategy of market expansion and patenting activity."[61] On the other hand, active price competitiveness is geared toward process innovations that lead to efficiency and flexibility, which tend to be pursued by large, established firms as they seek to expand their market foothold.[61] Whether innovation goals are successfully achieved or otherwise depends greatly on the environment prevailing in the organization.[62]

Failure of organizational innovation programs has been widely researched and the causes vary considerably. Some causes are external to the organization and outside its influence of control. Others are internal and ultimately within the control of the organization. Internal causes of failure can be divided into causes associated with the cultural infrastructure and causes associated with the innovation process itself. David O'Sullivan wrote that causes of failure within the innovation process in most organizations can be distilled into five types: poor goal definition, poor alignment of actions to goals, poor participation in teams, poor monitoring of results, and poor communication and access to information.[63]

Diffusion

 

Diffusion of innovation research was first started in 1903 by seminal researcher Gabriel Tarde, who first plotted the S-shaped diffusion curve. Tarde defined the innovation-decision process as a series of steps that include:[64]

  1. knowledge
  2. forming an attitude
  3. a decision to adopt or reject
  4. implementation and use
  5. confirmation of the decision

Once innovation occurs, innovations may be spread from the innovator to other individuals and groups. This process has been proposed that the lifecycle of innovations can be described using the 's-curve' or diffusion curve. The s-curve maps growth of revenue or productivity against time. In the early stage of a particular innovation, growth is relatively slow as the new product establishes itself. At some point, customers begin to demand and the product growth increases more rapidly. New incremental innovations or changes to the product allow growth to continue. Towards the end of its lifecycle, growth slows and may even begin to decline. In the later stages, no amount of new investment in that product will yield a normal rate of return.

The s-curve derives from an assumption that new products are likely to have "product life" – i.e., a start-up phase, a rapid increase in revenue and eventual decline. In fact, the great majority of innovations never get off the bottom of the curve, and never produce normal returns.

Innovative companies will typically be working on new innovations that will eventually replace older ones. Successive s-curves will come along to replace older ones and continue to drive growth upwards. In the figure above the first curve shows a current technology. The second shows an emerging technology that currently yields lower growth but will eventually overtake current technology and lead to even greater levels of growth. The length of life will depend on many factors.[65]

Measures

Measuring innovation is inherently difficult as it implies commensurability so that comparisons can be made in quantitative terms. Innovation, however, is by definition novelty. Comparisons are thus often meaningless across products or service.[66] Nevertheless, Edison et al.[67] in their review of literature on innovation management found 232 innovation metrics. They categorized these measures along five dimensions; i.e. inputs to the innovation process, output from the innovation process, effect of the innovation output, measures to access the activities in an innovation process and availability of factors that facilitate such a process.[67]

There are two different types of measures for innovation: the organizational level and the political level.

Organizational-level

The measure of innovation at the organizational level relates to individuals, team-level assessments, and private companies from the smallest to the largest company. Measure of innovation for organizations can be conducted by surveys, workshops, consultants, or internal benchmarking. There is today no established general way to measure organizational innovation. Corporate measurements are generally structured around balanced scorecards which cover several aspects of innovation such as business measures related to finances, innovation process efficiency, employees' contribution and motivation, as well benefits for customers. Measured values will vary widely between businesses, covering for example new product revenue, spending in R&D, time to market, customer and employee perception & satisfaction, number of patents, additional sales resulting from past innovations.[68]

Political-level

For the political level, measures of innovation are more focused on a country or region competitive advantage through innovation. In this context, organizational capabilities can be evaluated through various evaluation frameworks, such as those of the European Foundation for Quality Management. The OECD Oslo Manual (1992) suggests standard guidelines on measuring technological product and process innovation. Some people consider the Oslo Manual complementary to the Frascati Manual from 1963. The new Oslo Manual from 2018 takes a wider perspective to innovation, and includes marketing and organizational innovation. These standards are used for example in the European Community Innovation Surveys.[69]

Other ways of measuring innovation have traditionally been expenditure, for example, investment in R&D (Research and Development) as percentage of GNP (Gross National Product). Whether this is a good measurement of innovation has been widely discussed and the Oslo Manual has incorporated some of the critique against earlier methods of measuring. The traditional methods of measuring still inform many policy decisions. The EU Lisbon Strategy has set as a goal that their average expenditure on R&D should be 3% of GDP.[70]

Indicators

Many scholars claim that there is a great bias towards the "science and technology mode" (S&T-mode or STI-mode), while the "learning by doing, using and interacting mode" (DUI-mode) is ignored and measurements and research about it rarely done. For example, an institution may be high tech with the latest equipment, but lacks crucial doing, using and interacting tasks important for innovation.[71]

A common industry view (unsupported by empirical evidence) is that comparative cost-effectiveness research is a form of price control which reduces returns to industry, and thus limits R&D expenditure, stifles future innovation and compromises new products access to markets.[72] Some academics claim cost-effectiveness research is a valuable value-based measure of innovation which accords "truly significant" therapeutic advances (i.e. providing "health gain") higher prices than free market mechanisms.[73] Such value-based pricing has been viewed as a means of indicating to industry the type of innovation that should be rewarded from the public purse.[74]

An Australian academic developed the case that national comparative cost-effectiveness analysis systems should be viewed as measuring "health innovation" as an evidence-based policy concept for valuing innovation distinct from valuing through competitive markets, a method which requires strong anti-trust laws to be effective, on the basis that both methods of assessing pharmaceutical innovations are mentioned in annex 2C.1 of the Australia-United States Free Trade Agreement.[75][76][77]

Indices

Several indices attempt to measure innovation and rank entities based on these measures, such as:

  • Bloomberg Innovation Index
  • "Bogota Manual"[78] similar to the Oslo Manual, is focused on Latin America and the Caribbean countries.[citation needed]
  • "Creative Class" developed by Richard Florida[citation needed]
  • EIU Innovation Ranking[79]
  • Global Competitiveness Report
  • Global Innovation Index (GII), by INSEAD[80]
  • Information Technology and Innovation Foundation (ITIF) Index
  • Innovation 360 – From the World Bank. Aggregates innovation indicators (and more) from a number of different public sources
  • Innovation Capacity Index (ICI) published by a large number of international professors working in a collaborative fashion. The top scorers of ICI 2009–2010 were: 1. Sweden 82.2; 2. Finland 77.8; and 3. United States 77.5[81]
  • Innovation Index, developed by the Indiana Business Research Center, to measure innovation capacity at the county or regional level in the United States[82]
  • Innovation Union Scoreboard, developed by the European Union
  • innovationsindikator for Germany, developed by the Federation of German Industries (Bundesverband der Deutschen Industrie) in 2005[83]
  • INSEAD Innovation Efficacy Index[84]
  • International Innovation Index, produced jointly by The Boston Consulting Group, the National Association of Manufacturers (NAM) and its nonpartisan research affiliate The Manufacturing Institute, is a worldwide index measuring the level of innovation in a country; NAM describes it as the "largest and most comprehensive global index of its kind"[citation needed][85]
  • Management Innovation Index – Model for Managing Intangibility of Organizational Creativity: Management Innovation Index[86]
  • NYCEDC Innovation Index, by the New York City Economic Development Corporation, tracks New York City's "transformation into a center for high-tech innovation. It measures innovation in the City's growing science and technology industries and is designed to capture the effect of innovation on the City's economy"[87]
  • OECD Oslo Manual is focused on North America, Europe, and other rich economies
  • State Technology and Science Index, developed by the Milken Institute, is a U.S.-wide benchmark to measure the science and technology capabilities that furnish high paying jobs based around key components[88]
  • World Competitiveness Scoreboard[89]

Rankings

Common areas of focus include: high-tech companies, manufacturing, patents, post secondary education, research and development, and research personnel. The left ranking of the top 10 countries below is based on the 2020 Bloomberg Innovation Index.[90] However, studies may vary widely; for example the Global Innovation Index 2016 ranks Switzerland as number one wherein countries like South Korea, Japan, and China do not even make the top ten.[91]

Bloomberg Innovation Index 2021[92]
Rank Country/Territory Index
1   South Korea 90.49
2   Singapore 87.76
3   Switzerland 87.60
4   Germany 86.45
5   Sweden 86.39
6   Denmark 86.12
7   Israel 85.50
8   Finland 84.86
9   Netherlands 84.29
10   Austria 83.93
Global Innovation Index 2020[93]
Rank Country/Territory Index
1   Switzerland 66.08
2   Sweden 62.47
3   United States 60.56
4   United Kingdom 59.78
5   Netherlands 58.76
6   Denmark 57.53
7   Finland 57.02
8   Singapore 56.61
9   Germany 56.55
10   South Korea 56.11
Innovation Indicator 2020[94]
Rank Country/Territory Index
1   Switzerland 74
2   Singapore 70
3   Belgium 60
4   Germany 54
5   Sweden 54
6   Denmark 52
7   Ireland 52
8   United States 52
9   Austria 50
10   Finland 50

Rate of innovation

In 2005 Jonathan Huebner, a physicist working at the Pentagon's Naval Air Warfare Center, argued on the basis of both U.S. patents and world technological breakthroughs, per capita, that the rate of human technological innovation peaked in 1873 and has been slowing ever since.[95][96] In his article, he asked "Will the level of technology reach a maximum and then decline as in the Dark Ages?"[95] In later comments to New Scientist magazine, Huebner clarified that while he believed that we will reach a rate of innovation in 2024 equivalent to that of the Dark Ages, he was not predicting the reoccurrence of the Dark Ages themselves.[97]

John Smart criticized the claim and asserted that technological singularity researcher Ray Kurzweil and others showed a "clear trend of acceleration, not deceleration" when it came to innovations.[98] The foundation replied to Huebner the journal his article was published in, citing Second Life and eHarmony as proof of accelerating innovation; to which Huebner replied.[99] However, Huebner's findings were confirmed in 2010 with U.S. Patent Office data.[100] and in a 2012 paper.[101]

Innovation and development

The theme of innovation as a tool to disrupting patterns of poverty has gained momentum since the mid-2000s among major international development actors such as DFID,[102] Gates Foundation's use of the Grand Challenge funding model,[103] and USAID's Global Development Lab.[104] Networks have been established to support innovation in development, such as D-Lab at MIT.[105] Investment funds have been established to identify and catalyze innovations in developing countries, such as DFID's Global Innovation Fund,[106] Human Development Innovation Fund,[107] and (in partnership with USAID) the Global Development Innovation Ventures.[108]

The United States has to continue to play on the same level of playing field as its competitors in federal research. This can be achieved being strategically innovative through investment in basic research and science".[109]

Government policies

Given its effects on efficiency, quality of life, and productive growth, innovation is a key driver in improving society and economy. Consequently, policymakers have worked to develop environments that will foster innovation, from funding research and development to establishing regulations that do not inhibit innovation, funding the development of innovation clusters, and using public purchasing and standardisation to 'pull' innovation through.

