fbpx
Wikipedia

NTSC

The first American standard for analog television broadcast was developed by National Television System Committee (NTSC)[1] in 1941. In 1961, it was assigned the designation System M.

Analog television encoding systems by nation; NTSC (green), SECAM (orange), and PAL (blue)

In 1953, a second NTSC standard was adopted, which allowed for color television broadcast compatible with the existing stock of black-and-white receivers. It is one of three major color formats for analog television, the others being PAL and SECAM. NTSC color is usually associated with the System M. The only other broadcast television system to use NTSC color was the System J.

Since the introduction of digital sources (ex: DVD) the term "NTSC" might be used to refer to digital formats with number of active lines between 480 and 487 having 30 or 29.97 frames per second rate. This borrowed term should not be confused with the analog color system itself.

Geographic reach

The NTSC standard was used in most of the Americas (except Argentina, Brazil, Paraguay, and Uruguay), Myanmar, South Korea, Taiwan, Philippines, Japan, and some Pacific Islands nations and territories (see map).

Digital conversion

Most countries using the NTSC standard, as well as those using other analog television standards, have switched to, or are in process of switching to, newer digital television standards, with there being at least four different standards in use around the world. North America, parts of Central America, and South Korea are adopting or have adopted the ATSC standards, while other countries, such as Japan, are adopting or have adopted other standards instead of ATSC. After nearly 70 years, the majority of over-the-air NTSC transmissions in the United States ceased on January 1, 2010,[2] and by August 31, 2011,[3] in Canada and most other NTSC markets.[4] The majority of NTSC transmissions ended in Japan on July 24, 2011, with the Japanese prefectures of Iwate, Miyagi, and Fukushima ending the next year.[3] After a pilot program in 2013, most full-power analog stations in Mexico left the air on ten dates in 2015, with some 500 low-power and repeater stations allowed to remain in analog until the end of 2016. Digital broadcasting allows higher-resolution television, but digital standard definition television continues to use the frame rate and number of lines of resolution established by the analog NTSC standard.

History

The National Television System Committee was established in 1940 by the United States Federal Communications Commission (FCC) to resolve the conflicts between companies over the introduction of a nationwide analog television system in the United States. In March 1941, the committee issued a technical standard for black-and-white television that built upon a 1936 recommendation made by the Radio Manufacturers Association (RMA). Technical advancements of the vestigial side band technique allowed for the opportunity to increase the image resolution. The NTSC selected 525 scan lines as a compromise between RCA's 441-scan line standard (already being used by RCA's NBC TV network) and Philco's and DuMont's desire to increase the number of scan lines to between 605 and 800.[5] The standard recommended a frame rate of 30 frames (images) per second, consisting of two interlaced fields per frame at 262.5 lines per field and 60 fields per second. Other standards in the final recommendation were an aspect ratio of 4:3, and frequency modulation (FM) for the sound signal (which was quite new at the time).

In January 1950, the committee was reconstituted to standardize color television. The FCC had briefly approved a 405-line field-sequential color television standard in October 1950, which was developed by CBS.[6] The CBS system was incompatible with existing black-and-white receivers. It used a rotating color wheel, reduced the number of scan lines from 525 to 405, and increased the field rate from 60 to 144, but had an effective frame rate of only 24 frames per second. Legal action by rival RCA kept commercial use of the system off the air until June 1951, and regular broadcasts only lasted a few months before manufacture of all color television sets was banned by the Office of Defense Mobilization in October, ostensibly due to the Korean War.[7] CBS rescinded its system in March 1953,[8] and the FCC replaced it on December 17, 1953, with the NTSC color standard, which was cooperatively developed by several companies, including RCA and Philco.[9]

In December 1953, the FCC unanimously approved what is now called the NTSC color television standard (later defined as RS-170a). The compatible color standard retained full backward compatibility with then-existing black-and-white television sets. Color information was added to the black-and-white image by introducing a color subcarrier of precisely 315/88 MHz (usually described as 3.579545 MHz±10 Hz[10] or about 3.58 MHz). The precise frequency was chosen so that horizontal line-rate modulation components of the chrominance signal fall exactly in between the horizontal line-rate modulation components of the luminance signal, thereby enabling the chrominance signal to be filtered out of the luminance signal with minor degradation of the luminance signal. (Also, minimize the visibility on existing sets that do not filter it out.) Due to limitations of frequency divider circuits at the time the color standard was promulgated, the color subcarrier frequency was constructed as composite frequency assembled from small integers, in this case 5×7×9/(8×11) MHz.[11] The horizontal line rate was reduced to approximately 15,734 lines per second (3.579545×2/455 MHz = 9/572 MHz) from 15,750 lines per second, and the frame rate was reduced to 30/1.001 ≈ 29.970 frames per second (the horizontal line rate divided by 525 lines/frame) from 30 frames per second. These changes amounted to 0.1 percent and were readily tolerated by then-existing television receivers.[12][13]

The first publicly announced network television broadcast of a program using the NTSC "compatible color" system was an episode of NBC's Kukla, Fran and Ollie on August 30, 1953, although it was viewable in color only at the network's headquarters.[14] The first nationwide viewing of NTSC color came on the following January 1 with the coast-to-coast broadcast of the Tournament of Roses Parade, viewable on prototype color receivers at special presentations across the country. The first color NTSC television camera was the RCA TK-40, used for experimental broadcasts in 1953; an improved version, the TK-40A, introduced in March 1954, was the first commercially available color television camera. Later that year, the improved TK-41 became the standard camera used throughout much of the 1960s.

The NTSC standard has been adopted by other countries, including some in the Americas and Japan.

With the advent of digital television, analog broadcasts were largely phased out. Most US NTSC broadcasters were required by the FCC to shut down their analog transmitters by February 17, 2009, however this was later moved to June 12, 2009. Low-power stations, Class A stations and translators were required to shut down by 2015, although an FCC extension allowed some of those stations operating on Channel 6 to operate until July 13, 2021.[15] The remaining Canadian analog TV transmitters, in markets not subject to the mandatory transition in 2011, were scheduled to be shut down by January 14, 2022, under a schedule published by Innovation, Science and Economic Development Canada in 2017; however the scheduled transition dates have already passed for several stations listed that continue to broadcast in analog (e.g. CFJC-TV Kamloops, which has not yet transitioned to digital, is listed as having been required to transition by November 20, 2020).[16]

Technical details

Resolution and refresh rate

NTSC color encoding is used with the System M television signal, which consists of 301.001 (approximately 29.97) interlaced frames of video per second. Each frame is composed of two fields, each consisting of 262.5 scan lines, for a total of 525 scan lines. Initially 486 scan lines make up the visible raster, although this was later standardized to 480. The remainder (the vertical blanking interval) allow for vertical synchronization and retrace. This blanking interval was originally designed to simply blank the electron beam of the receiver's CRT to allow for the simple analog circuits and slow vertical retrace of early TV receivers. However, some of these lines may now contain other data such as closed captioning and vertical interval timecode (VITC). In the complete raster (disregarding half lines due to interlacing) the even-numbered scan lines (every other line that would be even if counted in the video signal, e.g. {2, 4, 6, ..., 524}) are drawn in the first field, and the odd-numbered (every other line that would be odd if counted in the video signal, e.g. {1, 3, 5, ..., 525}) are drawn in the second field, to yield a flicker-free image at the field refresh frequency of 601.001 Hz (approximately 59.94 Hz). For comparison, 625 lines (576 visible) systems, usually used with PAL-B/G and SECAM color, and so have a higher vertical resolution, but a lower temporal resolution of 25 frames or 50 fields per second.

The NTSC field refresh frequency in the black-and-white system originally exactly matched the nominal 60 Hz frequency of alternating current power used in the United States. Matching the field refresh rate to the power source avoided intermodulation (also called beating), which produces rolling bars on the screen. Synchronization of the refresh rate to the power incidentally helped kinescope cameras record early live television broadcasts, as it was very simple to synchronize a film camera to capture one frame of video on each film frame by using the alternating current frequency to set the speed of the synchronous AC motor-drive camera. This, as mentioned, is how the NTSC field refresh frequency worked in the original black-and-white system; when color was added to the system, however, the refresh frequency was shifted slightly downward by 0.1%, to approximately 59.94 Hz, to eliminate stationary dot patterns in the difference frequency between the sound and color carriers (as explained below in § Color encoding). By the time the frame rate changed to accommodate color, it was nearly as easy to trigger the camera shutter from the video signal itself.

The actual figure of 525 lines was chosen as a consequence of the limitations of the vacuum-tube-based technologies of the day. In early TV systems, a master voltage-controlled oscillator was run at twice the horizontal line frequency, and this frequency was divided down by the number of lines used (in this case 525) to give the field frequency (60 Hz in this case). This frequency was then compared with the 60 Hz power-line frequency and any discrepancy corrected by adjusting the frequency of the master oscillator. For interlaced scanning, an odd number of lines per frame was required in order to make the vertical retrace distance identical for the odd and even fields,[clarification needed] which meant the master oscillator frequency had to be divided down by an odd number. At the time, the only practical method of frequency division was the use of a chain of vacuum tube multivibrators, the overall division ratio being the mathematical product of the division ratios of the chain. Since all the factors of an odd number also have to be odd numbers, it follows that all the dividers in the chain also had to divide by odd numbers, and these had to be relatively small due to the problems of thermal drift with vacuum tube devices. The closest practical sequence to 500 that meets these criteria was 3×5×5×7=525. (For the same reason, 625-line PAL-B/G and SECAM uses 5×5×5×5, the old British 405-line system used 3×3×3×3×5, the French 819-line system used 3×3×7×13 etc.)

Colorimetry

 
NTSC 1953 colorimetry color cube (color profile encoded, requires a compatible browser and monitor for accurate display).

The original 1953 color NTSC specification, still part of the United States Code of Federal Regulations, defined the colorimetric values of the system as follows:[17]

Original NTSC colorimetry (1953) CIE 1931 x CIE 1931 y
primary red 0.67 0.33
primary green 0.21 0.71
primary blue 0.14 0.08
white point (CIE Standard illuminant C) 6774 K 0.310 0.316

Early color television receivers, such as the RCA CT-100, were faithful to this specification (which was based on prevailing motion picture standards), having a larger gamut than most of today's monitors. Their low-efficiency phosphors (notably in the Red) were weak and long-persistent, leaving trails after moving objects. Starting in the late 1950s, picture tube phosphors would sacrifice saturation for increased brightness; this deviation from the standard at both the receiver and broadcaster was the source of considerable color variation.

SMPTE C

 
SMPTE C color cube (color profile encoded, requires a compatible browser and monitor for accurate display).

To ensure more uniform color reproduction, receivers started to incorporate color correction circuits that converted the received signal—encoded for the colorimetric values listed above—into signals encoded for the phosphors actually used within the monitor. Since such color correction can not be performed accurately on the nonlinear gamma corrected signals transmitted, the adjustment can only be approximated, introducing both hue and luminance errors for highly saturated colors.

Similarly at the broadcaster stage, in 1968–69 the Conrac Corp., working with RCA, defined a set of controlled phosphors for use in broadcast color picture video monitors.[18] This specification survives today as the SMPTE "C" phosphor specification:

SMPTE "C" colorimetry CIE 1931 x CIE 1931 y
primary red 0.630 0.340
primary green 0.310 0.595
primary blue 0.155 0.070
white point (CIE illuminant D65) 0.3127 0.3290

As with home receivers, it was further recommended[19] that studio monitors incorporate similar color correction circuits so that broadcasters would transmit pictures encoded for the original 1953 colorimetric values, in accordance with FCC standards.

In 1987, the Society of Motion Picture and Television Engineers (SMPTE) Committee on Television Technology, Working Group on Studio Monitor Colorimetry, adopted the SMPTE C (Conrac) phosphors for general use in Recommended Practice 145,[20] prompting many manufacturers to modify their camera designs to directly encode for SMPTE "C" colorimetry without color correction,[21] as approved in SMPTE standard 170M, "Composite Analog Video Signal – NTSC for Studio Applications" (1994). As a consequence, the ATSC digital television standard states that for 480i signals, SMPTE "C" colorimetry should be assumed unless colorimetric data is included in the transport stream.[22]

Japanese NTSC never changed primaries and whitepoint to SMPTE "C", continuing to use the 1953 NTSC primaries and whitepoint.[19] Both the PAL and SECAM systems used the original 1953 NTSC colorimetry as well until 1970;[19] unlike NTSC, however, the European Broadcasting Union (EBU) rejected color correction in receivers and studio monitors that year and instead explicitly called for all equipment to directly encode signals for the "EBU" colorimetric values,[23] further improving the color fidelity of those systems.

