fbpx
Wikipedia

Salmonidae

Salmonidae (/sælˈmɒnɪd/, lit. "salmon-like") is a family of ray-finned fish that constitutes the only currently extant family in the order Salmoniformes (/sælˈmɒnɪfɔːrmz/, lit. "salmon-shaped"), consisting of 11 extant genera and over 200 species collectively known as "salmonids". The family includes salmon (both Atlantic and Pacific species), trout (both ocean-going and landlocked), char, graylings, freshwater whitefishes, taimens and lenoks, all coldwater mid-level predatory fish that inhabit the subarctic and cool temperate waters of the Northern Hemisphere. The Atlantic salmon (Salmo salar), whose Latin name became that of its genus Salmo, is also the eponym of the family and order names.

Salmonidae
Temporal range: Upper Cretaceous–Recent[1]
Chinook salmon (Oncorhynchus tschawytscha)
Scientific classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Class: Actinopterygii
Superorder: Protacanthopterygii
Order: Salmoniformes
Bleeker, 1859
Family: Salmonidae
G. Cuvier, 1816
Type species
Salmo
Genera
(see text)

Salmonids have a relatively primitive appearance among teleost fish, with the pelvic fins being placed far back, and an adipose fin towards the rear of the back. They have slender bodies with rounded scales and forked tail fins, and their mouths contain a single row of sharp teeth.[2] Although the smallest salmonid species is just 13 cm (5.1 in) long for adults, most salmonids are much larger, with the largest reaching 2 m (6 ft 7 in).[1]

All salmonids are migratory fish that spawn in the shallow gravel beds of freshwater headstreams, spend the growing juvenile years in rivers, creeks, small lakes and wetlands, but migrate downstream upon maturity and spend most of their adult lives at much larger waterbodies. Many salmonid species are euryhaline and migrate to the sea or brackish estuaries as soon as they approach adulthood, returning to the upper streams only to reproduce. Such sea-run life cycle is described as anadromous, and other freshwater salmonids that migrate purely between lakes and rivers are considered potamodromous. Salmonids are carnivorous predators of the middle food chain, feeding on smaller fish, crustaceans, aquatic insects and larvae, tadpoles and sometimes fish eggs (even those of their own kind),[2] and in turn being preyed upon by larger predators. Many species of salmonids are thus considered keystone organisms important for both freshwater and terrestrial ecosystems due to the biomass transfer provided by their mass migration from oceanic to inland waterbodies.

Evolution edit

Current salmonids comprise three lineages, taxonomically treated as subfamilies: Coregoninae (freshwater whitefishes), Thymallinae (graylings), and Salmoninae (trout, salmon, char, taimens and lenoks). Generally, all three lineages are accepted to allocate a suite of derived traits indicating a monophyletic group.[3]

The Salmonidae first appear in the fossil record in the Middle Eocene with Eosalmo driftwoodensis, which was first described from fossils found at Driftwood Creek, central British Columbia. This genus shares traits found in all three subfamily lineages. Hence, E. driftwoodensis is an archaic salmonid, representing an important stage in salmonid evolution.[3]

A gap appears in the salmonine fossil record after E. driftwoodensis until about 7 million years ago (mya), in the Late Miocene, when trout-like fossils appear in Idaho, in the Clarkia Lake beds.[4] Several of these species appear to be Oncorhynchus — the current genus for Pacific salmon and Pacific trout. The presence of these species so far inland established that Oncorhynchus was not only present in the Pacific drainages before the beginning of the Pliocene (~5–6 mya), but also that rainbow and cutthroat trout, and Pacific salmon lineages had diverged before the beginning of the Pliocene. Consequently, the split between Oncorhynchus and Salmo (Atlantic salmon and European trout) must have occurred well before the Pliocene. Suggestions have gone back as far as the Early Miocene (about 20 mya).[3][5]

Genetics edit

 
Oncorhynchus mykiss maturing from eggs.

