fbpx
Wikipedia

Graphics display resolution

The graphics display resolution is the width and height dimension of an electronic visual display device, measured in pixels. This information is used for electronic devices such as a computer monitor. Certain combinations of width and height are standardized (e.g. by VESA) and typically given a name and an initialism that is descriptive of its dimensions. A graphics display resolution can be used in tandem with the size of the graphics display to calculate pixel density. An increase in the pixel density often correlates with a decrease in the size of individual pixels on a display.

A chart showing the number of pixels in different display resolutions

Overview by vertical resolution and aspect ratio

Display width (px)
Height
(px)
Display aspect ratio, followed by standard classification if available[1]
1.25 (5∶4) 1.3 (4∶3) 1.5 (3∶2) 1.6 (16∶10) 1.6 (15∶9) 1.7 (16∶9) 2.0 (18∶9) 2.370 (64∶27 ≈ 21∶9) 3.5 (32∶9)
120 160 QQVGA
144 192 256
160 240 HQVGA
240 320 QVGA 360 WQVGA 384 WQVGA 400 WQVGA 432 (9∶5)
320 480 HVGA
360 480 640 nHD
480 600 640 VGA 720 WVGA 768 WVGA 800 WVGA 854 FWVGA 960
540 675 720 960 qHD
576 720 768 PAL 1024 WSVGA
600 750 800 SVGA 1024 WSVGA (≈ 17∶10)
640 960 DVGA 1024 1136
720 960 1152 1280 HD / WXGA 1440
768 960 1024 XGA 1152 WXGA 1280 WXGA 1366 FWXGA
800 1280 WXGA
864 1152 XGA+ 1296 1536
900 1200 1440 WXGA+ 1600 HD+
960 1280 SXGA− 1440 1536
1024 1280 SXGA 1536 1600 WSXGA (25∶16)
1050 1400 SXGA+ 1680 WSXGA+
1080 1440 1920 FHD / 2K 2160,
2280 (19∶9)
2560 3840
1152 1536 2048 QWXGA
1200 1500 1600 UXGA 1920 WUXGA
1280 1920 2048
1440 1920 2160 FHD+ 2304 2560 2.5K (W)QHD 2880,
2960 (181/2∶9),
3040 (19∶9)
3120 (191/2∶9),
3200 (20∶9),
3440 (211/2∶9)
5120
1536 2048 QXGA
1600 2400 2560 WQXGA 3840 (12∶5)
1620 2880 3K
1800 2880 3200 QHD+
1920 2560 2880 3072
2048 2560 QSXGA 2732 3200 WQSXGA (25∶16)
2160 2880 3240 3840 4K UHD 4320 5120 7680
2400 3200 QUXGA 3840 WQUXGA
2560 3840 4096
2880 5120 5K 5760
3072 4096
4320 7680 8K UHD 10240 10K

Aspect ratio

 
Multiple display standards compared.

The favored aspect ratio of mass-market display industry products has changed gradually from 4:3, then to 16:10, then to 16:9, and is now changing to 18:9 for smartphones.[2] The 4:3 aspect ratio generally reflects older products, especially the era of the cathode ray tube (CRT). The 16:10 aspect ratio had its largest use in the 1995–2010 period, and the 16:9 aspect ratio tends to reflect post-2010 mass-market computer monitor, laptop, and entertainment products displays. On CRTs, there was often a difference between the aspect ratio of the computer resolution and the aspect ratio of the display causing non-square pixels (e.g. 320 × 200 or 1280 × 1024 on a 4:3 display).

The 4:3 aspect ratio was common in older television cathode ray tube (CRT) displays, which were not easily adaptable to a wider aspect ratio. When good quality alternate technologies (i.e., liquid crystal displays (LCDs) and plasma displays) became more available and less costly, around the year 2000, the common computer displays and entertainment products moved to a wider aspect ratio, first to the 16:10 ratio. The 16:10 ratio allowed some compromise between showing older 4:3 aspect ratio broadcast TV shows, but also allowing better viewing of widescreen movies. However, around the year 2005, home entertainment displays (i.e., TV sets) gradually moved from 16:10 to the 16:9 aspect ratio, for further improvement of viewing widescreen movies. By about 2007, virtually all mass-market entertainment displays were 16:9. In 2011, 1920 × 1080 (Full HD, the native resolution of Blu-ray) was the favored resolution in the most heavily marketed entertainment market displays. The next standard, 3840 × 2160 (4K UHD), was first sold in 2013.

Also in 2013, displays with 2560 × 1080 (aspect ratio 64:27 or 2.370, however commonly referred to as "21:9" for easy comparison with 16:9) appeared, which closely approximate the common CinemaScope movie standard aspect ratio of 2.35–2.40. In 2014, "21:9" screens with pixel dimensions of 3440 × 1440 (actual aspect ratio 43:18 or 2.38) became available as well.

The computer display industry maintained the 16:10 aspect ratio longer than the entertainment industry, but in the 2005–2010 period, computers were increasingly marketed as dual-use products, with uses in the traditional computer applications, but also as means of viewing entertainment content. In this time frame, with the notable exception of Apple, almost all desktop, laptop, and display manufacturers gradually moved to promoting only 16:9 aspect ratio displays. By 2011, the 16:10 aspect ratio had virtually disappeared from the Windows laptop display market (although Mac laptops are still mostly 16:10, including the 2880 × 1800 15" Retina MacBook Pro and the 2560 × 1600 13" Retina MacBook Pro). One consequence of this transition was that the highest available resolutions moved generally downward (i.e., the move from 1920 × 1200 laptop displays to 1920 × 1080 displays).

In response to usability flaws of now common 16:9 displays in office/professional applications,[citation needed] Microsoft and Huawei started to offer notebooks with a 3:2 aspect ratio. By 2021, Huawei also offers a monitor display offering this aspect ratio, targeted towards professional uses.

High-definition

High-definition
Name H (px) V (px) H:V H × V (Mpx)
nHD 640 360 16:9 0.230
qHD 960 540 16:9 0.518
HD 1280 720 16:9 0.922
HD+ 1600 900 16:9 1.440
FHD 1920 1080 16:9 2.074
(W)QHD 2560 1440 16:9 3.686
QHD+ 3200 1800 16:9 5.760
4K UHD 3840 2160 16:9 8.294
5K 5120 2880 16:9 14.746
8K UHD 7680 4320 16:9 33.178
16K 15360 8640 16:9 132.710

All standard HD resolutions share a 16∶9 aspect ratio, although some derived resolutions with smaller or larger ratios also exist. Most of the narrower resolutions are only used for storing, not for displaying videos.

640 × 360 (nHD)

nHD (ninth HD) is a display resolution of 640 × 360 pixels, which is exactly one-ninth of a Full HD (1080p) frame and one-quarter of an HD (720p) frame. Pixel doubling (vertically and horizontally) nHD frames will form one 720p frame and pixel tripling nHD frames will form one 1080p frame.

One drawback of this resolution regarding encoding is that the number of lines is not an even multiple of 16, which is a common macroblock size for video codecs. Video frames encoded with 16×16 pixel macroblocks would be padded to 640 × 368 and the added pixels would be cropped away at playback. H.264 codecs have this padding and cropping ability built-in as standard. The same is true for qHD and 1080p but the relative amount of padding is more for lower resolutions such as nHD.

To avoid storing the eight lines of padded pixels, some people prefer to encode video at 624 × 352, which only has one stored padded line. When such video streams are either encoded from HD frames or played back on HD displays in full-screen mode (either 720p or 1080p) they are scaled by non-integer scale factors. True nHD frames on the other hand has integer scale factors, for example Nokia 808 PureView with nHD display.

960 × 540 (qHD)

Note: qHD is quarter HD; QHD is quad HD

qHD is a display resolution of 960 × 540 pixels, which is exactly one-quarter of a Full HD (1080p) frame, in a 16:9 aspect ratio.

One of the few tabletop TVs to use this as its native resolution was the Sony XEL-1. Similar to DVGA, this resolution became popular for high-end smartphone displays in early 2011. Mobile phones including the Jolla, Sony Xperia C, HTC Sensation, Motorola Droid RAZR, LG Optimus L9, Microsoft Lumia 535 and Samsung Galaxy S4 Mini have displays with the qHD resolution, as does the PlayStation Vita portable game system (though it is actually 960 × 544, rather than 960 × 540).

1280 × 720 (HD)

The HD resolution of 1280 × 720 pixels stems from high-definition television (HDTV), where it originally used 50 or 60 frames per second. With its 16:9 aspect ratio, it is exactly 2 times the width and 11/2 times the height of 4:3 VGA, which shares its aspect ratio and 480 line count with NTSC. HD, therefore, has exactly 3 times as many pixels as VGA, i.e. almost 1 megapixel.

This resolution is often referred to as 720p, although the p (which stands for progressive scan and is important for transmission formats) is irrelevant for labeling digital display resolutions. When distinguishing 1280 × 720 from 1920 × 1080, the pair has sometimes been labeled HD1 or HD-1 and HD2 or HD-2, respectively.[citation needed]

In the mid-2000s, when the digital HD technology and standard debuted on the market, this type of resolution was often referred to by the branded name HD ready or HDr for short, which had specified it as a minimum resolution for devices to qualify for the certification. However, few screens have been built that use this resolution natively. Most employ 16:9 panels with 768 lines instead (WXGA), which resulted in odd numbers of pixels per line, i.e. 13651/3 are rounded to 1360, 1364, 1366 or even 1376, the next multiple of 16.

1280 × 1080

1280 × 1080 is the resolution of Panasonic's DVCPRO HD[3] Format, as well as DV Camcorders using this format, and their TFT LCD screens. It has an aspect ratio of 32:27 (1.185:1), an approximate of Movietone cameras of the 1930s. In 2007, Hitachi released a few 42" and 50" television models at this resolution.[4]

1600 × 900 (HD+)

The HD+ (HD Plus) resolution of 1600 × 900 pixels in a 16:9 aspect ratio is often referred to as 900p.[citation needed]

1920 × 1080 (FHD)

FHD (Full HD) is the resolution used by the 1080p and 1080i HDTV video formats. It has a 16:9 aspect ratio and 2,073,600 total pixels, i.e. very close to 2 megapixels, and is exactly 50% larger than 720p HD (1280 × 720) in each dimension for a total of 2.25 times as many pixels. When using interlacing, the uncompressed bandwidth requirements are similar to those of 720p at the same field rate (a 12.5% increase, as one field of 1080i video is 1,036,800 pixels, and one frame of 720p video is 921,600 pixels). Although the number of pixels is the same for 1080p and 1080i, the effective resolution is somewhat lower for the interlaced format, as it is necessary to use some vertical low-pass filtering to reduce temporal artifacts such as interline twitter.

2048 × 1080 (DCI 2K)

DCI 2K is a standardized format established by the Digital Cinema Initiatives consortium in 2005 for 2K video projection. This format has a resolution of 2048 × 1080 (2.2 megapixels) with an aspect ratio of 256:135 (1.8962:1).[5] This is the native resolution for DCI-compliant 2K digital projectors and displays.

2160 × 1080

2160 × 1080 is a resolution used by many smartphones since 2018. It has an aspect ratio of 18:9, matching that of the Univisium film format.[6]

2560 × 1080

This resolution is equivalent to a Full HD (1920 × 1080) extended in width by 33%, with an aspect ratio of 64:27 (2.370, or 21.3:9). It is sometimes referred to as "1080p ultrawide" or "UW-FHD" (ultrawide FHD).[citation needed] Monitors at this resolution usually contain built-in firmware to divide the screen into two 1280 × 1080 screens.[7]

2560 × 1440 (QHD)

Note: qHD is quarter HD; QHD is quad HD

QHD (Quad HD), WQHD (Wide Quad HD),[8] or 1440p,[9] is a display resolution of 2560 × 1440 pixels in a 16:9 aspect ratio. The name QHD reflects the fact that it has four times as many pixels as HD (720p). It is also commonly called WQHD, to emphasize it being a wide resolution, although that is technically unnecessary, since the HD resolutions are all wide. One advantage of using "WQHD" is avoiding confusion with qHD with a small q (960 × 540).

This resolution was under consideration by the ATSC in the late 1980s to become the standard HDTV format, because it is exactly 4 times the width and 3 times the height of VGA, which has the same number of lines as NTSC signals at the SDTV 4:3 aspect ratio. Pragmatic technical constraints made them choose the now well-known 16:9 formats with twice (HD) and thrice (FHD) the VGA width instead.

In October 2006, Chi Mei Optoelectronics (CMO) announced a 47-inch 1440p LCD panel to be released in Q2 2007;[10] the panel was planned to finally debut at FPD International 2008 in a form of autostereoscopic 3D display.[11] As of the end of 2013, monitors with this resolution were becoming more common.

The 27-inch version of the Apple Cinema Display monitor introduced in July 2010 has a native resolution of 2560 × 1440, as does its successor, the 27-inch Apple Thunderbolt Display.

The resolution is also used in portable devices. In September 2012, Samsung announced the Series 9 WQHD laptop with a 13-inch 2560 × 1440 display.[12] In August 2013, LG announced a 5.5-inch QHD smartphone display, which was used in the LG G3.[13] In October 2013 Vivo announced a smartphone with a 2560 × 1440 display.[14] Other phone manufacturers followed in 2014, such as Samsung with the Galaxy Note 4,[15] and Google[16] and Motorola[17] with the Nexus 6[18] smartphone. By the mid-2010s, it was a common resolution among flagship phones such as the HTC 10, the Lumia 950, and the Galaxy S6[19] and S7.[20]

3200 × 1800 (QHD+)

This resolution has a 16:9 aspect ratio, and is exactly four times as many pixels as the 1600 × 900 HD+ resolution. It has been referred to as WQXGA+,[citation needed] QHD[21] and QHD+[22] by various different companies.

The first products announced to use this resolution were the 2013 HP Envy 14 TouchSmart Ultrabook[23] and the 13.3-inch Samsung Ativ Q.[24]

3440 × 1440

This resolution is equivalent to QHD (2560 × 1440) extended in width by 34%, giving it an aspect ratio of 43:18 (2.38:1, or 21.5:9; commonly marketed as simply "21:9"). The first monitor to support this resolution was the 34-inch LG 34UM95-P.[25] LG uses the term UW-QHD to describe this resolution.[citation needed] This monitor was first released in Germany in late December 2013, before being officially announced at CES 2014.

3840 × 1080

This resolution is equivalent to two Full HD (1920 × 1080) displays side by side or one vertical half of a 4K UHD (3840 × 2160) display. It has an aspect ratio of 32:9 (3.5:1), close to the 3.6:1 ratio of IMAX UltraWideScreen 3.6. Samsung monitors at this resolution contain built-in firmware to divide the screen into two 1920 × 1080 screens, or one 2560 × 1080 and one 1280 × 1080 screen.[26]

3840 × 1600

This resolution has a 12:5 aspect ratio (2.4:1, or 21.6:9; commonly marketed as simply "21:9"). It is equivalent to WQXGA (2560 × 1600) extended in width by 50%, or 4K UHD (3840 × 2160) reduced in height by 26%. This resolution is commonly encountered in cinematic 4K content that has been cropped vertically to a widescreen 2.4:1 aspect ratio. The first monitor to support this resolution was the 37.5-inch LG 38UC99-W. Other vendors followed, with Dell U3818DW, HP Z38c, and Acer XR382CQK. This resolution is referred to as UW4K, WQHD+,[27] UWQHD+, or QHD+,[28][29][30] though no single name is agreed upon.

3840 × 2160 (4K UHD)

This resolution, sometimes referred to as 4K UHD or 4K × 2K, has a 16:9 aspect ratio and 8,294,400 pixels. It is double the size of Full HD (1920 × 1080) in both dimensions for a total of four times as many pixels, and triple the size of HD (1280 × 720) in both dimensions for a total of nine times as many pixels. It is the lowest common multiple of the HDTV resolutions.

3840 × 2160 was chosen as the resolution of the UHDTV1 format defined in SMPTE ST 2036-1,[31] as well as the 4K UHDTV system defined in ITU-R BT.2020[32][33] and the UHD-1 broadcast standard from DVB.[34] It is also the minimum resolution requirement for CEA's definition of an Ultra HD display.[35] Before the publication of these standards, it was sometimes casually referred to as QFHD (Quad Full HD).[36]

The first commercial displays capable of this resolution include an 82-inch LCD TV revealed by Samsung in early 2008,[37] the Sony SRM-L560, a 56-inch LCD reference monitor announced in October 2009,[38] an 84-inch display demonstrated by LG in mid-2010,[39] and a 27.84-inch 158 PPI 4K IPS monitor for medical purposes launched by Innolux in November 2010.[40] In October 2011 Toshiba announced the REGZA 55x3,[41] which is claimed to be the first 4K glasses-free 3D TV.

DisplayPort supports 3840 × 2160 at 30 Hz in version 1.1 and added support for up to 75 Hz in version 1.2 (2009) and 120 Hz in version 1.3 (2014),[42] while HDMI added support for 3840 × 2160 at 30 Hz in version 1.4 (2009)[43] and 60 Hz in version 2.0 (2013).[44]

When support for 4K at 60 Hz was added in DisplayPort 1.2, no DisplayPort timing controllers (TCONs) existed which were capable of processing the necessary amount of data from a single video stream. As a result, the first 4K monitors from 2013 and early 2014, such as the Sharp PN-K321, Asus PQ321Q, and Dell UP2414Q and UP3214Q, were addressed internally as two 1920 × 2160 monitors side by side instead of a single display and made use of DisplayPort's Multi-Stream Transport (MST) feature to multiplex a separate signal for each half over the connection, splitting the data between two timing controllers.[45][46] Newer timing controllers became available in 2014, and after mid-2014 new 4K monitors such as the Asus PB287Q no longer rely on MST tiling technique to achieve 4K at 60 Hz,[47] instead, using the standard SST (Single-Stream Transport) approach.[48]

In 2015, Sony announced the Xperia Z5 Premium, the first smartphone with a 4K display,[49] and in 2017 Sony announced the Xperia XZ Premium, the first smartphone with a 4K HDR display.[50]

4096 × 2160 (DCI 4K)

4096 × 2160, referred to as DCI 4K, Cinema 4K[51] or 4K × 2K, is the resolution used by the 4K container format defined by the Digital Cinema Initiatives Digital Cinema System Specification, a prominent standard in the cinema industry. This resolution has an aspect ratio of 256:135 (1.8962:1), and 8,847,360 total pixels.[5] This is the native resolution for DCI 4K digital projectors and displays.

HDMI added support for 4096 × 2160 at 24 Hz in version 1.4[43] and 60 Hz in version 2.0.[44][52]

5120 × 2160

This resolution is equivalent to 4K UHD (3840 × 2160) extended in width by 33%, giving it a 64:27 aspect ratio (2.370 or 21.3:9, commonly marketed as simply "21:9") and 11,059,200 total pixels. It is exactly double the size of 2560 × 1080 in both dimensions, for a total of four times as many pixels. The first displays to support this resolution were 105-inch televisions, the LG 105UC9 and the Samsung UN105S9W.[53][54] In December 2017, LG announced a 34-inch 5120 × 2160 monitor, the 34WK95U,[55] and in January 2021 the 40-inch 40WP95C.[56] LG refers to this resolution as 5K2K WUHD.[57]

5120 × 2880 (5K)

This resolution, commonly referred to as 5K or 5K × 3K, has a 16:9 aspect ratio and 14,745,600 pixels. Although it is not established by any of the UHDTV standards, some manufacturers such as Dell have referred to it as UHD+.[58] It is exactly double the pixel count of QHD (2560 × 1440) in both dimensions for a total of four times as many pixels, and is 33% larger than 4K UHD (3840 × 2160) in both dimensions for a total of 1.77 times as many pixels. The line count of 2880 is also the least common multiple of 480 and 576, the scanline count of NTSC and PAL, respectively. Such a resolution can vertically scale SD content to fit by natural numbers (6 for NTSC and 5 for PAL). Horizontal scaling of SD is always fractional (non-anamorphic: 5.33...5.47, anamorphic: 7.11...7.29).

