fbpx
Wikipedia

Pollinator

A pollinator is an animal that moves pollen from the male anther of a flower to the female stigma of a flower.[1] This helps to bring about fertilization of the ovules in the flower by the male gametes from the pollen grains.

A syrphid fly (Eristalinus taeniops) pollinating a common hawkweed
A mining bee (Andrena lonicerae) pollinating a honeysuckle (Lonicera gracilipes).

Insects are the major pollinators of most plants, and insect pollinators include all families of bees and most families of aculeate wasps; ants; many families of flies; many lepidopterans (both butterflies and moths); and many families of beetles. Vertebrates, mainly bats and birds, but also some non-bat mammals (monkeys, lemurs, possums, rodents) and some lizards pollinate certain plants. Among the pollinating birds are hummingbirds, honeyeaters and sunbirds with long beaks; they pollinate a number of deep-throated flowers. Humans may also carry out artificial pollination.

A pollinator is different from a pollenizer, a plant that is a source of pollen for the pollination process.

Background

Plants fall into pollination syndromes that reflect the type of pollinator being attracted. These are characteristics such as: overall flower size, the depth and width of the corolla, the color (including patterns called nectar guides that are visible only in ultraviolet light), the scent, amount of nectar, composition of nectar, etc.[2] For example, birds visit red flowers with long, narrow tubes and much nectar, but are not as strongly attracted to wide flowers with little nectar and copious pollen, which are more attractive to beetles. When these characteristics are experimentally modified (altering colour, size, orientation), pollinator visitation may decline.[3][4]

Although non-bee pollinators have been seen to be less effective at depositing pollen than bee pollinators[5] one study showed that non-bees made more visits than bees resulting in non-bees performing 38% of visits to crop flowers, outweighing the ineffectiveness of their ability to pollinate.[6][5]

It has recently been discovered that cycads, which are not flowering plants, are also pollinated by insects.[7] In 2016, researchers showed evidence of pollination occurring underwater, which was previously thought not to happen.[8][9]

Types of pollinators

Insects

Bees

 
Lipotriches sp. bee pollinating flowers

The most recognized pollinators are the various species of bees,[10] which are plainly adapted to pollination. Bees typically are fuzzy and carry an electrostatic charge. Both features help pollen grains adhere to their bodies, but they also have specialized pollen-carrying structures; in most bees, this takes the form of a structure known as the scopa, which is on the hind legs of most bees, and/or the lower abdomen (e.g., of megachilid bees), made up of thick, plumose setae. Honey bees, bumblebees, and their relatives do not have a scopa, but the hind leg is modified into a structure called the corbicula (also known as the "pollen basket"). Most bees gather nectar, a concentrated energy source, and pollen, which is high protein food, to nurture their young, and transfer some among the flowers as they are working.[11] Euglossine bees pollinate orchids, but these are male bees collecting floral scents rather than females gathering nectar or pollen. Female orchid bees act as pollinators, but of flowers other than orchids. Eusocial bees such as honey bees need an abundant and steady pollen source to multiply.

 
Honey bee pollinating a plum tree. Bees are the most effective insect pollinators.

Honey bees travel from flower to flower, collecting nectar (later converted to honey), and pollen grains. The bee collects the pollen by rubbing against the anthers. The pollen collects on the hind legs, in a structure referred to as a "pollen basket". As the bee flies from flower to flower, some of the pollen grains are transferred onto the stigma of other flowers. Nectar provides the energy for bee nutrition; pollen provides the protein. When bees are rearing large quantities of brood (beekeepers say hives are "building"), bees deliberately gather pollen to meet the nutritional needs of the brood.

Good pollination management seeks to have bees in a "building" state during the bloom period of the crop, thus requiring them to gather pollen, and making them more efficient pollinators. Thus, the management techniques of a beekeeper providing pollination services are different from, and to some extent in tension with, those of a beekeeper who is trying to produce honey. Millions of hives of honey bees are contracted out as pollinators by beekeepers, and honey bees are by far the most important commercial pollinating agents, but many other kinds of pollinators, from blue bottle flies, to bumblebees, orchard mason bees, and leaf cutter bees are cultured and sold for managed pollination.