Based on the most current evidence, salmonids diverged from the rest of teleost fish no later than 88 million years ago, during the late Cretaceous. This divergence was marked by a whole-genome duplication event in the ancestral salmonid, where the diploid ancestor became tetraploid.[6][7] This duplication is the fourth of its kind to happen in the evolutionary lineage of the salmonids, with two having occurred commonly to all bony vertebrates, and another specifically in the teleost fishes.[7]

Extant salmonids all show evidence of partial tetraploidy, as studies show the genome has undergone selection to regain a diploid state. Work done in the rainbow trout (Onchorhynchus mykiss) has shown that the genome is still partially-tetraploid. Around half of the duplicated protein-coding genes have been deleted, but all apparent miRNA sequences still show full duplication, with potential to influence regulation of the rainbow trout's genome. This pattern of partial tetraploidy is thought to be reflected in the rest of extant salmonids.[8]

The first fossil species representing a true salmonid fish (E. driftwoodensis) does not appear until the middle Eocene.[9] This fossil already displays traits associated with extant salmonids, but as the genome of E. driftwoodensis cannot be sequenced, it cannot be confirmed if polyploidy was present in this animal at this point in time. This fossil is also significantly younger than the proposed salmonid divergence from the rest of the teleost fishes, and is the earliest confirmed salmonid currently known. This means that the salmonids have a ghost lineage of approximately 33 million years.

Given a lack of earlier transition fossils, and the inability to extract genomic data from specimens other than extant species, the dating of the whole-genome duplication event in salmonids was historically a very broad categorization of times, ranging from 25 to 100 million years in age.[8] New advances in calibrated relaxed molecular clock analyses have allowed for a closer examination of the salmonid genome, and has allowed for a more precise dating of the whole-genome duplication of the group, that places the latest possible date for the event at 88 million years ago.[7]

This more precise dating and examination of the salmonid whole-genome duplication event has allowed more speculation on the radiation of species within the group. Historically, the whole-genome duplication event was thought to be the reason for the variation within Salmonidae. Current evidence done with molecular clock analyses revealed that much of the speciation of the group occurred during periods of intense climate change associated with the last ice ages, with especially high speciation rates being observed in salmonids that developed an anadromous lifestyle.[7]

Classification edit

Together with the closely related orders Esociformes (pikes and mudminnows), Osmeriformes (true smelts) and Argentiniformes (marine smelts and barreleyes), Salmoniformes comprise the superorder Protacanthopterygii.

The only extant family within Salmoniformes, Salmonidae, is divided into three subfamilies and around 10 genera containing about 220 species. The concepts of the number of species recognised vary among researchers and authorities; the numbers presented below represent the higher estimates of diversity:[1]

Phylogeny of Salmonidae[10][11]

Order Salmoniformes

Hybrid crossbreeding edit

The following table shows results of hybrid crossbreeding combination in Salmonidae.[12]

Crossbreeding
male
Salvelinus Oncorhynchus Salmo
leucomaenis
(white-spotted char)
fontinalis
(Brook trout)
mykiss
(Rainbow trout)
masou masou
(masu salmon)
masou ishikawae
(Amago Salmon)
gorbuscha
(pink salmon)
nerka
(Sockeye salmon)
keta
(chum salmon)
kisutsh
(coho salmon)
tshawytscha
(chinook salmon)
trutta
(Brown trout)
salar
(Atlantic Salmon)
female
(Salvelinus) leucomaenis
(white-spotted char)
- O X O O X X O
fontinalis
(Brook trout)
O - X O O X X O X X
(Oncorhynchus) mykiss
(Rainbow trout)
O O - O O O X X X X X
masou masou
(masu salmon)
O X X - O X X O O X
masou ishikawae
(Amago Salmon)
O O X O - X O
gorbuscha
(pink salmon)
X - O O O
nerka
(Sockeye salmon)
X X X X X O - O O O X
keta
(chum salmon)
X X X X O O - O X X
kisutsh
(coho salmon)
X X O O X - O X X
tshawytscha
(chinook salmon)
O O O X O -
Salmo trutta
(Brown trout)
O O X O O X X - O
salar
(Atlantic Salmon)
O X X X O -

note :- : The identical kind, O : (survivability), X : (Fatality)