Color encoding

For backward compatibility with black-and-white television, NTSC uses a luminance-chrominance encoding system invented in 1938 by Georges Valensi. The three color picture signals are divided into Luminance (derived mathematically from the three separate color signals (Red, Green and Blue))[24] which takes the place of the original monochrome signal and Chrominance which carries only the color information. This process is applied to each color source by its own Colorplexer, thereby allowing a compatible color source to be managed as if it were an ordinary monochrome source. This allows black-and-white receivers to display NTSC color signals by simply ignoring the chrominance signal. Some black-and-white TVs sold in the U.S. after the introduction of color broadcasting in 1953 were designed to filter chroma out, but the early B&W sets did not do this and chrominance could be seen as a 'dot pattern' in highly colored areas of the picture.

In NTSC, chrominance is encoded using two color signals known as I (in-phase) and Q (in quadrature) in a process called QAM. The two signals each amplitude modulate 3.58 MHz carriers which are 90 degrees out of phase with each other and the result added together but with the carriers themselves being suppressed. The result can be viewed as a single sine wave with varying phase relative to a reference carrier and with varying amplitude. The varying phase represents the instantaneous color hue captured by a TV camera, and the amplitude represents the instantaneous color saturation. This 3.58 MHz subcarrier is then added to the Luminance to form the composite color signal which modulates the video signal carrier just as in monochrome transmission.

For a color TV to recover hue information from the color subcarrier, it must have a zero-phase reference to replace the previously suppressed carrier. The NTSC signal includes a short sample of this reference signal, known as the colorburst, located on the back porch of each horizontal synchronization pulse. The color burst consists of a minimum of eight cycles of the unmodulated (fixed phase and amplitude) color subcarrier. The TV receiver has a local oscillator, which is synchronized with these color bursts. Combining this reference phase signal derived from the color burst with the chrominance signal's amplitude and phase allows the recovery of the I and Q signals which when combined with the luminance information allows the reconstruction of a color image on the screen. Color TV has been said to really be colored TV because of the total separation of the brightness part of the picture from the color portion. In CRT televisions, the NTSC signal is turned into three color signals: red green and blue, each controlling that color electron gun. TV sets with digital circuitry use sampling techniques to process the signals but the result is the same. For both analog and digital sets processing an analog NTSC signal, the original three color signals are transmitted using three discrete signals (luminance, I and Q) and then recovered as three separate colors and combined as a color image.

When a transmitter broadcasts an NTSC signal, it amplitude-modulates a radio-frequency carrier with the NTSC signal just described, while it frequency-modulates a carrier 4.5 MHz higher with the audio signal. If non-linear distortion happens to the broadcast signal, the 3.579545 MHz color carrier may beat with the sound carrier to produce a dot pattern on the screen. To make the resulting pattern less noticeable, designers adjusted the original 15,750 Hz scanline rate down by a factor of 1.001 (0.1%) to match the audio carrier frequency divided by the factor 286, resulting in a field rate of approximately 59.94 Hz. This adjustment ensures that the difference between the sound carrier and the color subcarrier (the most problematic intermodulation product of the two carriers) is an odd multiple of half the line rate, which is the necessary condition for the dots on successive lines to be opposite in phase, making them least noticeable.

The 59.94 rate is derived from the following calculations. Designers chose to make the chrominance subcarrier frequency an n + 0.5 multiple of the line frequency to minimize interference between the luminance signal and the chrominance signal. (Another way this is often stated is that the color subcarrier frequency is an odd multiple of half the line frequency.) They then chose to make the audio subcarrier frequency an integer multiple of the line frequency to minimize visible (intermodulation) interference between the audio signal and the chrominance signal. The original black-and-white standard, with its 15,750 Hz line frequency and 4.5 MHz audio subcarrier, does not meet these requirements, so designers had either to raise the audio subcarrier frequency or lower the line frequency. Raising the audio subcarrier frequency would prevent existing (black and white) receivers from properly tuning in the audio signal. Lowering the line frequency is comparatively innocuous, because the horizontal and vertical synchronization information in the NTSC signal allows a receiver to tolerate a substantial amount of variation in the line frequency. So the engineers chose the line frequency to be changed for the color standard. In the black-and-white standard, the ratio of audio subcarrier frequency to line frequency is 4.5 MHz15,750 Hz = 285.71. In the color standard, this becomes rounded to the integer 286, which means the color standard's line rate is 4.5 MHz286 ≈ 15,734 Hz. Maintaining the same number of scan lines per field (and frame), the lower line rate must yield a lower field rate. Dividing 4500000286 lines per second by 262.5 lines per field gives approximately 59.94 fields per second.

Transmission modulation method

 
Spectrum of a System M television channel with NTSC color

An NTSC television channel as transmitted occupies a total bandwidth of 6 MHz. The actual video signal, which is amplitude-modulated, is transmitted between 500 kHz and 5.45 MHz above the lower bound of the channel. The video carrier is 1.25 MHz above the lower bound of the channel. Like most AM signals, the video carrier generates two sidebands, one above the carrier and one below. The sidebands are each 4.2 MHz wide. The entire upper sideband is transmitted, but only 1.25 MHz of the lower sideband, known as a vestigial sideband, is transmitted. The color subcarrier, as noted above, is 3.579545 MHz above the video carrier, and is quadrature-amplitude-modulated with a suppressed carrier. The audio signal is frequency-modulated, like the audio signals broadcast by FM radio stations in the 88–108 MHz band, but with a 25 kHz maximum frequency deviation, as opposed to 75 kHz as is used on the FM band, making analog television audio signals sound quieter than FM radio signals as received on a wideband receiver. The main audio carrier is 4.5 MHz above the video carrier, making it 250 kHz below the top of the channel. Sometimes a channel may contain an MTS signal, which offers more than one audio signal by adding one or two subcarriers on the audio signal, each synchronized to a multiple of the line frequency. This is normally the case when stereo audio and/or second audio program signals are used. The same extensions are used in ATSC, where the ATSC digital carrier is broadcast at 0.31 MHz above the lower bound of the channel.

"Setup" is a 54 mV (7.5 IRE) voltage offset between the "black" and "blanking" levels. It is unique to NTSC. CVBS stands for Color, Video, Blanking, and Sync.

The following table shows the values for the basic RGB colors, encoded in NTSC[25]

Color Luminance level Chrominance levels Chrominance amplitude Phase
White 100 IRE 0 IRE 0 IRE
Yellow 89.5 IRE 48.1 – 130.8 IRE 82.7 IRE 167.1
Cyan 72.3 IRE 13.9 – 130.8 IRE 116.9 IRE 283.5
Green 61.8 IRE 7.2 – 116.4 IRE 109.2 IRE 240.7
Magenta 45.7 IRE −8.9 – 100.3 IRE 109.2 IRE 60.7
Red 35.2 IRE −23.3 – 93.6 IRE 116.9 IRE 103.5
Blue 18 IRE −23.3 – 59.4 IRE 82.7 IRE 347.1
Black 7.5 IRE 0 IRE 0 IRE

Frame rate conversion

There is a large difference in frame rate between film, which runs at 24.0 frames per second, and the NTSC standard, which runs at approximately 29.97 (10 MHz×63/88/455/525) frames per second. In regions that use 25-fps television and video standards, this difference can be overcome by speed-up.

For 30-fps standards, a process called "3:2 pulldown" is used. One film frame is transmitted for three video fields (lasting 1+12 video frames), and the next frame is transmitted for two video fields (lasting 1 video frame). Two film frames are thus transmitted in five video fields, for an average of 2+12 video fields per film frame. The average frame rate is thus 60 ÷ 2.5 = 24 frames per second, so the average film speed is nominally exactly what it should be. (In reality, over the course of an hour of real time, 215,827.2 video fields are displayed, representing 86,330.88 frames of film, while in an hour of true 24-fps film projection, exactly 86,400 frames are shown: thus, 29.97-fps NTSC transmission of 24-fps film runs at 99.92% of the film's normal speed.) Still-framing on playback can display a video frame with fields from two different film frames, so any difference between the frames will appear as a rapid back-and-forth flicker. There can also be noticeable jitter/"stutter" during slow camera pans (telecine judder).

To avoid 3:2 pulldown, film shot specifically for NTSC television is often taken at 30 frame/s.[citation needed]

To show 25-fps material (such as European television series and some European movies) on NTSC equipment, every fifth frame is duplicated and then the resulting stream is interlaced.

Film shot for NTSC television at 24 frames per second has traditionally been accelerated by 1/24 (to about 104.17% of normal speed) for transmission in regions that use 25-fps television standards. This increase in picture speed has traditionally been accompanied by a similar increase in the pitch and tempo of the audio. More recently, frame-blending has been used to convert 24 FPS video to 25 FPS without altering its speed.

Film shot for television in regions that use 25-fps television standards can be handled in either of two ways:

  • The film can be shot at 24 frames per second. In this case, when transmitted in its native region, the film may be accelerated to 25 fps according to the analog technique described above, or kept at 24 fps by the digital technique described above. When the same film is transmitted in regions that use a nominal 30-fps television standard, there is no noticeable change in speed, tempo, and pitch.
  • The film can be shot at 25 frames per second. In this case, when transmitted in its native region, the film is shown at its normal speed, with no alteration of the accompanying soundtrack. When the same film is shown in regions that use a 30-fps nominal television standard, every fifth frame is duplicated, and there is still no noticeable change in speed, tempo, and pitch.

Because both film speeds have been used in 25-fps regions, viewers can face confusion about the true speed of video and audio, and the pitch of voices, sound effects, and musical performances, in television films from those regions. For example, they may wonder whether the Jeremy Brett series of Sherlock Holmes television films, made in the 1980s and early 1990s, was shot at 24 fps and then transmitted at an artificially fast speed in 25-fps regions, or whether it was shot at 25 fps natively and then slowed to 24 fps for NTSC exhibition.

These discrepancies exist not only in television broadcasts over the air and through cable, but also in the home-video market, on both tape and disc, including laser disc and DVD.

In digital television and video, which are replacing their analog predecessors, single standards that can accommodate a wider range of frame rates still show the limits of analog regional standards. The initial version of the ATSC standard, for example, allowed frame rates of 23.976, 24, 29.97, 30, 59.94, 60, 119.88 and 120 frames per second, but not 25 and 50. Modern ATSC allows 25 and 50 FPS.

Modulation for analog satellite transmission

Because satellite power is severely limited, analog video transmission through satellites differs from terrestrial TV transmission. AM is a linear modulation method, so a given demodulated signal-to-noise ratio (SNR) requires an equally high received RF SNR. The SNR of studio quality video is over 50 dB, so AM would require prohibitively high powers and/or large antennas.

Wideband FM is used instead to trade RF bandwidth for reduced power. Increasing the channel bandwidth from 6 to 36 MHz allows a RF SNR of only 10 dB or less. The wider noise bandwidth reduces this 40 dB power saving by 36 MHz / 6 MHz = 8 dB for a substantial net reduction of 32 dB.

Sound is on an FM subcarrier as in terrestrial transmission, but frequencies above 4.5 MHz are used to reduce aural/visual interference. 6.8, 5.8 and 6.2 MHz are commonly used. Stereo can be multiplex, discrete, or matrix and unrelated audio and data signals may be placed on additional subcarriers.

A triangular 60 Hz energy dispersal waveform is added to the composite baseband signal (video plus audio and data subcarriers) before modulation. This limits the satellite downlink power spectral density in case the video signal is lost. Otherwise the satellite might transmit all of its power on a single frequency, interfering with terrestrial microwave links in the same frequency band.

In half transponder mode, the frequency deviation of the composite baseband signal is reduced to 18 MHz to allow another signal in the other half of the 36 MHz transponder. This reduces the FM benefit somewhat, and the recovered SNRs are further reduced because the combined signal power must be "backed off" to avoid intermodulation distortion in the satellite transponder. A single FM signal is constant amplitude, so it can saturate a transponder without distortion.

Field order

An NTSC frame consists of an even field followed by an odd field.[26] As far as the reception of an analog signal is concerned, this is purely a matter of convention and, it makes no difference. It is rather like the broken lines running down the middle of a road, it does not matter whether it is a line/space pair or a space/line pair; the effect to a driver is exactly the same.