Other species of bees differ in various details of their behavior and pollen-gathering habits, and honey bees are not native to the Western Hemisphere; all pollination of native plants in the Americas and Australia historically has been performed by various native bees.

Butterflies and moths

 
An Australian painted lady feeding on nectar

Lepidoptera (butterflies and moths) may also pollinate to various degrees.[12] They are not major pollinators of food crops, but various moths are important pollinators of other commercial crops such as tobacco. Pollination by certain moths may be important, however, or even crucial, for some wildflowers mutually adapted to specialist pollinators. Spectacular examples include orchids such as Angraecum sesquipedale, dependent on a particular hawk moth, Morgan's sphinx. Yucca species provide other examples, being fertilised in elaborate ecological interactions with particular species of yucca moths.

Flies

Many bee flies, and some Tabanidae and Nemestrinidae are particularly adapted to pollinating fynbos and Karoo plants with narrow, deep corolla tubes, such as Lapeirousia species. Part of the adaptation takes the form of remarkably long probosces. This also applies to empidine dance flies (Empidinae) that visit a wide range of flowering plants, some species of which can pollinate the woodland geranium (Geranium sylvaticum L.) as effectively as bees.[13]

 
Tabanid fly on a thistle flower

Carrion flies and flesh flies in families such as Calliphoridae and Sarcophagidae are important for some species of plants whose flowers exude a fetid odor. The plants' ecological strategy varies; several species of Stapelia, for example, attract carrion flies that futilely lay their eggs on the flower, where their larvae promptly starve for lack of carrion. Other species do decay rapidly after ripening, and offer the visiting insects large masses of food, as well as pollen and sometimes seed to carry off when they leave.

Hoverflies are important pollinators of flowering plants worldwide.[14] Often hoverflies are considered to be the second most important pollinators after wild bees.[14] Although hoverflies as a whole are generally considered to be nonselective pollinators, some species have more specialized relationships. The orchid species Epipactis veratrifolia mimics alarm pheromones of aphids to attract hover flies for pollination.[15] Another plant, the slipper orchid in southwest China, also achieves pollination by deceit by exploiting the innate yellow colour preference of syrphids.[16]

Some male dacine fruit flies are exclusive pollinators of some wild Bulbophyllum orchids that lack nectar and have a specific chemical attractant and reward (methyl eugenol, raspberry ketone or zingerone) present in their floral fragrances.[17][18][19]

Other insects

 
A Scoliid wasp (Scolia chrysotricha) foraging

Many insects other than bees accomplish pollination by visiting flowers for nectar or pollen, or commonly both. Many do so adventitiously, but the most important pollinators are specialists for at least parts of their life cycles for at least certain functions.

Prominent among Hymenoptera other than bees are predatory aculeate wasps (especially Crabronidae, Sphecidae, Vespidae, and Pompilidae). The term "pollen wasps", in particular, is widely applied to the Masarinae, a subfamily of the Vespidae; they are remarkable among solitary wasps in that they specialise in gathering pollen for feeding their larvae, carried internally and regurgitated into a mud chamber prior to oviposition. Also, males of many species of bees and wasps, though they do not gather pollen, rely on flowers as sources of energy (in the form of nectar) and also as territories for meeting fertile females that visit the flowers.

Some Diptera (flies) may be the main pollinators at higher elevations of mountains,[20][21] whereas bumblebee species are typically the only other pollinators in alpine regions at timberline and beyond.

Some adult mosquitoes, if they feed on nectar, may act as pollinators; Aedes communis, a species found in North America, is known to pollinate Platanthera obtusata, commonly referred as the blunt-leaved orchid.[22][23]

Beetles of species that specialise in eating pollen, nectar, or flowers themselves, may be important cross-pollinators of some plants such as members of the Araceae and Zamiaceae, that produce prodigious amounts of pollen. Others, for example the Hopliini, specialise on flowers of Asteraceae and Aizoaceae.

Minute midges and flower-thrips can occur in vast numbers, moving between flowers and plant individuals, enabling some species to contribute to the pollination of tree-crops such as cacao, Theobroma cacao[24] L. (Malvaceae) and elderflower Sambucus nigra L. (Adoxaceae).[25] Ants also pollinate some kinds of flowers, but for the most part they are parasites, consuming nectar and/or pollen without conveying useful amounts of pollen to a stigma. Other insect orders are rarely pollinators, and then typically only incidentally (e.g., Hemiptera such as Anthocoridae and Miridae).