The first display with this resolution was the Dell UltraSharp UP2715K, announced on September 5, 2014.[59] On October 16, 2014, Apple announced the iMac with Retina 5K display.[60][61]

DisplayPort version 1.3 added support for 5K at 60 Hz over a single cable, whereas DisplayPort 1.2 was only capable of 5K at 30 Hz. Early 5K 60 Hz displays such as the Dell UltraSharp UP2715K and HP DreamColor Z27q that lacked DisplayPort 1.3 support required two DisplayPort 1.2 connections to operate at 60 Hz, in a tiled display mode similar to early 4K displays using DP MST.[62]

Other resolution with the same 5120-pixel width, which is the lowest common multiple of popular 1024 and 1280, but a different aspect ratio have also been called "5K" and some nominal 5K resolutions are just 4800 pixels wide, which is the lowest common multiple of 960 and 800.

7680 × 4320 (8K UHD)

This resolution, sometimes referred to as 8K UHD, has a 16:9 aspect ratio and 33,177,600 pixels. It is exactly double the size of 4K UHD (3840 × 2160) in each dimension for a total of four times as many pixels, and Quadruple the size of Full HD (1920 × 1080) in each dimension for a total of sixteen times as many pixels. 7680 × 4320 was chosen as the resolution of the UHDTV2 format defined in SMPTE ST 2036-1,[31] as well as the 8K UHDTV system defined in ITU-R BT.2020[32][33] and the UHD-2 broadcast standard from DVB.[34]

DisplayPort 1.3, finalized by VESA in late 2014, added support for 7680 × 4320 at 30 Hz (or 60 Hz with Y′CBCR 4:2:0 subsampling). VESA's Display Stream Compression (DSC), which was part of early DisplayPort 1.3 drafts and would have enabled 8K at 60 Hz without subsampling, was cut from the specification prior to publication of the final draft.[63]

DSC support was reintroduced with the publication of DisplayPort 1.4 in March 2016. Using DSC, a "visually lossless" form of compression, formats up to 7680 × 4320 (8K UHD) at 60 Hz with HDR and 30 bit/px color depth are possible without subsampling.[64]

17280 × 4320 (16K)

Sony introduced a 63 ft × 17 ft (19.2 m × 5.2 m) commercial 16K display at NAB 2019 that is set to be released in Japan.[65][66][67] It is made up of 576 modules (360 × 360p), in a formation of 48 by 12 modules, forming a 17280 × 4320 screen, with 4:1 aspect ratio.

Video Graphics Array

Video Graphics Array
Name H (px) V (px) H:V H × V (Mpx)
QQVGA 160 120 4:3 0.019
HQVGA 240 160 3:2 0.038
256 160 16:10 0.043
QVGA 320 240 4:3 0.077
WQVGA 360 240 3:2 0.086
WQVGA 384 240 16:10 0.092
WQVGA 400 240 5:3 0.096
HVGA 480 320 3:2 0.154
VGA 640 480 4:3 0.307
WVGA 720 480 3:2 0.345
WVGA 768 480 16:10 0.368
WVGA 800 480 5:3 0.384
WVGA 848 480 ≈ 16:9 0.407
FWVGA 854 480 ≈ 16:9 0.410
SVGA 800 600 4:3 0.480
WSVGA 1024 576 16:9 0.590
WSVGA 1024 600 128:75 0.614
DVGA 960 640 3:2 0.614

160 × 120 (QQVGA)

Quarter-QVGA (QQVGA or qqVGA) denotes a resolution of 160 × 120 or 120 × 160 pixels, usually used in displays of handheld devices. The term Quarter-QVGA signifies a resolution of one fourth the number of pixels in a QVGA display (half the number of vertical and half the number of horizontal pixels) which itself has one fourth the number of pixels in a VGA display.

The abbreviation qqVGA may be used to distinguish quarter from quad, just like qVGA.[68]

240 × 160 (HQVGA)

Half-QVGA denotes a display screen resolution of 240 × 160 or 160 × 240 pixels, as seen on the Game Boy Advance. This resolution is half of QVGA, which is itself a quarter of VGA, which is 640 × 480 pixels.

320 × 240 (QVGA)

 
QVGA compared to VGA

Quarter VGA (QVGA or qVGA) is a popular term for a computer display with 320 × 240 display resolution. QVGA displays were most often used in mobile phones, personal digital assistants (PDA), and some handheld game consoles. Often the displays are in a "portrait" orientation (i.e., taller than they are wide, as opposed to "landscape") and are referred to as 240 × 320.[69]

The name comes from having a quarter of the 640 × 480 maximum resolution of the original IBM Video Graphics Array display technology, which became a de facto industry standard in the late 1980s. QVGA is not a standard mode offered by the VGA BIOS, even though VGA and compatible chipsets support a QVGA-sized Mode X. The term refers only to the display's resolution and thus the abbreviated term QVGA or Quarter VGA is more appropriate to use.

QVGA resolution is also used in digital video recording equipment as a low-resolution mode requiring less data storage capacity than higher resolutions, typically in still digital cameras with video recording capability, and some mobile phones. Each frame is an image of 320 × 240 pixels. QVGA video is typically recorded at 15 or 30 frames per second. QVGA mode describes the size of an image in pixels, commonly called the resolution; numerous video file formats support this resolution.

While QVGA is a lower resolution than VGA, at higher resolutions the "Q" prefix commonly means quad(ruple) or four times higher display resolution (e.g., QXGA is four times higher resolution than XGA). To distinguish quarter from quad, lowercase "q" is sometimes used for "quarter" and uppercase "Q" for "Quad", by analogy with SI prefixes like m/M and p/P, but this is not a consistent usage.[70]

Some examples of devices that use QVGA display resolution include the iPod Classic, Samsung i5500, LG Optimus L3-E400, Galaxy Fit, Y and Pocket, HTC Wildfire, Sony Ericsson Xperia X10 Mini and Mini pro and Nintendo 3DS' bottom screen.

400 × 240 (WQVGA)

Variants of WQVGA
H (px) V (px) H:V H × V (Mpx)
360 240 15:10 0.086
376 240 4.7:3 0.0902
384 240 16:10 0.0922
400 240 15:9 0.0960
428 240 ≈16:9 0.103
432 240 18:10 0.104
480 270 16:9 0.130
480 272 ≈16:9 0.131

Wide QVGA or WQVGA is any display resolution having the same height in pixels as QVGA, but wider. This definition is consistent with other 'wide' versions of computer displays.

Since QVGA is 320 pixels wide and 240 pixels high (aspect ratio of 4:3), the resolution of a WQVGA screen might be 360 × 240 (3:2 aspect ratio), 384 × 240 (16:10 aspect ratio), 400 × 240 (5:3 – such as the Nintendo 3DS screen or the maximum resolution in YouTube at 240p), 428 × 240 (≈16:9 ratio) or 432 × 240 (18:10 aspect ratio). As with WVGA, exact ratios of n:9 are difficult because of the way VGA controllers internally deal with pixels. For instance, when using graphical combinatorial operations on pixels, VGA controllers will use 1 bit per pixel. Since bits cannot be accessed individually but by chunks of 16 or an even higher power of 2, this limits the horizontal resolution to a 16-pixel granularity, i.e., the horizontal resolution must be divisible by 16. In the case of the 16:9 ratio, with 240 pixels high, the horizontal resolution should be 240 / 9 × 16 = 426.6, the closest multiple of 16 is 432.

WQVGA has also been used to describe displays that are not 240 pixels high, for example, Sixteenth HD1080 displays which are 480 pixels wide and 270 or 272 pixels high. This may be due to WQVGA having the nearest screen height.

WQVGA resolutions were commonly used in touchscreen mobile phones, such as 400 × 240, 432 × 240, and 480 × 240. For example, the Hyundai MB 490i, Sony Ericsson Aino and the Samsung Instinct have WQVGA screen resolutions – 240 × 432. Other devices such as the Apple iPod Nano also use a WQVGA screen, 240 × 376 pixels.

480 × 320 (HVGA)

Variants of HVGA
H (px) V (px) H:V H × V (Mpx)
480 270 16:9 0.1296
480 272 ≈16:9 0.1306
480 320 3:2 0.1536
640 240 8:3 0.1536
480 360 4:3 0.1728

HVGA (Half-size VGA) screens have 480 × 320 pixels (3:2 aspect ratio), 480 × 360 pixels (4:3 aspect ratio), 480 × 272 (≈16:9 aspect ratio), or 640 × 240 pixels (8:3 aspect ratio). The former is used by a variety of PDA devices, starting with the Sony CLIÉ PEG-NR70 in 2002, and standalone PDAs by Palm. The latter was used by a variety of handheld PC devices. VGA resolution is 640 × 480.

Examples of devices that use HVGA include the Apple iPhone (1st generation through 3GS), iPod Touch (1st Generation through 3rd), BlackBerry Bold 9000, HTC Dream, Hero, Wildfire S, LG GW620 Eve, MyTouch 3G Slide, Nokia 6260 Slide, Palm Pre, Samsung M900 Moment, Sony Ericsson Xperia X8, mini, mini pro, active and live and the Sony PlayStation Portable.

Texas Instruments produces the DLP pico projector which supports HVGA resolution.[71]

HVGA was the only resolution supported in the first versions of Google Android, up to release 1.5.[72] Other higher and lower resolutions became available starting on release 1.6, like the popular WVGA resolution on the Motorola Droid or the QVGA resolution on the HTC Tattoo.

Three-dimensional computer graphics common on television throughout the 1980s were mostly rendered at this resolution, causing objects to have jagged edges on the top and bottom when edges were not anti-aliased.

640 × 480 (VGA)

Video Graphics Array (VGA) refers specifically to the display hardware first introduced with the IBM PS/2 line of computers in 1987.[73] Through its widespread adoption, VGA has also come to mean either an analog computer display standard, the 15-pin D-subminiature VGA connector, or the 640 × 480 resolution itself. While the VGA resolution was superseded in the personal computer market in the 1990s and the SEGA Dreamcast in 1998,[74] it became a popular resolution on mobile devices in the 2000s.[75] VGA is still the universal fallback troubleshooting mode in the case of trouble with graphic device drivers in operating systems.

In the field of video, the resolution of 480i supports 640 samples per line (corresponding to 640x480) corresponding to Standard Definition (SD), in contrast to high-definition (HD) resolutions like 1280 × 720 and 1920 × 1080.

768 × 480 (WVGA)

Variants of WVGA
H (px) V (px) H:V H × V (Mpx)
640 360 16:9 0.230
640 384 15:9 0.246
720 480 15:10 0.346
768 480 16:10 0.369
800 450 16:9 0.360
800 480 15:9 0.384
848 480 ≈16:9 0.407
852 480 ≈16:9 0.409
853 480 ≈16:9 0.409
854 480 ≈16:9 0.410

Wide VGA or WVGA, sometimes just WGA is any display resolution with the same 480-pixel height as VGA but wider, such as 720 × 480 (3:2 aspect ratio), 800 × 480 (5:3), 848 × 480, 852 × 480, 853 × 480, or 854 × 480 (≈16:9). It is a common resolution among LCD projectors and later portable and hand-held internet-enabled devices (such as MID and Netbooks) as it is capable of rendering websites designed for an 800 wide window in full page-width. Examples of hand-held internet devices, without phone capability, with this resolution include: Spice stellar nhance mi-435, ASUS Eee PC 700 series, Dell XCD35, Nokia 770, N800, and N810.

Mobile phones with WVGA display resolution are also common.

854 × 480 (FWVGA)

FWVGA is an abbreviation for Full Wide Video Graphics Array which refers to a display resolution of 854 × 480 pixels. 854 × 480 is approximately the 16:9 aspect ratio of anamorphically "un-squeezed" NTSC DVD widescreen video and is considered a "safe" resolution that does not crop any of the image. It is called Full WVGA to distinguish it from other, narrower WVGA resolutions which require cropping 16:9 aspect ratio high-definition video (i.e. it is full width, albeit with a considerable reduction in size).

The 854 pixel width is rounded up from 853.3:

480 × 169 = 76809 = 85313.

Since a pixel must be a whole number, rounding up to 854 ensures inclusion of the entire image.[76]

In 2010, mobile phones with FWVGA display resolution started to become more common. A list of mobile phones with FWVGA displays is available. In addition, the Wii U GamePad that comes with the Nintendo Wii U gaming console includes a 6.2-inch FWVGA display.

800 × 600 (SVGA)

Super Video Graphics Array, abbreviated to Super VGA or SVGA, also known as Ultra Video Graphics Array,[77] abbreviated to Ultra VGA or UVGA, is a broad term that covers a wide range of computer display standards.[78]

Originally, it was an extension to the VGA standard first released by IBM in 1987. Unlike VGA – a purely IBM-defined standard – Super VGA was defined by the Video Electronics Standards Association (VESA), an open consortium set up to promote interoperability and define standards. When used as a resolution specification, in contrast to VGA or XGA for example, the term SVGA normally refers to a resolution of 800 × 600 pixels.

The marginally higher resolution 832 × 624 is the highest 4:3 resolution not greater than 219 pixels, with its horizontal dimension a multiple of 32 pixels. This enables it to fit within a framebuffer of 512 KB (512 × 210 bytes), and the common multiple of 32 pixels constraint is related to alignment. For these reasons, this resolution was available on the Macintosh LC III and other systems.[citation needed]

960 × 640 (DVGA)

DVGA (Double-size VGA) screens have 960 × 640 pixels (3:2 aspect ratio). Both dimensions are double that of HVGA, hence the pixel count is quadrupled.

Examples of devices that use DVGA include the Meizu MX mobile phone and the Apple iPhone 4 and 4S with the iPod Touch 4, where the screen is called the "Retina Display".

1024 × 576, 1024 × 600 (WSVGA)

The wide version of SVGA is known as WSVGA (Wide Super VGA or Wide SVGA), featured on Ultra-Mobile PCs, netbooks, and tablet computers. The resolution is either 1024 × 576 (aspect ratio 16:9) or 1024 × 600 (128:75) with screen sizes normally ranging from 7 to 10 inches. It has full XGA width of 1024 pixels. Although digital broadcast content in former PAL/SECAM regions has 576 active lines, several mobile TV sets with a DVB-T2 tuner use the 600-line variant with a diameter of 7, 9 or 10 inches (18 to 26 cm).

Extended Graphics Array

Extended Graphics Array
Name H (px) V (px) H:V H × V (Mpx)
XGA 1024 768 4:3 0.786
WXGA 1152 768 3:2 0.884
WXGA 1280 768 5:3 0.983
WXGA 1280 800 16:10 1.024
WXGA 1360 768 ≈ 16:9 1.044
FWXGA 1366 768 ≈ 16:9 1.049
XGA+ 1152 864 4:3 0.995
WXGA+ 1440 900 16:10 1.296
SXGA 1280 1024 5:4 1.310
WSXGA 1440 960 3:2 1.382
SXGA+ 1400 1050 4:3 1.470
WSXGA+ 1680 1050 16:10 1.764
UXGA 1600 1200 4:3 1.920
WUXGA 1920 1200 16:10 2.304

1024 × 768 (XGA)

 
XGA logo used internally within IBM, designed by Paul Rand[79]

The Extended Graphics Array (XGA) is an IBM display standard introduced in 1990. Later it became the most common appellation of the 1024 × 768 pixels display resolution, but the official definition is broader than that.

The initial version of XGA expanded upon IBM's older VGA by adding support for four new screen modes, including one new resolution:[80][81]

XGA-2 added a 24-bit DAC, but this was used only to extend the available master palette in 256-color mode, e.g. to allow true 256-greyscale output. Other improvements included the provision of the previously missing 800 × 600 resolution in up to 65,536 colors, faster screen refresh rates in all modes (including non-interlace, flicker-free output for 1024 × 768), and improved accelerator performance and versatility.

All standard XGA modes have a 4:3 aspect ratio with square pixels, although this does not hold for certain standard VGA and third-party extended modes (640 × 400, 1280 × 1024).

1366 × 768 and similar (WXGA)

Variants of WXGA
H (px) V (px) H:V H × V (Mpx)
1152 768 15:10 0.884
1280 720 16:9 0.922
1280 768 15:9 0.983
1280 800 16:10 1.024
1344 768 7:4 1.032
1360 768 ≈16:9 1.044
1366 768 ≈16:9 1.049

Wide XGA (WXGA) is a set of non-standard resolutions derived from the XGA display standard by widening it to a widescreen aspect ratio. WXGA is commonly used for low-end LCD TVs and LCD computer monitors for widescreen presentation. The exact resolution offered by a device described as "WXGA" can be somewhat variable owing to a proliferation of several closely related timings optimised for different uses and derived from different bases.

1366 × 768

When referring to televisions and other monitors intended for consumer entertainment use, WXGA is generally understood to refer to a resolution of 1366 × 768,[82] with an aspect ratio of very nearly 16:9. The basis for this otherwise odd seeming resolution is similar to that of other "wide" standards – the line scan (refresh) rate of the well-established "XGA" standard (1024 × 768 pixels, 4:3 aspect) extended to give square pixels on the increasingly popular 16:9 widescreen display ratio without having to effect major signalling changes other than a faster pixel clock, or manufacturing changes other than extending panel width by one third. As 768 is not divisible by 9, the aspect ratio is not quite 16:9 – this would require a horizontal width of 136513 pixels. However, at only 0.05%, the resulting error is insignificant.

In 2006, 1366 × 768 was the most popular resolution for liquid crystal display televisions (versus XGA for Plasma TVs flat panel displays);[83][failed verification] by 2013, even this was relegated to only being used in smaller or cheaper displays (e.g. "bedroom" LCD TVs, or low-cost, large-format plasmas), cheaper laptop and mobile tablet computers, and midrange home cinema projectors, having otherwise been overtaken by higher "full HD" resolutions such as 1920 × 1080.

1360 × 768

A common variant on this resolution is 1360 × 768, which confers several technical benefits, most significantly a reduction in memory requirements from just over to just under 1 MB per 8-bit channel (1366 × 768 needs 1024.5 KB per channel; 1360 × 768 needs 1020 KB; 1 MB is equal to 1024 KB), which simplifies architecture and can significantly reduce the amount–and speed–of VRAM required with only a very minor change in available resolution, as memory chips are usually only available in fixed megabyte capacities. For example, at 32-bit color, a 1360 × 768 framebuffer would require only 4 MB, whilst a 1366 × 768 one may need 5, 6 or even 8 MB depending on the exact display circuitry architecture and available chip capacities. The 6-pixel reduction also means each line's width is divisible by 8 pixels, simplifying numerous routines used in both computer and broadcast/theatrical video processing, which operate on 8-pixel blocks. Historically, many video cards also mandated screen widths divisible by 8 for their lower-color, planar modes to accelerate memory accesses and simplify pixel position calculations (e.g. fetching 4-bit pixels from 32-bit memory is much faster when performed 8 pixels at a time, and calculating exactly where a particular pixel is within a memory block is much easier when lines do not end partway through a memory word), and this convention persisted in low-end hardware even into the early days of widescreen, LCD HDTVs; thus, most 1366-width displays also quietly support display of 1360-width material, with a thin border of unused pixel columns at each side. This narrower mode is even further removed from the 16:9 ideal, but the error is still less than 0.5% (technically, the mode is either 15.94:9.00 or 16.00:9.04) and should be imperceptible.[citation needed]

1280 × 800

When referring to laptop displays or independent displays and projectors intended primarily for use with computers, WXGA is also used to describe a resolution of 1280 × 800 pixels, with an aspect ratio of 16:10.[84][85][86] This was once particularly popular for laptop screens, usually with a diagonal screen size of between 12 and 15 inches, as it provided a useful compromise between 4:3 XGA and 16:9 WXGA, with improved resolution in both dimensions vs. the old standard (especially useful in portrait mode, or for displaying two standard pages of text side by side), a perceptibly "wider" appearance and the ability to display 720p HD video "native" with only very thin letterbox borders (usable for on-screen playback controls) and no stretching. Additionally, like 1360 × 768, it required only 1000 KB (just under 1 MB) of memory per 8-bit channel; thus, a typical double-buffered 32-bit colour screen could fit within 8 MB, limiting everyday demands on the complexity (and cost, energy use) of integrated graphics chipsets and their shared use of typically sparse system memory (generally allocated to the video system in relatively large blocks), at least when only the internal display was in use (external monitors generally being supported in "extended desktop" mode to at least 1600 × 1200 resolution). 16:10 (or 8:5) is itself a rather "classic" computer aspect ratio, harking back to early 320 × 200 modes (and their derivatives) as seen in the Commodore 64, IBM CGA card and others. However, as of mid-2013, this standard is becoming increasingly rare, crowded out by the more standardised and thus more economical-to-produce 1366 × 768 panels, as its previously beneficial features become less important with improvements to hardware, gradual loss of general backwards software compatibility, and changes in interface layout. As of August 2013, the market availability of panels with 1280 × 800 native resolution had been generally relegated to data projectors or niche products such as convertible tablet PCs and LCD-based eBook readers.[original research?]