For instance, experts are advocating that the U.S. federal government launch a National Infrastructure Foundation, a nimble, collaborative strategic intervention organization that will house innovations programs from fragmented silos under one entity, inform federal officials on innovation performance metrics, strengthen industry-university partnerships, and support innovation economic development initiatives, especially to strengthen regional clusters. Because clusters are the geographic incubators of innovative products and processes, a cluster development grant program would also be targeted for implementation. By focusing on innovating in such areas as precision manufacturing, information technology, and clean energy, other areas of national concern would be tackled including government debt, carbon footprint, and oil dependence.[50] The U.S. Economic Development Administration understand this reality in their continued Regional Innovation Clusters initiative.[110] The United States also has to integrate her supply-chain and improve her applies research capability and downstream process innovation.[111]

Many countries recognize the importance of innovation including Japan's Ministry of Education, Culture, Sports, Science and Technology (MEXT);[112] Germany's Federal Ministry of Education and Research;[113] and the Ministry of Science and Technology in the People's Republic of China. Russia's innovation programme is the Medvedev modernisation programme which aims to create a diversified economy based on high technology and innovation. The Government of Western Australia has established a number of innovation incentives for government departments. Landgate was the first Western Australian government agency to establish its Innovation Program.[114]

Some regions have taken a proactive role in supporting innovation. Many regional governments are setting up innovation agencies to strengthen regional capabilities.[115] In 2009, the municipality of Medellin, Colombia created Ruta N to transform the city into a knowledge city.[116]

