fbpx
Wikipedia

Nelumbo

Nelumbo /nɪˈlʌmb/[1] is a genus of aquatic plants with large, showy flowers. Members are commonly called lotus, though the name is also applied to various other plants and plant groups, including the unrelated genus Lotus. Members outwardly resemble those in the family Nymphaeaceae ("water lilies"), but Nelumbo is actually very distant to that family.

Nelumbo
Temporal range: Cretaceous–Recent
Nelumbo nucifera (sacred lotus)
Nelumbo lutea (American lotus)
Scientific classification
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Eudicots
Order: Proteales
Family: Nelumbonaceae
Genus: Nelumbo
Adans.
Species

There are only two known living species of lotus; Nelumbo nucifera is native to East Asia, South Asia, Southeast Asia and probably Australia, and is better-known. It is commonly cultivated; it is eaten and used in traditional Chinese medicine.

The other lotus is Nelumbo lutea, which is native to North America and the Caribbean. Horticultural hybrids have been produced between these two allopatric species.

Description edit

Ultrahydrophobicity edit

 
Foliage of N. nucifera: an example of the lotus effect after rain

The leaves of Nelumbo are highly water-repellent (i.e. they exhibit ultrahydrophobicity) and have given the name to what is called the lotus effect.[2] Ultrahydrophobicity involves two criteria: a very high water contact angle between the droplet of water and the leaf surface, and a very low roll-off angle.[3] This means that the water must contact the leaf surface at exactly one, minuscule point, and any manipulation of the leaf by changing its angle will result in the water droplet rolling off of the leaf.[3] Ultrahydrophobicity is conferred by the usually dense layer of papillae on the surface of the Nelumbo leaves, and the small, robust, waxy tubules that protrude off each papilla.[4] This helps reduce the area of contact between the water droplet and the leaf.[4]

Ultrahydrophobicity is said to confer a very important evolutionary advantage. As an aquatic plant with leaves that rest on the water's surface, the genus Nelumbo is characterized by its concentration of stomata on the upper epidermis of its leaves, unlike most other plants which concentrate their stomata on the lower epidermis, underneath the leaf.[4] The collection of water on the upper epidermis, whether that be by rain, mist, or the nearby disturbance of water, is very detrimental to the leaf's ability to perform gas exchange through its stomata. Thus, Nelumbo's ultrahydrophobicity allows the water droplets to accumulate together very quickly, and then roll off of the leaf very easily at the slightest disturbance of the leaf, a process which allows its stomata to function normally without restriction due to blockage by water droplets.[5]

Thermoregulation edit

An uncommon property of the genus Nelumbo is that it can generate heat,[6] which it does by using the alternative oxidase pathway (AOX).[7][8] This pathway involves a different, alternative exchange of electrons from the usual pathway that electrons follow when generating energy in mitochondria, known as the AOX, or alternative oxidase pathway.

The typical pathway in plant mitochondria involves cytochrome complexes. The pathway used to generate heat in Nelumbo involves cyanide-resistant alternative oxidase, which is a different electron acceptor than the usual cytochrome complexes.[9] The plant also reduces ubiquitin concentrations while in thermogenesis, which allows the AOX in the plant to function without degradation[10] Thermogenesis is restricted to the receptacle, stamen, and petals of the flower, but each of these parts produce heat independently without relying on the heat production in other parts of the flower.[11]

There are several theories about the function of thermogenesis, especially in an aquatic genus such as Nelumbo. The most common theory posits that thermogenesis in flowers attracts pollinators, for a variety of reasons. Heated flowers may attract insect pollinators. As the pollinators warm themselves while resting inside the flower, they deposit and pick up pollen onto and from the flower.[6] The thermogenic environment might also be conducive to pollinator mating; pollinators may require a certain temperature for reproduction. By providing an ideal thermogenic environment, the flower is pollinated by mating pollinators.[12] Others theorize that heat production facilitates the release of volatile compounds into the air to attract pollinators flying over water, or that the heat is recognizable in the dark by thermo-sensitive pollinators. None have been conclusively proven to be more plausible than the others.[13]