A strategy of great biological interest is that of sexual deception, where plants, generally orchids, produce remarkably complex combinations of pheromonal attractants and physical mimicry that induce male bees or wasps to attempt to mate with them, conveying pollinia in the process. Examples are known from all continents apart from Antarctica, though Australia appears to be exceptionally rich in examples.[26]

Whole groups of plants, such as certain fynbos Moraea and Erica species produce flowers on sticky peduncles or with sticky corolla tubes that only permit access to flying pollinators, whether bird, bat, or insect.

Other invertebrates

Experimental evidence has shown invertebrates (mostly small crustaceans[9]) acting as pollinators in underwater environments. Beds of seagrass have been shown to reproduce this way in the absence of currents. It is not yet known how important invertebrate pollinators might be for other species.[8][27] Later, Idotea balthica was discovered to help Gracilaria gracilis reproduce – the first known case of an animal helping algae reproduce.[28][29]

Vertebrates

 
Tropical flowers like Tacca chantrieri are bat-pollinated.
 
Green violetear with pollen on bill, Curi Cancha Wildlife Refuge, Costa Rica

Bats are important pollinators of some tropical flowers, visiting to take nectar.[30] Birds, particularly hummingbirds, honeyeaters and sunbirds also accomplish much pollination, especially of deep-throated flowers. Other vertebrates, such as kinkajous, monkeys, lemurs, possums, rodents and lizards[31][32] have been recorded pollinating some plants.

Humans can be pollinators, as many gardeners have discovered that they must hand pollinate garden vegetables, whether because of pollinator decline (as has been occurring in parts of the U.S. since the mid-20th century) or simply to keep a strain genetically pure. This can involve using a small brush or cotton swab to move pollen, or to simply tap or shake tomato blossoms to release the pollen for the self-pollinating flowers. Tomato blossoms are self-fertile, but (with the exception of potato-leaf varieties) have the pollen inside the anther, and the flower requires shaking to release the pollen through pores. This can be done by wind, by humans, or by a sonicating bee (one that vibrates its wing muscles while perched on the flower), such as a bumblebee. Sonicating bees are extremely efficient pollinators of tomatoes, and colonies of bumblebees are quickly replacing humans as the primary pollinators for greenhouse tomatoes.

Floral and non-floral resources

Pollinators require a variety of resources. Most native bees in North America are solitary, ground-nesting species that collect a variety of natural resources including pollen, nectar, leaves, petals and resins to be used as sources of food, supplies for their larva, or nest linings.[33] Floral diet diversity has been seen to increase immunocompetence levels in honeybees (Apis mellifera) where diets that consisted of a wide variety of flowering species induced higher glucose oxidase activity, which honeybees' produce to sterilize their colony.[34] More than 30% of global bee species depend on non-floral resources for nest building, protection, health, pest resistance, and alternative food sources.[35] Non-floral resources include leaves, soil, plant resins and secretions, and are often provided by woody-vegetation.

Pollinator population declines and conservation

Pollinators provide a key ecosystem service vital to the maintenance of both wild and agricultural plant communities. In 1999 the Convention on Biological Diversity issued the São Paulo Declaration on Pollinators, recognizing the critical role that these species play in supporting and maintaining terrestrial productivity as well as the survival challenges they face due to anthropogenic change. Today pollinators are considered to be in a state of decline;[36] some species, such as Franklin's bumble bee (Bombus franklini) have been red-listed and are in danger of extinction. Although managed bee hives are increasing worldwide, these can not compensate for the loss of wild pollinators in many locations.

A 2017 report done for the Center of Biological Diversity utilized data documented in the United States on native bee species and found that nearly 1 in 4 (347 species of 1,437 species) is imperiled and at increasing risk of extinction. More than half of the native bee species is in decline and 40% of global insect pollinators (primarily native bees) are highly threatened.[33]

Declines in the health and population of pollinators pose what could be a significant threat to the integrity of biodiversity, to global food webs, and to human health. At least 80% of our world's crop species require pollination to set seed. A 2021 study estimated that without pollinators, fertility would be reduced by 80% in half all wild plant species and one-third of all wild plant species would fail to produce any seeds at all.[37]

An estimated one out of every three bites of food comes to us through the work of animal pollinators. The quality of pollinator service has declined over time and this had led to concerns that pollination will be less resistant to extinction in the future.