The introduction of digital television formats has changed things somewhat. Most digital TV formats store and transmit fields in pairs as a single digital frame. Digital formats that match NTSC field rate, including the popular DVD format, record video with the even field first in the digital frame, while the formats that match field rate of the 625 line system often record video with odd frame first. This means that when reproducing many non-NTSC based digital formats it is necessary to reverse the field order, otherwise an unacceptable shuddering comb effect occurs on moving objects as they are shown ahead in one field and then jump back in the next.

This has also become a hazard where non-NTSC progressive video is transcoded to interlaced and vice versa. Systems that recover progressive frames or transcode video should ensure that the field order is obeyed, otherwise the recovered frame will consist of a field from one frame and a field from an adjacent frame, resulting in comb interlacing artifacts. This can often be observed in PC-based video-playing utilities if an inappropriate choice of de-interlacing algorithm is made.

During the decades of high-power NTSC broadcasts in the United States, switching between the views from two cameras was accomplished according to two field dominance standards, the choice between the two being made by geography, East versus West. In one region, the switch was made between the odd field that finished one frame and the even field that began the next frame; in the other, the switch was made after an even field and before an odd field. Thus, for example, a home VHS recording made of a local television newscast in the East, when paused, would only ever show the view from one camera (unless a dissolve or other multicamera shot were intended), whereas VHS playback of a situation comedy taped and edited in Los Angeles and then transmitted nationwide could be paused at the moment of a switch between cameras with half the lines depicting the outgoing shot and the other half depicting the incoming shot.[citation needed]

Variants

NTSC-M

Unlike PAL and SECAM, with its many varied underlying broadcast television systems in use throughout the world, NTSC color encoding is almost invariably used with broadcast system M, giving NTSC-M.

NTSC-N/NTSC50

NTSC-N/NTSC50 is an unofficial system combining 625-line video with 3.58 MHz NTSC color. PAL software running on an NTSC Atari ST displays using this system as it cannot display PAL color. Television sets and monitors with a V-Hold knob can display this system after adjusting the vertical hold.[27]

NTSC-J

Only Japan's variant "NTSC-J" is slightly different: in Japan, black level and blanking level of the signal are identical (at 0 IRE), as they are in PAL, while in American NTSC, black level is slightly higher (7.5 IRE) than blanking level. Since the difference is quite small, a slight turn of the brightness knob is all that is required to correctly show the "other" variant of NTSC on any set as it is supposed to be; most watchers might not even notice the difference in the first place. The channel encoding on NTSC-J differs slightly from NTSC-M. In particular, the Japanese VHF band runs from channels 1–12 (located on frequencies directly above the 76–90 MHz Japanese FM radio band) while the North American VHF TV band uses channels 2–13 (54–72 MHz, 76–88 MHz and 174–216 MHz) with 88–108 MHz allocated to FM radio broadcasting. Japan's UHF TV channels are therefore numbered from 13 up and not 14 up, but otherwise uses the same UHF broadcasting frequencies as those in North America.

NTSC 4.43

NTSC 4.43 is a pseudo-system that transmits a NTSC color subcarrier of 4.43 MHz instead of 3.58 MHz[28] The resulting output is only viewable by TVs that support the resulting pseudo-system (such as most PAL TVs).[29] Using a native NTSC TV to decode the signal yields no color, while using an incompatible PAL TV to decode the system yields erratic colors (observed to be lacking red and flickering randomly). The format was used by the USAF TV based in Germany during the Cold War.[30] It was also found as an optional output on some LaserDisc players and some game consoles sold in markets where the PAL system is used.

The NTSC 4.43 system, while not a broadcast format, appears most often as a playback function of PAL cassette format VCRs, beginning with the Sony 3/4" U-Matic format and then following onto Betamax and VHS format machines, commonly advertised as "NTSC playback on PAL TV". As Hollywood has the claim of providing the most cassette software (movies and television series) for VCRs for the world's viewers, and as not all cassette releases were made available in PAL formats, a means of playing NTSC format cassettes was highly desired.

Multi-standard video monitors were already in use in Europe to accommodate broadcast sources in PAL, SECAM, and NTSC video formats. The heterodyne color-under process of U-Matic, Betamax & VHS lent itself to minor modification of VCR players to accommodate NTSC format cassettes. The color-under format of VHS uses a 629 kHz subcarrier while U-Matic & Betamax use a 688 kHz subcarrier to carry an amplitude modulated chroma signal for both NTSC and PAL formats. Since the VCR was ready to play the color portion of the NTSC recording using PAL color mode, the PAL scanner and capstan speeds had to be adjusted from PAL's 50 Hz field rate to NTSC's 59.94 Hz field rate, and faster linear tape speed.

The changes to the PAL VCR are minor thanks to the existing VCR recording formats. The output of the VCR when playing an NTSC cassette in NTSC 4.43 mode is 525 lines/29.97 frames per second with PAL compatible heterodyned color. The multi-standard receiver is already set to support the NTSC H & V frequencies; it just needs to do so while receiving PAL color.

The existence of those multi-standard receivers was probably part of the drive for region coding of DVDs. As the color signals are component on disc for all display formats, almost no changes would be required for PAL DVD players to play NTSC (525/29.97) discs as long as the display was frame-rate compatible.

OSKM (USSR-NTSC)

In January 1960 (7 years prior to adoption of the modified SECAM version) the experimental TV studio in Moscow started broadcasting using the OSKM system. OSKM was the version of NTSC adapted to European D/K 625/50 standard. The OSKM abbreviation means "Simultaneous system with quadrature modulation" (In Russian: Одновременная Система с Квадратурной Модуляцией). It used the color coding scheme that was later used in PAL (U and V instead of I and Q).

The color subcarrier frequency was 4.4296875 MHz and the bandwidth of U and V signals was near 1.5 MHz.[31] Only circa 4000 TV sets of 4 models (Raduga,[32] Temp-22, Izumrud-201 and Izumrud-203[33]) were produced for studying the real quality of TV reception. These TV's were not commercially available, despite being included in the goods catalog for trade network of the USSR.

The broadcasting with this system lasted about 3 years and was ceased well before SECAM transmissions started in the USSR. None of the current multi-standard TV receivers can support this TV system.

NTSC-film

Film content commonly shot at 24 frames/s can be converted to 30 frames/s through the telecine process to duplicate frames as needed.

 

Mathematically for NTSC this is relatively simple as it is only needed to duplicate every fourth frame. Various techniques are employed. NTSC with an actual frame rate of 241.001  (approximately 23.976) frames/s is often defined as NTSC-film. A process known as pullup, also known as pulldown, generates the duplicated frames upon playback. This method is common for H.262/MPEG-2 Part 2 digital video so the original content is preserved and played back on equipment that can display it or can be converted for equipment that cannot.

Canada/US video game region

Sometimes NTSC-U, NTSC-US, or NTSC-U/C is used to describe the video gaming region of North America (the U/C refers to US + Canada), as regional lockout usually restricts games from being playable outside the region.

Comparative quality

 
The SMPTE color bars, an example of a test pattern

For NTSC, and to a lesser extent, PAL, reception problems can degrade the color accuracy of the picture where ghosting can dynamically change the phase of the color burst with picture content, thus altering the color balance of the signal. The only receiver compensation is in the professional TV receiver ghost cancelling circuits used by cable companies. The vacuum-tube electronics used in televisions through the 1960s led to various technical problems. Among other things, the color burst phase would often drift. In addition, the TV studios did not always transmit properly, leading to hue changes when channels were changed, which is why NTSC televisions were equipped with a tint control. PAL and SECAM televisions had less of a need for one. SECAM in particular was very robust, but PAL, while excellent in maintaining skin tones which viewers are particularly sensitive to, nevertheless would distort other colors in the face of phase errors. With phase errors, only "Deluxe PAL" receivers would get rid of "Hanover bars" distortion. Hue controls are still found on NTSC TVs, but color drifting generally ceased to be a problem for more modern circuitry by the 1970s. When compared to PAL, in particular, NTSC color accuracy and consistency were sometimes considered inferior, leading to video professionals and television engineers jokingly referring to NTSC as Never The Same Color, Never Twice the Same Color, or No True Skin Colors,[34] while for the more expensive PAL system it was necessary to Pay for Additional Luxury.

PAL has also been referred to as Peace At Last, Perfection At Last or Pictures Always Lovely in the color war. This mostly applied to vacuum tube-based TVs, however, and later-model solid state sets using Vertical Interval Reference signals have less of a difference in quality between NTSC and PAL. This color phase, "tint", or "hue" control allows for anyone skilled in the art to easily calibrate a monitor with SMPTE color bars, even with a set that has drifted in its color representation, allowing the proper colors to be displayed. Older PAL television sets did not come with a user accessible "hue" control (it was set at the factory), which contributed to its reputation for reproducible colors.

The use of NTSC coded color in S-Video systems, as well as the use of closed-circuit composite NTSC, both eliminate the phase distortions because there is no reception ghosting in a closed-circuit system to smear the color burst. For VHS videotape on the horizontal axis and frame rate of the three color systems when used with this scheme, the use of S-Video gives the higher resolution picture quality on monitors and TVs without a high-quality motion-compensated comb filtering section. (The NTSC resolution on the vertical axis is lower than the European standards, 525 lines against 625.) However, it uses too much bandwidth for over-the-air transmission. The Atari 800 and Commodore 64 home computers generated S-video, but only when used with specially designed monitors as no TV at the time supported the separate chroma and luma on standard RCA jacks. In 1987, a standardized four-pin mini-DIN socket was introduced for S-video input with the introduction of S-VHS players, which were the first device produced to use the four-pin plugs. However, S-VHS never became very popular. Video game consoles in the 1990s began offering S-video output as well.

The mismatch between NTSC's 30 frames per second and film's 24 frames is overcome by a process that capitalizes on the field rate of the interlaced NTSC signal, thus avoiding the film playback speedup used for 576i systems at 25 frames per second (which causes the accompanying audio to increase in pitch slightly, sometimes rectified with the use of a pitch shifter) at the price of some jerkiness in the video. See Frame rate conversion above.

Vertical interval reference

The standard NTSC video image contains some lines (lines 1–21 of each field) that are not visible (this is known as the Vertical Blanking Interval, or VBI); all are beyond the edge of the viewable image, but only lines 1–9 are used for the vertical-sync and equalizing pulses. The remaining lines were deliberately blanked in the original NTSC specification to provide time for the electron beam in CRT screens to return to the top of the display.

VIR (or Vertical interval reference), widely adopted in the 1980s, attempts to correct some of the color problems with NTSC video by adding studio-inserted reference data for luminance and chrominance levels on line 19.[35] Suitably equipped television sets could then employ these data in order to adjust the display to a closer match of the original studio image. The actual VIR signal contains three sections, the first having 70 percent luminance and the same chrominance as the color burst signal, and the other two having 50 percent and 7.5 percent luminance respectively.[36]

A less-used successor to VIR, GCR, also added ghost (multipath interference) removal capabilities.

The remaining vertical blanking interval lines are typically used for datacasting or ancillary data such as video editing timestamps (vertical interval timecodes or SMPTE timecodes on lines 12–14[37][38]), test data on lines 17–18, a network source code on line 20 and closed captioning, XDS, and V-chip data on line 21. Early teletext applications also used vertical blanking interval lines 14–18 and 20, but teletext over NTSC was never widely adopted by viewers.[39]

Many stations transmit TV Guide On Screen (TVGOS) data for an electronic program guide on VBI lines. The primary station in a market will broadcast 4 lines of data, and backup stations will broadcast 1 line. In most markets the PBS station is the primary host. TVGOS data can occupy any line from 10–25, but in practice its limited to 11–18, 20 and line 22. Line 22 is only used for 2 broadcast, DirecTV and CFPL-TV.

TiVo data is also transmitted on some commercials and program advertisements so that customers can autorecord the program being advertised, and is also used in weekly half-hour paid programs on Ion Television and the Discovery Channel which highlight TiVo promotions and advertisers.

Countries and territories that are using or once used NTSC

Below countries and territories currently use or once used the NTSC system. Many of these have switched or are currently switching from NTSC to digital television standards such as ATSC (United States, Canada, Mexico, Suriname, Jamaica, South Korea), ISDB (Japan, Philippines and part of South America), DVB-T (Taiwan, Panama, Colombia, Myanmar, and Trinidad and Tobago) or DTMB (Cuba).

Experimented

  •   Brazil (Between 1962 and 1963, Rede Tupi and Rede Excelsior made the first unofficial transmissions in color, in specific programs in the city of São Paulo, before the official adoption of PAL-M by the Brazilian Government on February 19, 1972)
  •   Paraguay
  •   United Kingdom (Experimented on 405-line variant of NTSC, then UK chose 625-line for PAL broadcasting.)