After anthesis, the receptacle of the lotus transitions from a primarily thermogenic to a photosynthetic structure, as seen in the rapid and dramatic increase in photosystems, photosynthetically involved pigments, electron transport rates, and the presence of 13C in the receptacle and petals, all of which assist in increasing photosynthesis rates.[14] After this transition, all thermogenesis in the flower is lost. Pollinators do not need to be attracted once the ovary is fertilized, and thus the receptacle's resources are better used when it is photosynthesizing to produce carbohydrates that can increase plant biomass or fruit mass.[12]

Other plants utilize thermoregulation in their life cycles. Among these is the eastern skunk cabbage, which heats itself to melt any ice above it, and push through the ground in early spring.[15] Also, the elephant yam, which heats its flowers to attract pollinators. In addition, the carrion flower, which heats itself to disperse water vapor through the air, carrying its scent further, thus attracting more pollinators.

 
Nelumbo nucifera bud

Similar species edit

The leaves of Nelumbo can be distinguished from those of genera in the family Nymphaeaceae as they are peltate, that is they have fully circular leaves. Nymphaea, on the other hand, has a single characteristic notch from the edge in to the center of the lily pad. The seedpod of Nelumbo is very distinctive.

Taxonomy edit

Taxonomic history edit

The Cronquist system of 1981 recognizes the family Nelumbonaceae but places it in the water lily order Nymphaeales. The Dahlgren system of 1985 and Thorne system of 1992 both recognize the family and place it in its own order, Nelumbonales. The United States Department of Agriculture still classifies the lotus family within the water lily order.[16]

There is residual disagreement over which family the genus should be placed in. Traditional classification systems recognized Nelumbo as part of the Nymphaeaceae, but traditional taxonomists were likely misled by convergent evolution associated with an evolutionary shift from a terrestrial to an aquatic lifestyle. In the older classification systems it was recognized under the order Nymphaeales or Nelumbonales.

Modern classification edit

Nelumbo is currently recognized as the only living genus in Nelumbonaceae, one of several distinctive families in the eudicot order of the Proteales. Its closest living relatives, the (Proteaceae and Platanaceae), are shrubs or trees.

The APG IV system of 2016 recognizes Nelumbonaceae as a distinct family and places it in the order Proteales in the eudicot clade, as do the earlier APG III and APG II systems.[17]

Phylogeny edit

There are several fossil species known from Cretaceous, Paleogene and Neogene aged strata throughout Eurasia and North America. Despite the ancient origins of this genus and the wide geographic separation of the two extant species (N. nucifera and N. lutea), phylogenetic evidence indicates that they diverged rather recently, during the early Pleistocene (about 2 million years ago).[18]

Species edit

 
Dried seed pod from Nelumbo 'Mrs. Perry D. Slocum', a cross between the two extant species

Extant species edit

Fossil species edit

  • Nelumbo aureavallis HickeyEocene (North Dakota), described from leaves found in the Golden Valley Formation in North Dakota, USA.[20]
  • Nelumbo changchangensis Eocene, (Hainan Island, China), described from several fossils of leaves, seedpods, and rhizomes from the Eocene-aged strata in the Changchang Basin, of Hainan Island.
  • Nelumbo minima Pliocene (Netherlands), described from leaves and seedpods that suggest a very small plant. Originally described as a member of the genus Nelumbites, as "Nelumbites minimus."
  • Nelumbo nipponica Eocene-Miocene, fossil leaves are known from Eocene-aged strata in Japan, and Miocene-aged strata in Russia.
  • Nelumbo orientalis Cretaceous (Japan), one of the oldest known species, fossils are found in Cretaceous-aged strata of Japan.
  • Nelumbo protolutea Eocene (Mississippi), fossils of leaves strongly suggest a plant similar in form to the American lotus.

Etymology edit

The genus name is derived from Sinhala: නෙළුම් neḷum, the name for Nelumbo nucifera.[21]

Uses edit

 
Vinegared lotus root slices with ginger and citron as eaten in Japan

The entire plant can be eaten either raw or cooked. The underwater portion is high in starch. The fleshy parts can be dug from the mud and baked or boiled. The young leaves can be boiled. The seeds are palatable and can be eaten raw or dried and ground into flour.[22] The stem fibers are also used to make lotus silk.[23]

Culture edit

The sacred lotus, N. nucifera, is sacred in both Hinduism and Buddhism.[19] It is the floral emblem of both India and Vietnam.