See also

References

  1. ^ Schumpeter, Joseph A., 1883–1950 (1983). The theory of economic development : an inquiry into profits, capital, credit, interest, and the business cycle. Opie, Redvers,, Elliott, John E. New Brunswick, New Jersey. ISBN 0-87855-698-2. OCLC 8493721.{{cite book}}: CS1 maint: multiple names: authors list (link)
  2. ^ "ISO 56000:2020(en)Innovation management — Fundamentals and vocabulary". ISO. 2020.
  3. ^ Lijster, Thijs, ed. (2018). The Future of the New: Artistic Innovation in Times of Social Acceleration. Arts in society. Valiz. ISBN 9789492095589. Retrieved 10 September 2020.
  4. ^ Bhasin, Kim (2 April 2012). "This Is The Difference Between 'Invention' And 'Innovation'". Business Insider.
  5. ^ "What's the Difference Between Invention and Innovation?", Forbes, 10 September 2015
  6. ^ Schumpeter, Joseph Alois (1939). Business Cycles. Vol. 1. p. 84. Innovation is possible without anything we should identify as invention, and invention does not necessarily induce innovation.
  7. ^ a b c Edison, H., Ali, N.B., & Torkar, R. (2014). Towards innovation measurement in the software industry. Journal of Systems and Software 86(5), 1390–407.
  8. ^ Baregheh, Anahita; Rowley, Jennifer; Sambrook, Sally (4 September 2009). "Towards a multidisciplinary definition of innovation". Management Decision. 47 (8): 1323–1339. doi:10.1108/00251740910984578. ISSN 0025-1747.
  9. ^ Rogers, Everett M. (2003). Diffusion of innovations (5th ed.). New York: Free Press. ISBN 0-7432-2209-1. OCLC 52030797.
  10. ^ Innovation in American Government: Challenges, Opportunities, and Dilemmas. Brookings Inst Pr. 1 June 1997. ISBN 9780815703587.
  11. ^ Hughes, D. J.; Lee, A.; Tian, A. W.; Newman, A.; Legood, A. (2018). "Leadership, creativity, and innovation: A critical review and practical recommendations" (PDF). The Leadership Quarterly. 29 (5): 549–569. doi:10.1016/j.leaqua.2018.03.001. hdl:10871/32289. S2CID 149671044. (PDF) from the original on 24 December 2019.
  12. ^ a b Drucker, Peter F. (August 2002). "The Discipline of Innovation". Harvard Business Review. Retrieved 13 October 2013.
  13. ^ Amabile, Teresa M.; Pratt, Michael G. (2016). "The dynamic componential model of creativity and innovation in organizations: Making progress, making meaning". Research in Organizational Behavior. 36: 157–183. doi:10.1016/j.riob.2016.10.001.
  14. ^ Blank, Steve (1 February 2019). "McKinsey's Three Horizons Model Defined Innovation for Years. Here's Why It No Longer Applies". Harvard Business Review. ISSN 0017-8012. Retrieved 16 August 2020.
  15. ^ Satell, Greg (21 June 2017). "The 4 Types of Innovation and the Problems They Solve". Harvard Business Review. ISSN 0017-8012. Retrieved 16 August 2020.
  16. ^ Bower, Joseph L.; Christensen, Clayton M. (1 January 1995). "Disruptive Technologies: Catching the Wave". Harvard Business Review. No. January–February 1995. ISSN 0017-8012. Retrieved 16 August 2020.
  17. ^ Christensen, Clayton M.; Raynor, Michael E.; McDonald, Rory (1 December 2015). "What Is Disruptive Innovation?". Harvard Business Review. No. December 2015. ISSN 0017-8012. Retrieved 16 August 2020.
  18. ^ "Disruptive Innovations". Christensen Institute. Retrieved 16 August 2020.
  19. ^ Christensen, Clayton & Overdorf, Michael (2000). "Meeting the Challenge of Disruptive Change". Harvard Business Review.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  20. ^ a b Iansiti, Marco; Lakhani, Karim R. (January 2017). "The Truth About Blockchain". Harvard Business Review. Harvard University. Retrieved 17 January 2017. a foundational technology: It has the potential to create new foundations for our economic and social systems.
  21. ^ a b c d Henderson, Rebecca M.; Clark, Kim B. (March 1990). "Architectural Innovation: The Reconfiguration of Existing Product Technologies and the Failure of Established Firms". Administrative Science Quarterly. 35 (1): 9. doi:10.2307/2393549. ISSN 0001-8392. JSTOR 2393549.
  22. ^ Schiederig, Tim; Tietze, Frank; Herstatt, Cornelius (22 February 2012). "Green innovation in technology and innovation management – an exploratory literature review". R&D Management. 42 (2): 180–192. doi:10.1111/j.1467-9310.2011.00672.x. ISSN 0033-6807. S2CID 153958119.
  23. ^ Blok, Vincent; Lemmens, Pieter (2015), "The Emerging Concept of Responsible Innovation. Three Reasons Why It Is Questionable and Calls for a Radical Transformation of the Concept of Innovation", Responsible Innovation 2, Cham: Springer International Publishing, pp. 19–35, doi:10.1007/978-3-319-17308-5_2, ISBN 978-3-319-17307-8, retrieved 17 September 2020
  24. ^ a b Amabile, Teresa (December 2017). "In Pursuit of Everyday Creativity" (PDF). Journal of Creative Behavior: 2–3 – via Harvard Business School.
  25. ^ a b c d Godin, Benoit (2015). Innovation contested : the idea of innovation over the centuries. New York, New York. ISBN 978-1-315-85560-8. OCLC 903958473.
  26. ^ Politics II as cited by Benoît Godin 2015).
  27. ^ Mazzaferro, Alexander (2018). "Such a Murmur": Innovation, Rebellion, and Sovereignty in William Strachey's "True Reportory". Early American Literature. 53 (1): 3–32. doi:10.1353/eal.2018.0001. S2CID 166005186.
  28. ^ Mazzaferro, Alexander McLean (2017). "No newe enterprize" (Doctoral dissertation) (Thesis). Camden, New Jersey: Rutgers University. doi:10.7282/T38W3HFQ. Retrieved 19 February 2019.
  29. ^ Lepore, Jill (23 June 2014). "The Disruption Machine: What the gospel of innovation gets wrong". The New Yorker. Retrieved 19 February 2019. The word 'innovate'—to make new—used to have chiefly negative connotations: it signified excessive novelty, without purpose or end. Edmund Burke called the French Revolution a 'revolt of innovation'; Federalists declared themselves to be 'enemies to innovation.' George Washington, on his deathbed, was said to have uttered these words: 'Beware of innovation in politics.' Noah Webster warned in his dictionary, in 1828, 'It is often dangerous to innovate on the customs of a nation.'
  30. ^ Green, Emma (20 June 2013). "Innovation: The History of a Buzzword". The Atlantic. Retrieved 19 February 2019.
  31. ^ "innovation". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
  32. ^ Godin, Benoit (2019). The invention of technological innovation : languages, discourses and ideology in historical perspective. Edward Elgar Publishing. Cheltenham, UK. ISBN 978-1-78990-334-8. OCLC 1125747489.
  33. ^ Schumpeter, J. A. (1943). Capitalism, Socialism, and Democracy (6 ed.). Routledge. pp. 81–84. ISBN 978-0-415-10762-4.
  34. ^ Heyne, P., Boettke, P. J., and Prychitko, D. L. (2010). The Economic Way of Thinking. Prentice Hall, 12th ed. pp. 163, 317–18.
  35. ^ "Silicon Valley History & Future". Netvalley.com. Retrieved 14 March 2016. [...] over the course of just 20 years, a mere eight of Shockley's former employees gave forth 65 new enterprises, which then went on to do the same. The process is still going [...].
  36. ^ Rubin, Tzameret H.; Aas, Tor Helge; Stead, Andrew (1 July 2015). "Knowledge flow in Technological Business Incubators: Evidence from Australia and Israel". Technovation. 41–42: 11–24. doi:10.1016/j.technovation.2015.03.002.
  37. ^ Hashim, Ahmed S. (2018). The Caliphate at War: The Ideological, Organisational and Military Innovations of Islamic State. London: Oxford University Press. p. 7. ISBN 9781849046435. Retrieved 8 February 2022. Though IS is not unique as an example of a violent nonstate actor, I argue that IS has innovated in the fields of ideology, organization, war-fighting, and strategies of state-formation.
  38. ^ Scott Ligon, Gina; Derrick, Douglas C.; Harms, Mackenzie (15 November 2017). "Destruction Through Collaboration: How Terrorists Work Together Toward Malevolent Innovation". In Reiter-Palmon, Roni (ed.). Team Creativity and Innovation. New York: Oxford University Press (published 2017). ISBN 9780190695323. Retrieved 8 February 2022. As seen in recent advancements by the Islamic State in Iraq and Syria (ISIS), innovation from VEOs [violent extremist organisations] can also occur in recruiting/marketing campaigns and fundraising efforts.
  39. ^ Utterback, James (1971). "The Process of Technological Innovation Within the Firm". Academy of Management Journal. 14 (1): 78. doi:10.2307/254712. JSTOR 254712.
  40. ^ Salge, T. O.; Vera, A. (2009). "Hospital innovativeness and organizational performance: Evidence from English public acute care". Health Care Management Review. 34 (1): 54–67. doi:10.1097/01.HMR.0000342978.84307.80. PMID 19104264.
  41. ^ West, Michael A. (2002). "Sparkling Fountains or Stagnant Ponds: An Integrative Model of Creativity and Innovation Implementation in Work Groups". Applied Psychology. 51 (3): 355–387. doi:10.1111/1464-0597.00951.
  42. ^ MIT Sloan Management Review Spring 2002. "How to identify and build New Businesses"
  43. ^ Anthony, Scott D.; Johnson, Mark W.; Sinfield, Joseph V.; Altman, Elizabeth J. (2008). Innovator's Guide to Growth. "Putting Disruptive Innovation to Work". Harvard Business School Press. ISBN 978-1-59139-846-2.
  44. ^ Perez, T. and Rushing R. (2007). "The CitiStat Model: How Data-Driven Government Can Increase Efficiency and Effectiveness". Center for American Progress Report. pp. 1–18.
  45. ^ Transportation Research Board (2007). "Transit Cooperative Research Program (TCRP) Synthesis 70: Mobile Data Terminals". pp. 1–5. TCRP (PDF).
  46. ^ H. Rubin, Tzameret (2015). "The Achilles heel of a strong private knowledge sector: evidence from Israel" (PDF). The Journal of Innovation Impact. 7 (1): 80–99. (PDF) from the original on 24 December 2016.
  47. ^ Von Hippel, Eric (1988). (PDF). Oxford University Press. Archived from the original (PDF) on 12 October 2006. Retrieved 3 December 2015.
  48. ^ Engelberger, J. F. (1982). "Robotics in practice: Future capabilities". Electronic Servicing & Technology magazine.
  49. ^ Kline (1985). Research, Invention, Innovation and Production: Models and Reality, Report INN-1, March 1985, Mechanical Engineering Department, Stanford University.
  50. ^ a b Mark, M., Katz, B., Rahman, S., and Warren, D. (2008) MetroPolicy: Shaping A New Federal Partnership for a Metropolitan Nation. Brookings Institution: Metropolitan Policy Program Report. pp. 4–103.