Countries and territories that have ceased using NTSC

The following countries and regions no longer use NTSC for terrestrial broadcasts.

Country Switched to Switchover completed
  Bermuda DVB-T 2016-03-01March 2016
  Canada ATSC 2012-07-31August 31, 2011 (Select markets)
  Japan ISDB-T 2012-03-31March 31, 2012
  South Korea ATSC 2012-12-31December 31, 2012
  Mexico ATSC 2015-12-31December 31, 2015 (Full Power Stations)[60]
  Taiwan DVB-T 2012-06-30June 30, 2012
  United States ATSC 2009-06-12June 12, 2009 (Full Power Stations)[57]
September 1, 2015 (Class-A Stations)
July 13, 2021 (Low Power Stations)

See also

References

  1. ^ National Television System Committee (1951–1953), Report and Reports of Panel No. 11, 11-A, 12–19, with Some supplementary references cited in the Reports, and the Petition for adoption of transmission standards for color television before the Federal Communications Commission, n.p., 1953], 17 v. illus., diagrs., tables. 28 cm. LC Control No.:54021386 Library of Congress Online Catalog
  2. ^ Digital Television. FCC.gov. Retrieved on May 11, 2014.
  3. ^ a b DTV and Over-the-Air Viewers Along U.S. Borders. FCC.gov. Retrieved on May 11, 2014.
  4. ^ Canada... PAL or NTSC?. VideoHelp Forum Retrieved on January 23, 2015.
  5. ^ What actually occurred was the RCA TG-1 synch generator system was upgraded from 441 lines per frame, 220.5 lines per field, interlaced, to 525 lines per frame 262.5 lines per field, also interlaced, with minimal additional changes, particularly not those affecting the vertical interval, which, in the extant RCA system, included serrated equalizing pulses bracketing the vertical sync pulse, itself being serrated. For RCA/NBC, this was a very simple change from a 26,460 Hz master oscillator to a 31,500 Hz master oscillator, and minimal additional changes to the generator's divider chain. The equalizing pulses and the serration of the vertical sync pulse were necessary because of the limitations of the extant TV receiver video/sync separation technology, thought to be necessary because the sync was transmitted in band with the video, although at a quite different DC level. The early TV sets did not possess a DC restorer circuit, hence the need for this level of complexity. In-studio monitors were provided with separate horizontal and vertical sync, not composite synch and certainly not in-band synch (possibly excepting early color TV monitors, which were often driven from the output of the station's colorplexer).
  6. ^ A third line sequential system from Color Television Inc. (CTI) was also considered. The CBS and final NTSC systems were called field-sequential and dot-sequential systems, respectively.
  7. ^ "Color TV Shelved As a Defense Step", The New York Times, October 20, 1951, p. 1. "Action of Defense Mobilizer in Postponing Color TV Poses Many Question for the Industry", The New York Times, October 22, 1951, p. 23. "TV Research Curb on Color Avoided", The New York Times, October 26, 1951. Ed Reitan, CBS Field Sequential Color System January 5, 2010, at the Wayback Machine, 1997. A variant of the CBS system was later used by NASA to broadcast pictures of astronauts from space.
  8. ^ "CBS Says Confusion Now Bars Color TV", The Washington Post, March 26, 1953, p. 39.
  9. ^ "F.C.C. Rules Color TV Can Go on Air at Once", The New York Times, December 19, 1953, p. 1.
  10. ^ "73.682" (PDF). Govinfo.gov. FCC. Retrieved January 22, 2019.
  11. ^ The master oscillator is 315/22 = 14.31818 MHz, from which the 3.579545 color burst frequency is obtained by dividing by four; and the 31 kHz horizontal drive and 60 Hz vertical drive are also synthesized from that frequency. This facilitated a conversion to color of the then common, but monochrome, RCA TG-1 synchronizing generator by the simple expedient of adding-on an external 14.31818 MHz temperature-controlled oscillator and a few dividers, and inputting the outputs of that chassis to certain test points within the TG-1, thereby disabling the TG-1's own 31500 Hz reference oscillator.
  12. ^ "Choice of Chrominance Subcarrier Frequency in the NTSC Standards," Abrahams, I.C., Proc. IRE, Vol. 42, Issue 1, p.79–80
  13. ^ "The Frequency Interleaving Principle in the NTSC Standards," Abrahams, I.C., Proc. IRE, vol. 42, Issue 1, p. 81–83
  14. ^ "NBC Launches First Publicly-Announced Color Television Show", Wall Street Journal, August 31, 1953, p. 4.
  15. ^ "Media Bureau Reminds LPTV/TV Translators of Digital Transition Date (DA/FCC #: DA-20-724)" (PDF). docs.fcc.gov. Federal Communications Commission. Retrieved January 17, 2021.
  16. ^ "Digital Television (DTV) Transition Schedule" (PDF). Innovation, Science and Economic Development Canada. April 2017. Retrieved July 22, 2021.
  17. ^ 47 CFR § 73.682 (20) (iv)
  18. ^ DeMarsh, Leroy (1993): TV Display Phosphors/Primaries — Some History. SMPTE Journal, December 1993: 1095–1098. doi:10.5594/J01650
  19. ^ a b c International Telecommunication Union Recommendation ITU-R 470-6 (1970–1998): Conventional Television Systems, Annex 2.
  20. ^ Society of Motion Picture and Television Engineers (1987–2004): Recommended Practice RP 145–2004. Color Monitor Colorimetry.
  21. ^ Society of Motion Picture and Television Engineers (1994, 2004): Engineering Guideline EG 27-2004. Supplemental Information for SMPTE 170M and Background on the Development of NTSC Color Standards, pp. 9
  22. ^ Advanced Television Systems Committee (2003): ATSC Direct-to-Home Satellite Broadcast Standard Doc. A/81, pp.18
  23. ^ European Broadcasting Union (1975) Tech. 3213-E.: E.B.U. Standard for Chromaticity Tolerances for Studio Monitors.
  24. ^ "Poynton's Color FAQ by Charles Poynton". Homepages.inf.ed.ac.uk.
  25. ^ "Color Bar Levels, Amplitues, and Phases" (GIF). Edn.com. Retrieved February 22, 2022.
  26. ^ CCIR Report 308-2 Part 2 Chapter XII – Characteristics of Monochrome Television Systems (1970 edition).
  27. ^ VWestlife's Camcorder Tests & More (January 6, 2010). "Recording PAL and 625-line 50 Hz NTSC video on a U.S. VCR" – via YouTube.
  28. ^ Poynton, Charles (2003). Digital Video and HD: Algorithms and Interfaces. ISBN 9781558607927.
  29. ^ "WeetHet - Video - Overview of available formats". Retrieved September 21, 2022. Most modern TV-sets accept the so called pseudo formats (Pseudo PAL and Pseudo NTSC) ...
  30. ^ "Variants of NTSC standard". March 25, 2018.
  31. ^ Sokolov, Georgii; Sudravskii, Dmitrii (1963). Amateur Colour TV Receiver TSVET-2.
  32. ^ "Raduga OSKM Color TV (1962)". September 6, 2022.
  33. ^ "Izumrud-203 OSKM Color TV (1959)". September 6, 2022.
  34. ^ Jain, Anal K., Fundamentals of Digital Image Processing, Upper Saddle River, NJ: Prentice Hall, 1989, p. 82.
  35. ^ (PDF). March 13, 2006. Archived from the original (PDF) on March 13, 2006.
  36. ^ Waveform Mons & Vectorscopes. Danalee.ca. Retrieved on May 11, 2014.
  37. ^ SMPTE EBU timecode by Phil Rees. Philrees.co.uk. Retrieved on May 11, 2014.
  38. ^ Technical Introduction to Timecode July 10, 2007, at the Wayback Machine. Poynton.com. Retrieved on May 11, 2014.
  39. ^ Tools | The History Project. Experimentaltvcenter.org. Retrieved on May 11, 2014.
  40. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av Hegarty, Michael; Phelan, Anne; Kilbride, Lisa (January 1, 1998). Classrooms for Distance Teaching and Learning: A Blueprint. Leuven University Press. pp. 260–. ISBN 978-90-6186-867-5.
  41. ^ "BBC's All-Digital TV Output Plans 'On Course'". March 9, 2016.
  42. ^ Canadian Radio-television and Telecommunications Commission (CRTC) Press release May 2007 May 19, 2007, at the Wayback Machine
  43. ^ "CNTV y SUBTEL culminan primera etapa de entrega de concesiones de Televisión Digital Terrestre". June 27, 2019. from the original on September 28, 2019. Retrieved February 8, 2020.
  44. ^ Indotel. "Televisión Digital en RD". Indotel.gob.do.
  45. ^ "Digital Television Switchover in Jamaica set to begin in 2022". The Gleaner. Gleaner Company. December 7, 2021. Retrieved January 8, 2021.
  46. ^ Hester, Lisa (July 6, 2004). . Advanced Television Systems Committee. Archived from the original on June 6, 2014. Retrieved June 4, 2013. On July 2 the Government of Mexico formally adopted the ATSC Digital Television (DTV) Standard for digital terrestrial television broadcasting.
  47. ^ Dibble, Sandra (May 30, 2013). "New turn for Tijuana's transition to digital broadcasting". San Diego Union-Tribune. from the original on September 6, 2013. Retrieved June 4, 2013.
  48. ^ "DOF – Diario Oficial de la Federación". dof.gob.mx. from the original on January 21, 2018. Retrieved March 16, 2018.
  49. ^ Philip J. Cianci (January 9, 2012). High Definition Television: The Creation, Development and Implementation of HDTV Technology. McFarland. pp. 302–. ISBN 978-0-7864-8797-4.
  50. ^ . NexTV Asia-Pacific. Archived from the original on February 9, 2015. Retrieved October 27, 2014.
  51. ^ Cabuenas, Jon Viktor D. (February 14, 2017). "Gov't wants analog TV switched off by 2023". GMA News Online. Retrieved December 6, 2018.
  52. ^ Dela Paz, Chrisee (February 14, 2017). "Hardware boom comes with PH shift to digital TV". Rappler. Retrieved January 21, 2019.
  53. ^ Mariano, Keith Richard D. (February 16, 2017). . BusinessWorld. Archived from the original on February 24, 2021. Retrieved January 21, 2019.
  54. ^ Esmael, Maria Lisbet K. (October 7, 2018). "Govt on course to hit 2023 full digital TV transition". The Manila Times. Retrieved January 21, 2019.
  55. ^ Mercurio, Richmond (October 4, 2018). "Digital TV shift by 2023 pushing through — DICT". The Philippine Star. Retrieved January 21, 2019.
  56. ^ . Archived from the original on February 10, 2009. Retrieved January 27, 2009.
  57. ^ a b . NTSC. Archived from the original on May 24, 2010. Retrieved June 13, 2009.
  58. ^ "FCC Public Notice: "THE INCENTIVE AUCTION TASK FORCE AND MEDIA BUREAU ANNOUNCE PROCEDURES FOR LOW POWER TELEVISION, TELEVISION TRANSLATOR AND REPLACEMENT TRANSLATOR STATIONSDURING THE POST-INCENTIVE AUCTION TRANSITION", May 17, 2017" (PDF). Apps.fcc.gov. Retrieved February 22, 2022.
  59. ^ "ECFS". Apps.fcc.gov.
  60. ^ Transicion a TDT (Transition to DT) September 19, 2010, at the Wayback Machine (Spanish)

Sources

  • A standard defining the NTSC system was published by the International Telecommunication Union in 1998 under the title "Recommendation ITU-R BT.470-7, Conventional Analog Television Systems". It is publicly available on the Internet at ITU-R BT.470-7 or can be purchased from the ITU.
  • Ed Reitan (1997).