References edit

  1. ^ "nelumbo". Oxford English Dictionary (Online ed.). Oxford University Press. (Subscription or participating institution membership required.)
  2. ^ Darmanin T, Guittard F (1 June 2015). "Superhydrophobic and superoleophobic properties in nature". Materials Today. 18 (5): 273–285. doi:10.1016/j.mattod.2015.01.001.
  3. ^ a b Marmur A (2004-04-01). "The Lotus Effect: Superhydrophobicity and Metastability". Langmuir. 20 (9): 3517–3519. doi:10.1021/la036369u. PMID 15875376.
  4. ^ a b c Zhang Y, Wu H, Yu X, Chen F, Wu J (March 2012). "Microscopic Observations of the Lotus Leaf for Explaining the Outstanding Mechanical Properties". Journal of Bionic Engineering. 9 (1): 84–90. doi:10.1016/S1672-6529(11)60100-5. S2CID 137076244.
  5. ^ Ensikat HJ, Ditsche-Kuru P, Neinhuis C, Barthlott W (2011-03-10). "Superhydrophobicity in perfection: the outstanding properties of the lotus leaf". Beilstein Journal of Nanotechnology. 2: 152–61. doi:10.3762/bjnano.2.19. PMC 3148040. PMID 21977427.
  6. ^ a b Watling JR, Robinson SA, Seymour RS (April 2006). "Contribution of the alternative pathway to respiration during thermogenesis in flowers of the sacred lotus". Plant Physiology. 140 (4): 1367–73. doi:10.1104/pp.105.075523. PMC 1435819. PMID 16461386.
  7. ^ Seymour RS, Schultze-Motel P, Lamprecht I (1 July 1998). "Heat production by sacred lotus flowers depends on ambient temperature, not light cycle". Journal of Experimental Botany. 49 (324): 1213–1217. doi:10.1093/jxb/49.324.1213.
  8. ^ Grant NM, Miller RA, Watling JR, Robinson SA (2010-11-12). "Distribution of thermogenic activity in floral tissues of Nelumbo nucifera". Functional Plant Biology. 37 (11): 1085–1095. doi:10.1071/FP10024. ISSN 1445-4416.
  9. ^ Hiroma T, Ito K, Hara M, Torisu R (2011-06-01). "Analysis of the Lotus Thermoregulation System from the Perspective of Control Engineering". Shokubutsu Kankyo Kogaku (in Japanese). 23 (2): 52–58. doi:10.2525/shita.23.52. ISSN 1880-2028.
  10. ^ Wang R, Zhang Z (March 2015). "Floral thermogenesis: An adaptive strategy of pollination biology in Magnoliaceae". Communicative & Integrative Biology. 8 (1): e992746. doi:10.4161/19420889.2014.992746. PMC 4594551. PMID 26844867.
  11. ^ Li JK, Huang SQ (May 2009). "Flower thermoregulation facilitates fertilization in Asian sacred lotus". Annals of Botany. 103 (7): 1159–63. doi:10.1093/aob/mcp051. PMC 2707905. PMID 19282320.
  12. ^ a b Miller RE, Watling JR, Robinson SA (2009). "Functional transition in the floral receptacle of the sacred lotus (Nelumbo nucifera): from thermogenesis to photosynthesis". Functional Plant Biology. 36 (5): 471–480. doi:10.1071/FP08326. PMID 32688661. S2CID 54588650.
  13. ^ Wagner AM, Krab K, Wagner MJ, Moore AL (2008-07-01). "Regulation of thermogenesis in flowering Araceae: the role of the alternative oxidase". Biochimica et Biophysica Acta (BBA) - Bioenergetics. 1777 (7–8): 993–1000. doi:10.1016/j.bbabio.2008.04.001. PMID 18440298.
  14. ^ Grant NM, Miller RE, Watling JR, Robinson SA (2008-02-01). "Synchronicity of thermogenic activity, alternative pathway respiratory flux, AOX protein content, and carbohydrates in receptacle tissues of sacred lotus during floral development". Journal of Experimental Botany. 59 (3): 705–14. doi:10.1093/jxb/erm333. hdl:2440/52460. PMID 18252702.
  15. ^ Ito K, Ito T, Onda Y, Uemura M (2004-03-15). "Temperature-Triggered Periodical Thermogenic Oscillations in Skunk Cabbage (Symplocarpus foetidus)". Plant and Cell Physiology. 45 (3): 257–264. doi:10.1093/pcp/pch038. ISSN 0032-0781. PMID 15047873.
  16. ^ http://plants.sc.egov.usda.gov/core/profile?symbol=NENU2, Click on Classification tab, three to the right of the General tab under which the webpage opens. (It is all the same web address.)
  17. ^ Angiosperm Phylogeny Group (2016). "An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV". Botanical Journal of the Linnean Society. 181 (1): 1–20. doi:10.1111/boj.12385. ISSN 0024-4074.
  18. ^ Wu, Zhihua; Gui, Songtao; Quan, Zhiwu; Pan, Lei; Wang, Shuzhen; Ke, Weidong; Liang, Dequan; Ding, Yi (2014-11-19). "A precise chloroplast genome of Nelumbo nucifera (Nelumbonaceae) evaluated with Sanger, Illumina MiSeq, and PacBio RS II sequencing platforms: insight into the plastid evolution of basal eudicots". BMC Plant Biology. 14 (1): 289. doi:10.1186/s12870-014-0289-0. ISSN 1471-2229. PMC 4245832. PMID 25407166.
  19. ^ a b . Kew Royal Botanic Gardens. Archived from the original on 30 May 2014. Retrieved 26 July 2015.
  20. ^ Hickey L (1977). Stratigraphy and Paleobotany of the Golden Valley Formation (Early Tertiary) of Western North Dakota. Boulder, Colorado: Geological Society of America. pp. 110 & Plate 5. ISBN 978-0-8137-1150-8.
  21. ^ Hyam R, Pankhurst RJ (1995). Plants and their names: a concise dictionary. Oxford: Oxford University Press. ISBN 978-0-19-866189-4.
  22. ^ The Complete Guide to Edible Wild Plants. United States Department of the Army. New York: Skyhorse Publishing. 2009. p. 64. ISBN 978-1-60239-692-0. OCLC 277203364.{{cite book}}: CS1 maint: others (link)
  23. ^ Weaving success: Manipur woman seeks to employ more locals in her lotus silk venture