Others

Additionally, at least two other resolutions are sometimes labelled as WXGA:

  • First, the HDTV-standard 1280 × 720[87] (otherwise commonly described as "720p"), which offers an exact 16:9 aspect with square pixels; naturally, it displays standard 720p HD video material without stretching or letterboxing and 1080i/1080p with a simple 2:3 downscale. This resolution has found some use in tablets and modern, high-pixel-density mobile phones, as well as small-format "netbook" or "ultralight" laptop computers. However, its use is uncommon in larger, mainstream devices as it has an insufficient vertical resolution for the proper use of modern operating systems such as Windows 7 whose UI design assumes a minimum of 768 lines. For certain uses such as word processing, it can even be considered a slight downgrade (reducing the number of simultaneously visible lines of text without granting any significant benefit as even 640 pixels is sufficient horizontal resolution to legibly render a full page width, especially with the addition of subpixel anti-aliasing).
  • The second variant, 1280 × 768, can be seen as a compromise resolution that addressed this problem, as well as a halfway point between the older 1024 × 768 and 1280 × 1024 resolutions, and a stepping stone to 1366 × 768 (being one-quarter wider than 1024, not one-third) and 1280 × 800, that never quite caught on in the same way as either of its arguably derivative successors. Its square-pixel aspect ratio is 15:9, in contrast to HDTV's 16:9 and 1280 × 800's 16:10. It is also the lowest resolution that might be found in an "Ultrabook" standard laptop, as it satisfies the minimum horizontal and vertical pixel resolutions required to officially qualify for the designation.
  • Other mentionable resolutions are 1152 × 768 with a 3:2 aspect ratio, and 1344 × 768 with a 7:4 aspect ratio (similar to 16:9).

Widespread availability of 1280 × 800 and 1366 × 768 pixel resolution LCDs for laptop monitors can be considered an OS-driven evolution from the formerly popular 1024 × 768 screen size, which has itself since seen UI design feedback in response to what could be considered disadvantages of the widescreen format when used with programs designed for "traditional" screens. In Microsoft Windows operating system specifically, the larger taskbar of Windows 7 occupies an additional 16-pixel lines by default, which may compromise the usability of programs that already demanded a full 1024 × 768 (instead of, e.g. 800 × 600) unless it is specifically set to use small icons; an "oddball" 784-line resolution would compensate for this, but 1280 × 800 has a simpler aspect and also gives the slight bonus of 16 more usable lines. Also, the Windows Sidebar in Windows Vista and 7 can use the additional 256 or 336 horizontal pixels to display informational "widgets" without compromising the display width of other programs, and Windows 8 is specifically designed around a "two-pane" concept where the full 16:9 or 16:10 screen is not required. Typically, this consists of a 4:3 main program area (typically 1024 × 768, 1000 × 800 or 1440 × 1080) plus a narrow sidebar running a second program, showing a toolbox for the main program or a pop-out OS shortcut panel taking up the remainder.

  • Some 1440 × 900 resolution displays have also been found labeled as WXGA; however, the correct label is WSXGA or WXGA+.

1152 × 864 (XGA+)

Variants of XGA+
H (px) V (px) H:V H × V (Mpx) Origin
1120 832 ≈1.35:1 0.932 NeXT
1152 864 4:3 0.995 SVGA
1152 870 ≈1.32:1 1.002 Apple
1152 900 1.28:1 1.037 Sun

XGA+ stands for Extended Graphics Array Plus and is a computer display standard, usually understood to refer to the 1152 × 864 resolution with an aspect ratio of 4:3. Until the advent of widescreen LCDs, XGA+ was often used on 17-inch desktop CRT monitors. It is the highest 4:3 resolution not greater than 220 pixels (≈1.05 megapixels), with its horizontal dimension a multiple of 32 pixels. This enables it to fit closely into a video memory or framebuffer of 1 MB (1 × 220 bytes), assuming the use of one byte per pixel. The common multiple of 32 pixels constraint is related to alignment.

Historically, the resolution also relates to the earlier standard of 1152 × 900 pixels, which was adopted by Sun Microsystems for the Sun-2 workstation in the early 1980s. A decade later, Apple Computer selected the resolution of 1152 × 870 for their 21-inch CRT monitors, intended for use as two-page displays on the Macintosh II computer. These resolutions are even closer to the limit of a 1 MB framebuffer, but their aspect ratios differ slightly from the common 4:3.

XGA+ is the next step after XGA (1024 × 768), although it is not approved by any standard organizations. The next step with an aspect ratio of 4:3 is 1280 × 960 ("SXGA-") or SXGA+ (1400 × 1050).

1440 × 900 (WXGA+, WSXGA)

WXGA+ and WSXGA are non-standard terms referring to a computer display resolution of 1440 × 900. Occasionally manufacturers use other terms to refer to this resolution.[88] The Standard Panels Working Group refers to the 1440 × 900 resolution as WXGA(II).[89]

WSXGA and WXGA+ can be considered enhanced versions of WXGA with more pixels or as widescreen variants of SXGA. The aspect ratios of each are 16:10 (widescreen).

WXGA+ (1440 × 900) resolution is common in 19-inch widescreen desktop monitors (a very small number of such monitors use WSXGA+), and is also optional, although less common, in laptop LCDs, in sizes ranging from 12.1 to 17 inches.

Another resolution going by this name (WSXGA) is 1440 × 960, at an aspect ratio of 15:10 (3:2).

1280 × 1024 (SXGA)

Super XGA (SXGA) is a standard monitor resolution of 1280 × 1024 pixels. This display resolution is the "next step" above the XGA resolution that IBM developed in 1990.

The 1280 × 1024 resolution is not the standard 4:3 aspect ratio, but 5:4 (1.25:1 instead of 1.333:1). A standard 4:3 monitor using this resolution will have rectangular rather than square pixels, meaning that unless the software compensates for this the picture will be distorted, causing circles to appear elliptical.

There is a less common 1280 × 960 resolution that preserves the common 4:3 aspect ratio. It is sometimes unofficially called SXGA− to avoid confusion with the "standard" SXGA. Elsewhere this 4:3 resolution was also called UVGA (Ultra VGA), or SXVGA (Super eXtended VGA): Since both sides are doubled from VGA the term Quad VGA would be a systematic one, but it is hardly ever used because its initialism QVGA is strongly associated with the alternate meaning Quarter VGA (320 × 240).

SXGA is the most common native resolution of 17-inch and 19-inch LCD monitors. An LCD monitor with SXGA native resolution will typically have a physical 5:4 aspect ratio, preserving a 1:1 pixel aspect ratio.

Sony manufactured a 17-inch CRT monitor with a 5:4 aspect ratio designed for this resolution. It was sold under the Apple brand name.[citation needed]

SXGA is also a popular resolution for cell phone cameras, such as the Motorola Razr and most Samsung and LG phones. Although being taken over by newer UXGA (2.0-megapixel) cameras, the 1.3-megapixel was the most common around 2007.[citation needed]

Any CRT that can run 1280 × 1024 can also run 1280 × 960, which has the standard 4:3 ratio. A flat panel TFT screen, including one designed for 1280 × 1024, will show stretching distortion when set to display any resolution other than its native one, as the image needs to be interpolated to fit in the fixed grid display. Some TFT displays do not allow a user to disable this, and will prevent the upper and lower portions of the screen from being used forcing a "letterbox" format when set to a 4:3 ratio.[citation needed]

The 1280 × 1024 resolution became popular because at 24 bit/px color depth it fits well into 4 megabytes of video RAM.[citation needed] At the time, memory was extremely expensive. Using 1280 × 1024 at 24-bit color depth allowed using 3.75 MB of video RAM, fitting nicely with VRAM chip sizes which were available at the time (4 MB):

(1280 × 1024) px × 24 bit/px ÷ 8 bit/byte ÷ 220 byte/MB = 3.75 MB

1400 × 1050 (SXGA+)

SXGA+ stands for Super Extended Graphics Array Plus and is a computer display standard. An SXGA+ display is commonly used on 14-inch or 15-inch laptop LCD screens with a resolution of 1400 × 1050 pixels. An SXGA+ display is used on a few 12-inch laptop screens such as the ThinkPad X60 and X61 (both only as tablet) as well as the Toshiba Portégé M200 and M400, but those are far less common. At 14.1 inches, Dell offered SXGA+ on many of the Latitude C-Series laptops, such as the C640, and IBM since the ThinkPad T21. Sony also used SXGA+ in their Z1 series, but no longer produce them as widescreen has become more predominant.

In desktop LCDs, SXGA+ is used on some low-end 20-inch monitors, whereas most of the 20-inch LCDs use UXGA (standard screen ratio), or WSXGA+ (widescreen ratio).

1680 × 1050 (WSXGA+)

WSXGA+ stands for Widescreen Super Extended Graphics Array Plus. WSXGA+ displays were commonly used on Widescreen 20-, 21-, and 22-inch LCD monitors from numerous manufacturers (and a very small number of 19-inch widescreen monitors), as well as widescreen 15.4-inch and 17-inch laptop LCD screens like the Thinkpad T61p, the late 17" Apple PowerBook G4 and the unibody Apple 15" MacBook Pro. The resolution is 1680 × 1050 pixels (1,764,000 pixels) with a 16:10 aspect ratio.

WSXGA+ is the widescreen version of SXGA+, but it is not approved by any organization. The next highest resolution (for widescreen) after it is WUXGA, which is 1920 × 1200 pixels.

1600 × 1200 (UXGA, UGA)

UXGA or UGA is an abbreviation for Ultra Extended Graphics Array referring to a standard monitor resolution of 1600 × 1200 pixels (totaling 1,920,000 pixels), which is exactly four times the default image resolution of #SVGA (800×600) (800 × 600) (totaling 480,000 pixels). Dell Inc. refers to the same resolution of 1,920,000 pixels as UGA. It is generally considered to be the next step above SXGA (1280 × 960 or 1280 × 1024), but some resolutions (such as the unnamed 1366 × 1024 and SXGA+ at 1400 × 1050) fit between the two.

UXGA has been the native resolution of many fullscreen monitors of 15 inches or more, including laptop LCDs such as the ones in the IBM ThinkPad A21p, A30p, A31p, T42p, T43p, T60p, Dell Inspiron 8000/8100/8200 and Latitude/Precision equivalents; some Panasonic Toughbook CF-51 models; and the original Alienware Area 51M gaming laptop. However, in more recent times, UXGA is not used in laptops at all but rather in desktop UXGA monitors that have been made in sizes of 20 inches and 21.3 inches. Some 14-inch laptop LCDs with UXGA have also existed (such as the Dell Inspiron 4100), but these are very rare.

There are two different widescreen cousins of UXGA, one called UWXGA with 1600 × 768 (750) and one called WUXGA with 1920 × 1200 resolution.

1920 × 1200 (WUXGA)

WUXGA stands for Widescreen Ultra Extended Graphics Array and is a display resolution of 1920 × 1200 pixels (2,304,000 pixels) with a 16:10 screen aspect ratio. It is a wide version of UXGA, and can be used for viewing high-definition television (HDTV) content, which uses a 16:9 aspect ratio and a 1280 × 720 (720p) or 1920 × 1080 (1080i or 1080p) resolution.

The 16:10 aspect ratio (as opposed to the 16:9 used in widescreen televisions) was chosen because this aspect ratio is appropriate for displaying two full pages of text side by side.[90]

WUXGA resolution has a total of 2,304,000 pixels. One frame of uncompressed 8 BPC RGB WUXGA is 6.75 MiB (6.912 MB). Initially, it was available in widescreen CRTs such as the Sony GDM-FW900 and the Hewlett-Packard A7217A (introduced in 2003), and in 17-inch laptops. Most QXGA displays support 1920 × 1200. WUXGA is also available in some mobile phablet devices such as the Huawei Honor X2 Gem.

The next lower standard resolution (for widescreen) before it is WSXGA+, which is 1680 × 1050 pixels (1,764,000 pixels, or 30.61% fewer than WUXGA); the next higher resolution widescreen is an unnamed 2304 × 1440 resolution (supported by the above GDM-FW900 and A7217A) and then the more common WQXGA, which has 2560 × 1600 pixels (4,096,000 pixels, or 77.78% more than WUXGA).

Quad Extended Graphics Array

Quad Extended Graphics Array
Name H (px) V (px) H:V H × V (Mpx)
QWXGA 2048 1152 16:9 2.359
QXGA 2048 1536 4:3 3.145
WQXGA 2560 1600 16:10 4.096
2880 1800 16:10 5.184
QSXGA 2560 2048 5:4 5.242
WQSXGA 3200 2048 25:16 6.553
QUXGA 3200 2400 4:3 7.680
WQUXGA 3840 2400 16:10 9.216

The QXGA, or Quad Extended Graphics Array, display standard is a resolution standard in display technology. Some examples of LCD monitors that have pixel counts at these levels are the Dell 3008WFP, the Apple Cinema Display, the Apple iMac (27-inch 2009–present), the iPad (3rd generation), the iPad Mini 2, and the MacBook Pro (3rd generation). Many standard 21–22-inch CRT monitors and some of the highest-end 19-inch CRTs also support this resolution.

2048 × 1152 (QWXGA)

QWXGA (Quad Wide Extended Graphics Array) is a display resolution of 2048 × 1152 pixels with a 16:9 aspect ratio. A few QWXGA LCD monitors were available in 2009 with 23- and 27-inch displays, such as the Acer B233HU (23-inch) and B273HU (27-inch), the Dell SP2309W, and the Samsung 2343BWX. As of 2011, most 2048 × 1152 monitors have been discontinued, and as of 2013, no major manufacturer produces monitors with this resolution.

2048 × 1536 (QXGA)

QXGA (Quad Extended Graphics Array) is a display resolution of 2048 × 1536 pixels with a 4:3 aspect ratio. The name comes from it having four times as many pixels as an XGA display. Examples of LCDs with this resolution are the IBM T210 and the Eizo G33 and R31 screens, but in CRT monitors this resolution is much more common; some examples include the Sony F520, ViewSonic G225fB, NEC FP2141SB or Mitsubishi DP2070SB, Iiyama Vision Master Pro 514, and Dell and HP P1230. Of these monitors, none are still in production. A related display size is WQXGA, which is a widescreen version. CRTs offer a way to achieve QXGA cheaply. Models like the Mitsubishi Diamond Pro 2045U and IBM ThinkVision C220P retailed for around US$200, and even higher performance ones like the ViewSonic PerfectFlat P220fB remained under $500. At one time, many off-lease P1230s could be found on eBay for under $150. The LCDs with WQXGA or QXGA resolution typically cost four to five times more for the same resolution. IDTech manufactured a 15-inch QXGA IPS panel, used in the IBM ThinkPad R50p. NEC sold laptops with QXGA screens in 2002–05 for the Japanese market.[91][92] The iPad (starting from 3rd generation and Mini 2) also has a QXGA display.[93][94]

2560 × 1600 (WQXGA)

WQXGA (Wide Quad Extended Graphics Array) is a display resolution of 2560 × 1600 pixels with a 16:10 aspect ratio. The name comes from it being a wide version of QXGA[95] and having four times as many pixels as an WXGA (1280 × 800) display.

To obtain a vertical refresh rate higher than 40 Hz with DVI, this resolution requires dual-link DVI cables and devices. To avoid cable problems monitors are sometimes shipped with an appropriate dual link cable already plugged in. Many video cards support this resolution. One feature that is currently unique to the 30-inch WQXGA monitors is the ability to function as the centerpiece and main display of a three-monitor array of complementary aspect ratios, with two UXGA (1600 × 1200) 20-inch monitors turned vertically on either side. The resolutions are equal, and the size of the 1600 resolution edges (if the manufacturer is honest) is within a tenth of an inch (16-inch vs. 15.89999"), presenting a "picture window view" without the extreme lateral dimensions, small central panel, asymmetry, resolution differences, or dimensional difference of other three-monitor combinations. The resulting 4960 × 1600 composite image has a 3.1:1 aspect ratio. This also means one UXGA 20-inch monitor in portrait orientation can also be flanked by two 30-inch WQXGA monitors for a 6320 × 1600 composite image with an 11.85:3 (79:20, 3.95:1) aspect ratio. Some WQXGA medical displays (such as the Barco Coronis 4MP or the Eizo SX3031W) can also be configured as two virtual 1200 × 1600 or 1280 × 1600 seamless displays by using both DVI ports at the same time.

An early consumer WQXGA monitor was the 30-inch Apple Cinema Display, unveiled by Apple in June 2004. At the time, dual-link DVI was uncommon on consumer hardware, so Apple partnered with Nvidia to develop a special graphics card that had two dual-link DVI ports, allowing simultaneous use of two 30-inch Apple Cinema Displays. The nature of this graphics card, being an add-in AGP card, meant that the monitors could only be used in a desktop computer, like the Power Mac G5, that could have the add-in card installed, and could not be immediately used with laptop computers that lacked this expansion capability.

In March 2009, Apple updated several Macintosh computers with a Mini DisplayPort adapter, such as the Mac mini and iMac. These allow an external connection to 2560x1600 display.[96][97]

In 2010, WQXGA made its debut in a handful of home theater projectors targeted at the Constant Height Screen application market. Both Digital Projection Inc and projectiondesign released models based on a Texas Instruments DLP chip with a native WQXGA resolution, alleviating the need for an anamorphic lens to achieve 1:2.35 image projection. Many manufacturers have 27–30-inch models that are capable of WQXGA, albeit at a much higher price than lower resolution monitors of the same size. Several mainstream WQXGA monitors are or were available with 30-inch displays, such as the Dell 3007WFP-HC, 3008WFP, U3011, U3014, UP3017, the Hewlett-Packard LP3065, the Gateway XHD3000, LG W3000H, and the Samsung 305T. Specialist manufacturers like NEC, Eizo, Planar Systems, Barco (LC-3001), and possibly others offer similar models. As of 2016, LG Display make a 10-bit 30-inch AH-IPS panel, with wide color gamut, used in monitors from Dell, NEC, HP, Lenovo and Iiyama.

Released in November 2012, Google's Nexus 10 is the first consumer tablet to feature WQXGA resolution. Before its release, the highest resolution available on a tablet was QXGA (2048 × 1536), available on the Apple iPad 3rd and 4th generations devices. Several Samsung Galaxy tablets, including the Note 10.1 (2014 Edition), Tab S 8.4, 10.5 and TabPRO 8.4, 10.1 and Note Pro 12.2, as well as the Gigaset QV1030, also feature a WQXGA resolution display.