  51. ^ Dubickis, M., Gaile-Sarkane, E. (2015). "Perspectives on Innovation and Technology Transfer". Procedia - Social and Behavioral Sciences. 213: 965–970. doi:10.1016/j.sbspro.2015.11.512.
  52. ^ "New Trends in Innovation Management". Forbesindia.com. Forbes India Magazine. Retrieved 14 March 2016.
  53. ^ "ShipIt Days". Atlassian. Retrieved 14 March 2016.
  54. ^ . U-stir.eu. Archived from the original on 18 September 2011. Retrieved 7 September 2011.
  55. ^ Tuomi, I. (2002). Networks of Innovation. Oxford University Press. Networks of Innovation 5 November 2007 at the Wayback Machine
  56. ^ Siltala, R. (2010). Innovativity and cooperative learning in business life and teaching. PhD thesis. University of Turku.
  57. ^ Forget The 10,000-Hour Rule; Edison, Bezos, & Zuckerberg Follow The 10,000-Experiment Rule. Medium.com (26 October 2017). Retrieved 16 October 2018.
  58. ^ a b Why These Tech Companies Keep Running Thousands Of Failed Experiments. Fast Company.com (21 September 2016). Retrieved 16 October 2018.
  59. ^ Simulation Advantage. Bcgperspectives.com (4 August 2010). Retrieved 16 October 2018.
  60. ^ a b Davila, T., Epstein, M. J., and Shelton, R. (2006). "Making Innovation Work: How to Manage It, Measure It, and Profit from It." Upper Saddle River: Wharton School Publishing.
  61. ^ a b Vaona, Andrea; Pianta, Mario (March 2008). "Firm Size and Innovation in European Manufacturing". Small Business Economics. 30 (3): 283–299. doi:10.1007/s11187-006-9043-9. hdl:10419/3843. ISSN 0921-898X. S2CID 153525567.
  62. ^ Khan, Arshad M.; Manopichetwattana, V. (1989). "Innovative and Noninnovative Small Firms: Types and Characteristics". Management Science. 35 (5): 597–606. doi:10.1287/mnsc.35.5.597.
  63. ^ O'Sullivan, David (2002). "Framework for Managing Development in the Networked Organisations". Journal of Computers in Industry. 47 (1): 77–88. doi:10.1016/S0166-3615(01)00135-X.
  64. ^ Tarde, G. (1903). The laws of imitation (E. Clews Parsons, Trans.). New York: H. Holt & Co.
  65. ^ Rogers, E. M. (1962). Diffusion of Innovation. New York, NY: Free Press.
  66. ^ The Oxford handbook of innovation. Fagerberg, Jan., Mowery, David C., Nelson, Richard R. Oxford: Oxford University Press. 2005. ISBN 9780199264551. OCLC 56655392.{{cite book}}: CS1 maint: others (link)
  67. ^ a b Edison, H.; Ali, N.B.; Torkar, R. (2013). "Towards innovation measurement in the software industry". Journal of Systems and Software. 86 (5): 1390–1407. doi:10.1016/j.jss.2013.01.013 – via ResearchGate.
  68. ^ Davila, Tony; Marc J. Epstein and Robert Shelton (2006). Making Innovation Work: How to Manage It, Measure It, and Profit from It. Upper Saddle River: Wharton School Publishing
  69. ^ OECD The Measurement of Scientific and Technological Activities. Proposed Guidelines for Collecting and Interpreting Technological Innovation Data. Oslo Manual. 2nd edition, DSTI, OECD / European Commission Eurostat, Paris 31 December 1995.
  70. ^ . European Commission. Archived from the original on 27 August 2011. Retrieved 7 September 2011.
  71. ^ "DEVELOPMENT OF INNOVATION - European Journal of Natural History (scientific magazine)". world-science.ru. Retrieved 7 April 2021.
  72. ^ Chalkidou, K.; Tunis, S.; Lopert, R.; Rochaix, L.; Sawicki, P. T.; Nasser, M.; Xerri, B. (2009). "Comparative effectiveness research and evidence-based health policy: Experience from four countries". The Milbank Quarterly. 87 (2): 339–67. doi:10.1111/j.1468-0009.2009.00560.x. PMC 2881450. PMID 19523121.
  73. ^ Roughead, E.; Lopert, R.; Sansom, L. (2007). "Prices for innovative pharmaceutical products that provide health gain: a comparison between Australia and the United States". Value in Health. 10 (6): 514–20. doi:10.1111/j.1524-4733.2007.00206.x. PMID 17970935.
  74. ^ Hughes, B. (2008). "Payers Growing Influence on R&D Decision Making". Nature Reviews Drug Discovery. 7 (11): 876–78. doi:10.1038/nrd2749. PMID 18974741. S2CID 10217053.
  75. ^ Faunce, T.; Bai, J.; Nguyen, D. (2010). "Impact of the Australia-US Free Trade Agreement on Australian medicines regulation and prices". Journal of Generic Medicines. 7 (1): 18–29. doi:10.1057/jgm.2009.40. S2CID 154433476. from the original on 16 April 2021.
  76. ^ Faunce TA (2006). (PDF). Law.anu.edu.au. Globalization and Health Springer. Archived from the original (PDF) on 14 April 2011. Retrieved 18 June 2009.
  77. ^ Faunce, T. A. (2007). "Reference pricing for pharmaceuticals: is the Australia-United States Free Trade Agreement affecting Australia's Pharmaceutical Benefits Scheme?". Medical Journal of Australia. 187 (4): 240–42. doi:10.5694/j.1326-5377.2007.tb01209.x. PMID 17564579. S2CID 578533.
  78. ^ Hernán Jaramillo, Gustavo Lugones, Mónica Salazar (March 2001). "Bogota Manual. Standardisation of Indicators of Technological Innovation in Latin American and Caribbean Countries". Iberoamerican Network of Science and Technology Indicators (RICYT) Organisation of American States (OAS) / CYTED PROGRAM COLCIENCIAS/OCYT. p. 87.{{cite web}}: CS1 maint: uses authors parameter (link)
  79. ^ "Social Innovation Index 2016". Economist Impact | Perspectives. Retrieved 7 April 2021.
  80. ^ "The INSEAD Global Innovation Index (GII)". INSEAD. 28 October 2013.
  81. ^ "Home page". Innovation Capacity Index.
  82. ^ "Tools". Statsamerica.org. Retrieved 7 September 2011.
  83. ^ Innovations Indikator retrieved 7 March 2017
  84. ^ "The INSEAD Innovation Efficiency Inndex". Technology Review. February 2016.
  85. ^ Adsule, Anil (2015). "INNOVATION LEADING THE WAY TO REVOLUTION" (PDF). International Journal of Business and Administration Research Review. 2, Issue.11. (PDF) from the original on 1 August 2020 – via Google scholar.
  86. ^ Kerle, Ralph (2013). "Model for Managing Intangibility of Organizational Creativity: Management Innovation Index". Encyclopedia of Creativity, Invention, Innovation and Entrepreneurship. pp. 1300–1307. doi:10.1007/978-1-4614-3858-8_35. ISBN 978-1-4614-3857-1. {{cite book}}: Missing or empty |title= (help)
  87. ^ "Innovation Index". NYCEDC.com.
  88. ^ "Home page". statetechandscience.org.
  89. ^ "The World Competitiveness Scoreboard 2014" (PDF). IMD.org. 2014. (PDF) from the original on 30 June 2014.
  90. ^ "Germany Breaks Korea's Six-Year Streak as Most Innovative Nation". Bloomberg L.P. Retrieved 17 March 2021.{{cite news}}: CS1 maint: url-status (link)
  91. ^ "Infografik: Schweiz bleibt globaler Innovationsführer". Statista Infografiken. Statista (In German). Retrieved 25 November 2016.
  92. ^ Jamrisko, Michelle; Lu, Wei; Tanzi, Alexandre (3 February 2021). "South Korea Leads World in Innovation as U.S. Exits Top Ten". Bloomberg.
  93. ^ "GII 2020 Report". Global Innovation Index. Retrieved 19 October 2020.
  94. ^ innovations indikator 2020 (PDF) (in German). Bundesverband der Deutschen Industrie, Fraunhofer ISI, Zentrum für Europäische Wirtschaftsforschung. 2020. (PDF) from the original on 8 April 2021.
  95. ^ a b Huebner, J. (2005). "A possible declining trend for worldwide innovation". Technological Forecasting and Social Change. 72 (8): 980–986. doi:10.1016/j.techfore.2005.01.003.
  96. ^ Hayden, Thomas (7 July 2005). . U.S. News & World Report. Archived from the original on 1 November 2013. Retrieved 10 June 2013.
  97. ^ Adler, Robert (2 July 2005). "Entering a dark age of innovation". New Scientist. Retrieved 30 May 2013.
  98. ^ Smart, J. (2005). "Discussion of Huebner article". Technological Forecasting and Social Change. 72 (8): 988–995. doi:10.1016/j.techfore.2005.07.001.
  99. ^ Huebner, Jonathan (2005). "Response by the Authors". Technological Forecasting and Social Change. 72 (8): 995–1000. doi:10.1016/j.techfore.2005.05.008.
  100. ^ Strumsky, D.; Lobo, J.; Tainter, J. A. (2010). "Complexity and the productivity of innovation". Systems Research and Behavioral Science. 27 (5): 496. doi:10.1002/sres.1057.
  101. ^ Gordon, Robert J. (2012). "Is U.S. Economic Growth Over? Faltering Innovation Confronts the Six Headwinds". NBER Working Paper No. 18315. doi:10.3386/w18315.
  102. ^ "Jonathan Wong, Head of DFID's Innovation Hub | DFID bloggers". Government of the United Kingdom. 24 September 2014. Retrieved 14 March 2016.
  103. ^ "Bill & Melinda Gates Foundation and Grand Challenge Partners Commit to Innovation with New Investments in Breakthrough Science – Bill & Melinda Gates Foundation". Gatesfoundation.org. 7 October 2014. Retrieved 14 March 2016.
  104. ^ "Global Development Lab | U.S. Agency for International Development". Usaid.gov. 5 August 2015. Retrieved 14 March 2016.
  105. ^ "International Development Innovation Network (IDIN) | D-Lab". D-lab.mit.edu. Retrieved 14 March 2016.
  106. ^ "Global Innovation Fund International development funding". Government of the United Kingdom. Retrieved 14 March 2016.
  107. ^ "Human Development Innovation Fund (HDIF)". Hdif-tz.org. 14 August 2015. Retrieved 14 March 2016.
  108. ^ . Usaid.gov. 6 June 2013. Archived from the original on 4 May 2017. Retrieved 14 March 2016.
  109. ^ "StackPath". industryweek.com. Retrieved 28 April 2020.
  110. ^ "U.S. Economic Development Administration : Fiscal Year 2010 Annual Report" (PDF). Eda.gov. (PDF) from the original on 22 September 2011. Retrieved 14 March 2016.
  111. ^ "The American Way of Innovation and Its Deficiencies". American Affairs Journal. 20 May 2018. Retrieved 28 April 2020.
  112. ^ . MEXT. Archived from the original on 5 September 2011. Retrieved 7 September 2011.
  113. ^ "BMBF " Ministry". Bmbf.de. Retrieved 7 September 2011.
  114. ^ "Home". Landgate.wa.gov.au. Landgate Innovation Program. Retrieved 14 March 2016.
  115. ^ Morisson, A. & Doussineau, M. (2019). Regional innovation governance and place-based policies: design, implementation and implications. Regional Studies, Regional Science,6(1),101–116. https://rsa.tandfonline.com/doi/full/10.1080/21681376.2019.1578257.
  116. ^ Morisson, Arnault (2018). "Knowledge Gatekeepers and Path Development on the Knowledge Periphery: The Case of Ruta N in Medellin, Colombia". Area Development and Policy. 4: 98–115. doi:10.1080/23792949.2018.1538702. S2CID 169689111.