External links edit

  • links at CSDL

nelumbo, genus, aquatic, plants, with, large, showy, flowers, members, commonly, called, lotus, though, name, also, applied, various, other, plants, plant, groups, including, unrelated, genus, lotus, members, outwardly, resemble, those, family, nymphaeaceae, w. Nelumbo n ɪ ˈ l ʌ m b oʊ 1 is a genus of aquatic plants with large showy flowers Members are commonly called lotus though the name is also applied to various other plants and plant groups including the unrelated genus Lotus Members outwardly resemble those in the family Nymphaeaceae water lilies but Nelumbo is actually very distant to that family NelumboTemporal range Cretaceous Recent PreꞒ Ꞓ O S D C P T J K Pg NNelumbo nucifera sacred lotus Nelumbo lutea American lotus Scientific classificationKingdom PlantaeClade TracheophytesClade AngiospermsClade EudicotsOrder ProtealesFamily NelumbonaceaeGenus NelumboAdans Species Nelumbo aureavallis Nelumbo changchangensis Nelumbo lutea Nelumbo minima Nelumbo nipponica Nelumbo nucifera Nelumbo orientalis Nelumbo protoluteaThere are only two known living species of lotus Nelumbo nucifera is native to East Asia South Asia Southeast Asia and probably Australia and is better known It is commonly cultivated it is eaten and used in traditional Chinese medicine The other lotus is Nelumbo lutea which is native to North America and the Caribbean Horticultural hybrids have been produced between these two allopatric species Contents 1 Description 1 1 Ultrahydrophobicity 1 2 Thermoregulation 1 3 Similar species 2 Taxonomy 2 1 Taxonomic history 2 2 Modern classification 2 3 Phylogeny 2 4 Species 2 4 1 Extant species 2 4 2 Fossil species 2 5 Etymology 3 Uses 4 Culture 5 References 6 External linksDescription editUltrahydrophobicity edit nbsp Foliage of N nucifera an example of the lotus effect after rainThe leaves of Nelumbo are highly water repellent i e they exhibit ultrahydrophobicity and have given the name to what is called the lotus effect 2 Ultrahydrophobicity involves two criteria a very high water contact angle between the droplet of water and the leaf surface and a very low roll off angle 3 This means that the water must contact the leaf surface at exactly one minuscule point and any manipulation of the leaf by changing its angle will result in the water droplet rolling off of the leaf 3 Ultrahydrophobicity is conferred by the usually dense layer of papillae on the surface of the Nelumbo leaves and the small robust waxy tubules that protrude off each papilla 4 This helps reduce the area of contact between the water droplet and the leaf 4 Ultrahydrophobicity is said to confer a very important evolutionary advantage As an aquatic plant with leaves that rest on the water s surface the genus Nelumbo is characterized by its concentration of stomata on the upper epidermis of its leaves unlike most other plants which concentrate their stomata on the lower epidermis underneath the leaf 4 The collection of water on the upper epidermis whether that be by rain mist or the nearby disturbance of water is very detrimental to the leaf s ability to perform gas exchange through its stomata Thus Nelumbo s ultrahydrophobicity allows the water droplets to accumulate together very quickly and then roll off of the leaf very easily at the slightest disturbance of the leaf a process which allows its stomata to function normally without restriction due to blockage by water droplets 5 Thermoregulation edit An uncommon property of the genus Nelumbo is that it can generate heat 6 which it does by using the alternative oxidase pathway AOX 7 8 This pathway involves a different alternative exchange of electrons from the usual pathway that electrons follow when generating energy in mitochondria known as the AOX or alternative oxidase pathway The typical pathway in plant