In 2012, Apple released the 13 inch MacBook Pro with Retina Display that features a WQXGA display, and the new MacBook Air in 2018.

The LG Gram 17 introduced in 2019[98] uses a 17-inch WQXGA display. It has been updated with the LG Gram 2021[99] that retains the same screen size and resolution.

2560 × 2048 (QSXGA)

QSXGA (Quad Super Extended Graphics Array) is a display resolution of 2560 × 2048 pixels with a 5:4 aspect ratio. Grayscale monitors with a 2560 × 2048 resolution, primarily for medical use, are available from Planar Systems (Dome E5), Eizo (Radiforce G51), Barco (Nio 5, MP), WIDE (IF2105MP), IDTech (IAQS80F), and possibly others.

Recent medical displays such as Barco Coronis Fusion 10MP or NDS Dome S10 have a native panel resolution of 4096 × 2560. These are driven by two dual-link DVI or DisplayPort outputs. They can be considered to be two seamless virtual QSXGA displays as they have to be driven simultaneously by both dual-link DVI or DisplayPort since one dual-link DVI or DisplayPort cannot single-handedly display 10 megapixels. A similar resolution of 2560 × 1920 (4:3) was supported by a small number of CRT displays via VGA such as the Viewsonic P225f when paired with the right graphics card.[citation needed]

3200 × 2048 (WQSXGA)

WQSXGA (Wide Quad Super Extended Graphics Array) describes a display standard that can support a resolution up to 3200 × 2048 pixels, assuming a 1.5625:1 (25:16) aspect ratio. The Coronis Fusion 6MP DL by Barco supports 3280 × 2048 (approximately 16:10).[citation needed]

3200 × 2400 (QUXGA)

QUXGA (Quad Ultra Extended Graphics Array) describes a display standard that can support a resolution up to 3200 × 2400 pixels, assuming a 4:3 aspect ratio.

3840 × 2400 (WQUXGA)

WQUXGA (Wide Quad Ultra Extended Graphics Array) describes a display standard that supports a resolution of 3840 × 2400 pixels, which provides a 16:10 aspect ratio. This resolution is exactly four times 1920 × 1200 (in pixels). Dell uses the term "UHD+" to refer to this resolution.[citation needed]

Most display cards with a DVI connector are capable of supporting the 3840 × 2400 resolution. However, the maximum refresh rate will be limited by the number of DVI links connected to the monitor. 1, 2, or 4 DVI connectors are used to drive the monitor using various tile configurations. Only the IBM T221-DG5 and IDTech MD22292B5 support the use of dual-link DVI ports through an external converter box. Many systems using these monitors use at least two DVI connectors to send video to the monitor. These DVI connectors can be from the same graphics card, different graphics cards, or even different computers. Motion across the tile boundary(ies) can show tearing if the DVI links are not synchronized. The display panel can be updated at a speed between 0 Hz and 41 Hz (48 Hz for the IBM T221-DG5, -DGP, and IDTech MD22292B5). The refresh rate of the video signal can be higher than 41 Hz (or 48 Hz) but the monitor will not update the display any faster even if graphics card(s) do so.[citation needed]

In June 2001, WQUXGA was introduced in the IBM T220 LCD monitor using a LCD panel built by IDTech. LCD displays that support WQUXGA resolution include: IBM T220, IBM T221, Iiyama AQU5611DTBK, ViewSonic VP2290,[100] ADTX MD22292B, and IDTech MD22292 (models B0, B1, B2, B5, C0, C2). IDTech was the original equipment manufacturer which sold these monitors to ADTX, IBM, Iiyama, and ViewSonic.[101] However, none of the WQUXGA monitors (IBM, ViewSonic, Iiyama, ADTX) are in production anymore: they had prices that were well above even the higher end displays used by graphic professionals, and the lower refresh rates, 41 Hz and 48 Hz, made them less attractive for many applications.

Unsystematic resolutions

After having used VGA-based 3:2 resolutions HVGA (480 × 320) and Retina DVGA (960 × 640) for several years in their iPhone and iPod products with a screen diagonal of 9 cm or 3.5 inches, Apple started using more exotic variants when they adopted the 16:9 aspect ratio to provide a consistent pixel density across screen sizes: first 1136 × 640 (rarely: WDVGA) with the iPhone 5, 5C, 5S and SE 1st for 10-cm or 4-inch screens, and later 1334 × 750 with the iPhone 6, 6S, 7, 8, SE 2nd and SE 3rd for 12-cm or 4.7-inch screens, while devices with 14-cm or 5.5-inch screens used standard 1920 × 1080 with the iPhone 6 Plus, 6S Plus, 7 Plus and 8 Plus. The iPhone X, XS and 11 Pro introduced a 2436 × 1125 resolution for 15-cm or 5.8-inch screens, while the iPhone XS Max and 11 Pro Max introduced a 2688 × 1242 resolution for 17-cm or 6.5-inch screens (with a notch) all at an aspect ratio of roughly 13:6 or, for marketing, 19.5:9.

Other manufacturers have also introduced phones with irregular display resolutions and aspect ratios, e.g. Samsung's various Infinity displays with 37:18 = 18+1/2:9 (Galaxy S8/S9 and A8/A9), i.e. 2960 × 1440 (Quad HD+, WQHD+) or 2220 × 1080 (Full HD+), and 19:9 (S10) aspect ratios: 3040 × 1440 and 2280 × 1080 (S10e).

Some air traffic control monitors use displays with a resolution of 2048 x 2048, with an aspect ratio of 1:1,[102] and similar consumer monitors at resolution of 1920 x 1920 are also available aimed primarily at productivity tasks.[103] Eizo is major supplier of panels and monitors in this aspect ratio. Also in 2022, a 16:18 monitor (in 2560x2880 resolution, named SDQHD) was released for general productivity work by LG Electronics.[104]

See also

References

  1. ^ VESA CVT 1.2 from 2003 recommends only 4:3, 16:9 and 16:10 (8:5) aspect ratios for newly introduced display resolutions. The discouraged legacy aspect ratios 5:4 and 15:9 (5:3) are only kept for SXGA and WXGA. VESA CVT 1.2
  2. ^ Ahmed, Asif (13 November 2017). "18:9 Aspect Ratio in Smartphones will be the new Standard in 2018, Here's why". Techtippr. Retrieved 2018-10-01.
  3. ^ . Apple, Inc. Archived from the original on 2010-02-16. Retrieved 2018-10-01.
  4. ^ Cage, Chuck (23 October 2007). "Hitachi P50T501". Wired. Condé Nast. Retrieved 2018-10-01.
  5. ^ a b (PDF). Digital Cinema Initiatives. 10 October 2012. Archived from the original (PDF) on 2016-05-27. Retrieved 2016-03-02.
  6. ^ Bhagat, Hitesh Raj; Bajaj, Karan (26 January 2018). "The 18:9 display dilemma: Will the new smartphone screens make our lives easier or do the opposite?". The Economic Times. Bennett, Coleman & Co. Retrieved 2018-10-01.
  7. ^ Tweedle, Steven (3 December 2016). "The best screen for multitasking comes with a hefty price tag". Business Insider Singapore. Retrieved 2018-10-01.
  8. ^ "ASUS PB278Q 27-Inch WQHD LED-lit PLS Professional Graphics Monitor". Amazon. Retrieved 2013-05-22.
  9. ^ McGuigan, Brendan (2013). "What Is 1440p? (with picture)". wisegeek.com. Retrieved 2013-12-10.
  10. ^ Lawler, Richard (17 October 2006). "CMO to ship 47-inch Quad HD – 1440p – LCD in 2007". Engadget. Retrieved 2008-07-06.
  11. ^ . Chi Mei Optoelectronics. 24 October 2008. Archived from the original on 2010-03-13. Retrieved 2008-10-26.
  12. ^ Davies, Chris (1 September 2012). "Samsung Series 9 WQHD: Hands-on with Sammy's Retina retort". SlashGear. Retrieved 2013-06-02.
  13. ^ Santos, Alexis (20 August 2013). "LG Display claims a world's first with 2,560 × 1,440 LCD for smartphones". Engadget. AOL. Retrieved 2013-08-21.
  14. ^ Lai, Richard (16 October 2013). "Vivo Xplay 3S to be the world's first phone with a 2,560 x 1,440 display". Engadget. AOL. Retrieved 2013-10-19.
  15. ^ "Samsung Galaxy Note 4". GSMArena. Retrieved 2018-10-01.
  16. ^ "Android: Be together. Not the same". Google Official Blog. 15 October 2014. Retrieved 2015-02-14.
  17. ^ "Nexus 6 from Google and Motorola: More Android. More screen. More everything". The Official Motorola Blog. Motorola. 15 October 2014. Retrieved 2015-02-14.
  18. ^ "Nexus 6". from the original on 2015-02-16. Retrieved 2015-02-14.
  19. ^ Kelion, Leo (1 March 2015). "Samsung S6 Edge with curved screen unveiled at MWC". BBC News. Retrieved 2015-03-01.
  20. ^ "Samsung Galaxy S7 - Full phone specifications". GSMArena. Retrieved 2018-10-01.
  21. ^ Brian, Matt (20 May 2013). "Samsung beats Chromebook Pixel and Retina MacBook with new high-res laptop display". The Verge. Retrieved 2013-05-23.
  22. ^ Nistor, Codrut (21 October 2013). "Dell XPS 15 now features a QHD+ resolution display". Notebookcheck. Retrieved 2013-11-15.
  23. ^ Hollister, Sean (23 May 2013). "HP redesigns Envy and Pavilion laptops for 2013, including one with a 3200 x 1800 screen". The Verge. Retrieved 2013-05-23.
  24. ^ Sakr, Sharif (20 May 2013). "Samsung to exhibit 13.3-inch notebook display with 3,200 x 1,800 resolution". Engadget. Retrieved 2013-05-23.
  25. ^ "LG UltraWide QHD IPS Monitor 34UM95". LG Electronics UK. Retrieved 2016-09-07.
  26. ^ Addison, Ken (17 May 2018). "Samsung C49HG90 49-in Ultrawide FreeSync 2 Monitor Review: How Wide is too Wide?". PC Perspective. Retrieved 2018-10-01.
  27. ^ "38" Class 21:9 UltraWide® WQHD+ IPS Curved LED Monitor (37.5" Diagonal)". LG Electronics. Retrieved 2017-12-30.
  28. ^ . Acer. Archived from the original on 2017-12-30. Retrieved 2017-12-30.
  29. ^ Singleton, Micah (14 June 2017). "Dell U3818DW". The Verge. Vox Media. Retrieved 2018-01-12.
  30. ^ Thacker, Jim (17 September 2017). "HP Z38c". CG Channel. Retrieved 2018-01-12.
  31. ^ a b "UHDTV Ecosystem Reference Diagram" (PDF). SMPTE. Retrieved 2018-05-15.
  32. ^ a b "Ultra High Definition Television: Threshold of a new age" (Press release). ITU. 24 May 2012. Retrieved 2012-08-18.
  33. ^ a b "Recommendation ITU-R BT.2020-2 — Parameter values for ultra-high definition television systems for production and international programme exchange" (PDF). International Telecommunication Union (ITU). October 2015. Retrieved 2018-05-15.
  34. ^ a b (PDF). Digital Video Broadcasting (DVB). February 2017. Archived from the original (PDF) on 2018-12-22. Retrieved 2018-05-15.
  35. ^ "CEA Updates Characteristics for Ultra High-Definition Displays". Consumer Electronics Association (CEA). 24 June 2014. Retrieved 2018-05-15.
  36. ^ Philippides, Alexis (17 April 2012). "What are 4K, QFHD and Ultra HD resolutions?". Stuff-Review. Retrieved 2018-05-15.
  37. ^ Malik, Haroon (9 January 2008). "Concept Samsung 82-Inch LCD World's Largest Ultra High-Definition". Gizmodo. Retrieved 2013-05-22.
  38. ^ . HDTV Review. 6 October 2009. Archived from the original on 2016-03-15. Retrieved 2016-01-07.
  39. ^ Hannaford, Kat (25 May 2010). "LG Shows Off 84-Inch 3DTV With 3,840 x 2,160 Resolution". Gizmodo. Retrieved 2013-05-22.
  40. ^ . Chimei Innolux. Archived from the original on 2011-01-04. Retrieved 2010-12-27.
  41. ^ "Toshiba's REGZA 55x3 announced as world's first 4K2K TV with glasses-free 3D". Engadget. AOL. Retrieved 2013-05-22.
  42. ^ Wiley, Craig (28 May 2013). "4K Ultra HD Displays: What You Need to Know". DisplayPort. VESA. Retrieved 2013-08-13.
  43. ^ a b "FAQ for HDMI 1.4 : Support for 4K format". HDMI Licensing. Retrieved 2013-08-13.
  44. ^ a b "FAQ for HDMI 2.0". HDMI Licensing. Retrieved 2014-01-09.
  45. ^ "4K Ultra High Resolution Development". NVIDIA Developer Zone. NVIDIA. 13 September 2013. Retrieved 2013-12-17.
  46. ^ Shrout, Ryan (19 July 2013). "ASUS PQ321Q 31.5-in 4K 60 Hz Tiled Monitor Review". PC Perspective. Retrieved 2016-01-07.
  47. ^ . ASUSTek. Archived from the original on 2014-09-21. Retrieved 2014-08-20.
  48. ^ Shrout, Ryan (9 May 2014). "Video Perspective: Samsung U28D590D 28-in 4K Single Stream 60 Hz Monitor Review". PC Perspective. Retrieved 2016-01-07.
  49. ^ "Sony Xperia Z5 Premium specs". phoneArena.com. Retrieved 2016-02-08.
  50. ^ "Xperia™ XZ Premium". Sony Mobile. Retrieved 2018-10-01.
  51. ^ "LG 31MU97-B: 31 Inch 4K IPS Monitor". LG. Retrieved 2016-03-02.
  52. ^ "Distributing 4K and UHD Signals in Professional AV Environments" (PDF). Extron. 2 March 2014. Retrieved 2016-01-07.
  53. ^ Humphries, Matthew (29 July 2014). . Ziff Davis. Archived from the original on 2018-06-12. Retrieved 2018-05-29.
  54. ^ Shilov, Anton (23 July 2014). "Samsung prices its 105" 5K UHD curved TV: $120,000". Kitguru. Retrieved 2018-05-29.
  55. ^ Shilov, Anton (28 December 2017). "LG Announces the 5K UltraWide 34WK95U: A 'Nano IPS' Monitor with a HDR600 Badge". AnandTech. Purch. Retrieved 2018-05-29.
  56. ^ Broekhuijsen, Niels (2021-01-14). "LG's Huge 40-Inch Monitor Is First To Feature Thunderbolt 4". Tom's Hardware. Retrieved 2021-01-23.
  57. ^ . LG Business Solutions. LG. Archived from the original on 2019-02-08. Retrieved 2019-02-08.
  58. ^ "Issues users need to understand when using UHD (4K x 2K) and UHD+ (5K x 3K) displays (Text and icons are too small etc.)". Dell. Retrieved 2016-01-06.
  59. ^ Anthony, Sebastian (5 September 2014). "Dell unveils 5K desktop monitor with almost 2x the pixels of your puny 4K display". ExtremeTech. Ziff Davis. Retrieved 2014-10-19.
  60. ^ "Apple Special Event. October 16, 2014". Apple. Retrieved 2014-10-19.
  61. ^ Bonnington, Christina (17 October 2014). "Answers to All of Your Questions About Apple's 5K iMac Display". Wired. Condé Nast. Retrieved 2014-10-19.
  62. ^ Chester, Edward (5 October 2015). "Dell UltraSharp UP2715K". TrustedReviews. Retrieved 2016-01-06.
  63. ^ Smith, Ryan (16 September 2014). "VESA Releases DisplayPort 1.3 Standard: 50% More Bandwidth, New Features". AnandTech. Purch. Retrieved 2016-01-06.
  64. ^ "VESA Publishes DisplayPort™ Standard Version 1.4". DisplayPort. Retrieved 2016-03-19.
  65. ^ Waniata, Ryan (2019-04-10). "Sony's massive new MicroLED display stands 17 feet tall and packs 16K resolution". Digital Trends. Retrieved 2019-10-17.
  66. ^ Dent, Steve (2019-09-13). "Sony's Crystal cinema display supports 16K, but could cost millions". Engadget. Retrieved 2019-12-18.
  67. ^ Kelion, Leo (9 April 2019). "Sony creates colossal 16K screen in Japan". BBC News. Retrieved 22 April 2021.
  68. ^ Kwon, Jang Yeon; Jung, Ji Sim; Park, Kyung Bae; Kim, Jong Man; Lim, Hyuck; Lee, Sang Yoon; Kim, Jong Min; Noguchi, Takashi; et al. (2006). "2.2 inch qqVGA AMOLED Drove by Ultra Low Temperature Poly Silicon (ULTPS) TFT Direct Fabricated Below 200°C". SID 2006 Digest. 37 (2): 1358–61. doi:10.1889/1.2433233. S2CID 110488279.
  69. ^ "QVGA (Quarter Video Graphics Array)". Tech-FAQ. Independent Media. Retrieved 2010-02-10.
  70. ^ Shin, Min-Seok; Choi, Jung-Whan; Kim, Yong-Jae; Kim, Kyong-Rok; Lee, Inhwan; Kwon, Oh-Kyong (2007). "Accurate Power Estimation of LCD Panels for Notebook Design of Low-Cost 2.2-inch qVGA LTPS TFT-LCD Panel". SID 2007 Digest. 38 (1): 260–263. doi:10.1889/1.2785279. S2CID 109838866.
  71. ^ June, Laura (24 November 2008). "Optoma DLP Pico projector "coming soon" to US". Engadget. AOL. Retrieved 2008-11-24.
  72. ^ "Screen compatibility overview". Android Developers. Retrieved 2011-02-04.
  73. ^ Polsson, Ken (9 November 2010). . Archived from the original on 2011-06-07. Retrieved 2010-11-18.
  74. ^ "480p vs 480i - Streamer Tactics". streamertactics.com. 2023-01-19. Retrieved 2023-01-31.
  75. ^ . MS Mobiles. 28 October 2003. Archived from the original on 2003-10-29. Retrieved 2013-05-22.
  76. ^ "NVIDIA Tegra FAQ" (PDF) (FAQ). Nvidia. Retrieved 2013-05-22.
  77. ^ . Smart Computing Encyclopedia. Smart Computing. 16 January 2007. Archived from the original on 2012-02-25. Retrieved 2014-03-12.
  78. ^ Verma, Vipul (29 October 2001). "Same monitor yet better viewing". The Tribune. Retrieved 2008-03-26.
  79. ^ "XGA Logo". Paul Rand Foundation. Retrieved September 25, 2021.
  80. ^ Necasek, Michal. "The XGA Graphics Chip". The OS/2 Museum. Retrieved 2013-08-01.
  81. ^ Necasek, Michal. "The 8514/A Graphics Accelerators". The OS/2 Museum. Retrieved 2013-08-01.
  82. ^ (PDF). Hitachi. Archived from the original (PDF) on 2007-10-09. Retrieved 2013-05-22.
  83. ^ (PDF). VESA. 10 March 2006. Archived from the original (PDF) on 2008-12-09. Retrieved 2013-05-22.
  84. ^ (PDF). VESA. October 2005. p. 21. Archived from the original (PDF) on 2005-12-15. Retrieved 2013-05-22.
  85. ^ "LEARN MORE LCD Displays". Dell. Retrieved 2013-05-22.
  86. ^ . Lenovo. Archived from the original on 2014-01-02. Retrieved 2013-05-22.
  87. ^ . NCIX. Archived from the original on 2012-04-29. Retrieved 2013-05-22.
  88. ^ (Press release). Renesas Technology. 12 September 2005. Archived from the original on 2006-03-22. Retrieved 2013-05-22.
  89. ^ (PDF). Standard Panels Working Group. 14 March 2007. p. 18. Archived from the original (PDF) on 2012-04-24. Retrieved 2013-05-22.
  90. ^ . Monitor Technology Guide. NEC Display Solutions. Archived from the original on 2007-03-15. Retrieved 2013-05-22.
  91. ^ プレスリリース (in Japanese). NEC. 1 July 2002.
  92. ^ プレスリリース (in Japanese). NEC. 19 January 2005.
  93. ^ "Apple unveils new iPad with high-definition screen". BBC. 8 March 2012. Retrieved 2012-03-07.
  94. ^ Whitney, Lance. "Apple iPad Mini gets Retina Display". CNET. Retrieved 2021-12-21.
  95. ^ "WQXGA". PCMag Encyclopedia. Ziff Davis. Retrieved 8 January 2021.
  96. ^ "Mac mini Core 2 Duo Early 2009 Nvidia specs". everymac.com. Retrieved 3 May 2022.
  97. ^ "Apple iMac 20-Inch "Core 2 Duo" 2.66 (Early 2009) Specs". everymac.com. Retrieved 3 May 2022.
  98. ^ "LG Gram 17Z990 (I7-8565U. WQXGA) Laptop Review".
  99. ^ "LG Gram 17 review (2021): A super-light laptop for premium portability". 4 March 2021.
  100. ^ (Press release). ViewSonic. 25 June 2002. Archived from the original on 2002-12-07. Retrieved 2013-05-22.
  101. ^ . IDTech. Archived from the original on 2004-04-05. Retrieved 2013-05-22.
  102. ^ "Raptor SQ2825 | EIZO". EIZO. Retrieved 2020-10-13.
  103. ^ "EV2730Q 26.5" 1920 x 1920 Square Monitor with IPS Panel - FlexScan | EIZO". www.eizo.com.
  104. ^ "LG 28-inch 16:18 DualUp Monitor with Ergo Stand and USB Type-C™ (28MQ780-B)". LG USA.