Further reading

  • Bloom, Nicholas, Charles I. Jones, John Van Reenen, and Michael Webb. 2020. "Are Ideas Getting Harder to Find?", American Economic Review, 110 (4): 1104–44.
  • Steven Johnson (2011). Where Good Ideas Come From. Riverhead Books. ISBN 9781594485381.
  • Sonenshein, Scott (2017). Stretch: Unlock the Power of Less and Achieve More Than You Ever Imagined. Harper Business. ISBN 978-0062457226.

innovation, other, uses, disambiguation, innovators, disambiguation, practical, implementation, ideas, that, result, introduction, goods, services, improvement, offering, goods, services, standard, 56000, 2020, defines, innovation, changed, entity, realizing, . For other uses see Innovation disambiguation and Innovators disambiguation Innovation is the practical implementation of ideas that result in the introduction of new goods or services or improvement in offering goods or services 1 ISO TC 279 in the standard ISO 56000 2020 2 defines innovation as a new or changed entity realizing or redistributing value Others have different definitions a common element in the definitions is a focus on newness improvement and spread of ideas or technologies Thomas Edison with phonograph Edison was one of the most prolific inventors in history holding 1 093 U S patents in his name Innovation often takes place through the development of more effective products processes services technologies art works 3 or business models that innovators make available to markets governments and society Innovation is related to but not the same as invention 4 innovation is more apt to involve the practical implementation of an invention i e new improved ability to make a meaningful impact in a market or society 5 and not all innovations require a new invention 6 Technical innovation often manifests itself via the engineering process when the problem being solved is of a technical or scientific nature The opposite of innovation is exnovation Contents 1 Definition 1 1 Creativity and innovation 2 Types 2 1 Sustaining vs disruptive innovation 2 2 Four types innovation model 2 3 Non economic innovation 2 4 Open innovation 2 5 User innovation 3 History 4 Process of innovation 4 1 Sources of innovation 4 2 Facilitating innovation 4 3 Goals and failures 5 Diffusion 6 Measures 6 1 Organizational level 6 2 Political level 6 3 Indicators 6 4 Indices 6 5 Rankings 6 6 Rate of innovation 6 7 Innovation and development 7 Government policies 8 See also 9 References 10 Further readingDefinition EditSurveys of the literature on innovation have found a variety of definitions In 2009 Baregheh et al found around 60 definitions in different scientific papers while a 2014 survey found over 40 7 Based on their survey Baragheh et al attempted to define a multidisciplinary definition and arrived at the following definition Innovation is the multi stage process whereby organizations transform ideas into new improved products service or processes in order to advance compete and differentiate themselves successfully in their marketplace 8 In an industrial survey of how the software industry defined innovation the following definition given by Crossan and Apaydin was considered to be the most complete which builds on the Organisation for Economic Co operation and Development OECD manual s definition 7 Innovation is production or adoption assimilation and exploitation of a value added novelty in economic and social spheres renewal and enlargement of products services and markets development of new methods of production and the establishment of new management systems It is both a process and an outcome American sociologist Everett Rogers defined it as follows An idea practice or object that is perceived as new by an individual or other unit of adoption 9 According to Alan Altshuler and Robert D Behn innovation includes original invention and creative use and defines innovation as a generation admission and realization of new ideas products services and processes 10 Two main dimensions of innovation are degree of novelty i e whether an innovation is new to the firm new to the market new to the industry or new to the world and kind of innovation i e whether it is process or product service system innovation 7 In organizational scholarship researchers have also distinguished innovation to be separate from creativity by providing an updated definition of these two related constructs Workplace creativity concerns the cognitive and behavioral processes applied when attempting to generate novel ideas Workplace innovation concerns the processes applied when attempting to implement new ideas Specifically innovation involves some combination of problem opportunity identification the introduction adoption or modification of new ideas germane to organizational needs the promotion of these ideas and the practical implementation of these ideas 11 Peter Drucker wrote Innovation is the specific function of entrepreneurship whether in an existing business a public service institution or a new venture started by a lone individual in the family kitchen It is the means by which the entrepreneur either creates new wealth producing resources or endows existing resources with enhanced potential for creating wealth 12 Creativity and innovation Edit In general innovation is distinguished from creativity by its emphasis on the implementation of creative ideas in an economic setting Amabile and Pratt in 2016 drawing on the literature distinguish between creativity the production of novel and useful ideas by an individual or small group of individuals working together and innovation the successful implementation of creative ideas within an organization 13 Types EditSeveral frameworks have been proposed for defining types of innovation 14 15 Sustaining vs disruptive innovation Edit One framework proposed by Clayton Christensen draws a distinction between sustaining and disruptive innovations 16 Sustaining innovation is the improvement of a product or service based on the known needs of current customers e g faster microprocessors flat screen televisions Disruptive innovation in contrast refers to a process by which a new product or service creates a new market e g transistor radio free crowdsourced encyclopedia etc eventually displacing established competitors 17 18 According to Christensen disruptive innovations are critical to long term success in business 19 Disruptive innovation is often enabled by disruptive technology Marco Iansiti and Karim R Lakhani define foundational technology as having the potential to create new foundations for global technology systems over the longer term Foundational technology tends to transform business operating models as entirely new business models emerge over many years with gradual and steady adoption of the innovation leading to waves of technological and institutional change that gain momentum more slowly 20 additional citation s needed The advent of the packet switched communication protocol TCP IP originally introduced in 1972 to support a single use case for United States Department of Defense electronic communication email and which gained widespread adoption only in the mid 1990s with the advent of the World Wide Web is a foundational technology 20 Four types innovation model Edit Another framework was suggested by Henderson and Clark They divide innovation into four types Radical innovation establishes a new dominant design and hence a new set of core design concepts embodied in components that are linked together in a new architecture p 11 21 Incremental innovation refines and extends an established design Improvement occurs in individual components but the underlying core design concepts and the links between them remain the same p 11 21 Architectural innovation innovation that changes only the relationships between them the core design concepts p 12 21 Modular Innovation innovation that changes only the core design concepts of a technology p 12 21 While Henderson and Clark as well as Christensen talk about technical innovation there are other kinds of innovation as well such as service innovation and organizational innovation Non economic innovation Edit The classical definition of innovation being limited to the primary goal of generating profit for a firm has led others to define other types of innovation such as social innovation sustainable innovation or green innovation and responsible innovation 22 23 Open innovation Edit One type of innovation that has been the focus of recent literature is open innovation or crowd sourcing Open innovation refers to the use of individuals outside of an organizational context who have no expertise in a given area to solve complex problems 24 User innovation Edit Similar to open innovation user innovation is when companies rely on users of their goods and services to come up with help to develop and even help to implement new ideas 24 History EditSee also Innovation economics The word innovation once had a quite different meaning The first full length discussion about innovation is the account which by the Greek philosopher and historian Xenophon 430 355 BCE He viewed the concept as multifaceted and connected it to political action The word for innovation that he uses kainotomia had previously occurred in two plays by Aristophanes c 446 c 386 BCE Plato died c 348 BCE discussed innovation in his Laws dialogue and was not very fond of the concept He was skeptical to it both in culture dancing and art and in education he did not believe in introducing new games and toys to the kids 25 Aristotle 384 322 BCE did not like organizational innovations he believed that all possible forms of organization had been discovered 26 Before the 4th century in Rome the words novitas and res nova nova res were used with either negative or positive judgment on the innovator This concept meant renewing and was incorporated into the new Latin verb word innovo I renew or I restore in the centuries that followed The Vulgate version of the Bible late 4th century CE used the word in spiritual as well as political contexts It also appeared in poetry mainly with spiritual connotations but was also connected to political material and cultural aspects 25 Machiavelli s The Prince 1513 discusses innovation in a political setting Machiavelli portrays it as a strategy a Prince may employ in order to cope with a constantly changing world as well as the corruption within it Here innovation is described as introducing change in government new laws and institutions Machiavelli s later book The Discourses 1528 characterises innovation as imitation as a return to the original that has been corrupted by people and by time citation needed Thus for Machiavelli innovation came with positive connotations This is however an exception in the usage of the concept of innovation from the 16th century and onward No innovator from the renaissance until the late 19th century ever thought of applying the word innovator upon themselves it was a word used to attack enemies 25 From the 1400s citation needed through the 1600s the concept of innovation was pejorative the term was an early modern synonym for rebellion revolt and heresy 27 28 29 30 31 In the 1800s timeframe people promoting capitalism saw socialism as an innovation and spent a lot of energy working against it For instance Goldwin Smith 1823 1910 saw the spread of social innovations as an attack on money and banks These social innovations were socialism communism nationalization cooperative associations 25 In the 20th century the concept of innovation did not become popular until after the Second World War of 1939 1945 This is the point in time when people started to talk about technological product innovation and tie it to the idea of economic growth and competitive advantage 32 Joseph Schumpeter 1883 1950 is often quantify credited as the one who made the term popular he contributed greatly to the study of innovation economics In business and in economics innovation can provide a catalyst for growth in an enterprise or even in an industry With rapid advances in transportation and communications over the past few decades the old concepts of factor endowments and comparative advantage which focused on an area s unique inputs are outmoded in today s global economy citation needed Schumpeter argued that industries must incessantly revolutionize the economic structure from within that is innovate with better or more effective processes and products as well as with market distribution such as the transition from the craft shop to factory He famously asserted that creative destruction is the essential fact about capitalism 33 Entrepreneurs continuously search for better ways to satisfy their consumer base with improved quality durability service and price searches which may come to fruition in innovation with advanced technologies and organizational strategies 34 A prime example of innovation involved the boom of Silicon Valley start ups out of the Stanford Industrial Park In 1957 dissatisfied employees of Shockley Semiconductor the company of Nobel laureate and co inventor of the transistor William Shockley left to form an independent firm Fairchild Semiconductor After several years Fairchild developed into a formidable presence in the sector which Eventually these founders left to start their own companies based on their own unique ideas and then leading employees started their own firms Over the next 20 years this process resulted in the momentous startup company explosion of information technology firms citation needed Silicon Valley began as 65 new enterprises born out of Shockley s eight former employees 35 Another example involves business incubators a phenomenon introduced in 1959 and subsequently nurtured by governments around the world Such incubators located close to knowledge clusters mostly research based like universities or other government excellence centres aim primarily to channel generated knowledge to applied innovation outcomes in order to stimulate regional or national economic growth 36 In the 21st century the Islamic State IS movement while decrying religious innovations has innovated in military tactics recruitment ideology and geopolitical activity 37 38 Process of innovation EditAn early model included only three phases of innovation According to Utterback 1971 these phases were 1 idea generation 2 problem solving and 3 implementation 39 By the time one completed phase 2 one had an invention but until one got it to the point of having an economic impact one didn t have an innovation Diffusion wasn t considered a phase of innovation Focus at this point in time was on manufacturing All organizations can innovate including for example hospitals