References edit

  1. ^ a b c Froese, Rainer, and Daniel Pauly, eds. (2008). "Salmonidae" in FishBase. December 2008 version.
  2. ^ a b McDowell, Robert M. (1998). Paxton, J.R.; Eschmeyer, W.N. (eds.). Encyclopedia of Fishes. San Diego: Academic Press. pp. 114–116. ISBN 978-0-12-547665-2.
  3. ^ a b c McPhail, J.D.; Strouder, D.J. (1997). "Pacific Salmon and Their Ecosystems: Status and Future Options". The Origin and Speciation of Oncorhynchus. New York, New York: Chapman & Hall.
  4. ^ Smiley, Charles J. (PDF). Association for the Advancement of Science: Pacific Division. Archived from the original (PDF) on August 4, 2004. Retrieved August 8, 2006.
  5. ^ Montgomery, David R. (2000). (PDF). Department of Geological Sciences, University of Washington. Archived from the original (PDF) on September 1, 2006. Retrieved August 8, 2006.
  6. ^ Allendorf, Fred W.; Thorgaard, Gary H. (1984). "Tetraploidy and the Evolution of Salmonid Fishes". Evolutionary Genetics of Fishes. pp. 1–53. doi:10.1007/978-1-4684-4652-4_1. ISBN 978-1-4684-4654-8.
  7. ^ a b c d MacQueen, D. J.; Johnston, I. A. (2014). "A well-constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification". Proceedings of the Royal Society B: Biological Sciences. 281 (1778): 20132881. doi:10.1098/rspb.2013.2881. PMC 3906940. PMID 24452024.
  8. ^ a b Berthelot, Camille; Brunet, Frédéric; Chalopin, Domitille; Juanchich, Amélie; Bernard, Maria; Noël, Benjamin; Bento, Pascal; Da Silva, Corinne; Labadie, Karine; Alberti, Adriana; Aury, Jean-Marc; Louis, Alexandra; Dehais, Patrice; Bardou, Philippe; Montfort, Jérôme; Klopp, Christophe; Cabau, Cédric; Gaspin, Christine; Thorgaard, Gary H.; Boussaha, Mekki; Quillet, Edwige; Guyomard, René; Galiana, Delphine; Bobe, Julien; Volff, Jean-Nicolas; Genêt, Carine; Wincker, Patrick; Jaillon, Olivier; Crollius, Hugues Roest; Guiguen, Yann (2014). "The rainbow trout genome provides novel insights into evolution after whole-genome duplication in vertebrates". Nature Communications. 5: 3657. Bibcode:2014NatCo...5.3657B. doi:10.1038/ncomms4657. PMC 4071752. PMID 24755649.
  9. ^ Zhivotovsky, L. A. (2015). "Genetic history of salmonid fishes of the genus Oncorhynchus". Russian Journal of Genetics. 51 (5): 491–505. doi:10.1134/s1022795415050105. PMID 26137638. S2CID 13487086.
  10. ^ Crête-Lafrenière, Alexis; Weir, Laura K.; Bernatchez, Louis (2012). "Framing the Salmonidae Family Phylogenetic Portrait: A More Complete Picture from Increased Taxon Sampling". PLOS ONE. 7 (10): e46662. Bibcode:2012PLoSO...746662C. doi:10.1371/journal.pone.0046662. PMC 3465342. PMID 23071608.
  11. ^ Shedko, S. V.; Miroshnichenko, I. L.; Nemkova, G. A. (2013). "Phylogeny of salmonids (salmoniformes: Salmonidae) and its molecular dating: Analysis of mtDNA data". Russian Journal of Genetics. 49 (6): 623–637. doi:10.1134/S1022795413060112. PMID 24450195. S2CID 17706105.
  12. ^ Ito, Daisuke; Fujiwara, Atushi; Abe, Syuiti (2006). "Hybrid Inviability and Chromosome Abnormality in Salmonid Fish". The Journal of Animal Genetics. 34: 65–70. doi:10.5924/abgri2000.34.65.

Further reading edit

  • Behnke, Robert J. Trout and Salmon of North America, Illustrated by Joseph R. Tomelleri. 1st Chanticleer Press ed. New York: The Free Press, 2002. ISBN 0-7432-2220-2
  • Dushkina, L.A. (January 1994). "Farming of Salmonids in Russia". Aquaculture Research. 25 (1): 121–126. doi:10.1111/j.1365-2109.1994.tb00672.x.
  • Froese, Rainer, and Daniel Pauly, eds. (2004). "Salmonidae" in FishBase. October 2004 version.
  • "Salmonidae". Integrated Taxonomic Information System. Retrieved December 12, 2004.
  • Froese, Rainer, and Daniel Pauly, eds. (2004). "Salmoniformes" in FishBase. October 2004 version.
  • Sepkoski, Jack (2002). . Bulletins of American Paleontology. 364: 560. Archived from the original on July 23, 2011. Retrieved May 17, 2011.