A 2022 study concludes that the decline of pollinator populations is responsible for 500,000 early human deaths per year by reducing the supply of healthy foods. A decline of pollinators has caused 3-5% loss of fruits, vegetables and nuts. Lower consumption of these healthy foods translates to 1% of all deaths, according to the authors.[38][39]

Pesticide usage

Neonicotinoids (Neonics) are a class of synthetic insecticides that are the most widely applied pesticides today due to its water solubility and ability to treat a wide variety of pests. Neonics are highly environmentally persistent, and may contaminate terrestrial and aquatic habitats for as much as six years. Exposed honeybees' (Apis mellifera) have been seen to have lower reproductive output, reduction in nest building or failed to build nests, reduced foraging abilities, and weakened immunity.[40]

Strategy

Researchers are still trying to determine how to scientifically best restore and maintain the diverse pollinator habitats found around the world. Many studies conclude that restoration and conservation are key to maintaining biodiversity and pollinator populations. According to the Kansas National Park Service, native tallgrass prairie was widespread through North America and home to over 300 species of flowering plants. This habitat is crucial to wild pollinators and now only covers 4% of its original 170-million acre range.[41] By restoring wild pollinators natural habitat and maintaining Earth's biodiversity, populations are assumed to increase.

In recent times, environmental groups have put pressure on the Environmental Protection Agency to ban neonicotinoids, a type of insecticide. In May 2015, the Obama administration released a strategy called National Strategy to Promote the Health of Honey Bees and Other Pollinators. The administration announced it would include input from the pesticide industry in putting together the initiative.[42]

The task force goal is "tackling and reducing the impact of multiple stressors on pollinator health, including pests and pathogens, reduced habitat, lack of nutritional resources, and exposure to pesticides."[43]

The EPA and U.S. Department of Agriculture are leading the task force.[42]

North America

The North American Pollinator Protection Campaign (NAPPC) aims to promote pollinator health across the North America and has organized annual conferences since 1997, creates task forces to implement specific objectives that includes public education and policy research, and is developing strategic plans for conservation that looks to establish partnership between government entities. 11 pollinator-protection agreements have been signed between NAPCC and federal government agencies, responsible for more than 1.5 billion acres of land protections and management.[44]

Europe

Along with the European Green Deal, which contains initiatives that support pollinator populations, the European Union has implemented the EU Biodiversity Strategy for 2030 which includes the EU Pollinators Initiative that sets long-term objectives to reverse pollinator decline in diversity and numbers by 2030. This initiative includes: (1) improving knowledge of pollinator decline, its causes and consequences; (2) tackling the causes of pollinator decline; and (3) raising awareness, engaging society-at-large and promoting collaboration.[45]

South America

The Healthy Hives Latin America 2020 (Salud Apícola 2020 Latinoamérica) program is a collaboration between the Bayer Bee Care Center and the Fraunhofer Chile Research Foundation, that works alongside local researchers at universities and beekeepers’ associations. The program focuses on increasing the number of healthy worker bees and their colonies by monitoring honey bee health and the contributing factors. This includes educating beekeepers and research collaborations to jointly work on honey bee health. Founded in 2015 with a preliminary project in Chile, the program has expanded to Colombia, Argentina, and Costa Rica.[46]

Global

The ‘Coalition of the Willing on Pollinators' (Promote Pollinators) was initiated in 2016 during the Convention on Biological Diversity's Conference of the Parties (CBD COP13) and is a growing alliance of countries and observers who support the notion that country-led politics can lead to policy measures and innovative action to protect pollinators'. Their supporters are growing steadily, in which 30 countries currently participate.[47]

Structure of plant-pollinator networks

Wild pollinators often visit many plant species and plants are visited by many pollinator species. All these relations together form a network of interactions between plants and pollinators. Surprising similarities were found in the structure of networks consisting out of the interactions between plants and pollinators. This structure was found to be similar in very different ecosystems on different continents, consisting of entirely different species.[48]