mitochondria involves cytochrome complexes The pathway used to generate heat in Nelumbo involves cyanide resistant alternative oxidase which is a different electron acceptor than the usual cytochrome complexes 9 The plant also reduces ubiquitin concentrations while in thermogenesis which allows the AOX in the plant to function without degradation 10 Thermogenesis is restricted to the receptacle stamen and petals of the flower but each of these parts produce heat independently without relying on the heat production in other parts of the flower 11 There are several theories about the function of thermogenesis especially in an aquatic genus such as Nelumbo The most common theory posits that thermogenesis in flowers attracts pollinators for a variety of reasons Heated flowers may attract insect pollinators As the pollinators warm themselves while resting inside the flower they deposit and pick up pollen onto and from the flower 6 The thermogenic environment might also be conducive to pollinator mating pollinators may require a certain temperature for reproduction By providing an ideal thermogenic environment the flower is pollinated by mating pollinators 12 Others theorize that heat production facilitates the release of volatile compounds into the air to attract pollinators flying over water or that the heat is recognizable in the dark by thermo sensitive pollinators None have been conclusively proven to be more plausible than the others 13 After anthesis the receptacle of the lotus transitions from a primarily thermogenic to a photosynthetic structure as seen in the rapid and dramatic increase in photosystems photosynthetically involved pigments electron transport rates and the presence of 13C in the receptacle and petals all of which assist in increasing photosynthesis rates 14 After this transition all thermogenesis in the flower is lost Pollinators do not need to be attracted once the ovary is fertilized and thus the receptacle s resources are better used when it is photosynthesizing to produce carbohydrates that can increase plant biomass or fruit mass 12 Other plants utilize thermoregulation in their life cycles Among these is the eastern skunk cabbage which heats itself to melt any ice above it and push through the ground in early spring 15 Also the elephant yam which heats its flowers to attract pollinators In addition the carrion flower which heats itself to disperse water vapor through the air carrying its scent further thus attracting more pollinators nbsp Nelumbo nucifera budSimilar species edit The leaves of Nelumbo can be distinguished from those of genera in the family Nymphaeaceae as they are peltate that is they have fully circular leaves Nymphaea on the other hand has a single characteristic notch from the edge in to the center of the lily pad The seedpod of Nelumbo is very distinctive Taxonomy editTaxonomic history edit The Cronquist system of 1981 recognizes the family Nelumbonaceae but places it in the water lily order Nymphaeales The Dahlgren system of 1985 and Thorne system of 1992 both recognize the family and place it in its own order Nelumbonales The United States Department of Agriculture still classifies the lotus family within the water lily order 16 There is residual disagreement over which family the genus should be placed in Traditional classification systems recognized Nelumbo as part of the Nymphaeaceae but traditional taxonomists were likely misled by convergent evolution associated with an evolutionary shift from a terrestrial to an aquatic lifestyle In the older classification systems it was recognized under the order Nymphaeales or Nelumbonales Modern classification edit Nelumbo is currently recognized as the only living genus in Nelumbonaceae one of several distinctive families in the eudicot order of the Proteales Its closest living