salmonidae, salmon, like, family, finned, fish, that, constitutes, only, currently, extant, family, order, salmoniformes, ɔːr, salmon, shaped, consisting, extant, genera, over, species, collectively, known, salmonids, family, includes, salmon, both, atlantic, . Salmonidae s ae l ˈ m ɒ n ɪ d iː lit salmon like is a family of ray finned fish that constitutes the only currently extant family in the order Salmoniformes s ae l ˈ m ɒ n ɪ f ɔːr m iː z lit salmon shaped consisting of 11 extant genera and over 200 species collectively known as salmonids The family includes salmon both Atlantic and Pacific species trout both ocean going and landlocked char graylings freshwater whitefishes taimens and lenoks all coldwater mid level predatory fish that inhabit the subarctic and cool temperate waters of the Northern Hemisphere The Atlantic salmon Salmo salar whose Latin name became that of its genus Salmo is also the eponym of the family and order names SalmonidaeTemporal range Upper Cretaceous Recent 1 PreꞒ Ꞓ O S D C P T J K Pg NChinook salmon Oncorhynchus tschawytscha Scientific classificationDomain EukaryotaKingdom AnimaliaPhylum ChordataClass ActinopterygiiSuperorder ProtacanthopterygiiOrder SalmoniformesBleeker 1859Family SalmonidaeG Cuvier 1816Type speciesSalmoLinnaeus 1758Genera see text Salmonids have a relatively primitive appearance among teleost fish with the pelvic fins being placed far back and an adipose fin towards the rear of the back They have slender bodies with rounded scales and forked tail fins and their mouths contain a single row of sharp teeth 2 Although the smallest salmonid species is just 13 cm 5 1 in long for adults most salmonids are much larger with the largest reaching 2 m 6 ft 7 in 1 All salmonids are migratory fish that spawn in the shallow gravel beds of freshwater headstreams spend the growing juvenile years in rivers creeks small lakes and wetlands but migrate downstream upon maturity and spend most of their adult lives at much larger waterbodies Many salmonid species are euryhaline and migrate to the sea or brackish estuaries as soon as they approach adulthood returning to the upper streams only to reproduce Such sea run life cycle is described as anadromous and other freshwater salmonids that migrate purely between lakes and rivers are considered potamodromous Salmonids are carnivorous predators of the middle food chain feeding on smaller fish crustaceans aquatic insects and larvae tadpoles and sometimes fish eggs even those of their own kind 2 and in turn being preyed upon by larger predators Many species of salmonids are thus considered keystone organisms important for both freshwater and terrestrial ecosystems due to the biomass transfer provided by their mass migration from oceanic to inland waterbodies Contents 1 Evolution 1 1 Genetics 2 Classification 3 Hybrid crossbreeding 4 References 5 Further readingEvolution editCurrent salmonids comprise three lineages taxonomically treated as subfamilies Coregoninae freshwater whitefishes Thymallinae graylings and Salmoninae trout salmon char taimens and lenoks Generally all three lineages are accepted to allocate a suite of derived traits indicating a monophyletic group 3 The Salmonidae first appear in the fossil record in the Middle Eocene with Eosalmo driftwoodensis which was first described from fossils found at Driftwood Creek central British Columbia This genus shares traits found in all three subfamily lineages Hence E driftwoodensis is an archaic salmonid representing an important stage in salmonid evolution 3 A gap appears in the salmonine fossil record after E driftwoodensis until about 7 million years ago mya in the Late Miocene when trout like fossils appear in Idaho in the Clarkia Lake beds 4 Several of these species appear to be Oncorhynchus the current genus for Pacific salmon and Pacific trout The presence of these species so far inland established that Oncorhynchus was not only present in the Pacific drainages before the beginning of the Pliocene 5 6 mya but also that rainbow and cutthroat trout and Pacific salmon lineages had diverged before the beginning of the Pliocene Consequently the split between Oncorhynchus and Salmo Atlantic salmon and European trout must have occurred well before the Pliocene Suggestions have gone back as far as the Early Miocene about 20 mya 3 5 Genetics edit nbsp Oncorhynchus mykiss maturing from eggs Based on the most current evidence