The structure of plant-pollinator networks may have large consequences for the way in which pollinator communities respond to increasingly harsh conditions. Mathematical models, examining the consequences of this network structure for the stability of pollinator communities suggest that the specific way in which plant-pollinator networks are organized minimizes competition between pollinators[49] and may even lead to strong indirect facilitation between pollinators when conditions are harsh.[50] This allows pollinator species to survive together under harsh conditions. But it also means that pollinator species collapse simultaneously when conditions pass a critical point. This simultaneous collapse occurs, because pollinator species depend on each other when surviving under difficult conditions.[50]

Such a community-wide collapse, involving many pollinator species, can occur suddenly when increasingly harsh conditions pass a critical point and recovery from such a collapse might not be easy. The improvement in conditions needed for pollinators to recover, could be substantially larger than the improvement needed to return to conditions at which the pollinator community collapsed.[50]

See also

References

  1. ^ "Pollinator". What is a pollinator?. 2021-02-03.
  2. ^ Fægri K, van der Pijl L (1979). The Principles of Pollination Ecology. Oxford: Pergamon.
  3. ^ Fulton M, Hodges SA (1999). "Floral isolation between Aquilegia formosa and A. pubescens". Proceedings of the Royal Society of London, Series B. 266 (1435): 2247–2252. doi:10.1098/rspb.1999.0915. PMC 1690454.
  4. ^ Hodges SA, Whittall JB, Fulton M, Yang JY (March 2002). "Genetics of floral traits influencing reproductive isolation between Aquilegia formosa and Aquilegia pubescens". The American Naturalist. 159 Suppl 3: S51–60. doi:10.1086/338372. PMID 18707369. S2CID 3399289.
  5. ^ a b Rader, Romina; Howlett, Bradley G.; Cunningham, Saul A.; Westcott, David A.; Newstrom-Lloyd, Linda E.; Walker, Melanie K.; Teulon, David A.J.; Edwards, Will (October 2009). "Alternative pollinator taxa are equally efficient but not as effective as the honeybee in a mass flowering crop". Journal of Applied Ecology. 46 (5): 1080–1087. doi:10.1111/j.1365-2664.2009.01700.x.
  6. ^ Rader, Romina; Bartomeus, Ignasi; Garibaldi, Lucas A.; Garratt, Michael P. D.; Howlett, Brad G.; Winfree, Rachael; Cunningham, Saul A.; Mayfield, Margaret M.; Arthur, Anthony D.; Andersson, Georg K. S.; Bommarco, Riccardo; Brittain, Claire; Carvalheiro, Luísa G.; Chacoff, Natacha P.; Entling, Martin H. (2016-01-05). "Non-bee insects are important contributors to global crop pollination". Proceedings of the National Academy of Sciences. 113 (1): 146–151. Bibcode:2016PNAS..113..146R. doi:10.1073/pnas.1517092112. ISSN 0027-8424. PMC 4711867. PMID 26621730.
  7. ^ Stevenson DW, Norstog LJ, Fawcett PK (1998). "Pollination Biology Of Cycads". In Owens SJ, Rudall PJ (eds.). Reproductive Biology. Kew: Royal Botanic Gardens. Retrieved 9 December 2014.
  8. ^ a b "The new underwater world of pollination". Conservation. 2016-10-05. Retrieved 2021-10-18.
  9. ^ a b Benson E. "Bees of the sea: Tiny crustaceans pollinate underwater plants". New Scientist. Retrieved 2021-10-18.
  10. ^ Klein AM, Vaissière BE, Cane JH, Steffan-Dewenter I, Cunningham SA, Kremen C, Tscharntke T (February 2007). "Importance of pollinators in changing landscapes for world crops". Proceedings. Biological Sciences. 274 (1608): 303–313. doi:10.1098/rspb.2006.3721. PMC 1702377. PMID 17164193.
  11. ^ Westbrook FE, Bergman PW, Wearne RA (1975). Pollination and the Honey Bee. Washington D.C.: U.S. Government Printing Office.
  12. ^ . Celebrating Butterflies. U.S. Forestry Service. Archived from the original on July 23, 2011.
  13. ^ Lefebvre V, Daugeron C, Villemant C, Fontaine C (July 2019). "Empidine dance flies pollinate the woodland geranium as effectively as bees". Biology Letters. 15 (7): 20190230. doi:10.1098/rsbl.2019.0230. PMC 6684995. PMID 31362609.
  14. ^ a b Larson BM, Kevan PG, Inouye DW (2001). "Flies and flowers: taxonomic diversity of anthophiles and pollinators". Canadian Entomologist. 133 (4): 439–465. doi:10.4039/ent133439-4. S2CID 55767580.