graphics, display, resolution, this, article, multiple, issues, please, help, improve, discuss, these, issues, talk, page, learn, when, remove, these, template, messages, this, article, possibly, contains, original, research, please, improve, verifying, claims. This article has multiple issues Please help improve it or discuss these issues on the talk page Learn how and when to remove these template messages This article possibly contains original research Please improve it by verifying the claims made and adding inline citations Statements consisting only of original research should be removed March 2017 Learn how and when to remove this template message This article s lead section may be too short to adequately summarize the key points Please consider expanding the lead to provide an accessible overview of all important aspects of the article March 2017 Learn how and when to remove this template message The graphics display resolution is the width and height dimension of an electronic visual display device measured in pixels This information is used for electronic devices such as a computer monitor Certain combinations of width and height are standardized e g by VESA and typically given a name and an initialism that is descriptive of its dimensions A graphics display resolution can be used in tandem with the size of the graphics display to calculate pixel density An increase in the pixel density often correlates with a decrease in the size of individual pixels on a display A chart showing the number of pixels in different display resolutions Contents 1 Overview by vertical resolution and aspect ratio 2 Aspect ratio 3 High definition 3 1 640 360 nHD 3 2 960 540 qHD 3 3 1280 720 HD 3 4 1280 1080 3 5 1600 900 HD 3 6 1920 1080 FHD 3 7 2048 1080 DCI 2K 3 8 2160 1080 3 9 2560 1080 3 10 2560 1440 QHD 3 11 3200 1800 QHD 3 12 3440 1440 3 13 3840 1080 3 14 3840 1600 3 15 3840 2160 4K UHD 3 16 4096 2160 DCI 4K 3 17 5120 2160 3 18 5120 2880 5K 3 19 7680 4320 8K UHD 3 20 17280 4320 16K 4 Video Graphics Array 4 1 160 120 QQVGA 4 2 240 160 HQVGA 4 3 320 240 QVGA 4 4 400 240 WQVGA 4 5 480 320 HVGA 4 6 640 480 VGA 4 7 768 480 WVGA 4 8 854 480 FWVGA 4 9 800 600 SVGA 4 10 960 640 DVGA 4 11 1024 576 1024 600 WSVGA 5 Extended Graphics Array 5 1 1024 768 XGA 5 2 1366 768 and similar WXGA 5 2 1 1366 768 5 2 2 1360 768 5 2 3 1280 800 5 2 4 Others 5 3 1152 864 XGA 5 4 1440 900 WXGA WSXGA 5 5 1280 1024 SXGA 5 6 1400 1050 SXGA 5 7 1680 1050 WSXGA 5 8 1600 1200 UXGA UGA 5 9 1920 1200 WUXGA 6 Quad Extended Graphics Array 6 1 2048 1152 QWXGA 6 2 2048 1536 QXGA 6 3 2560 1600 WQXGA 6 4 2560 2048 QSXGA 6 5 3200 2048 WQSXGA 6 6 3200 2400 QUXGA 6 7 3840 2400 WQUXGA 7 Unsystematic resolutions 8 See also 9 ReferencesOverview by vertical resolution and aspect ratio EditDisplay width px Height px Display aspect ratio followed by standard classification if available 1 1 25 5 4 1 3 4 3 1 5 3 2 1 6 16 10 1 6 15 9 1 7 16 9 2 0 18 9 2 370 64 27 21 9 3 5 32 9 120 160 QQVGA144 192 256160 240 HQVGA240 320 QVGA 360 WQVGA 384 WQVGA 400 WQVGA 432 9 5 320 480 HVGA360 480 640 nHD480 600 640 VGA 720 WVGA 768 WVGA 800 WVGA 854 FWVGA 960540 675 720 960 qHD576 720 768 PAL 1024 WSVGA600 750 800 SVGA 1024 WSVGA 17 10 640 960 DVGA 1024 1136720 960 1152 1280 HD WXGA 1440768 960 1024 XGA 1152 WXGA 1280 WXGA 1366 FWXGA800 1280 WXGA864 1152 XGA 1296 1536900 1200 1440 WXGA 1600 HD 960 1280 SXGA 1440 15361024 1280 SXGA 1536 1600 WSXGA 25 16 1050 1400 SXGA 1680 WSXGA 1080 1440 1920 FHD 2K 2160 2280 19 9 2560 38401152 1536 2048 QWXGA1200 1500 1600 UXGA 1920 WUXGA1280 1920 20481440 1920 2160 FHD 2304 2560 2 5K W QHD 2880 2960 181 2 9 3040 19 9 3120 191 2 9 3200 20 9 3440 211 2 9 51201536 2048 QXGA1600 2400 2560 WQXGA 3840 12 5 1620 2880 3K1800 2880 3200 QHD 1920 2560 2880 30722048 2560 QSXGA 2732 3200 WQSXGA 25 16 2160 2880 3240 3840 4K UHD 4320 5120 76802400 3200 QUXGA 3840 WQUXGA2560 3840 40962880 5120 5K 57603072 40964320 7680 8K UHD 10240 10KAspect ratio Edit Multiple display standards compared Main article Display aspect ratio The favored aspect ratio of mass market display industry products has changed gradually from 4 3 then to 16 10 then to 16 9 and is now changing to 18 9 for smartphones 2 The 4 3 aspect ratio generally reflects older products especially the era of the cathode ray tube CRT The 16 10 aspect ratio had its largest use in the 1995 2010 period and the 16 9 aspect ratio tends to reflect post 2010 mass market computer monitor laptop and entertainment products displays On CRTs there was often a difference between the aspect ratio of the computer resolution and the aspect ratio of the display causing non square pixels e g 320 200 or 1280 1024 on a 4 3 display The 4 3 aspect ratio was common in older television cathode ray tube CRT displays which were not easily adaptable to a wider aspect ratio When good quality alternate technologies i e liquid crystal displays LCDs and plasma displays became more available and less costly around the year 2000 the common computer displays and entertainment products moved to a wider aspect ratio first to the 16 10 ratio The 16 10 ratio allowed some compromise between showing older 4 3 aspect ratio broadcast TV shows but also allowing better viewing of widescreen movies However around the year 2005 home entertainment displays i e TV sets gradually moved from 16 10 to the 16 9 aspect ratio for further improvement of viewing widescreen movies By about 2007 virtually all mass market entertainment displays were 16 9 In 2011 1920 1080 Full HD the native resolution of Blu ray was the favored resolution in the most heavily marketed entertainment market displays The next standard 3840 2160 4K UHD was first sold in 2013 Also in 2013 displays with 2560 1080 aspect ratio 64 27 or 2 370 however commonly referred to as 21 9 for easy comparison with 16 9 appeared which closely approximate the common CinemaScope movie standard aspect ratio of 2 35 2 40 In 2014 21 9 screens with pixel dimensions of 3440 1440 actual aspect ratio 43 18 or 2 38 became available as well The computer display industry maintained the 16 10 aspect ratio longer than the entertainment industry but in the 2005 2010 period computers were increasingly marketed as dual use products with uses in the traditional computer applications but also as means of viewing entertainment content In this time frame with the notable exception of Apple almost all desktop laptop and display manufacturers gradually moved to promoting only 16 9 aspect ratio displays By 2011 the 16 10 aspect ratio had virtually disappeared from the Windows laptop display market although Mac laptops are still mostly 16 10 including the 2880 1800 15 Retina MacBook Pro and the 2560 1600 13 Retina MacBook Pro One consequence of this transition was that the highest available resolutions moved generally downward i e the move from 1920 1200 laptop displays to 1920 1080 displays In response to usability flaws of now common 16 9 displays in office professional applications citation needed Microsoft and Huawei started to offer notebooks with a 3 2 aspect ratio By 2021 Huawei also offers a monitor display offering this aspect ratio targeted towards professional uses High definition EditMain article High definition television See also Standard definition television High definition Name H px V px H V H V Mpx nHD 640 360 16 9 0 230qHD 960 540 16 9 0 518HD 1280 720 16 9 0 922HD 1600 900 16 9 1 440FHD 1920 1080 16 9 2 074 W QHD 2560 1440 16 9 3 686QHD 3200 1800 16 9 5 7604K UHD 3840 2160 16 9 8 2945K 5120 2880 16 9 14 7468K UHD 7680 4320 16 9 33 17816K 15360 8640 16 9 132 710All standard HD resolutions share a 16 9 aspect ratio although some derived resolutions with smaller or larger ratios also exist Most of the narrower resolutions are only used for storing not for displaying videos 640 360 nHD Edit nHD ninth HD is a display resolution of 640 360 pixels which is exactly one ninth of a Full HD 1080p frame and one quarter of an HD 720p frame Pixel doubling vertically and horizontally nHD frames will form one 720p frame and pixel tripling nHD frames will form one 1080p frame One drawback of this resolution regarding encoding is that the number of lines is not an even multiple of 16 which is a common macroblock size for video codecs Video frames encoded with 16 16 pixel macroblocks would be padded to 640 368 and the added pixels would be cropped away at playback H 264 codecs have this padding and cropping ability built in as standard The same is true for qHD and 1080p but the relative amount of padding is more for lower resolutions such as nHD To avoid storing the eight lines of padded pixels some people prefer to encode video at 624 352 which only has one stored padded line When such video streams are either encoded from HD frames or played back on HD displays in full screen mode either 720p or 1080p they are scaled by non integer scale factors True nHD frames on the other hand has integer scale factors for example Nokia 808 PureView with nHD display 960 540 qHD Edit Note qHD is quarter HD QHD is quad HDqHD is a display resolution of 960 540 pixels which is exactly one quarter of a Full HD 1080p frame in a 16 9 aspect ratio One of the few tabletop TVs to use this as its native resolution was the Sony XEL 1 Similar to DVGA this resolution became popular for high end smartphone displays in early 2011 Mobile phones including the Jolla Sony Xperia C HTC Sensation Motorola Droid RAZR LG Optimus L9 Microsoft Lumia 535 and Samsung Galaxy S4 Mini have displays with the qHD resolution as does the PlayStation Vita portable game system though it is actually 960 544 rather than 960 540 1280 720 HD Edit Main article 720p The HD resolution of 1280 720 pixels stems from high definition television HDTV where it originally used 50 or 60 frames per second With its 16 9 aspect ratio it is exactly 2 times the width and 11 2 times the height of 4 3 VGA which shares its aspect ratio and 480 line count with NTSC HD therefore has exactly 3 times as many pixels as VGA i e almost 1 megapixel This resolution is often referred to as 720p although the p which stands for progressive scan and is important for transmission formats is irrelevant for labeling digital display resolutions When distinguishing 1280 720 from 1920 1080 the pair has sometimes been labeled HD1 or HD 1 and HD2 or HD 2 respectively citation needed In the mid 2000s when the digital HD technology and standard debuted on the market this type of resolution was often referred to by the branded name HD ready or HDr for short which had specified it as a minimum resolution for devices to qualify for the certification However few screens have been built that use this resolution natively Most employ 16 9 panels with 768 lines instead WXGA which resulted in odd numbers of pixels per line i e 13651 3 are rounded to 1360 1364 1366 or even 1376 the next multiple of 16 1280 1080 Edit 1280 1080 is the resolution of Panasonic s DVCPRO HD 3 Format as well as DV Camcorders using this format and their TFT LCD screens It has an aspect ratio of 32 27 1 185 1 an approximate of Movietone cameras of the 1930s In 2007 Hitachi released a few 42 and 50 television models at this resolution 4 1600 900 HD Edit The HD HD Plus resolution of 1600 900 pixels in a 16 9 aspect ratio is often referred to as 900p citation needed 1920 1080 FHD Edit Main article 1080p FHD Full HD is the resolution used by the 1080p and 1080i HDTV video formats It has a 16 9 aspect ratio and 2 073 600 total pixels i e very close to 2 megapixels and is exactly 50 larger than 720p HD 1280 720 in each dimension for a total of 2 25 times as many pixels When using interlacing the uncompressed bandwidth requirements are similar to those of 720p at the same field rate a 12 5 increase as one field of 1080i video is 1 036 800 pixels and one frame of 720p video is 921 600 pixels Although the number of pixels is the same for 1080p and 1080i the effective resolution is somewhat lower for the interlaced format as it is necessary to use some vertical low pass filtering to reduce temporal artifacts such as interline twitter 2048 1080 DCI 2K Edit Main article 2K resolution DCI 2K is a standardized format established by the Digital Cinema Initiatives consortium in 2005 for 2K video projection This format has a resolution of 2048 1080 2 2 megapixels with an aspect ratio of 256 135 1 8962 1 5 This is the native resolution for DCI compliant 2K digital projectors and displays 2160 1080 Edit 2160 1080 is a resolution used by many smartphones since 2018 It has an aspect ratio of 18 9 matching that of the Univisium film format 6 2560 1080 Edit This resolution is equivalent to a Full HD 1920 1080 extended in width by 33 with an aspect ratio of 64 27 2 370 or 21 3 9 It is sometimes referred to as 1080p ultrawide or UW FHD ultrawide FHD citation needed Monitors at this resolution usually contain built in firmware to divide the screen into two 1280 1080 screens 7 2560 1440 QHD Edit WQHD redirects here For the radio station see WQHD LP Note qHD is quarter HD QHD is quad HDMain article 1440p QHD Quad HD WQHD Wide Quad HD 8 or 1440p 9 is a display resolution of 2560 1440 pixels in a 16 9 aspect ratio The name QHD reflects the fact that it has four times as many pixels as HD 720p It is also commonly called WQHD to emphasize it being a wide resolution although that is technically unnecessary since the HD resolutions are all wide One advantage of using WQHD is avoiding confusion with qHD with a small q 960 540 This resolution was under consideration by the ATSC in the late 1980s to become the standard HDTV format because it is exactly 4 times the width and 3 times the height of VGA which has the same number of lines as NTSC signals at the SDTV 4 3 aspect ratio Pragmatic technical constraints made them choose the now well known 16 9 formats with twice HD and thrice FHD the VGA width instead In October 2006 Chi Mei Optoelectronics CMO announced a 47 inch 1440p LCD panel to be released in Q2 2007 10 the panel was planned to finally debut at FPD International 2008 in a form of autostereoscopic 3D display 11 As of the end of 2013 monitors with this resolution were becoming more common The 27 inch version of the Apple Cinema Display monitor introduced in July 2010 has a native resolution of 2560 1440 as does its successor the 27 inch Apple Thunderbolt Display The resolution is also used in portable devices In September 2012 Samsung announced the Series 9 WQHD laptop with a 13 inch 2560 1440 display 12 In August 2013 LG announced a 5 5 inch QHD smartphone display which was used in the LG G3 13 In October 2013 Vivo announced a smartphone with a 2560 1440 display 14 Other phone manufacturers followed in 2014 such as Samsung with the Galaxy Note 4 15 and Google 16 and Motorola 17 with the Nexus 6 18 smartphone By the mid 2010s it was a common resolution among flagship phones such as the HTC 10 the Lumia 950 and the Galaxy S6 19 and S7 20 3200 1800 QHD Edit This resolution has a 16 9 aspect ratio and is exactly four times as many pixels as the 1600 900 HD resolution It has been referred to as WQXGA citation needed QHD 21 and QHD 22 by various different companies The first products announced to use this resolution were the 2013 HP Envy 14 TouchSmart Ultrabook 23 and the 13 3 inch Samsung Ativ Q 24 3440 1440 Edit This resolution is equivalent to QHD 2560 1440 extended in width by 34 giving it an aspect ratio of 43 18 2 38 1 or 21 5 9 commonly marketed as simply 21 9 The first monitor to support this resolution was the 34 inch LG 34UM95 P 25 LG uses the term UW QHD to describe this resolution citation needed This monitor was first released in Germany in late December 2013 before being officially announced at CES 2014 3840 1080 Edit This resolution is equivalent to two Full HD 1920 1080 displays side by side or one vertical half of a 4K UHD 3840 2160 display It has an aspect ratio of 32 9 3 5 1 close to the 3 6 1 ratio of IMAX UltraWideScreen 3 6 Samsung monitors at this resolution contain built in firmware to divide the screen into two 1920 1080 screens or one 2560 1080 and one 1280 1080 screen 26 3840 1600 Edit This resolution has a 12 5 aspect ratio 2 4 1 or 21 6 9 commonly marketed as simply 21 9 It is equivalent to WQXGA 2560 1600 extended in width by 50 or 4K UHD 3840 2160 reduced in height by 26 This resolution is commonly encountered in cinematic 4K content that has been cropped vertically to a widescreen 2 4 1 aspect ratio The first monitor to support this resolution was the 37 5 inch LG 38UC99 W Other vendors followed with Dell U3818DW HP Z38c and Acer XR382CQK This resolution is referred to as UW4K WQHD 27 UWQHD or QHD 28 29 30 though no single name is agreed upon 3840 2160 4K UHD Edit Main article 4K resolution This resolution sometimes referred to as 4K UHD or 4K 2K has a 16 9 aspect ratio and 8 294 400 pixels It is double the size of Full HD 1920 1080 in both dimensions for a total of four times as many pixels and triple the size of HD 1280 720 in both dimensions for a total of nine times as many pixels It is the lowest common multiple of the HDTV resolutions 3840 2160 was chosen as the resolution of the UHDTV1 format defined in SMPTE ST 2036 1 31 as well as the 4K UHDTV system defined in ITU R BT 2020 32 33 and the UHD 1 broadcast standard from DVB 34 It is also the minimum resolution requirement for CEA s definition of an Ultra HD display 35 Before the publication of these standards it was sometimes casually referred to as QFHD Quad Full HD 36 The first commercial displays capable of this resolution include an 82 inch LCD TV revealed by Samsung in early 2008 37 the Sony SRM L560 a 56 inch LCD reference monitor announced in October 2009 38 an 84 inch display demonstrated by LG in mid 2010 39 and a 27 84 inch 158 PPI 4K IPS monitor for medical purposes launched by Innolux in November 2010 40 In October 2011 Toshiba announced the REGZA 55x3 41 which is claimed to be the first 4K glasses free 3D TV DisplayPort supports 3840 2160 at 30 Hz in version 1 1 and added support for up to 75 Hz in version 1 2 2009 and 120 Hz in version 1 3 2014 42 while HDMI added support for 3840 2160 at 30 Hz in version 1 4 2009 43 and 60 Hz in version 2 0 2013 44 When support for 4K at 60 Hz was added in DisplayPort 1 2 no DisplayPort timing controllers TCONs existed which were capable of processing the necessary amount of data from a single video stream As a result the first 4K monitors from 2013 and early 2014 such as the Sharp PN K321 Asus PQ321Q and Dell UP2414Q and UP3214Q were addressed internally as two 1920 2160 monitors side by side instead of a single display and made use of DisplayPort s Multi Stream Transport MST feature to multiplex a separate signal for each half over the connection splitting the data between two timing controllers 45 46 Newer timing controllers became available in 2014 and after mid 2014 new 4K monitors such as the Asus PB287Q no longer rely on MST tiling technique to achieve 4K at 60 Hz 47 instead using the standard SST Single Stream Transport approach 48 In 2015 Sony announced the Xperia Z5 Premium the first smartphone with a 4K display 49 and in 2017 Sony announced the