External links

  • National Television System Committee
  • US cable television channel frequencies
  • Commercial Television Frequencies – at TVTower.com
  • Representation of the NTSC refresh rate on a television and on a DVD

ntsc, this, article, about, television, system, indonesian, government, agency, national, transportation, safety, committee, organization, china, national, time, service, center, standard, definition, digital, video, mode, sometimes, referred, 480i, first, ame. This article is about the television system For the Indonesian government agency see National Transportation Safety Committee For the organization in China see National Time Service Center For the standard definition digital video mode sometimes referred to as NTSC see 480i The first American standard for analog television broadcast was developed by National Television System Committee NTSC 1 in 1941 In 1961 it was assigned the designation System M Analog television encoding systems by nation NTSC green SECAM orange and PAL blue In 1953 a second NTSC standard was adopted which allowed for color television broadcast compatible with the existing stock of black and white receivers It is one of three major color formats for analog television the others being PAL and SECAM NTSC color is usually associated with the System M The only other broadcast television system to use NTSC color was the System J Since the introduction of digital sources ex DVD the term NTSC might be used to refer to digital formats with number of active lines between 480 and 487 having 30 or 29 97 frames per second rate This borrowed term should not be confused with the analog color system itself Contents 1 Geographic reach 2 Digital conversion 3 History 4 Technical details 4 1 Resolution and refresh rate 4 2 Colorimetry 4 2 1 SMPTE C 4 3 Color encoding 4 4 Transmission modulation method 4 5 Frame rate conversion 4 6 Modulation for analog satellite transmission 4 7 Field order 5 Variants 5 1 NTSC M 5 2 NTSC N NTSC50 5 3 NTSC J 5 4 NTSC 4 43 5 5 OSKM USSR NTSC 5 6 NTSC film 5 7 Canada US video game region 6 Comparative quality 7 Vertical interval reference 8 Countries and territories that are using or once used NTSC 8 1 Experimented 8 2 Countries and territories that have ceased using NTSC 9 See also 10 References 11 Sources 12 External linksGeographic reach EditThe NTSC standard was used in most of the Americas except Argentina Brazil Paraguay and Uruguay Myanmar South Korea Taiwan Philippines Japan and some Pacific Islands nations and territories see map Digital conversion EditMost countries using the NTSC standard as well as those using other analog television standards have switched to or are in process of switching to newer digital television standards with there being at least four different standards in use around the world North America parts of Central America and South Korea are adopting or have adopted the ATSC standards while other countries such as Japan are adopting or have adopted other standards instead of ATSC After nearly 70 years the majority of over the air NTSC transmissions in the United States ceased on January 1 2010 2 and by August 31 2011 3 in Canada and most other NTSC markets 4 The majority of NTSC transmissions ended in Japan on July 24 2011 with the Japanese prefectures of Iwate Miyagi and Fukushima ending the next year 3 After a pilot program in 2013 most full power analog stations in Mexico left the air on ten dates in 2015 with some 500 low power and repeater stations allowed to remain in analog until the end of 2016 Digital broadcasting allows higher resolution television but digital standard definition television continues to use the frame rate and number of lines of resolution established by the analog NTSC standard History EditSee also History of television The National Television System Committee was established in 1940 by the United States Federal Communications Commission FCC to resolve the conflicts between companies over the introduction of a nationwide analog television system in the United States In March 1941 the committee issued a technical standard for black and white television that built upon a 1936 recommendation made by the Radio Manufacturers Association RMA Technical advancements of the vestigial side band technique allowed for the opportunity to increase the image resolution The NTSC selected 525 scan lines as a compromise between RCA s 441 scan line standard already being used by RCA s NBC TV network and Philco s and DuMont s desire to increase the number of scan lines to between 605 and 800 5 The standard recommended a frame rate of 30 frames images per second consisting of two interlaced fields per frame at 262 5 lines per field and 60 fields per second Other standards in the final recommendation were an aspect ratio of 4 3 and frequency modulation FM for the sound signal which was quite new at the time In January 1950 the committee was reconstituted to standardize color television The FCC had briefly approved a 405 line field sequential color television standard in October 1950 which was developed by CBS 6 The CBS system was incompatible with existing black and white receivers It used a rotating color wheel reduced the number of scan lines from 525 to 405 and increased the field rate from 60 to 144 but had an effective frame rate of only 24 frames per second Legal action by rival RCA kept commercial use of the system off the air until June 1951 and regular broadcasts only lasted a few months before manufacture of all color television sets was banned by the Office of Defense Mobilization in October ostensibly due to the Korean War 7 CBS rescinded its system in March 1953 8 and the FCC replaced it on December 17 1953 with the NTSC color standard which was cooperatively developed by several companies including RCA and Philco 9 In December 1953 the FCC unanimously approved what is now called the NTSC color television standard later defined as RS 170a The compatible color standard retained full backward compatibility with then existing black and white television sets Color information was added to the black and white image by introducing a color subcarrier of precisely 315 88 MHz usually described as 3 579545 MHz 10 Hz 10 or about 3 58 MHz The precise frequency was chosen so that horizontal line rate modulation components of the chrominance signal fall exactly in between the horizontal line rate modulation components of the luminance signal thereby enabling the chrominance signal to be filtered out of the luminance signal with minor degradation of the luminance signal Also minimize the visibility on existing sets that do not filter it out Due to limitations of frequency divider circuits at the time the color standard was promulgated the color subcarrier frequency was constructed as composite frequency assembled from small integers in this case 5 7 9 8 11 MHz 11 The horizontal line rate was reduced to approximately 15 734 lines per second 3 579545 2 455 MHz 9 572 MHz from 15 750 lines per second and the frame rate was reduced to 30 1 001 29 970 frames per second the horizontal line rate divided by 525 lines frame from 30 frames per second These changes amounted to 0 1 percent and were readily tolerated by then existing television receivers 12 13 The first publicly announced network television broadcast of a program using the NTSC compatible color system was an episode of NBC s Kukla Fran and Ollie on August 30 1953 although it was viewable in color only at the network s headquarters 14 The first nationwide viewing of NTSC color came on the following January 1 with the coast to coast broadcast of the Tournament of Roses Parade viewable on prototype color receivers at special presentations across the country The first color NTSC television camera was the RCA TK 40 used for experimental broadcasts in 1953 an improved version the TK 40A introduced in March 1954 was the first commercially available color television camera Later that year the improved TK 41 became the standard camera used throughout much of the 1960s The NTSC standard has been adopted by other countries including some in the Americas and Japan With the advent of digital television analog broadcasts were largely phased out Most US NTSC broadcasters were required by the FCC to shut down their analog transmitters by February 17 2009 however this was later moved to June 12 2009 Low power stations Class A stations and translators were required to shut down by 2015 although an FCC extension allowed some of those stations operating on Channel 6 to operate until July 13 2021 15 The remaining Canadian analog TV transmitters in markets not subject to the mandatory transition in 2011 were scheduled to be shut down by January 14 2022 under a schedule published by Innovation Science and Economic Development Canada in 2017 however the scheduled transition dates have already passed for several stations listed that continue to broadcast in analog e g CFJC TV Kamloops which has not yet transitioned to digital is listed as having been required to transition by November 20 2020 16 Technical details EditResolution and refresh rate Edit NTSC color encoding is used with the System M television signal which consists of 30 1 001 approximately 29 97 interlaced frames of video per second Each frame is composed of two fields each consisting of 262 5 scan lines for a total of 525 scan lines Initially 486 scan lines make up the visible raster although this was later standardized to 480 The remainder the vertical blanking interval allow for vertical synchronization and retrace This blanking interval was originally designed to simply blank the electron beam of the receiver s CRT to allow for the simple analog circuits and slow vertical retrace of early TV receivers However some of these lines may now contain other data such as closed captioning and vertical interval timecode VITC In the complete raster disregarding half lines due to interlacing the even numbered scan lines every other line that would be even if counted in the video signal e g 2 4 6 524 are drawn in the first field and the odd numbered every other line that would be odd if counted in the video signal e g 1 3 5 525 are drawn in the second field to yield a flicker free image at the field refresh frequency of 60 1 001 Hz approximately 59 94 Hz For comparison 625 lines 576 visible systems usually used with PAL B G and SECAM color and so have a higher vertical resolution but a lower temporal resolution of 25 frames or 50 fields per second The NTSC field refresh frequency in the black and white system originally exactly matched the nominal 60 Hz frequency of alternating current power used in the United States Matching the field refresh rate to the power source avoided intermodulation also called beating which produces rolling bars on the screen Synchronization of the refresh rate to the power incidentally helped kinescope cameras record early live television broadcasts as it was very simple to synchronize a film camera to capture one frame of video on each film frame by using the alternating current frequency to set the speed of the synchronous AC motor drive camera This as mentioned is how the NTSC field refresh frequency worked in the original black and white system when color was added to the system however the refresh frequency was shifted slightly downward by 0 1 to approximately 59 94 Hz to eliminate stationary dot patterns in the difference frequency between the sound and color carriers as explained below in Color encoding By the time the frame rate changed to accommodate color it was nearly as easy to trigger the camera shutter from the video signal itself The actual figure of 525 lines was chosen as a consequence of the limitations of the vacuum tube based technologies of the day In early TV systems a master voltage controlled oscillator was run at twice the horizontal line frequency and this frequency was divided down by the number of lines used in this case 525 to give the field frequency 60 Hz in this case This frequency was then compared with the 60 Hz power line frequency and any discrepancy corrected by adjusting the frequency of the master oscillator For interlaced scanning an odd number of lines per frame was required in order to make the vertical retrace distance identical for the odd and even fields clarification needed which meant the master oscillator frequency had to be divided down by an odd number At the time the only practical method of frequency division was the use of a chain of vacuum tube multivibrators the overall division ratio being the mathematical product of the division ratios of the chain Since all the factors of an odd number also have to be odd numbers it follows that all the dividers in the chain also had to divide by odd numbers and these had to be relatively small due to the problems of thermal drift with vacuum tube devices The closest practical sequence to 500 that meets these criteria was 3 5 5 7 525 For the same reason 625 line PAL B G and SECAM uses 5 5 5 5 the old British 405 line system used 3 3 3 3 5 the French 819 line system used 3 3 7 13 etc Colorimetry Edit NTSC 1953 colorimetry color cube color profile encoded requires a compatible browser and monitor for accurate display The original 1953 color NTSC specification still part of the United States Code of Federal Regulations defined the colorimetric values of the system as follows 17 Original NTSC colorimetry 1953 CIE 1931 x CIE 1931 yprimary red 0 67 0 33primary green 0 21 0 71primary blue 0 14 0 08white point CIE Standard illuminant C 6774 K 0 310 0 316Early color television receivers such as the RCA CT 100 were faithful to this specification which was based on prevailing motion picture standards having a larger gamut than most of today s monitors Their low efficiency phosphors notably in the Red were weak and long persistent leaving trails after moving objects Starting in the late 1950s picture tube phosphors would sacrifice saturation for increased brightness this deviation from the standard at both the receiver and broadcaster was the source of considerable color variation SMPTE C Edit SMPTE C color cube color profile encoded requires a compatible browser and monitor for accurate display To ensure more uniform color reproduction receivers started to incorporate color correction circuits that converted the received signal encoded for the colorimetric values listed above into signals encoded for the phosphors actually used within the monitor Since such color correction can not be performed accurately on the nonlinear gamma corrected signals transmitted the adjustment can only be approximated introducing both hue and luminance errors for highly saturated colors Similarly at the broadcaster stage in 1968 69 the Conrac Corp working with RCA defined a set of controlled phosphors for use in broadcast color picture video monitors 18 This specification survives today as the SMPTE C phosphor specification SMPTE C colorimetry CIE 1931 x CIE 1931 yprimary red 0 630 0 340primary green 0 310 0 595primary blue 0 155 0 070white point CIE illuminant D65 0 3127 