salmonids diverged from the rest of teleost fish no later than 88 million years ago during the late Cretaceous This divergence was marked by a whole genome duplication event in the ancestral salmonid where the diploid ancestor became tetraploid 6 7 This duplication is the fourth of its kind to happen in the evolutionary lineage of the salmonids with two having occurred commonly to all bony vertebrates and another specifically in the teleost fishes 7 Extant salmonids all show evidence of partial tetraploidy as studies show the genome has undergone selection to regain a diploid state Work done in the rainbow trout Onchorhynchus mykiss has shown that the genome is still partially tetraploid Around half of the duplicated protein coding genes have been deleted but all apparent miRNA sequences still show full duplication with potential to influence regulation of the rainbow trout s genome This pattern of partial tetraploidy is thought to be reflected in the rest of extant salmonids 8 The first fossil species representing a true salmonid fish E driftwoodensis does not appear until the middle Eocene 9 This fossil already displays traits associated with extant salmonids but as the genome of E driftwoodensis cannot be sequenced it cannot be confirmed if polyploidy was present in this animal at this point in time This fossil is also significantly younger than the proposed salmonid divergence from the rest of the teleost fishes and is the earliest confirmed salmonid currently known This means that the salmonids have a ghost lineage of approximately 33 million years Given a lack of earlier transition fossils and the inability to extract genomic data from specimens other than extant species the dating of the whole genome duplication event in salmonids was historically a very broad categorization of times ranging from 25 to 100 million years in age 8 New advances in calibrated relaxed molecular clock analyses have allowed for a closer examination of the salmonid genome and has allowed for a more precise dating of the whole genome duplication of the group that places the latest possible date for the event at 88 million years ago 7 This more precise dating and examination of the salmonid whole genome duplication event has allowed more speculation on the radiation of species within the group Historically the whole genome duplication event was thought to be the reason for the variation within Salmonidae Current evidence done with molecular clock analyses revealed that much of the speciation of the group occurred during periods of intense climate change associated with the last ice ages with especially high speciation rates being observed in salmonids that developed an anadromous lifestyle 7 Classification editTogether with the closely related orders Esociformes pikes and mudminnows Osmeriformes true smelts and Argentiniformes marine smelts and barreleyes Salmoniformes comprise the superorder Protacanthopterygii The only extant family within Salmoniformes Salmonidae is divided into three subfamilies and around 10 genera containing about 220 species The concepts of the number of species recognised vary among researchers and authorities the numbers presented below represent the higher estimates of diversity 1 Phylogeny of Salmonidae 10 11 Coregoninae Prosopium nbsp Stenodus nbsp Coregonus nbsp Thymallinae Thymallus nbsp Salmoninae Salmo nbsp Salvelinus incl Salvethymus nbsp Oncorhynchus nbsp BrachymystaxParahucho nbsp Hucho nbsp Order Salmoniformes Family Salmonidae Subfamily Coregoninae Coregonus whitefishes 78 species Prosopium round whitefishes 6 species Stenodus beloribitsa and nelma 1 or 2 species Subfamily Thymallinae Thymallus graylings 14 species Subfamily Salmoninae Tribe Salmonini Salmo Atlantic salmon and trout 47 species Salvelinus Char and trout e g brook trout lake trout 51 species Salvethymus Long finned char 1 species Tribe Oncorhynchini Brachymystax lenoks 4 species Eosalmo 1 species Eocene Hucho taimens 4 species Oncorhynchus Pacific salmon and trout 12 species Parahucho Sakhalin taimen 1 species Hybrid crossbreeding editThe following table shows results of hybrid crossbreeding combination in Salmonidae 12 CrossbreedingmaleSalvelinus Oncorhynchus Salmoleucomaenis white spotted char fontinalis Brook trout mykiss Rainbow trout masou masou masu salmon masou ishikawae Amago Salmon gorbuscha pink salmon nerka Sockeye salmon keta chum salmon kisutsh coho