universities and local governments 40 The organization requires a proper structure in order to retain competitive advantage Organizations can also improve profits and performance by providing work groups opportunities and resources to innovate in addition to employee s core job tasks 41 Executives and managers have been advised to break away from traditional ways of thinking and use change to their advantage 42 The world of work is changing with the increased use of technology and companies are becoming increasingly competitive Companies will have to downsize or reengineer their operations to remain competitive This will affect employment as businesses will be forced to reduce the number of people employed while accomplishing the same amount of work if not more 43 For instance former Mayor Martin O Malley pushed the City of Baltimore to use CitiStat a performance measurement data and management system that allows city officials to maintain statistics on several areas from crime trends to the conditions of potholes This system aided in better evaluation of policies and procedures with accountability and efficiency in terms of time and money In its first year CitiStat saved the city 13 2 million 44 Even mass transit systems have innovated with hybrid bus fleets to real time tracking at bus stands In addition the growing use of mobile data terminals in vehicles that serve as communication hubs between vehicles and a control center automatically send data on location passenger counts engine performance mileage and other information This tool helps to deliver and manage transportation systems 45 Still other innovative strategies include hospitals digitizing medical information in electronic medical records For example the U S Department of Housing and Urban Development s HOPE VI initiatives turned severely distressed public housing in urban areas into revitalized mixed income environments the Harlem Children s Zone used a community based approach to educate local area children and the Environmental Protection Agency s brownfield grants facilitates turning over brownfields for environmental protection green spaces community and commercial development Further information Demand articulation Sources of innovation Edit Innovation may occur due to effort from a range of different agents by chance or as a result of a major system failure According to Peter F Drucker the general sources of innovations are changes in industry structure in market structure in local and global demographics in human perception in the amount of available scientific knowledge etc 12 Original model of three phases of the process of Technological Change In the simplest linear model of innovation the traditionally recognized source is manufacturer innovation This is where an agent person or business innovates in order to sell the innovation Specifically R amp D measurement is the commonly used input for innovation in particular in the business sector named Business Expenditure on R amp D BERD that grew over the years on the expenses of the declining R amp D invested by the public sector 46 Another source of innovation only now becoming widely recognized is end user innovation This is where an agent person or company develops an innovation for their own personal or in house use because existing products do not meet their needs MIT economist Eric von Hippel has identified end user innovation as by far the most important and critical in his classic book on the subject The Sources of Innovation 47 The robotics engineer Joseph F Engelberger asserts that innovations require only three things a recognized need competent people with relevant technology financial support 48 The Kline chain linked model of innovation 49 places emphasis on potential market needs as drivers of the innovation process and describes the complex and often iterative feedback loops between marketing design manufacturing and R amp D Facilitating innovation Edit Innovation by businesses is achieved in many ways with much attention now given to formal research and development R amp D for breakthrough innovations R amp D help spur on patents and other scientific innovations that leads to productive growth in such areas as industry medicine engineering and government 50 Yet innovations can be developed by less formal on the job modifications of practice through exchange and combination of professional experience and by many other routes Investigation of relationship between the concepts of innovation and technology transfer revealed overlap 51 The more radical and revolutionary innovations tend to emerge from R amp D while more incremental innovations may emerge from practice but there are many exceptions to each of these trends Information technology and changing business processes and management style can produce a work climate favorable to innovation 52 For example the software tool company Atlassian conducts quarterly ShipIt Days in which employees may work on anything related to the company s products 53 Google employees work on self directed projects for 20 of their time known as Innovation Time Off Both companies cite these bottom up processes as major sources for new products and features An important innovation factor includes customers buying products or using services As a result organizations may incorporate users in focus groups user centered approach work closely with so called lead users lead user approach or users might adapt their products themselves The lead user method focuses on idea generation based on leading users to develop breakthrough innovations U STIR a project to innovate Europe s surface transportation system employs such workshops 54 Regarding this user innovation a great deal of innovation is done by those actually implementing and using technologies and products as part of their normal activities Sometimes user innovators may become entrepreneurs selling their product they may choose to trade their innovation in exchange for other innovations or they may be adopted by their suppliers Nowadays they may also choose to freely reveal their innovations using methods like open source In such networks of innovation the users or communities of users can further develop technologies and reinvent their social meaning 55 56 One technique for innovating a solution to an identified problem is to actually attempt an experiment with many possible solutions 57 This technique was famously used by Thomas Edison s laboratory to find a version of the incandescent light bulb economically viable for home use which involved searching through thousands of possible filament designs before settling on carbonized bamboo This technique is sometimes used in pharmaceutical drug discovery Thousands of chemical compounds are subjected to high throughput screening to see if they have any activity against a target molecule which has been identified as biologically significant to a disease Promising compounds can then be studied modified to improve efficacy and reduce side effects evaluated for cost of manufacture and if successful turned into treatments The related technique of A B testing is often used to help optimize the design of web sites and mobile apps This is used by major sites such as amazon com Facebook Google and Netflix 58 Procter amp Gamble uses computer simulated products and online user panels to conduct larger numbers of experiments to guide the design packaging and shelf placement of consumer products 59 Capital One uses this technique to drive credit card marketing offers 58 Goals and failures Edit Programs of organizational innovation are typically tightly linked to organizational goals and growth objectives to the business plan and to market competitive positioning Davila et al 2006 note Companies cannot grow through cost reduction and reengineering alone Innovation is the key element in providing aggressive top line growth and for increasing bottom line results 60 One survey across a large number of manufacturing and services organizations found that systematic programs of organizational innovation are most frequently driven by improved quality creation of new markets extension of the product range reduced labor costs improved production processes reduced materials cost reduced environmental damage replacement of products services reduced energy consumption and conformance to regulations 60 Different goals are appropriate for different products processes and services According to Andrea Vaona and Mario Pianta some example goals of innovation could stem from two different types of technological strategies technological competitiveness and active price competitiveness Technological competitiveness may have a tendency to be pursued by smaller firms and can be characterized as efforts for market oriented innovation such as a strategy of market expansion and patenting activity 61 On the other hand active price competitiveness is geared toward process innovations that lead to efficiency and flexibility which tend to be pursued by large established firms as they seek to expand their market foothold 61 Whether innovation goals are successfully achieved or otherwise depends greatly on the environment prevailing in the organization 62 Failure of organizational innovation programs has been widely researched and the causes vary considerably Some causes are external to the organization and outside its influence of control Others are internal and ultimately within the control of the organization Internal causes of failure can be divided into causes associated with the cultural infrastructure and causes associated with the innovation process itself David O Sullivan wrote that causes of failure within the innovation process in most organizations can be distilled into five types poor goal definition poor alignment of actions to goals poor participation in teams poor monitoring of results and poor communication and access to information 63 Diffusion Edit Main article Diffusion of innovations Diffusion of innovation research was first started in 1903 by seminal researcher Gabriel Tarde who first plotted the S shaped diffusion curve Tarde defined the innovation decision process as a series of steps that include 64 knowledge forming an attitude a decision to adopt or reject implementation and use confirmation of the decisionOnce innovation occurs innovations may be spread from the innovator to other individuals and groups This process has been proposed that the lifecycle of innovations can be described using the s curve or diffusion curve The s curve maps growth of revenue or productivity against time In the early stage of a particular innovation growth is relatively slow as the new product establishes itself At some point customers begin to demand and the product growth increases more rapidly New incremental innovations or changes to the product allow growth to continue Towards the end of its lifecycle growth slows and may even begin to decline In the later stages no amount of new investment in that product will yield a normal rate of return The s curve derives from an assumption that new products are likely to have product life i e a start up phase a rapid increase in revenue and eventual decline In fact the great majority of innovations never get off the bottom of the curve and never produce normal returns Innovative companies will typically be working on new innovations that will eventually replace older ones Successive s curves will come along to replace older ones and continue to drive growth upwards In the figure above the first curve shows a current technology The second shows an emerging technology that currently yields lower growth but will eventually overtake current technology and lead to even greater levels of growth The length of life will depend on many factors 65 Measures EditMeasuring innovation is inherently difficult as it implies commensurability so that comparisons can be made in quantitative terms Innovation however is by definition novelty Comparisons are thus often meaningless across products or service 66 Nevertheless Edison et al 67 in their review of literature on innovation management found 232 innovation metrics They categorized these measures along five dimensions i e inputs to the innovation process output from the innovation process effect of the innovation output measures to access the activities in an innovation process and availability of factors that facilitate such a process 67 There are two different types of measures for innovation the organizational level and the political level Organizational level Edit The measure of innovation at the organizational level relates to individuals team level assessments and private companies from the smallest to the largest company Measure of innovation for organizations can be conducted by surveys workshops consultants or internal benchmarking There is today no established general way to measure organizational innovation Corporate measurements are generally structured around balanced scorecards which cover several aspects of innovation such as business measures related to finances innovation process efficiency employees contribution and motivation as well benefits for customers Measured values will vary widely between businesses covering for example new product revenue spending in R amp D time to market customer and employee perception amp satisfaction number of patents additional sales resulting from past innovations 68 Political level Edit For the political level measures of innovation are more focused on a country or region competitive advantage through innovation In this context organizational capabilities can be evaluated through various evaluation frameworks such as those of the European Foundation for Quality Management The OECD Oslo Manual 1992 suggests standard guidelines on measuring technological product and process innovation Some people consider the Oslo Manual complementary to the Frascati Manual from 1963 The new Oslo Manual from 2018 takes a wider perspective to innovation and includes marketing and organizational innovation These standards are used for example in the European Community Innovation Surveys 69 Other ways of measuring innovation have traditionally been expenditure for example investment in R amp D Research and Development as percentage of GNP Gross National Product Whether this is a good measurement of innovation has been widely discussed and the Oslo Manual has incorporated some of the critique against earlier methods of measuring The traditional methods of measuring still inform many policy decisions The EU Lisbon Strategy has set as a goal that their average expenditure on R amp D should be 3 of GDP 70 Indicators Edit Many scholars claim that there