0 3290As with home receivers it was further recommended 19 that studio monitors incorporate similar color correction circuits so that broadcasters would transmit pictures encoded for the original 1953 colorimetric values in accordance with FCC standards In 1987 the Society of Motion Picture and Television Engineers SMPTE Committee on Television Technology Working Group on Studio Monitor Colorimetry adopted the SMPTE C Conrac phosphors for general use in Recommended Practice 145 20 prompting many manufacturers to modify their camera designs to directly encode for SMPTE C colorimetry without color correction 21 as approved in SMPTE standard 170M Composite Analog Video Signal NTSC for Studio Applications 1994 As a consequence the ATSC digital television standard states that for 480i signals SMPTE C colorimetry should be assumed unless colorimetric data is included in the transport stream 22 Japanese NTSC never changed primaries and whitepoint to SMPTE C continuing to use the 1953 NTSC primaries and whitepoint 19 Both the PAL and SECAM systems used the original 1953 NTSC colorimetry as well until 1970 19 unlike NTSC however the European Broadcasting Union EBU rejected color correction in receivers and studio monitors that year and instead explicitly called for all equipment to directly encode signals for the EBU colorimetric values 23 further improving the color fidelity of those systems Color encoding Edit For backward compatibility with black and white television NTSC uses a luminance chrominance encoding system invented in 1938 by Georges Valensi The three color picture signals are divided into Luminance derived mathematically from the three separate color signals Red Green and Blue 24 which takes the place of the original monochrome signal and Chrominance which carries only the color information This process is applied to each color source by its own Colorplexer thereby allowing a compatible color source to be managed as if it were an ordinary monochrome source This allows black and white receivers to display NTSC color signals by simply ignoring the chrominance signal Some black and white TVs sold in the U S after the introduction of color broadcasting in 1953 were designed to filter chroma out but the early B amp W sets did not do this and chrominance could be seen as a dot pattern in highly colored areas of the picture In NTSC chrominance is encoded using two color signals known as I in phase and Q in quadrature in a process called QAM The two signals each amplitude modulate 3 58 MHz carriers which are 90 degrees out of phase with each other and the result added together but with the carriers themselves being suppressed The result can be viewed as a single sine wave with varying phase relative to a reference carrier and with varying amplitude The varying phase represents the instantaneous color hue captured by a TV camera and the amplitude represents the instantaneous color saturation This 3 58 MHz subcarrier is then added to the Luminance to form the composite color signal which modulates the video signal carrier just as in monochrome transmission For a color TV to recover hue information from the color subcarrier it must have a zero phase reference to replace the previously suppressed carrier The NTSC signal includes a short sample of this reference signal known as the colorburst located on the back porch of each horizontal synchronization pulse The color burst consists of a minimum of eight cycles of the unmodulated fixed phase and amplitude color subcarrier The TV receiver has a local oscillator which is synchronized with these color bursts Combining this reference phase signal derived from the color burst with the chrominance signal s amplitude and phase allows the recovery of the I and Q signals which when combined with the luminance information allows the reconstruction of a color image on the screen Color TV has been said to really be colored TV because of the total separation of the brightness part of the picture from the color portion In CRT televisions the NTSC signal is turned into three color signals red green and blue each controlling that color electron gun TV sets with digital circuitry use sampling techniques to process the signals but the result is the same For both analog and digital sets processing an analog NTSC signal the original three color signals are transmitted using three discrete signals luminance I and Q and then recovered as three separate colors and combined as a color image When a transmitter broadcasts an NTSC signal it amplitude modulates a radio frequency carrier with the NTSC signal just described while it frequency modulates a carrier 4 5 MHz higher with the audio signal If non linear distortion happens to the broadcast signal the 3 579545 MHz color carrier may beat with the sound carrier to produce a dot pattern on the screen To make the resulting pattern less noticeable designers adjusted the original 15 750 Hz scanline rate down by a factor of 1 001 0 1 to match the audio carrier frequency divided by the factor 286 resulting in a field rate of approximately 59 94 Hz This adjustment ensures that the difference between the sound carrier and the color subcarrier the most problematic intermodulation product of the two carriers is an odd multiple of half the line rate which is the necessary condition for the dots on successive lines to be opposite in phase making them least noticeable The 59 94 rate is derived from the following calculations Designers chose to make the chrominance subcarrier frequency an n 0 5 multiple of the line frequency to minimize interference between the luminance signal and the chrominance signal Another way this is often stated is that the color subcarrier frequency is an odd multiple of half the line frequency They then chose to make the audio subcarrier frequency an integer multiple of the line frequency to minimize visible intermodulation interference between the audio signal and the chrominance signal The original black and white standard with its 15 750 Hz line frequency and 4 5 MHz audio subcarrier does not meet these requirements so designers had either to raise the audio subcarrier frequency or lower the line frequency Raising the audio subcarrier frequency would prevent existing black and white receivers from properly tuning in the audio signal Lowering the line frequency is comparatively innocuous because the horizontal and vertical synchronization information in the NTSC signal allows a receiver to tolerate a substantial amount of variation in the line frequency So the engineers chose the line frequency to be changed for the color standard In the black and white standard the ratio of audio subcarrier frequency to line frequency is 4 5 MHz 15 750 Hz 285 71 In the color standard this becomes rounded to the integer 286 which means the color standard s line rate is 4 5 MHz 286 15 734 Hz Maintaining the same number of scan lines per field and frame the lower line rate must yield a lower field rate Dividing 4500000 286 lines per second by 262 5 lines per field gives approximately 59 94 fields per second Transmission modulation method Edit Spectrum of a System M television channel with NTSC color An NTSC television channel as transmitted occupies a total bandwidth of 6 MHz The actual video signal which is amplitude modulated is transmitted between 500 kHz and 5 45 MHz above the lower bound of the channel The video carrier is 1 25 MHz above the lower bound of the channel Like most AM signals the video carrier generates two sidebands one above the carrier and one below The sidebands are each 4 2 MHz wide The entire upper sideband is transmitted but only 1 25 MHz of the lower sideband known as a vestigial sideband is transmitted The color subcarrier as noted above is 3 579545 MHz above the video carrier and is quadrature amplitude modulated with a suppressed carrier The audio signal is frequency modulated like the audio signals broadcast by FM radio stations in the 88 108 MHz band but with a 25 kHz maximum frequency deviation as opposed to 75 kHz as is used on the FM band making analog television audio signals sound quieter than FM radio signals as received on a wideband receiver The main audio carrier is 4 5 MHz above the video carrier making it 250 kHz below the top of the channel Sometimes a channel may contain an MTS signal which offers more than one audio signal by adding one or two subcarriers on the audio signal each synchronized to a multiple of the line frequency This is normally the case when stereo audio and or second audio program signals are used The same extensions are used in ATSC where the ATSC digital carrier is broadcast at 0 31 MHz above the lower bound of the channel Setup is a 54 mV 7 5 IRE voltage offset between the black and blanking levels It is unique to NTSC CVBS stands for Color Video Blanking and Sync The following table shows the values for the basic RGB colors encoded in NTSC 25 Color Luminance level Chrominance levels Chrominance amplitude PhaseWhite 100 IRE 0 IRE 0 IRE Yellow 89 5 IRE 48 1 130 8 IRE 82 7 IRE 167 1Cyan 72 3 IRE 13 9 130 8 IRE 116 9 IRE 283 5Green 61 8 IRE 7 2 116 4 IRE 109 2 IRE 240 7Magenta 45 7 IRE 8 9 100 3 IRE 109 2 IRE 60 7Red 35 2 IRE 23 3 93 6 IRE 116 9 IRE 103 5Blue 18 IRE 23 3 59 4 IRE 82 7 IRE 347 1Black 7 5 IRE 0 IRE 0 IRE Frame rate conversion Edit See also Telecine There is a large difference in frame rate between film which runs at 24 0 frames per second and the NTSC standard which runs at approximately 29 97 10 MHz 63 88 455 525 frames per second In regions that use 25 fps television and video standards this difference can be overcome by speed up For 30 fps standards a process called 3 2 pulldown is used One film frame is transmitted for three video fields lasting 1 1 2 video frames and the next frame is transmitted for two video fields lasting 1 video frame Two film frames are thus transmitted in five video fields for an average of 2 1 2 video fields per film frame The average frame rate is thus 60 2 5 24 frames per second so the average film speed is nominally exactly what it should be In reality over the course of an hour of real time 215 827 2 video fields are displayed representing 86 330 88 frames of film while in an hour of true 24 fps film projection exactly 86 400 frames are shown thus 29 97 fps NTSC transmission of 24 fps film runs at 99 92 of the film s normal speed Still framing on playback can display a video frame with fields from two different film frames so any difference between the frames will appear as a rapid back and forth flicker There can also be noticeable jitter stutter during slow camera pans telecine judder To avoid 3 2 pulldown film shot specifically for NTSC television is often taken at 30 frame s citation needed To show 25 fps material such as European television series and some European movies on NTSC equipment every fifth frame is duplicated and then the resulting stream is interlaced Film shot for NTSC television at 24 frames per second has traditionally been accelerated by 1 24 to about 104 17 of normal speed for transmission in regions that use 25 fps television standards This increase in picture speed has traditionally been accompanied by a similar increase in the pitch and tempo of the audio More recently frame blending has been used to convert 24 FPS video to 25 FPS without altering its speed Film shot for television in regions that use 25 fps television standards can be handled in either of two ways The film can be shot at 24 frames per second In this case when transmitted in its native region the film may be accelerated to 25 fps according to the analog technique described above or kept at 24 fps by the digital technique described above When the same film is transmitted in regions that use a nominal 30 fps television standard there is no noticeable change in speed tempo and pitch The film can be shot at 25 frames per second In this case when transmitted in its native region the film is shown at its normal speed with no alteration of the accompanying soundtrack When the same film is shown in regions that use a 30 fps nominal television standard every fifth frame is duplicated and there is still no noticeable change in speed tempo and pitch Because both film speeds have been used in 25 fps regions viewers can face confusion about the true speed of video and audio and the pitch of voices sound effects and musical performances in television films from those regions For example they may wonder whether the Jeremy Brett series of Sherlock Holmes television films made in the 1980s and early 1990s was shot at 24 fps and then transmitted at an artificially fast speed in 25 fps regions or whether it was shot at 25 fps natively and then slowed to 24 fps for NTSC exhibition These discrepancies exist not only in television broadcasts over the air and through cable but also in the home video market on both tape and disc including laser disc and DVD In digital television and video which are replacing their analog predecessors single standards that can accommodate a wider range of frame rates still show the limits of analog regional standards The initial version of the ATSC standard for example allowed frame rates of 23 976 24 29 97 30 59 94 60 119 88 and 120 frames per second but not 25 and 50 Modern ATSC allows 25 and 50 FPS Modulation for analog satellite transmission Edit Because satellite power is severely limited analog video transmission through satellites differs from terrestrial TV transmission AM is a linear modulation method so a given demodulated signal to noise ratio SNR requires an equally high received RF SNR The SNR of studio quality video is over 50 dB so AM would require prohibitively high powers and or large antennas Wideband FM is used instead to trade RF bandwidth for reduced power Increasing the channel bandwidth from 6 to 36 MHz allows a RF SNR of only 10 dB or less The wider noise bandwidth reduces this 40 dB power saving by 36 MHz 6 MHz 8 dB for a substantial net reduction of 32 dB Sound is on an FM subcarrier as in terrestrial transmission but frequencies above 4 5 MHz are used to reduce aural visual interference 6 8 5 8 and 6 2 MHz are commonly used Stereo can be multiplex discrete or matrix and unrelated audio and data signals may be placed on additional subcarriers A triangular 60 Hz energy dispersal waveform is added to the composite baseband signal video plus audio and data subcarriers before modulation This limits the satellite downlink power spectral density in case the video signal is lost Otherwise the satellite might transmit all of its power on a single frequency interfering with terrestrial microwave links in the same frequency band In half transponder mode the frequency deviation of the composite baseband signal is reduced to 18 MHz to allow another signal in the other half of the 36 MHz transponder This reduces the FM benefit somewhat and the recovered SNRs are further reduced because the combined signal power must be backed off to avoid intermodulation distortion in the satellite transponder A single FM signal is constant amplitude so it can