  15. ^ Stökl J, Brodmann J, Dafni A, Ayasse M, Hansson BS (April 2011). "Smells like aphids: orchid flowers mimic aphid alarm pheromones to attract hoverflies for pollination". Proceedings. Biological Sciences. 278 (1709): 1216–1222. doi:10.1098/rspb.2010.1770. PMC 3049078. PMID 20943694.
  16. ^ Shi J, Luo YB, Bernhardt P, Ran JC, Liu ZJ, Zhou Q (January 2009). "Pollination by deceit in Paphiopedilum barbigerum (Orchidaceae): a staminode exploits the innate colour preferences of hoverflies (Syrphidae)". Plant Biology. 11 (1): 17–28. doi:10.1111/j.1438-8677.2008.00120.x. PMID 19121110.
  17. ^ Tan KH, Nishida R, Toong YC (2002). "Bulbophyllum cheiri floral synomone lures fruit flies to perform pollination". Journal of Chemical Ecology. 28 (6): 1161–1172. doi:10.1023/A:1016277500007. PMID 12184394. S2CID 36621985.
  18. ^ Tan K, Nishida R (2005). "Synomone or kairomone?-Bulbophyllum apertum flower releases raspberry ketone to attract Bactrocera fruit flies". Journal of Chemical Ecology. 31 (3): 497–507. doi:10.1007/s10886-005-2023-8. PMID 15898497. S2CID 39173699.
  19. ^ Tan KH, Nishida R (June 2007). "Zingerone in the floral synomone of Bulbophyllum baileyi (Orchidaceae) attracts Bactrocera fruit flies during pollination". Biochemical Systematics and Ecology. 35 (6): 334–341. doi:10.1016/j.bse.2007.01.013.
  20. ^ Lefebvre V, Fontaine C, Villemant C, Daugeron C (November 2014). "Are empidine dance flies major flower visitors in alpine environments? A case study in the Alps, France". Biology Letters. 10 (11): 20140742. doi:10.1098/rsbl.2014.0742. PMC 4261866. PMID 25376804.
  21. ^ Lefebvre V, Villemant C, Fontaine C, Daugeron C (March 2018). "Altitudinal, temporal and trophic partitioning of flower-visitors in Alpine communities". Scientific Reports. 8 (1): 4706. Bibcode:2018NatSR...8.4706L. doi:10.1038/s41598-018-23210-y. PMC 5856740. PMID 29549294.
  22. ^ "Year of Pollination: Mosquitoes as Pollinators". awkward botany. 8 July 2015. Retrieved 28 July 2017.
  23. ^ Statman-Weil Z. "Aedes communis: The Pollinating Mosquito". United States Forest Service. Retrieved 28 July 2017.
  24. ^ Arnold, S.E.J.; Forbes, S.J.; Hall, D.R.; Farman, D.I.; Bridgemohan, P.; Spinelli, G.R.; Bray, D.P.; Perry, G.B.; Grey, L.; Belmain, S.R.; Stevenson, P.C. (2019). "Floral Odors and the Interaction between Pollinating Ceratopogonid Midges and Cacao". Journal of Chemical Ecology. 45 (10): 869–878. doi:10.1007/s10886-019-01118-9. PMID 31741191. S2CID 208086796.
  25. ^ Scott-Brown, A.S.; Arnold, S.E.J.; Kite, G.C.; Farrell, I.F.; Collins, D.W.; Stevenson, P.C. (2019). "Mechanisms in mutualisms: A chemically mediated thrips pollination strategy in common elder". Planta. 250 (1): 367–379. doi:10.1007/s00425-019-03176-5. PMID 31069523. S2CID 253886497.
  26. ^ Mant JG, Schiestl FP, Peakall R, Weston PH (May 2002). "A phylogenetic study of pollinator conservatism among sexually deceptive orchids". Evolution; International Journal of Organic Evolution. 56 (5): 888–98. doi:10.1111/j.0014-3820.2002.tb01402.x. PMID 12093025. S2CID 42724740.
  27. ^ van Tussenbroek BI, Villamil N, Márquez-Guzmán J, Wong R, Monroy-Velázquez LV, Solis-Weiss V (September 2016). "Experimental evidence of pollination in marine flowers by invertebrate fauna". Nature Communications. 7 (1): 12980. Bibcode:2016NatCo...712980V. doi:10.1038/ncomms12980. PMC 5056424. PMID 27680661.
  28. ^ Roth A (28 July 2022). "Like Bees of the Seas, These Crustaceans Pollinate Seaweed". The New York Times. Retrieved 21 August 2022.
  29. ^ Lavaut E, Guillemin ML, Colin S, Faure A, Coudret J, Destombe C, Valero M (July 2022). "Pollinators of the sea: A discovery of animal-mediated fertilization in seaweed" (PDF). Science. 377 (6605): 528–530. Bibcode:2022Sci...377..528L. doi:10.1126/science.abo6661. PMID 35901149. S2CID 251159505.
  30. ^ Stewart AB, Dudash MR (2018-01-01). "Foraging strategies of generalist and specialist Old World nectar bats in response to temporally variable floral resources". Biotropica. 50 (1): 98–105. doi:10.1111/btp.12492. S2CID 90515964.