is a great bias towards the science and technology mode S amp T mode or STI mode while the learning by doing using and interacting mode DUI mode is ignored and measurements and research about it rarely done For example an institution may be high tech with the latest equipment but lacks crucial doing using and interacting tasks important for innovation 71 A common industry view unsupported by empirical evidence is that comparative cost effectiveness research is a form of price control which reduces returns to industry and thus limits R amp D expenditure stifles future innovation and compromises new products access to markets 72 Some academics claim cost effectiveness research is a valuable value based measure of innovation which accords truly significant therapeutic advances i e providing health gain higher prices than free market mechanisms 73 Such value based pricing has been viewed as a means of indicating to industry the type of innovation that should be rewarded from the public purse 74 An Australian academic developed the case that national comparative cost effectiveness analysis systems should be viewed as measuring health innovation as an evidence based policy concept for valuing innovation distinct from valuing through competitive markets a method which requires strong anti trust laws to be effective on the basis that both methods of assessing pharmaceutical innovations are mentioned in annex 2C 1 of the Australia United States Free Trade Agreement 75 76 77 Indices Edit Several indices attempt to measure innovation and rank entities based on these measures such as Bloomberg Innovation Index Bogota Manual 78 similar to the Oslo Manual is focused on Latin America and the Caribbean countries citation needed Creative Class developed by Richard Florida citation needed EIU Innovation Ranking 79 Global Competitiveness Report Global Innovation Index GII by INSEAD 80 Information Technology and Innovation Foundation ITIF Index Innovation 360 From the World Bank Aggregates innovation indicators and more from a number of different public sources Innovation Capacity Index ICI published by a large number of international professors working in a collaborative fashion The top scorers of ICI 2009 2010 were 1 Sweden 82 2 2 Finland 77 8 and 3 United States 77 5 81 Innovation Index developed by the Indiana Business Research Center to measure innovation capacity at the county or regional level in the United States 82 Innovation Union Scoreboard developed by the European Union innovationsindikator for Germany developed by the Federation of German Industries Bundesverband der Deutschen Industrie in 2005 83 INSEAD Innovation Efficacy Index 84 International Innovation Index produced jointly by The Boston Consulting Group the National Association of Manufacturers NAM and its nonpartisan research affiliate The Manufacturing Institute is a worldwide index measuring the level of innovation in a country NAM describes it as the largest and most comprehensive global index of its kind citation needed 85 Management Innovation Index Model for Managing Intangibility of Organizational Creativity Management Innovation Index 86 NYCEDC Innovation Index by the New York City Economic Development Corporation tracks New York City s transformation into a center for high tech innovation It measures innovation in the City s growing science and technology industries and is designed to capture the effect of innovation on the City s economy 87 OECD Oslo Manual is focused on North America Europe and other rich economies State Technology and Science Index developed by the Milken Institute is a U S wide benchmark to measure the science and technology capabilities that furnish high paying jobs based around key components 88 World Competitiveness Scoreboard 89 Rankings Edit Common areas of focus include high tech companies manufacturing patents post secondary education research and development and research personnel The left ranking of the top 10 countries below is based on the 2020 Bloomberg Innovation Index 90 However studies may vary widely for example the Global Innovation Index 2016 ranks Switzerland as number one wherein countries like South Korea Japan and China do not even make the top ten 91 Bloomberg Innovation Index 2021 92 Rank Country Territory Index1 South Korea 90 492 Singapore 87 763 Switzerland 87 604 Germany 86 455 Sweden 86 396 Denmark 86 127 Israel 85 508 Finland 84 869 Netherlands 84 2910 Austria 83 93Global Innovation Index 2020 93 Rank Country Territory Index1 Switzerland 66 082 Sweden 62 473 United States 60 564 United Kingdom 59 785 Netherlands 58 766 Denmark 57 537 Finland 57 028 Singapore 56 619 Germany 56 5510 South Korea 56 11Innovation Indicator 2020 94 Rank Country Territory Index1 Switzerland 742 Singapore 703 Belgium 604 Germany 545 Sweden 546 Denmark 527 Ireland 528 United States 529 Austria 5010 Finland 50 Rate of innovation Edit In 2005 Jonathan Huebner a physicist working at the Pentagon s Naval Air Warfare Center argued on the basis of both U S patents and world technological breakthroughs per capita that the rate of human technological innovation peaked in 1873 and has been slowing ever since 95 96 In his article he asked Will the level of technology reach a maximum and then decline as in the Dark Ages 95 In later comments to New Scientist magazine Huebner clarified that while he believed that we will reach a rate of innovation in 2024 equivalent to that of the Dark Ages he was not predicting the reoccurrence of the Dark Ages themselves 97 John Smart criticized the claim and asserted that technological singularity researcher Ray Kurzweil and others showed a clear trend of acceleration not deceleration when it came to innovations 98 The foundation replied to Huebner the journal his article was published in citing Second Life and eHarmony as proof of accelerating innovation to which Huebner replied 99 However Huebner s findings were confirmed in 2010 with U S Patent Office data 100 and in a 2012 paper 101 Innovation and development Edit The theme of innovation as a tool to disrupting patterns of poverty has gained momentum since the mid 2000s among major international development actors such as DFID 102 Gates Foundation s use of the Grand Challenge funding model 103 and USAID s Global Development Lab 104 Networks have been established to support innovation in development such as D Lab at MIT 105 Investment funds have been established to identify and catalyze innovations in developing countries such as DFID s Global Innovation Fund 106 Human Development Innovation Fund 107 and in partnership with USAID the Global Development Innovation Ventures 108 The United States has to continue to play on the same level of playing field as its competitors in federal research This can be achieved being strategically innovative through investment in basic research and science 109 Government policies EditGiven its effects on efficiency quality of life and productive growth innovation is a key driver in improving society and economy Consequently policymakers have worked to develop environments that will foster innovation from funding research and development to establishing regulations that do not inhibit innovation funding the development of innovation clusters and using public purchasing and standardisation to pull innovation through For instance experts are advocating that the U S federal government launch a National Infrastructure Foundation a nimble collaborative strategic intervention organization that will house innovations programs from fragmented silos under one entity inform federal officials on innovation performance metrics strengthen industry university partnerships and support innovation economic development initiatives especially to strengthen regional clusters Because clusters are the geographic incubators of innovative products and processes a cluster development grant program would also be targeted for implementation By focusing on innovating in such areas as precision manufacturing information technology and clean energy other areas of national concern would be tackled including government debt carbon footprint and oil dependence 50 The U S Economic Development Administration understand this reality in their continued Regional Innovation Clusters initiative 110 The United States also has to integrate her supply chain and improve her applies research capability and downstream process innovation 111 Many countries recognize the importance of innovation including Japan s Ministry of Education Culture Sports Science and Technology MEXT 112 Germany s Federal Ministry of Education and Research 113 and the Ministry of Science and Technology in the People s Republic of China Russia s innovation programme is the Medvedev modernisation programme which aims to create a diversified economy based on high technology and innovation The Government of Western Australia has established a number of innovation incentives for government departments Landgate was the first Western Australian government agency to establish its Innovation Program 114 Some regions have taken a proactive role in supporting innovation Many regional governments are setting up innovation agencies to strengthen regional capabilities 115 In 2009 the municipality of Medellin Colombia created Ruta N to transform the city into a knowledge city 116 See also Edit Look up innovation in Wiktionary the free dictionary Communities of innovation Creative problem solving Diffusion anthropology Ecoinnovation Hype cycle Induced innovation Information revolution Innovation leadership Innovation system International Association of Innovation Professionals ISO 56000 Knowledge economy Obsolescence Open Innovation Open Innovations Forum and Technology Show Outcome Driven Innovation Participatory design Product innovation Pro innovation bias Sustainable Development Goals Agenda 9 Technology Life Cycle Technological innovation system Theories of technology Timeline of historic inventions Toolkits for User Innovation UNDP Innovation Facility User Innovation Virtual product developmentReferences Edit Schumpeter Joseph A 1883 1950 1983 The theory of economic development an inquiry into profits capital credit interest and the business cycle Opie Redvers Elliott John E New Brunswick New Jersey ISBN 0 87855 698 2 OCLC 8493721 a href Template Cite book html title Template Cite book cite book a CS1 maint multiple names authors list link ISO 56000 2020 en Innovation management Fundamentals and vocabulary ISO 2020 Lijster Thijs ed 2018 The Future of the New Artistic Innovation in Times of Social Acceleration Arts in society Valiz ISBN 9789492095589 Retrieved 10 September 2020 Bhasin Kim 2 April 2012 This Is The Difference Between Invention And Innovation Business Insider What s the Difference Between Invention and Innovation Forbes 10 September 2015 Schumpeter Joseph Alois 1939 Business Cycles Vol 1 p 84 Innovation is possible without anything we should identify as invention and invention does not necessarily induce innovation a b c Edison H Ali N B amp Torkar R 2014 Towards innovation measurement in the software industry Journal of Systems and Software 86 5 1390 407 Baregheh Anahita Rowley Jennifer Sambrook Sally 4 September 2009 Towards a multidisciplinary definition of innovation Management Decision 47 8 1323 1339 doi 10 1108 00251740910984578 ISSN 0025 1747 Rogers Everett M 2003 Diffusion of innovations 5th ed New York Free Press ISBN 0 7432 2209 1 OCLC 52030797 Innovation in American Government Challenges Opportunities and Dilemmas Brookings Inst Pr 1 June 1997 ISBN 9780815703587 Hughes D J Lee A Tian A W Newman A Legood A 2018 Leadership creativity and innovation A critical review and practical recommendations PDF The Leadership Quarterly 29 5 549 569 doi 10 1016 j leaqua 2018 03 001 hdl 10871 32289 S2CID 149671044 Archived PDF from the original on 24 December 2019 a b Drucker Peter F August 2002 The Discipline of Innovation Harvard Business Review Retrieved 13 October 2013 Amabile Teresa M Pratt Michael G 2016 The dynamic componential model of creativity and innovation in organizations Making progress making meaning Research in Organizational Behavior 36 157 183 doi 10 1016 j riob 2016 10 001 Blank Steve 1 February 2019 McKinsey s Three Horizons Model Defined Innovation for Years Here s Why It No Longer Applies Harvard Business Review ISSN 0017 8012 Retrieved 16 August 2020 Satell Greg 21 June 2017 The 4 Types of Innovation and the Problems They Solve Harvard Business Review ISSN 0017 8012 Retrieved 16 August 2020 Bower Joseph L Christensen Clayton M 1 January 1995 Disruptive Technologies Catching the Wave Harvard Business Review No January February 1995 ISSN 0017 8012 Retrieved 16 August 2020 Christensen Clayton M Raynor Michael E McDonald Rory 1 December 2015 What Is Disruptive Innovation Harvard Business Review No December 2015 ISSN 0017 8012 Retrieved 16 August 2020 Disruptive Innovations Christensen Institute Retrieved 16 August 2020 Christensen Clayton amp Overdorf Michael 2000 Meeting the Challenge of Disruptive Change Harvard Business Review a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link a b Iansiti Marco Lakhani Karim R January 2017 The Truth About Blockchain Harvard Business Review Harvard University Retrieved 17 January 2017 a foundational technology It has the potential to create new foundations for our economic and social systems a b c d Henderson Rebecca M Clark Kim B March 1990 Architectural Innovation The Reconfiguration of Existing Product Technologies and the Failure of Established Firms Administrative Science Quarterly 35 1 9 doi 10 2307 2393549 ISSN 0001 8392 JSTOR 2393549 Schiederig Tim Tietze Frank Herstatt Cornelius 22 February 2012 Green innovation in technology and innovation management an exploratory literature review R amp D Management 42 2 180 192 doi 10 1111 j 1467 9310 2011 00672 x ISSN 0033 6807 S2CID 153958119 Blok Vincent Lemmens Pieter 2015 The Emerging Concept of Responsible Innovation Three Reasons Why It Is Questionable and Calls for a Radical Transformation of the Concept of Innovation Responsible Innovation 2 Cham Springer International Publishing pp 19 35 doi 10 1007 978 3 319 17308 5 2 ISBN 978 3 319 17307 8 retrieved 17 September 2020 a b Amabile Teresa December 2017 In Pursuit of Everyday Creativity PDF Journal of Creative Behavior 2 3 via Harvard Business School a b c d Godin Benoit 2015 Innovation contested the idea of innovation over the centuries New York New York ISBN 978 1 315 85560 8 OCLC 903958473 Politics II as cited by Benoit Godin 2015 Mazzaferro Alexander 2018 Such a Murmur Innovation Rebellion and Sovereignty in William Strachey s True Reportory Early American Literature 53 1 3 32 doi 10 