saturate a transponder without distortion Field order Edit An NTSC frame consists of an even field followed by an odd field 26 As far as the reception of an analog signal is concerned this is purely a matter of convention and it makes no difference It is rather like the broken lines running down the middle of a road it does not matter whether it is a line space pair or a space line pair the effect to a driver is exactly the same The introduction of digital television formats has changed things somewhat Most digital TV formats store and transmit fields in pairs as a single digital frame Digital formats that match NTSC field rate including the popular DVD format record video with the even field first in the digital frame while the formats that match field rate of the 625 line system often record video with odd frame first This means that when reproducing many non NTSC based digital formats it is necessary to reverse the field order otherwise an unacceptable shuddering comb effect occurs on moving objects as they are shown ahead in one field and then jump back in the next This has also become a hazard where non NTSC progressive video is transcoded to interlaced and vice versa Systems that recover progressive frames or transcode video should ensure that the field order is obeyed otherwise the recovered frame will consist of a field from one frame and a field from an adjacent frame resulting in comb interlacing artifacts This can often be observed in PC based video playing utilities if an inappropriate choice of de interlacing algorithm is made During the decades of high power NTSC broadcasts in the United States switching between the views from two cameras was accomplished according to two field dominance standards the choice between the two being made by geography East versus West In one region the switch was made between the odd field that finished one frame and the even field that began the next frame in the other the switch was made after an even field and before an odd field Thus for example a home VHS recording made of a local television newscast in the East when paused would only ever show the view from one camera unless a dissolve or other multicamera shot were intended whereas VHS playback of a situation comedy taped and edited in Los Angeles and then transmitted nationwide could be paused at the moment of a switch between cameras with half the lines depicting the outgoing shot and the other half depicting the incoming shot citation needed Variants EditNTSC M Edit Unlike PAL and SECAM with its many varied underlying broadcast television systems in use throughout the world NTSC color encoding is almost invariably used with broadcast system M giving NTSC M NTSC N NTSC50 Edit NTSC N NTSC50 is an unofficial system combining 625 line video with 3 58 MHz NTSC color PAL software running on an NTSC Atari ST displays using this system as it cannot display PAL color Television sets and monitors with a V Hold knob can display this system after adjusting the vertical hold 27 NTSC J Edit Only Japan s variant NTSC J is slightly different in Japan black level and blanking level of the signal are identical at 0 IRE as they are in PAL while in American NTSC black level is slightly higher 7 5 IRE than blanking level Since the difference is quite small a slight turn of the brightness knob is all that is required to correctly show the other variant of NTSC on any set as it is supposed to be most watchers might not even notice the difference in the first place The channel encoding on NTSC J differs slightly from NTSC M In particular the Japanese VHF band runs from channels 1 12 located on frequencies directly above the 76 90 MHz Japanese FM radio band while the North American VHF TV band uses channels 2 13 54 72 MHz 76 88 MHz and 174 216 MHz with 88 108 MHz allocated to FM radio broadcasting Japan s UHF TV channels are therefore numbered from 13 up and not 14 up but otherwise uses the same UHF broadcasting frequencies as those in North America NTSC 4 43 Edit NTSC 4 43 is a pseudo system that transmits a NTSC color subcarrier of 4 43 MHz instead of 3 58 MHz 28 The resulting output is only viewable by TVs that support the resulting pseudo system such as most PAL TVs 29 Using a native NTSC TV to decode the signal yields no color while using an incompatible PAL TV to decode the system yields erratic colors observed to be lacking red and flickering randomly The format was used by the USAF TV based in Germany during the Cold War 30 It was also found as an optional output on some LaserDisc players and some game consoles sold in markets where the PAL system is used The NTSC 4 43 system while not a broadcast format appears most often as a playback function of PAL cassette format VCRs beginning with the Sony 3 4 U Matic format and then following onto Betamax and VHS format machines commonly advertised as NTSC playback on PAL TV As Hollywood has the claim of providing the most cassette software movies and television series for VCRs for the world s viewers and as not all cassette releases were made available in PAL formats a means of playing NTSC format cassettes was highly desired Multi standard video monitors were already in use in Europe to accommodate broadcast sources in PAL SECAM and NTSC video formats The heterodyne color under process of U Matic Betamax amp VHS lent itself to minor modification of VCR players to accommodate NTSC format cassettes The color under format of VHS uses a 629 kHz subcarrier while U Matic amp Betamax use a 688 kHz subcarrier to carry an amplitude modulated chroma signal for both NTSC and PAL formats Since the VCR was ready to play the color portion of the NTSC recording using PAL color mode the PAL scanner and capstan speeds had to be adjusted from PAL s 50 Hz field rate to NTSC s 59 94 Hz field rate and faster linear tape speed The changes to the PAL VCR are minor thanks to the existing VCR recording formats The output of the VCR when playing an NTSC cassette in NTSC 4 43 mode is 525 lines 29 97 frames per second with PAL compatible heterodyned color The multi standard receiver is already set to support the NTSC H amp V frequencies it just needs to do so while receiving PAL color The existence of those multi standard receivers was probably part of the drive for region coding of DVDs As the color signals are component on disc for all display formats almost no changes would be required for PAL DVD players to play NTSC 525 29 97 discs as long as the display was frame rate compatible OSKM USSR NTSC Edit In January 1960 7 years prior to adoption of the modified SECAM version the experimental TV studio in Moscow started broadcasting using the OSKM system OSKM was the version of NTSC adapted to European D K 625 50 standard The OSKM abbreviation means Simultaneous system with quadrature modulation In Russian Odnovremennaya Sistema s Kvadraturnoj Modulyaciej It used the color coding scheme that was later used in PAL U and V instead of I and Q The color subcarrier frequency was 4 4296875 MHz and the bandwidth of U and V signals was near 1 5 MHz 31 Only circa 4000 TV sets of 4 models Raduga 32 Temp 22 Izumrud 201 and Izumrud 203 33 were produced for studying the real quality of TV reception These TV s were not commercially available despite being included in the goods catalog for trade network of the USSR The broadcasting with this system lasted about 3 years and was ceased well before SECAM transmissions started in the USSR None of the current multi standard TV receivers can support this TV system NTSC film Edit Main article 24p Film content commonly shot at 24 frames s can be converted to 30 frames s through the telecine process to duplicate frames as needed 23 976 29 97 4 5 displaystyle frac 23 976 29 97 frac 4 5 Mathematically for NTSC this is relatively simple as it is only needed to duplicate every fourth frame Various techniques are employed NTSC with an actual frame rate of 24 1 001 approximately 23 976 frames s is often defined as NTSC film A process known as pullup also known as pulldown generates the duplicated frames upon playback This method is common for H 262 MPEG 2 Part 2 digital video so the original content is preserved and played back on equipment that can display it or can be converted for equipment that cannot This section needs expansion You can help by adding to it June 2008 Canada US video game region Edit Sometimes NTSC U NTSC US or NTSC U C is used to describe the video gaming region of North America the U C refers to US Canada as regional lockout usually restricts games from being playable outside the region Comparative quality EditThis section needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed Find sources NTSC news newspapers books scholar JSTOR March 2020 Learn how and when to remove this template message The SMPTE color bars an example of a test pattern For NTSC and to a lesser extent PAL reception problems can degrade the color accuracy of the picture where ghosting can dynamically change the phase of the color burst with picture content thus altering the color balance of the signal The only receiver compensation is in the professional TV receiver ghost cancelling circuits used by cable companies The vacuum tube electronics used in televisions through the 1960s led to various technical problems Among other things the color burst phase would often drift In addition the TV studios did not always transmit properly leading to hue changes when channels were changed which is why NTSC televisions were equipped with a tint control PAL and SECAM televisions had less of a need for one SECAM in particular was very robust but PAL while excellent in maintaining skin tones which viewers are particularly sensitive to nevertheless would distort other colors in the face of phase errors With phase errors only Deluxe PAL receivers would get rid of Hanover bars distortion Hue controls are still found on NTSC TVs but color drifting generally ceased to be a problem for more modern circuitry by the 1970s When compared to PAL in particular NTSC color accuracy and consistency were sometimes considered inferior leading to video professionals and television engineers jokingly referring to NTSC as Never The Same Color Never Twice the Same Color or No True Skin Colors 34 while for the more expensive PAL system it was necessary to Pay for Additional Luxury PAL has also been referred to as Peace At Last Perfection At Last or Pictures Always Lovely in the color war This mostly applied to vacuum tube based TVs however and later model solid state sets using Vertical Interval Reference signals have less of a difference in quality between NTSC and PAL This color phase tint or hue control allows for anyone skilled in the art to easily calibrate a monitor with SMPTE color bars even with a set that has drifted in its color representation allowing the proper colors to be displayed Older PAL television sets did not come with a user accessible hue control it was set at the factory which contributed to its reputation for reproducible colors The use of NTSC coded color in S Video systems as well as the use of closed circuit composite NTSC both eliminate the phase distortions because there is no reception ghosting in a closed circuit system to smear the color burst For VHS videotape on the horizontal axis and frame rate of the three color systems when used with this scheme the use of S Video gives the higher resolution picture quality on monitors and TVs without a high quality motion compensated comb filtering section The NTSC resolution on the vertical axis is lower than the European standards 525 lines against 625 However it uses too much bandwidth for over the air transmission The Atari 800 and Commodore 64 home computers generated S video but only when used with specially designed monitors as no TV at the time supported the separate chroma and luma on standard RCA jacks In 1987 a standardized four pin mini DIN socket was introduced for S video input with the introduction of S VHS players which were the first device produced to use the four pin plugs However S VHS never became very popular Video game consoles in the 1990s began offering S video output as well The mismatch between NTSC s 30 frames per second and film s 24 frames is overcome by a process that capitalizes on the field rate of the interlaced NTSC signal thus avoiding the film playback speedup used for 576i systems at 25 frames per second which causes the accompanying audio to increase in pitch slightly sometimes rectified with the use of a pitch shifter at the price of some jerkiness in the video See Frame rate conversion above Vertical interval reference EditThe standard NTSC video image contains some lines lines 1 21 of each field that are not visible this is known as the Vertical Blanking Interval or VBI all are beyond the edge of the viewable image but only lines 1 9 are used for the vertical sync and equalizing pulses The remaining lines were deliberately blanked in the original NTSC specification to provide time for the electron beam in CRT screens to return to the top of the display VIR or Vertical interval reference widely adopted in the 1980s attempts to correct some of the color problems with NTSC video by adding studio inserted reference data for luminance and chrominance levels on line 19 35 Suitably equipped television sets could then employ these data in order to adjust the display to a closer match of the original studio image The actual VIR signal contains three sections the first having 70 percent luminance and the same chrominance as the color burst signal and the other two having 50 percent and 7 5 percent luminance respectively 36 A less used successor to VIR GCR also added ghost multipath interference removal capabilities The remaining vertical blanking interval lines are typically used for datacasting or ancillary data such as video editing timestamps vertical interval timecodes or SMPTE timecodes on lines 12 14 37 38 test data on lines 17 18 a network source code on line 20 and closed captioning XDS and V chip data on line 21 Early teletext applications also used vertical blanking interval lines 14 18 and 20 but teletext over NTSC was never widely adopted by viewers 39 Many stations transmit TV Guide On Screen TVGOS data for an electronic program guide on VBI lines The primary station in a market will broadcast 4 lines of data and backup stations will broadcast 1 line In most markets the PBS station is the primary host TVGOS data can occupy any line from 10 25 but in practice its limited to 11 18 20 and line 22 Line 22 is only used for 2 broadcast DirecTV and CFPL TV TiVo data is also transmitted on some commercials and program advertisements so that customers can autorecord the program being advertised and is also used in weekly half hour paid programs on Ion Television and the Discovery Channel which highlight TiVo promotions and advertisers Countries and territories that are using or once used NTSC EditFurther information Digital television transition in the United States Parts of this article those related to individual sections need to be updated Please