relatives the Proteaceae and Platanaceae are shrubs or trees The APG IV system of 2016 recognizes Nelumbonaceae as a distinct family and places it in the order Proteales in the eudicot clade as do the earlier APG III and APG II systems 17 Phylogeny edit There are several fossil species known from Cretaceous Paleogene and Neogene aged strata throughout Eurasia and North America Despite the ancient origins of this genus and the wide geographic separation of the two extant species N nucifera and N lutea phylogenetic evidence indicates that they diverged rather recently during the early Pleistocene about 2 million years ago 18 Species edit nbsp Dried seed pod from Nelumbo Mrs Perry D Slocum a cross between the two extant speciesExtant species edit Nelumbo lutea Willd American lotus Eastern United States Mexico Greater Antilles Honduras Nelumbo nucifera Gaertn sacred or Indian lotus also known as the Rose of India and the sacred water lily of Hinduism and Buddhism 19 It is the national flower of India and Vietnam Its roots and seeds are also used widely in cooking in East Asia South Asia and Southeast Asia Fossil species edit Nelumbo aureavallis Hickey Eocene North Dakota described from leaves found in the Golden Valley Formation in North Dakota USA 20 Nelumbo changchangensis Eocene Hainan Island China described from several fossils of leaves seedpods and rhizomes from the Eocene aged strata in the Changchang Basin of Hainan Island Nelumbo minima Pliocene Netherlands described from leaves and seedpods that suggest a very small plant Originally described as a member of the genus Nelumbites as Nelumbites minimus Nelumbo nipponica Eocene Miocene fossil leaves are known from Eocene aged strata in Japan and Miocene aged strata in Russia Nelumbo orientalis Cretaceous Japan one of the oldest known species fossils are found in Cretaceous aged strata of Japan Nelumbo protolutea Eocene Mississippi fossils of leaves strongly suggest a plant similar in form to the American lotus Etymology edit The genus name is derived from Sinhala න ළ ම neḷum the name for Nelumbo nucifera 21 Uses edit nbsp Vinegared lotus root slices with ginger and citron as eaten in JapanThe entire plant can be eaten either raw or cooked The underwater portion is high in starch The fleshy parts can be dug from the mud and baked or boiled The young leaves can be boiled The seeds are palatable and can be eaten raw or dried and ground into flour 22 The stem fibers are also used to make lotus silk 23 Culture editMain article Nelumbo nucifera The sacred lotus N nucifera is sacred in both Hinduism and Buddhism 19 It is the floral emblem of both India and Vietnam References edit nelumbo Oxford English Dictionary Online ed Oxford University Press Subscription or participating institution membership required Darmanin T Guittard F 1 June 2015 Superhydrophobic and superoleophobic properties in nature Materials Today 18 5 273 285 doi 10 1016 j mattod 2015 01 001 a b Marmur A 2004 04 01 The Lotus Effect Superhydrophobicity and Metastability Langmuir 20 9 3517 3519 doi 10 1021 la036369u PMID 15875376 a b c Zhang Y Wu H Yu X Chen F Wu J March 2012 Microscopic Observations of the Lotus Leaf for Explaining the Outstanding Mechanical Properties Journal of Bionic Engineering 9 1 84 90 doi 10 1016 S1672 6529 11 60100 5 S2CID 137076244 Ensikat HJ Ditsche Kuru P Neinhuis C Barthlott W 2011 03 10 Superhydrophobicity in perfection the outstanding properties of the lotus leaf Beilstein Journal of Nanotechnology 2 152 61 doi 10 3762 bjnano 2 19 PMC 3148040 PMID 21977427 a b Watling JR Robinson SA Seymour RS April 2006 Contribution of the alternative pathway to respiration during thermogenesis in flowers of the sacred lotus Plant Physiology 140 4 1367 73 doi 10 1104 pp 105 075523 PMC 1435819 PMID 16461386 Seymour RS Schultze Motel P Lamprecht I 1 July 