salmon tshawytscha chinook salmon trutta Brown trout salar Atlantic Salmon female Salvelinus leucomaenis white spotted char O X O O X X Ofontinalis Brook trout O X O O X X O X X Oncorhynchus mykiss Rainbow trout O O O O O X X X X Xmasou masou masu salmon O X X O X X O O Xmasou ishikawae Amago Salmon O O X O X Ogorbuscha pink salmon X O O Onerka Sockeye salmon X X X X X O O O O Xketa chum salmon X X X X O O O X Xkisutsh coho salmon X X O O X O X Xtshawytscha chinook salmon O O O X O Salmo trutta Brown trout O O X O O X X Osalar Atlantic Salmon O X X X O note The identical kind O survivability X Fatality References edit a b c Froese Rainer and Daniel Pauly eds 2008 Salmonidae in FishBase December 2008 version a b McDowell Robert M 1998 Paxton J R Eschmeyer W N eds Encyclopedia of Fishes San Diego Academic Press pp 114 116 ISBN 978 0 12 547665 2 a b c McPhail J D Strouder D J 1997 Pacific Salmon and Their Ecosystems Status and Future Options The Origin and Speciation ofOncorhynchus New York New York Chapman amp Hall Smiley Charles J Late Cenozoic History of the Pacific Northwest PDF Association for the Advancement of Science Pacific Division Archived from the original PDF on August 4 2004 Retrieved August 8 2006 Montgomery David R 2000 Coevolution of the Pacific Salmon and Pacific Rim Topography PDF Department of Geological Sciences University of Washington Archived from the original PDF on September 1 2006 Retrieved August 8 2006 Allendorf Fred W Thorgaard Gary H 1984 Tetraploidy and the Evolution of Salmonid Fishes Evolutionary Genetics of Fishes pp 1 53 doi 10 1007 978 1 4684 4652 4 1 ISBN 978 1 4684 4654 8 a b c d MacQueen D J Johnston I A 2014 A well constrained estimate for the timing of the salmonid whole genome duplication reveals major decoupling from species diversification Proceedings of the Royal Society B Biological Sciences 281 1778 20132881 doi 10 1098 rspb 2013 2881 PMC 3906940 PMID 24452024 a b Berthelot Camille Brunet Frederic Chalopin Domitille Juanchich Amelie Bernard Maria Noel Benjamin Bento Pascal Da Silva Corinne Labadie Karine Alberti Adriana Aury Jean Marc Louis Alexandra Dehais Patrice Bardou Philippe Montfort Jerome Klopp Christophe Cabau Cedric Gaspin Christine Thorgaard Gary H Boussaha Mekki Quillet Edwige Guyomard Rene Galiana Delphine Bobe Julien Volff Jean Nicolas Genet Carine Wincker Patrick Jaillon Olivier Crollius Hugues Roest Guiguen Yann 2014 The rainbow trout genome provides novel insights into evolution after whole genome duplication in vertebrates Nature Communications 5 3657 Bibcode 2014NatCo 5 3657B doi 10 1038 ncomms4657 PMC 4071752 PMID 24755649 Zhivotovsky L A 2015 Genetic history of salmonid fishes of the genus Oncorhynchus Russian Journal of Genetics 51 5 491 505 doi 10 1134 s1022795415050105 PMID 26137638 S2CID 13487086 Crete Lafreniere Alexis Weir Laura K Bernatchez Louis 2012 Framing the Salmonidae Family Phylogenetic Portrait A More Complete Picture from Increased Taxon Sampling PLOS ONE 7 10 e46662 Bibcode 2012PLoSO 746662C doi 10 1371 journal pone 0046662 PMC 3465342 PMID 23071608 Shedko S V Miroshnichenko I L Nemkova G A 2013 Phylogeny of salmonids salmoniformes Salmonidae and its molecular dating Analysis of mtDNA data Russian Journal of Genetics 49 6 623 637 doi 10 1134 S1022795413060112 PMID 24450195 S2CID 17706105 Ito Daisuke Fujiwara Atushi Abe Syuiti 2006 Hybrid Inviability and Chromosome Abnormality in Salmonid Fish The Journal of Animal Genetics 34 65 70 doi 10 5924 abgri2000 34 65 Further reading edit nbsp Wikimedia Commons has media related to Salmonidae Behnke Robert J Trout and Salmon of North America Illustrated by Joseph R Tomelleri 1st Chanticleer Press ed New York The Free Press 2002 ISBN 0 7432 2220 2 Dushkina L A January 1994 Farming of Salmonids in Russia Aquaculture Research 25 1 121 126 doi 10 1111 j 1365 2109 1994 tb00672 x Froese Rainer and Daniel Pauly eds 2004 Salmonidae in FishBase October 2004 version Salmonidae Integrated Taxonomic Information System Retrieved December 12 2004 Froese Rainer and Daniel Pauly eds 2004 Salmoniformes in FishBase October 2004 version Sepkoski Jack 2002 A compendium of fossil marine animal genera Bulletins of American Paleontology 364 560 Archived from the original on July 23 2011 Retrieved May 17 2011 Retrieved from https en wikipedia org w index php title Salmonidae amp oldid 1182475399, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.