  31. ^ Olesen JM, Valido A (April 2003). "Lizards as pollinators and seed dispersers: an island phenomenon". Trends in Ecology & Evolution. 18 (4): 177–181. doi:10.1016/S0169-5347(03)00004-1.]
  32. ^ Baeckens S, Van Damme R (April 2020). "The island syndrome". Current Biology. 30 (8): R338–R339. doi:10.1016/j.cub.2020.03.029. PMID 32315628.
  33. ^ a b Kopec, K & Burd, L.A. (2017). "Pollinators in Peril: A systematic status review of North American and Hawaiian native bees." Center for Biological Diversity. See: https://www.biologicaldiversity.org/campaigns/native_pollinators/pdfs/Pollinators_in_Peril.pdf
  34. ^ Alaux, Cédric; Ducloz, François; Crauser, Didier; Le Conte, Yves (2010-08-23). "Diet effects on honeybee immunocompetence". Biology Letters. 6 (4): 562–565. doi:10.1098/rsbl.2009.0986. ISSN 1744-9561. PMC 2936196. PMID 20089536.
  35. ^ Requier, Fabrice; Leonhardt, Sara D. (February 2020). "Beyond flowers: including non-floral resources in bee conservation schemes". Journal of Insect Conservation. 24 (1): 5–16. doi:10.1007/s10841-019-00206-1. ISSN 1366-638X. S2CID 254600870.
  36. ^ . News - Communications. New Zealand: University of Canterbury. 23 March 2012. Archived from the original on 24 November 2012. Retrieved 2012-04-21.
  37. ^ Rodger, James G.; Bennett, Joanne M.; Razanajatovo, Mialy; Knight, Tiffany M.; van Kleunen, Mark; Ashman, Tia-Lynn; Steets, Janette A.; Hui, Cang; Arceo-Gómez, Gerardo; Burd, Martin; Burkle, Laura A.; Burns, Jean H.; Durka, Walter; Freitas, Leandro; Kemp, Jurene E. (2021-10-15). "Widespread vulnerability of flowering plant seed production to pollinator declines". Science Advances. 7 (42): eabd3524. Bibcode:2021SciA....7.3524R. doi:10.1126/sciadv.abd3524. ISSN 2375-2548. PMC 8514087. PMID 34644118.
  38. ^ Carrington D (2023-01-09). "Global pollinator losses causing 500,000 early deaths a year – study". the Guardian. Retrieved 2023-01-09.
  39. ^ Smith MR, Mueller ND, Springmann M, Sulser TB, Garibaldi LA, Gerber J, et al. (December 2022). "Pollinator Deficits, Food Consumption, and Consequences for Human Health: A Modeling Study". Environmental Health Perspectives. 130 (12): 127003. doi:10.1289/EHP10947. PMC 9749483. PMID 36515549.
  40. ^ Wood, Thomas James; Goulson, Dave (2017-06-07). "The environmental risks of neonicotinoid pesticides: a review of the evidence post 2013". Environmental Science and Pollution Research. 24 (21): 17285–17325. doi:10.1007/s11356-017-9240-x. ISSN 0944-1344. PMC 5533829. PMID 28593544.
  41. ^ City, Mailing Address: 2480B KS Hwy 177 Strong; Us, KS 66869 Phone: 620 273-8494 x270 Contact. "Tallgrass Prairie National Preserve (U.S. National Park Service)". www.nps.gov. Retrieved 2023-02-22.
  42. ^ a b "New U.S. pollinator strategy emphasizes science, industry collaboration". EPNewswire. 19 May 2015. Retrieved 29 September 2015.
  43. ^ "National Strategy to Promote the Health of Honey Bees and Other Pollinators" (PDF). whitehouse.gov. 19 May 2015. (PDF) from the original on 21 January 2017. Retrieved 29 September 2015 – via National Archives.
  44. ^ "NAPPC". Pollinator.org. Retrieved 2023-02-21.
  45. ^ "Pollinators". European Commission. Retrieved 2023-02-20.
  46. ^ "Salud Apicola 2020". Salud Apicola 2020. Retrieved 2023-02-22.
  47. ^ "Home | Promote Pollinators". promotepollinators.org. Retrieved 2023-02-21.
  48. ^ Bascompte J, Jordano P, Melián CJ, Olesen JM (August 2003). "The nested assembly of plant-animal mutualistic networks". Proceedings of the National Academy of Sciences of the United States of America. 100 (16): 9383–7. Bibcode:2003PNAS..100.9383B. doi:10.1073/pnas.1633576100. PMC 170927. PMID 12881488.
  49. ^ Bastolla U, Fortuna MA, Pascual-García A, Ferrera A, Luque B, Bascompte J (April 2009). "The architecture of mutualistic networks minimizes competition and increases biodiversity". Nature. 458 (7241): 1018–20. Bibcode:2009Natur.458.1018B. doi:10.1038/nature07950. PMID 19396144. S2CID 4395634.
  50. ^ a b c Lever JJ, van Nes EH, Scheffer M, Bascompte J (March 2014). "The sudden collapse of pollinator communities". Ecology Letters. 17 (3): 350–9. doi:10.1111/ele.12236. hdl:10261/91808. PMID 24386999.