Xperia XZ Premium the first smartphone with a 4K HDR display 50 4096 2160 DCI 4K Edit 4096 2160 referred to as DCI 4K Cinema 4K 51 or 4K 2K is the resolution used by the 4K container format defined by the Digital Cinema Initiatives Digital Cinema System Specification a prominent standard in the cinema industry This resolution has an aspect ratio of 256 135 1 8962 1 and 8 847 360 total pixels 5 This is the native resolution for DCI 4K digital projectors and displays HDMI added support for 4096 2160 at 24 Hz in version 1 4 43 and 60 Hz in version 2 0 44 52 5120 2160 Edit This resolution is equivalent to 4K UHD 3840 2160 extended in width by 33 giving it a 64 27 aspect ratio 2 370 or 21 3 9 commonly marketed as simply 21 9 and 11 059 200 total pixels It is exactly double the size of 2560 1080 in both dimensions for a total of four times as many pixels The first displays to support this resolution were 105 inch televisions the LG 105UC9 and the Samsung UN105S9W 53 54 In December 2017 LG announced a 34 inch 5120 2160 monitor the 34WK95U 55 and in January 2021 the 40 inch 40WP95C 56 LG refers to this resolution as 5K2K WUHD 57 5120 2880 5K Edit Main article 5K resolution This resolution commonly referred to as 5K or 5K 3K has a 16 9 aspect ratio and 14 745 600 pixels Although it is not established by any of the UHDTV standards some manufacturers such as Dell have referred to it as UHD 58 It is exactly double the pixel count of QHD 2560 1440 in both dimensions for a total of four times as many pixels and is 33 larger than 4K UHD 3840 2160 in both dimensions for a total of 1 77 times as many pixels The line count of 2880 is also the least common multiple of 480 and 576 the scanline count of NTSC and PAL respectively Such a resolution can vertically scale SD content to fit by natural numbers 6 for NTSC and 5 for PAL Horizontal scaling of SD is always fractional non anamorphic 5 33 5 47 anamorphic 7 11 7 29 The first display with this resolution was the Dell UltraSharp UP2715K announced on September 5 2014 59 On October 16 2014 Apple announced the iMac with Retina 5K display 60 61 DisplayPort version 1 3 added support for 5K at 60 Hz over a single cable whereas DisplayPort 1 2 was only capable of 5K at 30 Hz Early 5K 60 Hz displays such as the Dell UltraSharp UP2715K and HP DreamColor Z27q that lacked DisplayPort 1 3 support required two DisplayPort 1 2 connections to operate at 60 Hz in a tiled display mode similar to early 4K displays using DP MST 62 Other resolution with the same 5120 pixel width which is the lowest common multiple of popular 1024 and 1280 but a different aspect ratio have also been called 5K and some nominal 5K resolutions are just 4800 pixels wide which is the lowest common multiple of 960 and 800 7680 4320 8K UHD Edit Main article 8K resolution This resolution sometimes referred to as 8K UHD has a 16 9 aspect ratio and 33 177 600 pixels It is exactly double the size of 4K UHD 3840 2160 in each dimension for a total of four times as many pixels and Quadruple the size of Full HD 1920 1080 in each dimension for a total of sixteen times as many pixels 7680 4320 was chosen as the resolution of the UHDTV2 format defined in SMPTE ST 2036 1 31 as well as the 8K UHDTV system defined in ITU R BT 2020 32 33 and the UHD 2 broadcast standard from DVB 34 DisplayPort 1 3 finalized by VESA in late 2014 added support for 7680 4320 at 30 Hz or 60 Hz with Y CBCR 4 2 0 subsampling VESA s Display Stream Compression DSC which was part of early DisplayPort 1 3 drafts and would have enabled 8K at 60 Hz without subsampling was cut from the specification prior to publication of the final draft 63 DSC support was reintroduced with the publication of DisplayPort 1 4 in March 2016 Using DSC a visually lossless form of compression formats up to 7680 4320 8K UHD at 60 Hz with HDR and 30 bit px color depth are possible without subsampling 64 17280 4320 16K Edit Main article 16K resolution Sony introduced a 63 ft 17 ft 19 2 m 5 2 m commercial 16K display at NAB 2019 that is set to be released in Japan 65 66 67 It is made up of 576 modules 360 360p in a formation of 48 by 12 modules forming a 17280 4320 screen with 4 1 aspect ratio Video Graphics Array EditVideo Graphics Array Name H px V px H V H V Mpx QQVGA 160 120 4 3 0 019HQVGA 240 160 3 2 0 038256 160 16 10 0 043QVGA 320 240 4 3 0 077WQVGA 360 240 3 2 0 086WQVGA 384 240 16 10 0 092WQVGA 400 240 5 3 0 096HVGA 480 320 3 2 0 154VGA 640 480 4 3 0 307WVGA 720 480 3 2 0 345WVGA 768 480 16 10 0 368WVGA 800 480 5 3 0 384WVGA 848 480 16 9 0 407FWVGA 854 480 16 9 0 410SVGA 800 600 4 3 0 480WSVGA 1024 576 16 9 0 590WSVGA 1024 600 128 75 0 614DVGA 960 640 3 2 0 614 160 120 QQVGA Edit Quarter QVGA QQVGA or qqVGA denotes a resolution of 160 120 or 120 160 pixels usually used in displays of handheld devices The term Quarter QVGA signifies a resolution of one fourth the number of pixels in a QVGA display half the number of vertical and half the number of horizontal pixels which itself has one fourth the number of pixels in a VGA display The abbreviation qqVGA may be used to distinguish quarter from quad just like qVGA 68 240 160 HQVGA Edit Half QVGA denotes a display screen resolution of 240 160 or 160 240 pixels as seen on the Game Boy Advance This resolution is half of QVGA which is itself a quarter of VGA which is 640 480 pixels 320 240 QVGA Edit QVGA compared to VGA Quarter VGA QVGA or qVGA is a popular term for a computer display with 320 240 display resolution QVGA displays were most often used in mobile phones personal digital assistants PDA and some handheld game consoles Often the displays are in a portrait orientation i e taller than they are wide as opposed to landscape and are referred to as 240 320 69 The name comes from having a quarter of the 640 480 maximum resolution of the original IBM Video Graphics Array display technology which became a de facto industry standard in the late 1980s QVGA is not a standard mode offered by the VGA BIOS even though VGA and compatible chipsets support a QVGA sized Mode X The term refers only to the display s resolution and thus the abbreviated term QVGA or Quarter VGA is more appropriate to use QVGA resolution is also used in digital video recording equipment as a low resolution mode requiring less data storage capacity than higher resolutions typically in still digital cameras with video recording capability and some mobile phones Each frame is an image of 320 240 pixels QVGA video is typically recorded at 15 or 30 frames per second QVGA mode describes the size of an image in pixels commonly called the resolution numerous video file formats support this resolution While QVGA is a lower resolution than VGA at higher resolutions the Q prefix commonly means quad ruple or four times higher display resolution e g QXGA is four times higher resolution than XGA To distinguish quarter from quad lowercase q is sometimes used for quarter and uppercase Q for Quad by analogy with SI prefixes like m M and p P but this is not a consistent usage 70 Some examples of devices that use QVGA display resolution include the iPod Classic Samsung i5500 LG Optimus L3 E400 Galaxy Fit Y and Pocket HTC Wildfire Sony Ericsson Xperia X10 Mini and Mini pro and Nintendo 3DS bottom screen 400 240 WQVGA Edit Variants of WQVGA H px V px H V H V Mpx 360 240 15 10 0 086376 240 4 7 3 0 0902384 240 16 10 0 0922400 240 15 9 0 0960428 240 16 9 0 103432 240 18 10 0 104480 270 16 9 0 130480 272 16 9 0 131Wide QVGA or WQVGA is any display resolution having the same height in pixels as QVGA but wider This definition is consistent with other wide versions of computer displays Since QVGA is 320 pixels wide and 240 pixels high aspect ratio of 4 3 the resolution of a WQVGA screen might be 360 240 3 2 aspect ratio 384 240 16 10 aspect ratio 400 240 5 3 such as the Nintendo 3DS screen or the maximum resolution in YouTube at 240p 428 240 16 9 ratio or 432 240 18 10 aspect ratio As with WVGA exact ratios of n 9 are difficult because of the way VGA controllers internally deal with pixels For instance when using graphical combinatorial operations on pixels VGA controllers will use 1 bit per pixel Since bits cannot be accessed individually but by chunks of 16 or an even higher power of 2 this limits the horizontal resolution to a 16 pixel granularity i e the horizontal resolution must be divisible by 16 In the case of the 16 9 ratio with 240 pixels high the horizontal resolution should be 240 9 16 426 6 the closest multiple of 16 is 432 WQVGA has also been used to describe displays that are not 240 pixels high for example Sixteenth HD1080 displays which are 480 pixels wide and 270 or 272 pixels high This may be due to WQVGA having the nearest screen height WQVGA resolutions were commonly used in touchscreen mobile phones such as 400 240 432 240 and 480 240 For example the Hyundai MB 490i Sony Ericsson Aino and the Samsung Instinct have WQVGA screen resolutions 240 432 Other devices such as the Apple iPod Nano also use a WQVGA screen 240 376 pixels 480 320 HVGA Edit Variants of HVGA H px V px H V H V Mpx 480 270 16 9 0 1296480 272 16 9 0 1306480 320 3 2 0 1536640 240 8 3 0 1536480 360 4 3 0 1728HVGA Half size VGA screens have 480 320 pixels 3 2 aspect ratio 480 360 pixels 4 3 aspect ratio 480 272 16 9 aspect ratio or 640 240 pixels 8 3 aspect ratio The former is used by a variety of PDA devices starting with the Sony CLIE PEG NR70 in 2002 and standalone PDAs by Palm The latter was used by a variety of handheld PC devices VGA resolution is 640 480 Examples of devices that use HVGA include the Apple iPhone 1st generation through 3GS iPod Touch 1st Generation through 3rd BlackBerry Bold 9000 HTC Dream Hero Wildfire S LG GW620 Eve MyTouch 3G Slide Nokia 6260 Slide Palm Pre Samsung M900 Moment Sony Ericsson Xperia X8 mini mini pro active and live and the Sony PlayStation Portable Texas Instruments produces the DLP pico projector which supports HVGA resolution 71 HVGA was the only resolution supported in the first versions of Google Android up to release 1 5 72 Other higher and lower resolutions became available starting on release 1 6 like the popular WVGA resolution on the Motorola Droid or the QVGA resolution on the HTC Tattoo Three dimensional computer graphics common on television throughout the 1980s were mostly rendered at this resolution causing objects to have jagged edges on the top and bottom when edges were not anti aliased 640 480 VGA Edit Main article Video Graphics Array Video Graphics Array VGA refers specifically to the display hardware first introduced with the IBM PS 2 line of computers in 1987 73 Through its widespread adoption VGA has also come to mean either an analog computer display standard the 15 pin D subminiature VGA connector or the 640 480 resolution itself While the VGA resolution was superseded in the personal computer market in the 1990s and the SEGA Dreamcast in 1998 74 it became a popular resolution on mobile devices in the 2000s 75 VGA is still the universal fallback troubleshooting mode in the case of trouble with graphic device drivers in operating systems In the field of video the resolution of 480i supports 640 samples per line corresponding to 640x480 corresponding to Standard Definition SD in contrast to high definition HD resolutions like 1280 720 and 1920 1080 768 480 WVGA Edit Variants of WVGA H px V px H V H V Mpx 640 360 16 9 0 230640 384 15 9 0 246720 480 15 10 0 346768 480 16 10 0 369800 450 16 9 0 360800 480 15 9 0 384848 480 16 9 0 407852 480 16 9 0 409853 480 16 9 0 409854 480 16 9 0 410Wide VGA or WVGA sometimes just WGA is any display resolution with the same 480 pixel height as VGA but wider such as 720 480 3 2 aspect ratio 800 480 5 3 848 480 852 480 853 480 or 854 480 16 9 It is a common resolution among LCD projectors and later portable and hand held internet enabled devices such as MID and Netbooks as it is capable of rendering websites designed for an 800 wide window in full page width Examples of hand held internet devices without phone capability with this resolution include Spice stellar nhance mi 435 ASUS Eee PC 700 series Dell XCD35 Nokia 770 N800 and N810 Mobile phones with WVGA display resolution are also common 854 480 FWVGA Edit FWVGA is an abbreviation for Full Wide Video Graphics Array which refers to a display resolution of 854 480 pixels 854 480 is approximately the 16 9 aspect ratio of anamorphically un squeezed NTSC DVD widescreen video and is considered a safe resolution that does not crop any of the image It is called Full WVGA to distinguish it from other narrower WVGA resolutions which require cropping 16 9 aspect ratio high definition video i e it is full width albeit with a considerable reduction in size The 854 pixel width is rounded up from 853 3 480 16 9 7680 9 8531 3 Since a pixel must be a whole number rounding up to 854 ensures inclusion of the entire image 76 In 2010 mobile phones with FWVGA display resolution started to become more common A list of mobile phones with FWVGA displays is available In addition the Wii U GamePad that comes with the Nintendo Wii U gaming console includes a 6 2 inch FWVGA display 800 600 SVGA Edit Main article Super VGA Super Video Graphics Array abbreviated to Super VGA or SVGA also known as Ultra Video Graphics Array 77 abbreviated to Ultra VGA or UVGA is a broad term that covers a wide range of computer display standards 78 Originally it was an extension to the VGA standard first released by IBM in 1987 Unlike VGA a purely IBM defined standard Super VGA was defined by the Video Electronics Standards Association VESA an open consortium set up to promote interoperability and define standards When used as a resolution specification in contrast to VGA or XGA for example the term SVGA normally refers to a resolution of 800 600 pixels The marginally higher resolution 832 624 is the highest 4 3 resolution not greater than 219 pixels with its horizontal dimension a multiple of 32 pixels This enables it to fit within a framebuffer of 512 KB 512 210 bytes and the common multiple of 32 pixels constraint is related to alignment For these reasons this resolution was available on the Macintosh LC III and other systems citation needed 960 640 DVGA Edit DVGA Double size VGA screens have 960 640 pixels 3 2 aspect ratio Both dimensions are double that of HVGA hence the pixel count is quadrupled Examples of devices that use DVGA include the Meizu MX mobile phone and the Apple iPhone 4 and 4S with the iPod Touch 4 where the screen is called the Retina Display 1024 576 1024 600 WSVGA Edit The wide version of SVGA is known as WSVGA Wide Super VGA or Wide SVGA featured on Ultra Mobile PCs netbooks and tablet computers The resolution is either 1024 576 aspect ratio 16 9 or 1024 600 128 75 with screen sizes normally ranging from 7 to 10 inches It has full XGA width of 1024 pixels Although digital broadcast content in former PAL SECAM regions has 576 active lines several mobile TV sets with a DVB T2 tuner use the 600 line variant with a diameter of 7 9 or 10 inches 18 to 26 cm Extended Graphics Array EditExtended Graphics Array Name H px V px H V H V Mpx XGA 1024 768 4 3 0 786WXGA 1152 768 3 2 0 884WXGA 1280 768 5 3 0 983WXGA 1280 800 16 10 1 024WXGA 1360 768 16 9 1 044FWXGA 1366 768 16 9 1 049XGA 1152 864 4 3 0 995WXGA 1440 900 16 10 1 296SXGA 1280 1024 5 4 1 310WSXGA 1440 960 3 2 1 382SXGA 1400 1050 4 3 1 470WSXGA 1680 1050 16 10 1 764UXGA 1600 1200 4 3 1 920WUXGA 1920 1200 16 10 2 304 1024 768 XGA Edit XGA logo used internally within IBM designed by Paul Rand 79 The Extended Graphics Array XGA is an IBM display standard introduced in 1990 Later it became the most common appellation of the 1024 768 pixels display resolution but the official definition is broader than that The initial version of XGA expanded upon IBM s older VGA by adding support for four new screen modes including one new resolution 80 81 640 480 pixels in direct 16 bits per pixel 65 536 color RGB hi color and 8 bit px 256 color palette indexed mode 1024 768 pixels with a 16 or 256 color 4 or 8 bit px palette using a low frequency interlaced refresh rate XGA 2 added a 24 bit DAC but this was used only to extend the available master palette in 256 color mode e g to allow true 256 greyscale output Other improvements included the provision of the previously missing 800 600 resolution in up to 65 536 colors faster screen refresh rates in all modes including non interlace flicker free output for 1024 768 and improved accelerator performance and versatility All standard XGA modes have a 4 3 aspect ratio with square pixels although this does not hold for certain standard VGA and third party extended modes 640 400 1280 1024 1366 768 and similar WXGA Edit Variants of WXGA H px V px H V H V Mpx 1152 768 15 10 0 8841280 720 16 9 0 9221280 768 15 9 0 9831280 800 16 10 1 0241344 768 7 4 1 0321360 768 16 9 1 0441366 768 16 9 1 049Wide XGA WXGA is a set of non standard resolutions derived from the XGA display standard by widening it to a widescreen aspect ratio WXGA is commonly used for low end LCD TVs and LCD computer monitors for widescreen presentation The exact resolution offered by a device described as WXGA can be somewhat variable owing to a proliferation of several closely related timings optimised for different uses and derived from different bases 1366 768 Edit When referring to televisions and other monitors intended for consumer entertainment use WXGA is generally understood to refer to a resolution of 1366 768 82 with an aspect ratio of very nearly 16 9 The basis for this otherwise odd seeming resolution is similar to that of other wide standards the line scan refresh rate of the well established XGA standard 1024 768 pixels 4 3 aspect extended to give square pixels on the increasingly popular 16 9 widescreen display ratio without having to effect major signalling changes other than a faster pixel clock or manufacturing changes other than extending panel width by one third As 768 is not divisible by 9 the aspect ratio is not quite 16 9 this would require a horizontal width of 13651 3 pixels However at only 0 05 the resulting error is insignificant In 2006 1366 768 was the most popular resolution for liquid crystal display televisions versus XGA for Plasma TVs flat panel displays 83 failed verification by 2013 even this was relegated to only being used in smaller or cheaper displays e g bedroom LCD TVs or low cost large format plasmas cheaper laptop and mobile tablet computers and midrange home cinema projectors having otherwise been overtaken by higher full HD resolutions such as 1920 1080 1360 768 Edit A common variant on this resolution is 1360 768 which confers several technical benefits most significantly a reduction in memory requirements from just over to just under 1 MB per 8 bit channel 1366 768 needs 1024 5 KB per channel 1360 768 needs 1020 KB 1 MB is equal to 1024 KB which simplifies architecture and can significantly reduce the amount and speed of VRAM required with only a very minor change in available resolution as memory chips are usually only available in fixed megabyte capacities For example at 32 bit color a 1360 768 framebuffer would