1998 Heat production by sacred lotus flowers depends on ambient temperature not light cycle Journal of Experimental Botany 49 324 1213 1217 doi 10 1093 jxb 49 324 1213 Grant NM Miller RA Watling JR Robinson SA 2010 11 12 Distribution of thermogenic activity in floral tissues of Nelumbo nucifera Functional Plant Biology 37 11 1085 1095 doi 10 1071 FP10024 ISSN 1445 4416 Hiroma T Ito K Hara M Torisu R 2011 06 01 Analysis of the Lotus Thermoregulation System from the Perspective of Control Engineering Shokubutsu Kankyo Kogaku in Japanese 23 2 52 58 doi 10 2525 shita 23 52 ISSN 1880 2028 Wang R Zhang Z March 2015 Floral thermogenesis An adaptive strategy of pollination biology in Magnoliaceae Communicative amp Integrative Biology 8 1 e992746 doi 10 4161 19420889 2014 992746 PMC 4594551 PMID 26844867 Li JK Huang SQ May 2009 Flower thermoregulation facilitates fertilization in Asian sacred lotus Annals of Botany 103 7 1159 63 doi 10 1093 aob mcp051 PMC 2707905 PMID 19282320 a b Miller RE Watling JR Robinson SA 2009 Functional transition in the floral receptacle of the sacred lotus Nelumbo nucifera from thermogenesis to photosynthesis Functional Plant Biology 36 5 471 480 doi 10 1071 FP08326 PMID 32688661 S2CID 54588650 Wagner AM Krab K Wagner MJ Moore AL 2008 07 01 Regulation of thermogenesis in flowering Araceae the role of the alternative oxidase Biochimica et Biophysica Acta BBA Bioenergetics 1777 7 8 993 1000 doi 10 1016 j bbabio 2008 04 001 PMID 18440298 Grant NM Miller RE Watling JR Robinson SA 2008 02 01 Synchronicity of thermogenic activity alternative pathway respiratory flux AOX protein content and carbohydrates in receptacle tissues of sacred lotus during floral development Journal of Experimental Botany 59 3 705 14 doi 10 1093 jxb erm333 hdl 2440 52460 PMID 18252702 Ito K Ito T Onda Y Uemura M 2004 03 15 Temperature Triggered Periodical Thermogenic Oscillations in Skunk Cabbage Symplocarpus foetidus Plant and Cell Physiology 45 3 257 264 doi 10 1093 pcp pch038 ISSN 0032 0781 PMID 15047873 http plants sc egov usda gov core profile symbol NENU2 Click on Classification tab three to the right of the General tab under which the webpage opens It is all the same web address Angiosperm Phylogeny Group 2016 An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants APG IV Botanical Journal of the Linnean Society 181 1 1 20 doi 10 1111 boj 12385 ISSN 0024 4074 Wu Zhihua Gui Songtao Quan Zhiwu Pan Lei Wang Shuzhen Ke Weidong Liang Dequan Ding Yi 2014 11 19 A precise chloroplast genome of Nelumbo nucifera Nelumbonaceae evaluated with Sanger Illumina MiSeq and PacBio RS II sequencing platforms insight into the plastid evolution of basal eudicots BMC Plant Biology 14 1 289 doi 10 1186 s12870 014 0289 0 ISSN 1471 2229 PMC 4245832 PMID 25407166 a b Nelumbo nucifera sacred lotus Kew Royal Botanic Gardens Archived from the original on 30 May 2014 Retrieved 26 July 2015 Hickey L 1977 Stratigraphy and Paleobotany of the Golden Valley Formation Early Tertiary of Western North Dakota Boulder Colorado Geological Society of America pp 110 amp Plate 5 ISBN 978 0 8137 1150 8 Hyam R Pankhurst RJ 1995 Plants and their names a concise dictionary Oxford Oxford University Press ISBN 978 0 19 866189 4 The Complete Guide to Edible Wild Plants United States Department of the Army New York Skyhorse Publishing 2009 p 64 ISBN 978 1 60239 692 0 OCLC 277203364 a href Template Cite book html title Template Cite book cite book a CS1 maint others link Weaving success Manipur woman seeks to employ more locals in her lotus silk ventureExternal links edit nbsp Wikimedia Commons has media related to Nelumbo nbsp Wikispecies has information related to Nelumbo links at CSDL Retrieved from https en wikipedia org w index php title Nelumbo amp oldid 1188215836, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.