1353 eal 2018 0001 S2CID 166005186 Mazzaferro Alexander McLean 2017 No newe enterprize Doctoral dissertation Thesis Camden New Jersey Rutgers University doi 10 7282 T38W3HFQ Retrieved 19 February 2019 Lepore Jill 23 June 2014 The Disruption Machine What the gospel of innovation gets wrong The New Yorker Retrieved 19 February 2019 The word innovate to make new used to have chiefly negative connotations it signified excessive novelty without purpose or end Edmund Burke called the French Revolution a revolt of innovation Federalists declared themselves to be enemies to innovation George Washington on his deathbed was said to have uttered these words Beware of innovation in politics Noah Webster warned in his dictionary in 1828 It is often dangerous to innovate on the customs of a nation Green Emma 20 June 2013 Innovation The History of a Buzzword The Atlantic Retrieved 19 February 2019 innovation Oxford English Dictionary Online ed Oxford University Press Subscription or participating institution membership required Godin Benoit 2019 The invention of technological innovation languages discourses and ideology in historical perspective Edward Elgar Publishing Cheltenham UK ISBN 978 1 78990 334 8 OCLC 1125747489 Schumpeter J A 1943 Capitalism Socialism and Democracy 6 ed Routledge pp 81 84 ISBN 978 0 415 10762 4 Heyne P Boettke P J and Prychitko D L 2010 The Economic Way of Thinking Prentice Hall 12th ed pp 163 317 18 Silicon Valley History amp Future Netvalley com Retrieved 14 March 2016 over the course of just 20 years a mere eight of Shockley s former employees gave forth 65 new enterprises which then went on to do the same The process is still going Rubin Tzameret H Aas Tor Helge Stead Andrew 1 July 2015 Knowledge flow in Technological Business Incubators Evidence from Australia and Israel Technovation 41 42 11 24 doi 10 1016 j technovation 2015 03 002 Hashim Ahmed S 2018 The Caliphate at War The Ideological Organisational and Military Innovations of Islamic State London Oxford University Press p 7 ISBN 9781849046435 Retrieved 8 February 2022 Though IS is not unique as an example of a violent nonstate actor I argue that IS has innovated in the fields of ideology organization war fighting and strategies of state formation Scott Ligon Gina Derrick Douglas C Harms Mackenzie 15 November 2017 Destruction Through Collaboration How Terrorists Work Together Toward Malevolent Innovation In Reiter Palmon Roni ed Team Creativity and Innovation New York Oxford University Press published 2017 ISBN 9780190695323 Retrieved 8 February 2022 As seen in recent advancements by the Islamic State in Iraq and Syria ISIS innovation from VEOs violent extremist organisations can also occur in recruiting marketing campaigns and fundraising efforts Utterback James 1971 The Process of Technological Innovation Within the Firm Academy of Management Journal 14 1 78 doi 10 2307 254712 JSTOR 254712 Salge T O Vera A 2009 Hospital innovativeness and organizational performance Evidence from English public acute care Health Care Management Review 34 1 54 67 doi 10 1097 01 HMR 0000342978 84307 80 PMID 19104264 West Michael A 2002 Sparkling Fountains or Stagnant Ponds An Integrative Model of Creativity and Innovation Implementation in Work Groups Applied Psychology 51 3 355 387 doi 10 1111 1464 0597 00951 MIT Sloan Management Review Spring 2002 How to identify and build New Businesses Anthony Scott D Johnson Mark W Sinfield Joseph V Altman Elizabeth J 2008 Innovator s Guide to Growth Putting Disruptive Innovation to Work Harvard Business School Press ISBN 978 1 59139 846 2 Perez T and Rushing R 2007 The CitiStat Model How Data Driven Government Can Increase Efficiency and Effectiveness Center for American Progress Report pp 1 18 Transportation Research Board 2007 Transit Cooperative Research Program TCRP Synthesis 70 Mobile Data Terminals pp 1 5 TCRP PDF H Rubin Tzameret 2015 The Achilles heel of a strong private knowledge sector evidence from Israel PDF The Journal of Innovation Impact 7 1 80 99 Archived PDF from the original on 24 December 2016 Von Hippel Eric 1988 The Sources of Innovation PDF Oxford University Press Archived from the original PDF on 12 October 2006 Retrieved 3 December 2015 Engelberger J F 1982 Robotics in practice Future capabilities Electronic Servicing amp Technology magazine Kline 1985 Research Invention Innovation and Production Models and Reality Report INN 1 March 1985 Mechanical Engineering Department Stanford University a b Mark M Katz B Rahman S and Warren D 2008 MetroPolicy Shaping A New Federal Partnership for a Metropolitan Nation Brookings Institution Metropolitan Policy Program Report pp 4 103 Dubickis M Gaile Sarkane E 2015 Perspectives on Innovation and Technology Transfer Procedia Social and Behavioral Sciences 213 965 970 doi 10 1016 j sbspro 2015 11 512 New Trends in Innovation Management Forbesindia com Forbes India Magazine Retrieved 14 March 2016 ShipIt Days Atlassian Retrieved 14 March 2016 U STIR U stir eu Archived from the original on 18 September 2011 Retrieved 7 September 2011 Tuomi I 2002 Networks of Innovation Oxford University Press Networks of Innovation Archived 5 November 2007 at the Wayback Machine Siltala R 2010 Innovativity and cooperative learning in business life and teaching PhD thesis University of Turku Forget The 10 000 Hour Rule Edison Bezos amp Zuckerberg Follow The 10 000 Experiment Rule Medium com 26 October 2017 Retrieved 16 October 2018 a b Why These Tech Companies Keep Running Thousands Of Failed Experiments Fast Company com 21 September 2016 Retrieved 16 October 2018 Simulation Advantage Bcgperspectives com 4 August 2010 Retrieved 16 October 2018 a b Davila T Epstein M J and Shelton R 2006 Making Innovation Work How to Manage It Measure It and Profit from It Upper Saddle River Wharton School Publishing a b Vaona Andrea Pianta Mario March 2008 Firm Size and Innovation in European Manufacturing Small Business Economics 30 3 283 299 doi 10 1007 s11187 006 9043 9 hdl 10419 3843 ISSN 0921 898X S2CID 153525567 Khan Arshad M Manopichetwattana V 1989 Innovative and Noninnovative Small Firms Types and Characteristics Management Science 35 5 597 606 doi 10 1287 mnsc 35 5 597 O Sullivan David 2002 Framework for Managing Development in the Networked Organisations Journal of Computers in Industry 47 1 77 88 doi 10 1016 S0166 3615 01 00135 X Tarde G 1903 The laws of imitation E Clews Parsons Trans New York H Holt amp Co Rogers E M 1962 Diffusion of Innovation New York NY Free Press The Oxford handbook of innovation Fagerberg Jan Mowery David C Nelson Richard R Oxford Oxford University Press 2005 ISBN 9780199264551 OCLC 56655392 a href Template Cite book html title Template Cite book cite book a CS1 maint others link a b Edison H Ali N B Torkar R 2013 Towards innovation measurement in the software industry Journal of Systems and Software 86 5 1390 1407 doi 10 1016 j jss 2013 01 013 via ResearchGate Davila Tony Marc J Epstein and Robert Shelton 2006 Making Innovation Work How to Manage It Measure It and Profit from It Upper Saddle River Wharton School Publishing OECD The Measurement of Scientific and Technological Activities Proposed Guidelines for Collecting and Interpreting Technological Innovation Data Oslo Manual 2nd edition DSTI OECD European Commission Eurostat Paris 31 December 1995 Industrial innovation Enterprise and Industry European Commission Archived from the original on 27 August 2011 Retrieved 7 September 2011 DEVELOPMENT OF INNOVATION European Journal of Natural History scientific magazine world science ru Retrieved 7 April 2021 Chalkidou K Tunis S Lopert R Rochaix L Sawicki P T Nasser M Xerri B 2009 Comparative effectiveness research and evidence based health policy Experience from four countries The Milbank Quarterly 87 2 339 67 doi 10 1111 j 1468 0009 2009 00560 x PMC 2881450 PMID 19523121 Roughead E Lopert R Sansom L 2007 Prices for innovative pharmaceutical products that provide health gain a comparison between Australia and the United States Value in Health 10 6 514 20 doi 10 1111 j 1524 4733 2007 00206 x PMID 17970935 Hughes B 2008 Payers Growing Influence on R amp D Decision Making Nature Reviews Drug Discovery 7 11 876 78 doi 10 1038 nrd2749 PMID 18974741 S2CID 10217053 Faunce T Bai J Nguyen D 2010 Impact of the Australia US Free Trade Agreement on Australian medicines regulation and prices Journal of Generic Medicines 7 1 18 29 doi 10 1057 jgm 2009 40 S2CID 154433476 Archived from the original on 16 April 2021 Faunce TA 2006 Global intellectual property protection of innovative pharmaceuticals Challenges for bioethics and health law in B Bennett and G Tomossy PDF Law anu edu au Globalization and Health Springer Archived from the original PDF on 14 April 2011 Retrieved 18 June 2009 Faunce T A 2007 Reference pricing for pharmaceuticals is the Australia United States Free Trade Agreement affecting Australia s Pharmaceutical Benefits Scheme Medical Journal of Australia 187 4 240 42 doi 10 5694 j 1326 5377 2007 tb01209 x PMID 17564579 S2CID 578533 Hernan Jaramillo Gustavo Lugones Monica Salazar March 2001 Bogota Manual Standardisation of Indicators of Technological Innovation in Latin American and Caribbean Countries Iberoamerican Network of Science and Technology Indicators RICYT Organisation of American States OAS CYTED PROGRAM COLCIENCIAS OCYT p 87 a href Template Cite web html title Template Cite web cite web a CS1 maint uses authors parameter link Social Innovation Index 2016 Economist Impact Perspectives Retrieved 7 April 2021 The INSEAD Global Innovation Index GII INSEAD 28 October 2013 Home page Innovation Capacity Index Tools Statsamerica org Retrieved 7 September 2011 Innovations Indikator retrieved 7 March 2017 The INSEAD Innovation Efficiency Inndex Technology Review February 2016 Adsule Anil 2015 INNOVATION LEADING THE WAY TO REVOLUTION PDF International Journal of Business and Administration Research Review 2 Issue 11 Archived PDF from the original on 1 August 2020 via Google scholar Kerle Ralph 2013 Model for Managing Intangibility of Organizational Creativity Management Innovation Index Encyclopedia of Creativity Invention Innovation and Entrepreneurship pp 1300 1307 doi 10 1007 978 1 4614 3858 8 35 ISBN 978 1 4614 3857 1 a href Template Cite book html title Template Cite book cite book a Missing or empty title help Innovation Index NYCEDC com Home page statetechandscience org The World Competitiveness Scoreboard 2014 PDF IMD org 2014 Archived PDF from the original on 30 June 2014 Germany Breaks Korea s Six Year Streak as Most Innovative Nation Bloomberg L P Retrieved 17 March 2021 a href Template Cite news html title Template Cite news cite news a CS1 maint url status link Infografik Schweiz bleibt globaler Innovationsfuhrer Statista Infografiken Statista In German Retrieved 25 November 2016 Jamrisko Michelle Lu Wei Tanzi Alexandre 3 February 2021 South Korea Leads World in Innovation as U S Exits Top Ten Bloomberg GII 2020 Report Global Innovation Index Retrieved 19 October 2020 innovations indikator 2020 PDF in German Bundesverband der Deutschen Industrie Fraunhofer ISI Zentrum fur Europaische Wirtschaftsforschung 2020 Archived PDF from the original on 8 April 2021 a b Huebner J 2005 A possible declining trend for worldwide innovation Technological Forecasting and Social Change 72 8 980 986 doi 10 1016 j techfore 2005 01 003 Hayden Thomas 7 July 2005 Science Wanna be an inventor Don t bother U S News amp World Report Archived from the original on 1 November 2013 Retrieved 10 June 2013 Adler Robert 2 July 2005 Entering a dark age of innovation New Scientist Retrieved 30 May 2013 Smart J 2005 Discussion of Huebner article Technological Forecasting and Social Change 72 8 988 995 doi 10 1016 j techfore 2005 07 001 Huebner Jonathan 2005 Response by the Authors Technological Forecasting and Social Change 72 8 995 1000 doi 10 1016 j techfore 2005 05 008 Strumsky D Lobo J Tainter J A 2010 Complexity and the productivity of innovation Systems Research and Behavioral Science 27 5 496 doi 10 1002 sres 1057 Gordon Robert J 2012 Is U S Economic Growth Over Faltering Innovation Confronts the Six Headwinds NBER Working Paper No 18315 doi 10 3386 w18315 Jonathan Wong Head of DFID s Innovation Hub DFID bloggers Government of the United Kingdom 24 September 2014 Retrieved 14 March 2016 Bill amp Melinda Gates Foundation and Grand Challenge Partners Commit to Innovation with New Investments in Breakthrough Science Bill amp Melinda Gates Foundation Gatesfoundation org 7 October 2014 Retrieved 14 March 2016 Global Development Lab U S Agency for International Development Usaid gov 5 August 2015 Retrieved 14 March 2016 International Development Innovation Network IDIN D Lab D lab mit edu Retrieved 14 March 2016 Global Innovation Fund International development funding Government of the United Kingdom Retrieved 14 March 2016 Human Development Innovation Fund HDIF Hdif tz org 14 August 2015 Retrieved 14 March 2016 USAID and DFID Announce Global Development Innovation Ventures to Invest in Breakthrough Solutions to World Poverty U S Agency for International Development Usaid gov 6 June 2013 Archived from the original on 4 May 2017 Retrieved 14 March 2016 StackPath industryweek com Retrieved 28 April 2020 U S Economic Development Administration Fiscal Year 2010 Annual Report PDF Eda gov Archived PDF from the original on 22 September 2011 Retrieved 14 March 2016 The American Way of Innovation and Its Deficiencies American Affairs Journal 20 May 2018 Retrieved 28 April 2020 Science and Technology MEXT Archived from the original on 5 September 2011 Retrieved 7 September 2011 BMBF Ministry Bmbf de Retrieved 7 September 2011 Home Landgate wa gov au Landgate Innovation Program Retrieved 14 March 2016 Morisson A amp Doussineau M 2019 Regional innovation governance and place based policies design implementation and implications Regional Studies Regional Science 6 1 101 116 https rsa tandfonline com doi full 10 1080 21681376 2019 1578257 Morisson Arnault 2018 Knowledge Gatekeepers and Path Development on the Knowledge Periphery The Case of Ruta N in Medellin Colombia Area Development and Policy 4 98 115 doi 10 1080 23792949 2018 1538702 S2CID 169689111 Further reading EditBloom Nicholas Charles I Jones John Van Reenen and Michael Webb 2020 Are Ideas Getting Harder to Find American Economic Review 110 4 1104 44 Steven Johnson 2011 Where Good Ideas Come From Riverhead Books ISBN 9781594485381 Sonenshein Scott 2017 Stretch Unlock the Power of Less and Achieve More Than You Ever Imagined Harper Business ISBN 978 0062457226 Retrieved from https en wikipedia org w index php title Innovation amp oldid 1151440170, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.