require only 4 MB whilst a 1366 768 one may need 5 6 or even 8 MB depending on the exact display circuitry architecture and available chip capacities The 6 pixel reduction also means each line s width is divisible by 8 pixels simplifying numerous routines used in both computer and broadcast theatrical video processing which operate on 8 pixel blocks Historically many video cards also mandated screen widths divisible by 8 for their lower color planar modes to accelerate memory accesses and simplify pixel position calculations e g fetching 4 bit pixels from 32 bit memory is much faster when performed 8 pixels at a time and calculating exactly where a particular pixel is within a memory block is much easier when lines do not end partway through a memory word and this convention persisted in low end hardware even into the early days of widescreen LCD HDTVs thus most 1366 width displays also quietly support display of 1360 width material with a thin border of unused pixel columns at each side This narrower mode is even further removed from the 16 9 ideal but the error is still less than 0 5 technically the mode is either 15 94 9 00 or 16 00 9 04 and should be imperceptible citation needed 1280 800 Edit When referring to laptop displays or independent displays and projectors intended primarily for use with computers WXGA is also used to describe a resolution of 1280 800 pixels with an aspect ratio of 16 10 84 85 86 This was once particularly popular for laptop screens usually with a diagonal screen size of between 12 and 15 inches as it provided a useful compromise between 4 3 XGA and 16 9 WXGA with improved resolution in both dimensions vs the old standard especially useful in portrait mode or for displaying two standard pages of text side by side a perceptibly wider appearance and the ability to display 720p HD video native with only very thin letterbox borders usable for on screen playback controls and no stretching Additionally like 1360 768 it required only 1000 KB just under 1 MB of memory per 8 bit channel thus a typical double buffered 32 bit colour screen could fit within 8 MB limiting everyday demands on the complexity and cost energy use of integrated graphics chipsets and their shared use of typically sparse system memory generally allocated to the video system in relatively large blocks at least when only the internal display was in use external monitors generally being supported in extended desktop mode to at least 1600 1200 resolution 16 10 or 8 5 is itself a rather classic computer aspect ratio harking back to early 320 200 modes and their derivatives as seen in the Commodore 64 IBM CGA card and others However as of mid 2013 this standard is becoming increasingly rare crowded out by the more standardised and thus more economical to produce 1366 768 panels as its previously beneficial features become less important with improvements to hardware gradual loss of general backwards software compatibility and changes in interface layout As of August 2013 the market availability of panels with 1280 800 native resolution had been generally relegated to data projectors or niche products such as convertible tablet PCs and LCD based eBook readers original research Others Edit Additionally at least two other resolutions are sometimes labelled as WXGA First the HDTV standard 1280 720 87 otherwise commonly described as 720p which offers an exact 16 9 aspect with square pixels naturally it displays standard 720p HD video material without stretching or letterboxing and 1080i 1080p with a simple 2 3 downscale This resolution has found some use in tablets and modern high pixel density mobile phones as well as small format netbook or ultralight laptop computers However its use is uncommon in larger mainstream devices as it has an insufficient vertical resolution for the proper use of modern operating systems such as Windows 7 whose UI design assumes a minimum of 768 lines For certain uses such as word processing it can even be considered a slight downgrade reducing the number of simultaneously visible lines of text without granting any significant benefit as even 640 pixels is sufficient horizontal resolution to legibly render a full page width especially with the addition of subpixel anti aliasing The second variant 1280 768 can be seen as a compromise resolution that addressed this problem as well as a halfway point between the older 1024 768 and 1280 1024 resolutions and a stepping stone to 1366 768 being one quarter wider than 1024 not one third and 1280 800 that never quite caught on in the same way as either of its arguably derivative successors Its square pixel aspect ratio is 15 9 in contrast to HDTV s 16 9 and 1280 800 s 16 10 It is also the lowest resolution that might be found in an Ultrabook standard laptop as it satisfies the minimum horizontal and vertical pixel resolutions required to officially qualify for the designation Other mentionable resolutions are 1152 768 with a 3 2 aspect ratio and 1344 768 with a 7 4 aspect ratio similar to 16 9 Widespread availability of 1280 800 and 1366 768 pixel resolution LCDs for laptop monitors can be considered an OS driven evolution from the formerly popular 1024 768 screen size which has itself since seen UI design feedback in response to what could be considered disadvantages of the widescreen format when used with programs designed for traditional screens In Microsoft Windows operating system specifically the larger taskbar of Windows 7 occupies an additional 16 pixel lines by default which may compromise the usability of programs that already demanded a full 1024 768 instead of e g 800 600 unless it is specifically set to use small icons an oddball 784 line resolution would compensate for this but 1280 800 has a simpler aspect and also gives the slight bonus of 16 more usable lines Also the Windows Sidebar in Windows Vista and 7 can use the additional 256 or 336 horizontal pixels to display informational widgets without compromising the display width of other programs and Windows 8 is specifically designed around a two pane concept where the full 16 9 or 16 10 screen is not required Typically this consists of a 4 3 main program area typically 1024 768 1000 800 or 1440 1080 plus a narrow sidebar running a second program showing a toolbox for the main program or a pop out OS shortcut panel taking up the remainder Some 1440 900 resolution displays have also been found labeled as WXGA however the correct label is WSXGA or WXGA 1152 864 XGA Edit Variants of XGA H px V px H V H V Mpx Origin1120 832 1 35 1 0 932 NeXT1152 864 4 3 0 995 SVGA1152 870 1 32 1 1 002 Apple1152 900 1 28 1 1 037 SunXGA stands for Extended Graphics Array Plus and is a computer display standard usually understood to refer to the 1152 864 resolution with an aspect ratio of 4 3 Until the advent of widescreen LCDs XGA was often used on 17 inch desktop CRT monitors It is the highest 4 3 resolution not greater than 220 pixels 1 05 megapixels with its horizontal dimension a multiple of 32 pixels This enables it to fit closely into a video memory or framebuffer of 1 MB 1 220 bytes assuming the use of one byte per pixel The common multiple of 32 pixels constraint is related to alignment Historically the resolution also relates to the earlier standard of 1152 900 pixels which was adopted by Sun Microsystems for the Sun 2 workstation in the early 1980s A decade later Apple Computer selected the resolution of 1152 870 for their 21 inch CRT monitors intended for use as two page displays on the Macintosh II computer These resolutions are even closer to the limit of a 1 MB framebuffer but their aspect ratios differ slightly from the common 4 3 XGA is the next step after XGA 1024 768 although it is not approved by any standard organizations The next step with an aspect ratio of 4 3 is 1280 960 SXGA or SXGA 1400 1050 1440 900 WXGA WSXGA Edit WXGA and WSXGA are non standard terms referring to a computer display resolution of 1440 900 Occasionally manufacturers use other terms to refer to this resolution 88 The Standard Panels Working Group refers to the 1440 900 resolution as WXGA II 89 WSXGA and WXGA can be considered enhanced versions of WXGA with more pixels or as widescreen variants of SXGA The aspect ratios of each are 16 10 widescreen WXGA 1440 900 resolution is common in 19 inch widescreen desktop monitors a very small number of such monitors use WSXGA and is also optional although less common in laptop LCDs in sizes ranging from 12 1 to 17 inches Another resolution going by this name WSXGA is 1440 960 at an aspect ratio of 15 10 3 2 1280 1024 SXGA Edit Super XGA SXGA is a standard monitor resolution of 1280 1024 pixels This display resolution is the next step above the XGA resolution that IBM developed in 1990 The 1280 1024 resolution is not the standard 4 3 aspect ratio but 5 4 1 25 1 instead of 1 333 1 A standard 4 3 monitor using this resolution will have rectangular rather than square pixels meaning that unless the software compensates for this the picture will be distorted causing circles to appear elliptical There is a less common 1280 960 resolution that preserves the common 4 3 aspect ratio It is sometimes unofficially called SXGA to avoid confusion with the standard SXGA Elsewhere this 4 3 resolution was also called UVGA Ultra VGA or SXVGA Super eXtended VGA Since both sides are doubled from VGA the term Quad VGA would be a systematic one but it is hardly ever used because its initialism QVGA is strongly associated with the alternate meaning Quarter VGA 320 240 SXGA is the most common native resolution of 17 inch and 19 inch LCD monitors An LCD monitor with SXGA native resolution will typically have a physical 5 4 aspect ratio preserving a 1 1 pixel aspect ratio Sony manufactured a 17 inch CRT monitor with a 5 4 aspect ratio designed for this resolution It was sold under the Apple brand name citation needed SXGA is also a popular resolution for cell phone cameras such as the Motorola Razr and most Samsung and LG phones Although being taken over by newer UXGA 2 0 megapixel cameras the 1 3 megapixel was the most common around 2007 citation needed Any CRT that can run 1280 1024 can also run 1280 960 which has the standard 4 3 ratio A flat panel TFT screen including one designed for 1280 1024 will show stretching distortion when set to display any resolution other than its native one as the image needs to be interpolated to fit in the fixed grid display Some TFT displays do not allow a user to disable this and will prevent the upper and lower portions of the screen from being used forcing a letterbox format when set to a 4 3 ratio citation needed The 1280 1024 resolution became popular because at 24 bit px color depth it fits well into 4 megabytes of video RAM citation needed At the time memory was extremely expensive Using 1280 1024 at 24 bit color depth allowed using 3 75 MB of video RAM fitting nicely with VRAM chip sizes which were available at the time 4 MB 1280 1024 px 24 bit px 8 bit byte 220 byte MB 3 75 MB 1400 1050 SXGA Edit SXGA stands for Super Extended Graphics Array Plus and is a computer display standard An SXGA display is commonly used on 14 inch or 15 inch laptop LCD screens with a resolution of 1400 1050 pixels An SXGA display is used on a few 12 inch laptop screens such as the ThinkPad X60 and X61 both only as tablet as well as the Toshiba Portege M200 and M400 but those are far less common At 14 1 inches Dell offered SXGA on many of the Latitude C Series laptops such as the C640 and IBM since the ThinkPad T21 Sony also used SXGA in their Z1 series but no longer produce them as widescreen has become more predominant In desktop LCDs SXGA is used on some low end 20 inch monitors whereas most of the 20 inch LCDs use UXGA standard screen ratio or WSXGA widescreen ratio 1680 1050 WSXGA Edit WSXGA stands for Widescreen Super Extended Graphics Array Plus WSXGA displays were commonly used on Widescreen 20 21 and 22 inch LCD monitors from numerous manufacturers and a very small number of 19 inch widescreen monitors as well as widescreen 15 4 inch and 17 inch laptop LCD screens like the Thinkpad T61p the late 17 Apple PowerBook G4 and the unibody Apple 15 MacBook Pro The resolution is 1680 1050 pixels 1 764 000 pixels with a 16 10 aspect ratio WSXGA is the widescreen version of SXGA but it is not approved by any organization The next highest resolution for widescreen after it is WUXGA which is 1920 1200 pixels 1600 1200 UXGA UGA Edit UXGA or UGA is an abbreviation for Ultra Extended Graphics Array referring to a standard monitor resolution of 1600 1200 pixels totaling 1 920 000 pixels which is exactly four times the default image resolution of SVGA 800 600 800 600 totaling 480 000 pixels Dell Inc refers to the same resolution of 1 920 000 pixels as UGA It is generally considered to be the next step above SXGA 1280 960 or 1280 1024 but some resolutions such as the unnamed 1366 1024 and SXGA at 1400 1050 fit between the two UXGA has been the native resolution of many fullscreen monitors of 15 inches or more including laptop LCDs such as the ones in the IBM ThinkPad A21p A30p A31p T42p T43p T60p Dell Inspiron 8000 8100 8200 and Latitude Precision equivalents some Panasonic Toughbook CF 51 models and the original Alienware Area 51M gaming laptop However in more recent times UXGA is not used in laptops at all but rather in desktop UXGA monitors that have been made in sizes of 20 inches and 21 3 inches Some 14 inch laptop LCDs with UXGA have also existed such as the Dell Inspiron 4100 but these are very rare There are two different widescreen cousins of UXGA one called UWXGA with 1600 768 750 and one called WUXGA with 1920 1200 resolution 1920 1200 WUXGA Edit WUXGA stands for Widescreen Ultra Extended Graphics Array and is a display resolution of 1920 1200 pixels 2 304 000 pixels with a 16 10 screen aspect ratio It is a wide version of UXGA and can be used for viewing high definition television HDTV content which uses a 16 9 aspect ratio and a 1280 720 720p or 1920 1080 1080i or 1080p resolution The 16 10 aspect ratio as opposed to the 16 9 used in widescreen televisions was chosen because this aspect ratio is appropriate for displaying two full pages of text side by side 90 WUXGA resolution has a total of 2 304 000 pixels One frame of uncompressed 8 BPC RGB WUXGA is 6 75 MiB 6 912 MB Initially it was available in widescreen CRTs such as the Sony GDM FW900 and the Hewlett Packard A7217A introduced in 2003 and in 17 inch laptops Most QXGA displays support 1920 1200 WUXGA is also available in some mobile phablet devices such as the Huawei Honor X2 Gem The next lower standard resolution for widescreen before it is WSXGA which is 1680 1050 pixels 1 764 000 pixels or 30 61 fewer than WUXGA the next higher resolution widescreen is an unnamed 2304 1440 resolution supported by the above GDM FW900 and A7217A and then the more common WQXGA which has 2560 1600 pixels 4 096 000 pixels or 77 78 more than WUXGA Quad Extended Graphics Array EditQuad Extended Graphics Array Name H px V px H V H V Mpx QWXGA 2048 1152 16 9 2 359QXGA 2048 1536 4 3 3 145WQXGA 2560 1600 16 10 4 0962880 1800 16 10 5 184QSXGA 2560 2048 5 4 5 242WQSXGA 3200 2048 25 16 6 553QUXGA 3200 2400 4 3 7 680WQUXGA 3840 2400 16 10 9 216The QXGA or Quad Extended Graphics Array display standard is a resolution standard in display technology Some examples of LCD monitors that have pixel counts at these levels are the Dell 3008WFP the Apple Cinema Display the Apple iMac 27 inch 2009 present the iPad 3rd generation the iPad Mini 2 and the MacBook Pro 3rd generation Many standard 21 22 inch CRT monitors and some of the highest end 19 inch CRTs also support this resolution 2048 1152 QWXGA Edit Not to be confused with WQXGA QWXGA Quad Wide Extended Graphics Array is a display resolution of 2048 1152 pixels with a 16 9 aspect ratio A few QWXGA LCD monitors were available in 2009 with 23 and 27 inch displays such as the Acer B233HU 23 inch and B273HU 27 inch the Dell SP2309W and the Samsung 2343BWX As of 2011 most 2048 1152 monitors have been discontinued and as of 2013 no major manufacturer produces monitors with this resolution 2048 1536 QXGA Edit QXGA Quad Extended Graphics Array is a display resolution of 2048 1536 pixels with a 4 3 aspect ratio The name comes from it having four times as many pixels as an XGA display Examples of LCDs with this resolution are the IBM T210 and the Eizo G33 and R31 screens but in CRT monitors this resolution is much more common some examples include the Sony F520 ViewSonic G225fB NEC FP2141SB or Mitsubishi DP2070SB Iiyama Vision Master Pro 514 and Dell and HP P1230 Of these monitors none are still in production A related display size is WQXGA which is a widescreen version CRTs offer a way to achieve QXGA cheaply Models like the Mitsubishi Diamond Pro 2045U and IBM ThinkVision C220P retailed for around US 200 and even higher performance ones like the ViewSonic PerfectFlat P220fB remained under 500 At one time many off lease P1230s could be found on eBay for under 150 The LCDs with WQXGA or QXGA resolution typically cost four to five times more for the same resolution IDTech manufactured a 15 inch QXGA IPS panel used in the IBM ThinkPad R50p NEC sold laptops with QXGA screens in 2002 05 for the Japanese market 91 92 The iPad starting from 3rd generation and Mini 2 also has a QXGA display 93 94 2560 1600 WQXGA Edit Not to be confused with QWXGA WQXGA Wide Quad Extended Graphics Array is a display resolution of 2560 1600 pixels with a 16 10 aspect ratio The name comes from it being a wide version of QXGA 95 and having four times as many pixels as an WXGA 1280 800 display To obtain a vertical refresh rate higher than 40 Hz with DVI this resolution requires dual link DVI cables and devices To avoid cable problems monitors are sometimes shipped with an appropriate dual link cable already plugged in Many video cards support this resolution One feature that is currently unique to the 30 inch WQXGA monitors is the ability to function as the centerpiece and main display of a three monitor array of complementary aspect ratios with two UXGA 1600 1200 20 inch monitors turned vertically on either side The resolutions are equal and the size of the 1600 resolution edges if the manufacturer is honest is within a tenth of an inch 16 inch vs 15 89999 presenting a picture window view without the extreme lateral dimensions small central panel asymmetry resolution differences or dimensional difference of other three monitor combinations The resulting 4960 1600 composite image has a 3 1 1 aspect ratio This also means one UXGA 20 inch monitor in portrait orientation can also be flanked by two 30 inch WQXGA monitors for a 6320 1600 composite image with an 11 85 3 79 20 3 95 1 aspect ratio Some WQXGA medical displays such as the Barco Coronis 4MP or the Eizo SX3031W can also be configured as two virtual 1200 1600 or 1280 1600 seamless displays by using both DVI ports at the same time An early consumer WQXGA monitor was the 30 inch Apple Cinema Display unveiled by Apple in June 2004 At the time dual link DVI was uncommon on consumer hardware so Apple