help update this article to reflect recent events or newly available information December 2014 Below countries and territories currently use or once used the NTSC system Many of these have switched or are currently switching from NTSC to digital television standards such as ATSC United States Canada Mexico Suriname Jamaica South Korea ISDB Japan Philippines and part of South America DVB T Taiwan Panama Colombia Myanmar and Trinidad and Tobago or DTMB Cuba American Samoa 40 Anguilla 40 Antigua and Barbuda 40 Aruba 40 Bahamas 40 Barbados 40 Belize 40 Bermuda 40 Over the air NTSC broadcasts Channel 9 have been terminated as of March 2016 local broadcast stations have now switched to digital channels 20 1 and 20 2 41 Bolivia 40 Bonaire 40 British Virgin Islands 40 Canada 40 Over the air NTSC broadcasting in major cities ceased August 2011 as a result of legislative fiat to be replaced with ATSC Some one station markets or markets served only by full power repeaters remain analog 42 Caribbean Netherlands 40 Cayman Islands 40 Chile 40 Analog shutoff scheduled to 2022 43 simulcasting in ISDB Tb Colombia 40 Analog shutoff scheduled to 2022 simulcasting DVB T Costa Rica 40 NTSC broadcast to be abandoned by December 2018 simulcasting ISDB Tb Cuba 40 Curacao 40 Dominica 40 Dominican Republic 40 Over the air NTSC broadcasting scheduled to be abandoned by 2021 simulcast in ATSC 44 Ecuador 40 El Salvador Over the air NTSC broadcasting scheduled to be abandoned by January 1 2020 simulcast in ISDB Tb Grenada 40 Guam 40 Guatemala 40 Guyana 40 Haiti 40 Honduras 40 Over the air NTSC broadcasting scheduled to be abandoned by December 2020 simulcast in ISDB Tb Jamaica 40 Will convert to ATSC 3 0 instead of 1 0 The conversion will begin in 2022 and is expected to be completed by 2023 45 Japan 40 fully switched to ISDB in 2012 after the 2011 Tōhoku earthquake and tsunami delayed the planned 2011 rollout in three prefectures Marshall Islands 40 in Compact of Free Association with US US aid funded NTSC adoption Mexico plans to transition from NTSC announced on July 2 2004 46 started conversion in 2013 47 full transition was scheduled for December 31 2015 48 but due to technical and economic issues for some transmitters the full transition was extended to be completed on December 31 2016 Micronesia 40 in Compact of Free Association with US transitioning to DVB T Midway Atoll a US military base Montserrat 40 Myanmar Nicaragua 40 Northern Mariana Islands Palau 40 in Compact of Free Association with US adopted NTSC before independence Panama 40 NTSC broadcasts to be abandoned by 2020 simulcasting DVB T NTSC broadcasts to be abandoned in areas with more than 90 of DVB T reception Peru 40 NTSC broadcast to be abandoned by December 31 2017 simulcasting ISDB Tb 49 Philippines 40 NTSC broadcast was intended to be abandoned at the end of 2015 however in later 2014 it was postponed to 2019 50 All analog broadcast is expected to be shut off in 2023 51 52 53 54 55 It will simulcast in ISDB T Puerto Rico 40 now uses ATSC Saint Kitts and Nevis 40 Saint Lucia 40 Saint Vincent and the Grenadines 40 Saudi Arabia used NTSC SECAM and PAL before switching to PAL in the early 1990s Sint Maarten 40 also used 8 MHz spacing of DVB T2 same bandwidth spacing in European Netherlands on Encrypted Terrestrial Digital TV subscription via WTN CABLE South Korea Suriname 40 Trinidad and Tobago 40 Turks and Caicos Islands 40 United States 40 Full power over the air NTSC broadcasting was switched off on June 12 2009 56 57 in favor of ATSC Low power stations Class A stations were switched off on September 1 2015 Translators and other Low power stations were supposed to transition on the same day Class A stations shut off analog services but it was postponed to July 13 2021 due to a spectrum auction 58 Most remaining analog cable television systems are also not affected 59 United States Virgin Islands Venezuela 40 Experimented Edit Brazil Between 1962 and 1963 Rede Tupi and Rede Excelsior made the first unofficial transmissions in color in specific programs in the city of Sao Paulo before the official adoption of PAL M by the Brazilian Government on February 19 1972 Paraguay United Kingdom Experimented on 405 line variant of NTSC then UK chose 625 line for PAL broadcasting Countries and territories that have ceased using NTSC Edit The following countries and regions no longer use NTSC for terrestrial broadcasts Country Switched to Switchover completed Bermuda DVB T 2016 03 01 March 2016 Canada ATSC 2012 07 31 August 31 2011 Select markets Japan ISDB T 2012 03 31 March 31 2012 South Korea ATSC 2012 12 31 December 31 2012 Mexico ATSC 2015 12 31 December 31 2015 Full Power Stations 60 Taiwan DVB T 2012 06 30 June 30 2012 United States ATSC 2009 06 12 June 12 2009 Full Power Stations 57 September 1 2015 Class A Stations July 13 2021 Low Power Stations See also EditBroadcast television systems Advanced Television Systems Committee standards BTSC NTSC J NTSC C PAL RCA SECAM Composite artifact colors Dot crawl List of common resolutions Television List of video connectors Moving image formats Oldest television station Television channel frequencies Very high frequency Ultra high frequency Knife edge effect Channel 1 North American TV Channel 37 North American broadcast television frequencies North American cable television frequencies Australasian TV frequencies Broadcast safe Digital television transition in the United States Glossary of video termsReferences Edit National Television System Committee 1951 1953 Report and Reports of Panel No 11 11 A 12 19 with Some supplementary references cited in the Reports and the Petition for adoption of transmission standards for color television before the Federal Communications Commission n p 1953 17 v illus diagrs tables 28 cm LC Control No 54021386 Library of Congress Online Catalog Digital Television FCC gov Retrieved on May 11 2014 a b DTV and Over the Air Viewers Along U S Borders FCC gov Retrieved on May 11 2014 Canada PAL or NTSC VideoHelp Forum Retrieved on January 23 2015 What actually occurred was the RCA TG 1 synch generator system was upgraded from 441 lines per frame 220 5 lines per field interlaced to 525 lines per frame 262 5 lines per field also interlaced with minimal additional changes particularly not those affecting the vertical interval which in the extant RCA system included serrated equalizing pulses bracketing the vertical sync pulse itself being serrated For RCA NBC this was a very simple change from a 26 460 Hz master oscillator to a 31 500 Hz master oscillator and minimal additional changes to the generator s divider chain The equalizing pulses and the serration of the vertical sync pulse were necessary because of the limitations of the extant TV receiver video sync separation technology thought to be necessary because the sync was transmitted in band with the video although at a quite different DC level The early TV sets did not possess a DC restorer circuit hence the need for this level of complexity In studio monitors were provided with separate horizontal and vertical sync not composite synch and certainly not in band synch possibly excepting early color TV monitors which were often driven from the output of the station s colorplexer A third line sequential system from Color Television Inc CTI was also considered The CBS and final NTSC systems were called field sequential and dot sequential systems respectively Color TV Shelved As a Defense Step The New York Times October 20 1951 p 1 Action of Defense Mobilizer in Postponing Color TV Poses Many Question for the Industry The New York Times October 22 1951 p 23 TV Research Curb on Color Avoided The New York Times October 26 1951 Ed Reitan CBS Field Sequential Color System Archived January 5 2010 at the Wayback Machine 1997 A variant of the CBS system was later used by NASA to broadcast pictures of astronauts from space CBS Says Confusion Now Bars Color TV The Washington Post March 26 1953 p 39 F C C Rules Color TV Can Go on Air at Once The New York Times December 19 1953 p 1 73 682 PDF Govinfo gov FCC Retrieved January 22 2019 The master oscillator is 315 22 14 31818 MHz from which the 3 579545 color burst frequency is obtained by dividing by four and the 31 kHz horizontal drive and 60 Hz vertical drive are also synthesized from that frequency This facilitated a conversion to color of the then common but monochrome RCA TG 1 synchronizing generator by the simple expedient of adding on an external 14 31818 MHz temperature controlled oscillator and a few dividers and inputting the outputs of that chassis to certain test points within the TG 1 thereby disabling the TG 1 s own 31500 Hz reference oscillator Choice of Chrominance Subcarrier Frequency in the NTSC Standards Abrahams I C Proc IRE Vol 42 Issue 1 p 79 80 The Frequency Interleaving Principle in the NTSC Standards Abrahams I C Proc IRE vol 42 Issue 1 p 81 83 NBC Launches First Publicly Announced Color Television Show Wall Street Journal August 31 1953 p 4 Media Bureau Reminds LPTV TV Translators of Digital Transition Date DA FCC DA 20 724 PDF docs fcc gov Federal Communications Commission Retrieved January 17 2021 Digital Television DTV Transition Schedule PDF Innovation Science and Economic Development Canada April 2017 Retrieved July 22 2021 47 CFR 73 682 20 iv DeMarsh Leroy 1993 TV Display Phosphors Primaries Some History SMPTE Journal December 1993 1095 1098 doi 10 5594 J01650 a b c International Telecommunication Union Recommendation ITU R 470 6 1970 1998 Conventional Television Systems Annex 2 Society of Motion Picture and Television Engineers 1987 2004 Recommended Practice RP 145 2004 Color Monitor Colorimetry Society of Motion Picture and Television Engineers 1994 2004 Engineering Guideline EG 27 2004 Supplemental Information for SMPTE 170M and Background on the Development of NTSC Color Standards pp 9 Advanced Television Systems Committee 2003 ATSC Direct to Home Satellite Broadcast Standard Doc A 81 pp 18 European Broadcasting Union 1975 Tech 3213 E E B U Standard for Chromaticity Tolerances for Studio Monitors Poynton s Color FAQ by Charles Poynton Homepages inf ed ac uk Color Bar Levels Amplitues and Phases GIF Edn com Retrieved February 22 2022 CCIR Report 308 2 Part 2 Chapter XII Characteristics of Monochrome Television Systems 1970 edition VWestlife s Camcorder Tests amp More January 6 2010 Recording PAL and 625 line 50 Hz NTSC video on a U S VCR via YouTube Poynton Charles 2003 Digital Video and HD Algorithms and Interfaces ISBN 9781558607927 WeetHet Video Overview of available formats Retrieved September 21 2022 Most modern TV sets accept the so called pseudo formats Pseudo PAL and Pseudo NTSC Variants of NTSC standard March 25 2018 Sokolov Georgii Sudravskii Dmitrii 1963 Amateur Colour TV Receiver TSVET 2 Raduga OSKM Color TV 1962 September 6 2022 Izumrud 203 OSKM Color TV 1959 September 6 2022 Jain Anal K Fundamentals of Digital Image Processing Upper Saddle River NJ Prentice Hall 1989 p 82 LM1881 Video Sync Separator PDF March 13 2006 Archived from the original PDF on March 13 2006 Waveform Mons amp Vectorscopes Danalee ca Retrieved on May 11 2014 SMPTE EBU timecode by Phil Rees Philrees co uk Retrieved on May 11 2014 Technical Introduction to Timecode Archived July 10 2007 at the Wayback Machine Poynton com Retrieved on May 11 2014 Tools The History Project Experimentaltvcenter org Retrieved on May 11 2014 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av Hegarty Michael Phelan Anne Kilbride Lisa January 1 1998 Classrooms for Distance Teaching and Learning A Blueprint Leuven University Press pp 260 ISBN 978 90 6186 867 5 BBC s All Digital TV Output Plans On Course March 9 2016 Canadian Radio television and Telecommunications Commission CRTC Press release May 2007 Archived May 19 2007 at the Wayback Machine CNTV y SUBTEL culminan primera etapa de entrega de concesiones de Television Digital Terrestre June 27 2019 Archived from the original on September 28 2019 Retrieved February 8 2020 Indotel Television Digital en RD Indotel gob do Digital Television Switchover in Jamaica set to begin in 2022 The Gleaner Gleaner Company December 7 2021 Retrieved January 8 2021 Hester Lisa July 6 2004 Mexico To Adopt The ATSC DTV Standard Advanced Television Systems Committee Archived from the original on June 6 2014 Retrieved June 4 2013 On July 2 the Government of Mexico formally adopted the ATSC Digital Television DTV Standard for digital terrestrial television broadcasting Dibble Sandra May 30 2013 New turn for Tijuana s transition to digital broadcasting San Diego Union Tribune Archived from the original on September 6 2013 Retrieved June 4 2013 DOF Diario Oficial de la Federacion dof gob mx Archived from the original on January 21 2018 Retrieved March 16 2018 Philip J Cianci January 9 2012 High Definition Television The Creation Development and Implementation of HDTV Technology McFarland pp 302 ISBN 978 0 7864 8797 4 Philippines to start digital TV shift in 2019 NexTV Asia Pacific Archived from the original on February 9 2015 Retrieved October 27 2014 Cabuenas Jon Viktor D February 14 2017 Gov t wants analog TV switched off by 2023 GMA News Online Retrieved December 6 2018 Dela Paz Chrisee February 14 2017 Hardware boom comes with PH shift to digital TV Rappler Retrieved January 21 2019 Mariano Keith Richard D February 16 2017 Broadcasters commit to digital TV switch by 2023 BusinessWorld Archived from the original on February 24 2021 Retrieved January 21 2019 Esmael Maria Lisbet K October 7 2018 Govt on course to hit 2023 full digital TV transition The Manila Times Retrieved January 21 2019 Mercurio Richmond October 4 2018 Digital TV shift by 2023 pushing through DICT The Philippine Star Retrieved January 21 2019 Senate Passes Bill to Shift DTV Transition Date to June 12 Archived from the original on February 10 2009 Retrieved January 27 2009 a b ATSC SALUTES THE PASSING OF NTSC NTSC Archived from the original on May 24 2010 Retrieved June 13 2009 FCC Public Notice THE INCENTIVE AUCTION TASK FORCE AND MEDIA BUREAU ANNOUNCE PROCEDURES FOR LOW POWER TELEVISION TELEVISION TRANSLATOR AND REPLACEMENT TRANSLATOR STATIONSDURING THE POST INCENTIVE AUCTION TRANSITION May 17 2017 PDF Apps fcc gov Retrieved February 22 2022 ECFS Apps fcc gov Transicion a TDT Transition to DT Archived September 19 2010 at the Wayback Machine Spanish Sources EditA standard defining the NTSC system was published by the International Telecommunication Union in 1998 under the title Recommendation ITU R BT 470 7 Conventional Analog Television Systems It is publicly available on the Internet at ITU R BT 470 7 or can be purchased from the ITU Ed Reitan 1997 CBS Field Sequential Color System External links EditNational Television System Committee US cable television channel frequencies Commercial Television Frequencies at TVTower com Representation of the NTSC refresh rate on a television and on a DVD Why 59 94 vs 60 Hz Retrieved from https en wikipedia org w index php title NTSC amp oldid 1134564247, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.