partnered with Nvidia to develop a special graphics card that had two dual link DVI ports allowing simultaneous use of two 30 inch Apple Cinema Displays The nature of this graphics card being an add in AGP card meant that the monitors could only be used in a desktop computer like the Power Mac G5 that could have the add in card installed and could not be immediately used with laptop computers that lacked this expansion capability In March 2009 Apple updated several Macintosh computers with a Mini DisplayPort adapter such as the Mac mini and iMac These allow an external connection to 2560x1600 display 96 97 In 2010 WQXGA made its debut in a handful of home theater projectors targeted at the Constant Height Screen application market Both Digital Projection Inc and projectiondesign released models based on a Texas Instruments DLP chip with a native WQXGA resolution alleviating the need for an anamorphic lens to achieve 1 2 35 image projection Many manufacturers have 27 30 inch models that are capable of WQXGA albeit at a much higher price than lower resolution monitors of the same size Several mainstream WQXGA monitors are or were available with 30 inch displays such as the Dell 3007WFP HC 3008WFP U3011 U3014 UP3017 the Hewlett Packard LP3065 the Gateway XHD3000 LG W3000H and the Samsung 305T Specialist manufacturers like NEC Eizo Planar Systems Barco LC 3001 and possibly others offer similar models As of 2016 LG Display make a 10 bit 30 inch AH IPS panel with wide color gamut used in monitors from Dell NEC HP Lenovo and Iiyama Released in November 2012 Google s Nexus 10 is the first consumer tablet to feature WQXGA resolution Before its release the highest resolution available on a tablet was QXGA 2048 1536 available on the Apple iPad 3rd and 4th generations devices Several Samsung Galaxy tablets including the Note 10 1 2014 Edition Tab S 8 4 10 5 and TabPRO 8 4 10 1 and Note Pro 12 2 as well as the Gigaset QV1030 also feature a WQXGA resolution display In 2012 Apple released the 13 inch MacBook Pro with Retina Display that features a WQXGA display and the new MacBook Air in 2018 The LG Gram 17 introduced in 2019 98 uses a 17 inch WQXGA display It has been updated with the LG Gram 2021 99 that retains the same screen size and resolution 2560 2048 QSXGA Edit QSXGA Quad Super Extended Graphics Array is a display resolution of 2560 2048 pixels with a 5 4 aspect ratio Grayscale monitors with a 2560 2048 resolution primarily for medical use are available from Planar Systems Dome E5 Eizo Radiforce G51 Barco Nio 5 MP WIDE IF2105MP IDTech IAQS80F and possibly others Recent medical displays such as Barco Coronis Fusion 10MP or NDS Dome S10 have a native panel resolution of 4096 2560 These are driven by two dual link DVI or DisplayPort outputs They can be considered to be two seamless virtual QSXGA displays as they have to be driven simultaneously by both dual link DVI or DisplayPort since one dual link DVI or DisplayPort cannot single handedly display 10 megapixels A similar resolution of 2560 1920 4 3 was supported by a small number of CRT displays via VGA such as the Viewsonic P225f when paired with the right graphics card citation needed 3200 2048 WQSXGA Edit WQSXGA Wide Quad Super Extended Graphics Array describes a display standard that can support a resolution up to 3200 2048 pixels assuming a 1 5625 1 25 16 aspect ratio The Coronis Fusion 6MP DL by Barco supports 3280 2048 approximately 16 10 citation needed 3200 2400 QUXGA Edit QUXGA Quad Ultra Extended Graphics Array describes a display standard that can support a resolution up to 3200 2400 pixels assuming a 4 3 aspect ratio 3840 2400 WQUXGA Edit WQUXGA Wide Quad Ultra Extended Graphics Array describes a display standard that supports a resolution of 3840 2400 pixels which provides a 16 10 aspect ratio This resolution is exactly four times 1920 1200 in pixels Dell uses the term UHD to refer to this resolution citation needed Most display cards with a DVI connector are capable of supporting the 3840 2400 resolution However the maximum refresh rate will be limited by the number of DVI links connected to the monitor 1 2 or 4 DVI connectors are used to drive the monitor using various tile configurations Only the IBM T221 DG5 and IDTech MD22292B5 support the use of dual link DVI ports through an external converter box Many systems using these monitors use at least two DVI connectors to send video to the monitor These DVI connectors can be from the same graphics card different graphics cards or even different computers Motion across the tile boundary ies can show tearing if the DVI links are not synchronized The display panel can be updated at a speed between 0 Hz and 41 Hz 48 Hz for the IBM T221 DG5 DGP and IDTech MD22292B5 The refresh rate of the video signal can be higher than 41 Hz or 48 Hz but the monitor will not update the display any faster even if graphics card s do so citation needed In June 2001 WQUXGA was introduced in the IBM T220 LCD monitor using a LCD panel built by IDTech LCD displays that support WQUXGA resolution include IBM T220 IBM T221 Iiyama AQU5611DTBK ViewSonic VP2290 100 ADTX MD22292B and IDTech MD22292 models B0 B1 B2 B5 C0 C2 IDTech was the original equipment manufacturer which sold these monitors to ADTX IBM Iiyama and ViewSonic 101 However none of the WQUXGA monitors IBM ViewSonic Iiyama ADTX are in production anymore they had prices that were well above even the higher end displays used by graphic professionals and the lower refresh rates 41 Hz and 48 Hz made them less attractive for many applications Unsystematic resolutions EditAfter having used VGA based 3 2 resolutions HVGA 480 320 and Retina DVGA 960 640 for several years in their iPhone and iPod products with a screen diagonal of 9 cm or 3 5 inches Apple started using more exotic variants when they adopted the 16 9 aspect ratio to provide a consistent pixel density across screen sizes first 1136 640 rarely WDVGA with the iPhone 5 5C 5S and SE 1st for 10 cm or 4 inch screens and later 1334 750 with the iPhone 6 6S 7 8 SE 2nd and SE 3rd for 12 cm or 4 7 inch screens while devices with 14 cm or 5 5 inch screens used standard 1920 1080 with the iPhone 6 Plus 6S Plus 7 Plus and 8 Plus The iPhone X XS and 11 Pro introduced a 2436 1125 resolution for 15 cm or 5 8 inch screens while the iPhone XS Max and 11 Pro Max introduced a 2688 1242 resolution for 17 cm or 6 5 inch screens with a notch all at an aspect ratio of roughly 13 6 or for marketing 19 5 9 Other manufacturers have also introduced phones with irregular display resolutions and aspect ratios e g Samsung s various Infinity displays with 37 18 18 1 2 9 Galaxy S8 S9 and A8 A9 i e 2960 1440 Quad HD WQHD or 2220 1080 Full HD and 19 9 S10 aspect ratios 3040 1440 and 2280 1080 S10e Some air traffic control monitors use displays with a resolution of 2048 x 2048 with an aspect ratio of 1 1 102 and similar consumer monitors at resolution of 1920 x 1920 are also available aimed primarily at productivity tasks 103 Eizo is major supplier of panels and monitors in this aspect ratio Also in 2022 a 16 18 monitor in 2560x2880 resolution named SDQHD was released for general productivity work by LG Electronics 104 See also EditDot pitch List of common resolutions Pixel density Ultrawide formats for history and comparison of video formats and displays which are growing widerReferences Edit VESA CVT 1 2 from 2003 recommends only 4 3 16 9 and 16 10 8 5 aspect ratios for newly introduced display resolutions The discouraged legacy aspect ratios 5 4 and 15 9 5 3 are only kept for SXGA and WXGA VESA CVT 1 2 Ahmed Asif 13 November 2017 18 9 Aspect Ratio in Smartphones will be the new Standard in 2018 Here s why Techtippr Retrieved 2018 10 01 DVCPRO HD Format Specifications Apple Inc Archived from the original on 2010 02 16 Retrieved 2018 10 01 Cage Chuck 23 October 2007 Hitachi P50T501 Wired Conde Nast Retrieved 2018 10 01 a b Digital Cinema System Specification PDF Digital Cinema Initiatives 10 October 2012 Archived from the original PDF on 2016 05 27 Retrieved 2016 03 02 Bhagat Hitesh Raj Bajaj Karan 26 January 2018 The 18 9 display dilemma Will the new smartphone screens make our lives easier or do the opposite The Economic Times Bennett Coleman amp Co Retrieved 2018 10 01 Tweedle Steven 3 December 2016 The best screen for multitasking comes with a hefty price tag Business Insider Singapore Retrieved 2018 10 01 ASUS PB278Q 27 Inch WQHD LED lit PLS Professional Graphics Monitor Amazon Retrieved 2013 05 22 McGuigan Brendan 2013 What Is 1440p with picture wisegeek com Retrieved 2013 12 10 Lawler Richard 17 October 2006 CMO to ship 47 inch Quad HD 1440p LCD in 2007 Engadget Retrieved 2008 07 06 CMO showcases latest green and innovative LCD panels Chi Mei Optoelectronics 24 October 2008 Archived from the original on 2010 03 13 Retrieved 2008 10 26 Davies Chris 1 September 2012 Samsung Series 9 WQHD Hands on with Sammy s Retina retort SlashGear Retrieved 2013 06 02 Santos Alexis 20 August 2013 LG Display claims a world s first with 2 560 1 440 LCD for smartphones Engadget AOL Retrieved 2013 08 21 Lai Richard 16 October 2013 Vivo Xplay 3S to be the world s first phone with a 2 560 x 1 440 display Engadget AOL Retrieved 2013 10 19 Samsung Galaxy Note 4 GSMArena Retrieved 2018 10 01 Android Be together Not the same Google Official Blog 15 October 2014 Retrieved 2015 02 14 Nexus 6 from Google and Motorola More Android More screen More everything The Official Motorola Blog Motorola 15 October 2014 Retrieved 2015 02 14 Nexus 6 Archived from the original on 2015 02 16 Retrieved 2015 02 14 Kelion Leo 1 March 2015 Samsung S6 Edge with curved screen unveiled at MWC BBC News Retrieved 2015 03 01 Samsung Galaxy S7 Full phone specifications GSMArena Retrieved 2018 10 01 Brian Matt 20 May 2013 Samsung beats Chromebook Pixel and Retina MacBook with new high res laptop display The Verge Retrieved 2013 05 23 Nistor Codrut 21 October 2013 Dell XPS 15 now features a QHD resolution display Notebookcheck Retrieved 2013 11 15 Hollister Sean 23 May 2013 HP redesigns Envy and Pavilion laptops for 2013 including one with a 3200 x 1800 screen The Verge Retrieved 2013 05 23 Sakr Sharif 20 May 2013 Samsung to exhibit 13 3 inch notebook display with 3 200 x 1 800 resolution Engadget Retrieved 2013 05 23 LG UltraWide QHD IPS Monitor 34UM95 LG Electronics UK Retrieved 2016 09 07 Addison Ken 17 May 2018 Samsung C49HG90 49 in Ultrawide FreeSync 2 Monitor Review How Wide is too Wide PC Perspective Retrieved 2018 10 01 38 Class 21 9 UltraWide WQHD IPS Curved LED Monitor 37 5 Diagonal LG Electronics Retrieved 2017 12 30 XR382CQK bmijqphuzx Acer Archived from the original on 2017 12 30 Retrieved 2017 12 30 Singleton Micah 14 June 2017 Dell U3818DW The Verge Vox Media Retrieved 2018 01 12 Thacker Jim 17 September 2017 HP Z38c CG Channel Retrieved 2018 01 12 a b UHDTV Ecosystem Reference Diagram PDF SMPTE Retrieved 2018 05 15 a b Ultra High Definition Television Threshold of a new age Press release ITU 24 May 2012 Retrieved 2012 08 18 a b Recommendation ITU R BT 2020 2 Parameter values for ultra high definition television systems for production and international programme exchange PDF International Telecommunication Union ITU October 2015 Retrieved 2018 05 15 a b Phasing in Ultra High Definition PDF Digital Video Broadcasting DVB February 2017 Archived from the original PDF on 2018 12 22 Retrieved 2018 05 15 CEA Updates Characteristics for Ultra High Definition Displays Consumer Electronics Association CEA 24 June 2014 Retrieved 2018 05 15 Philippides Alexis 17 April 2012 What are 4K QFHD and Ultra HD resolutions Stuff Review Retrieved 2018 05 15 Malik Haroon 9 January 2008 Concept Samsung 82 Inch LCD World s Largest Ultra High Definition Gizmodo Retrieved 2013 05 22 Sony Announces TRIMASTER SRM L560 HDTV HDTV Review 6 October 2009 Archived from the original on 2016 03 15 Retrieved 2016 01 07 Hannaford Kat 25 May 2010 LG Shows Off 84 Inch 3DTV With 3 840 x 2 160 Resolution Gizmodo Retrieved 2013 05 22 27 8 R278D1 Chimei Innolux Archived from the original on 2011 01 04 Retrieved 2010 12 27 Toshiba s REGZA 55x3 announced as world s first 4K2K TV with glasses free 3D Engadget AOL Retrieved 2013 05 22 Wiley Craig 28 May 2013 4K Ultra HD Displays What You Need to Know DisplayPort VESA Retrieved 2013 08 13 a b FAQ for HDMI 1 4 Support for 4K format HDMI Licensing Retrieved 2013 08 13 a b FAQ for HDMI 2 0 HDMI Licensing Retrieved 2014 01 09 4K Ultra High Resolution Development NVIDIA Developer Zone NVIDIA 13 September 2013 Retrieved 2013 12 17 Shrout Ryan 19 July 2013 ASUS PQ321Q 31 5 in 4K 60 Hz Tiled Monitor Review PC Perspective Retrieved 2016 01 07 PB287Q 4K For The Masses CES 2014 ASUSTek Archived from the original on 2014 09 21 Retrieved 2014 08 20 Shrout Ryan 9 May 2014 Video Perspective Samsung U28D590D 28 in 4K Single Stream 60 Hz Monitor Review PC Perspective Retrieved 2016 01 07 Sony Xperia Z5 Premium specs phoneArena com Retrieved 2016 02 08 Xperia XZ Premium Sony Mobile Retrieved 2018 10 01 LG 31MU97 B 31 Inch 4K IPS Monitor LG Retrieved 2016 03 02 Distributing 4K and UHD Signals in Professional AV Environments PDF Extron 2 March 2014 Retrieved 2016 01 07 Humphries Matthew 29 July 2014 Forget 4K LG ships a 105 inch 5K TV Ziff Davis Archived from the original on 2018 06 12 Retrieved 2018 05 29 Shilov Anton 23 July 2014 Samsung prices its 105 5K UHD curved TV 120 000 Kitguru Retrieved 2018 05 29 Shilov Anton 28 December 2017 LG Announces the 5K UltraWide 34WK95U A Nano IPS Monitor with a HDR600 Badge AnandTech Purch Retrieved 2018 05 29 Broekhuijsen Niels 2021 01 14 LG s Huge 40 Inch Monitor Is First To Feature Thunderbolt 4 Tom s Hardware Retrieved 2021 01 23 LG 34BK95U 34 Inch Class 21 9 UltraWide 5K2K Nano IPS LED Monitor w HDR 600 LG USA LG Business Solutions LG Archived from the original on 2019 02 08 Retrieved 2019 02 08 Issues users need to understand when using UHD 4K x 2K and UHD 5K x 3K displays Text and icons are too small etc Dell Retrieved 2016 01 06 Anthony Sebastian 5 September 2014 Dell unveils 5K desktop monitor with almost 2x the pixels of your puny 4K display ExtremeTech Ziff Davis Retrieved 2014 10 19 Apple Special Event October 16 2014 Apple Retrieved 2014 10 19 Bonnington Christina 17 October 2014 Answers to All of Your Questions About Apple s 5K iMac Display Wired Conde Nast Retrieved 2014 10 19 Chester Edward 5 October 2015 Dell UltraSharp UP2715K TrustedReviews Retrieved 2016 01 06 Smith Ryan 16 September 2014 VESA Releases DisplayPort 1 3 Standard 50 More Bandwidth New Features AnandTech Purch Retrieved 2016 01 06 VESA Publishes DisplayPort Standard Version 1 4 DisplayPort Retrieved 2016 03 19 Waniata Ryan 2019 04 10 Sony s massive new MicroLED display stands 17 feet tall and packs 16K resolution Digital Trends Retrieved 2019 10 17 Dent Steve 2019 09 13 Sony s Crystal cinema display supports 16K but could cost millions Engadget Retrieved 2019 12 18 Kelion Leo 9 April 2019 Sony creates colossal 16K screen in Japan BBC News Retrieved 22 April 2021 Kwon Jang Yeon Jung Ji Sim Park Kyung Bae Kim Jong Man Lim Hyuck Lee Sang Yoon Kim Jong Min Noguchi Takashi et al 2006 2 2 inch qqVGA AMOLED Drove by Ultra Low Temperature Poly Silicon ULTPS TFT Direct Fabricated Below 200 C SID 2006 Digest 37 2 1358 61 doi 10 1889 1 2433233 S2CID 110488279 QVGA Quarter Video Graphics Array Tech FAQ Independent Media Retrieved 2010 02 10 Shin Min Seok Choi Jung Whan Kim Yong Jae Kim Kyong Rok Lee Inhwan Kwon Oh Kyong 2007 Accurate Power Estimation of LCD Panels for Notebook Design of Low Cost 2 2 inch qVGA LTPS TFT LCD Panel SID 2007 Digest 38 1 260 263 doi 10 1889 1 2785279 S2CID 109838866 June Laura 24 November 2008 Optoma DLP Pico projector coming soon to US Engadget AOL Retrieved 2008 11 24 Screen compatibility overview Android Developers Retrieved 2011 02 04 Polsson Ken 9 November 2010 Chronology of IBM Personal Computers Archived from the original on 2011 06 07 Retrieved 2010 11 18 480p vs 480i Streamer Tactics streamertactics com 2023 01 19 Retrieved 2023 01 31 New resolutions for Microsoft Smartphone 320x240 and Pocket PC 640x480 are coming MS Mobiles 28 October 2003 Archived from the original on 2003 10 29 Retrieved 2013 05 22 NVIDIA Tegra FAQ PDF FAQ Nvidia Retrieved 2013 05 22 Ultra Video Graphics Array UVGA Smart Computing Encyclopedia Smart Computing 16 January 2007 Archived from the original on 2012 02 25 Retrieved 2014 03 12 Verma Vipul 29 October 2001 Same monitor yet better viewing The Tribune Retrieved 2008 03 26 XGA Logo Paul Rand Foundation Retrieved September 25 2021 Necasek Michal The XGA Graphics Chip The OS 2 Museum Retrieved 2013 08 01 Necasek Michal The 8514 A Graphics Accelerators The OS 2 Museum Retrieved 2013 08 01 Plasma TVs PDF Hitachi Archived from the original PDF on 2007 10 09 Retrieved 2013 05 22 TV Panels Standard PDF VESA 10 March 2006 Archived from the original PDF on 2008 12 09 Retrieved 2013 05 22 VESA Asia Briefings PDF VESA October 2005 p 21 Archived from the original PDF on 2005 12 15 Retrieved 2013 05 22 LEARN MORE LCD Displays Dell Retrieved 2013 05 22 Help Me Decide Lenovo Archived from the original on 2014 01 02 Retrieved 2013 05 22 Acer PH530 HDTV DLP Projector NCIX Archived from the original on 2012 04 29 Retrieved 2013 05 22 Renesas Technology Releases R8J66730FP Liquid Crystal Panel Timing Controller Incorporating Overdrive Function for Improved Moving Image Display Capability and Color Conversion Function Press release Renesas Technology 12 September 2005 Archived from the original on 2006 03 22 Retrieved 2013 05 22 SPWG Notebook Panel Specification PDF Standard Panels Working Group 14 March 2007 p 18 Archived from the original PDF on 2012 04 24 Retrieved 2013 05 22 Introduction Monitor Technology Guide NEC Display Solutions Archived from the original on 2007 03 15 Retrieved 2013 05 22 プレスリリース in Japanese NEC 1 July 2002 プレスリリース in Japanese NEC 19 January 2005 Apple unveils new iPad with high definition screen BBC 8 March 2012 Retrieved 2012 03 07 Whitney Lance Apple iPad Mini gets Retina Display CNET Retrieved 2021 12 21 WQXGA PCMag Encyclopedia Ziff Davis Retrieved 8 January 2021 Mac mini Core 2 Duo Early 2009 Nvidia specs everymac com Retrieved 3 May 2022 Apple iMac 20 Inch Core 2 Duo 2 66 Early 2009 Specs everymac com Retrieved 3 May 2022 LG Gram 17Z990 I7 8565U WQXGA Laptop Review LG Gram 17 review 2021 A super light laptop for premium portability 4 March 2021 ViewSonic Brings World s Highest Resolution Monitor To Its LCD Lineup Press release ViewSonic 25 June 2002 Archived from the original on 2002 12 07 Retrieved 2013 05 22 About Purchase of the Ultra High Resolution and Ultra High Density LCD Monitor IDTech Archived from the original on 2004 04 05 Retrieved 2013 05 22 Raptor SQ2825 EIZO EIZO Retrieved 2020 10 13 EV2730Q 26 5 1920 x 1920 Square Monitor with IPS Panel FlexScan EIZO www eizo com LG 28 inch 16 18 DualUp Monitor with Ergo Stand and USB Type C 28MQ780 B LG USA Retrieved from https en wikipedia org w index php title Graphics display resolution amp oldid 1149800907 QVGA 320 240, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.