Bibliography

  • Sprengel CK (1793). Das entdeckte Geheimnis der Natur im Bau und in der Befruchtung der Blumen [The discovered secret of nature in the construction and fertilization of flowers] (in German). Berlin.
  • Fægri K, van der Pijl L (1979). The Principles of Pollination Ecology. New York: Pergamon Press.
  • Percival MS (1965). Floral Biology. New York: Pergamon Press.
  • Real L (1983). Pollination Biology. New York: Academic Press.
  • Bascompte J, Jordano P, Melián CJ, Olesen JM (August 2003). "The nested assembly of plant-animal mutualistic networks". Proceedings of the National Academy of Sciences of the United States of America. 100 (16): 9383–7. Bibcode:2003PNAS..100.9383B. doi:10.1073/pnas.1633576100. PMC 170927. PMID 12881488.
  • Bastolla U, Fortuna MA, Pascual-García A, Ferrera A, Luque B, Bascompte J (April 2009). "The architecture of mutualistic networks minimizes competition and increases biodiversity". Nature. 458 (7241): 1018–20. Bibcode:2009Natur.458.1018B. doi:10.1038/nature07950. PMID 19396144. S2CID 4395634.
  • Lever JJ, van Nes EH, Scheffer M, Bascompte J (March 2014). "The sudden collapse of pollinator communities". Ecology Letters. 17 (3): 350–9. doi:10.1111/ele.12236. hdl:10261/91808. PMID 24386999.

External links

  • Pollinator Partnership
  • Pollinators Project Regeneration
  • Pollinator & Visitor Image Database
  • Resources on Pollinators from the National Academies

pollinator, album, blondie, album, pollinator, animal, that, moves, pollen, from, male, anther, flower, female, stigma, flower, this, helps, bring, about, fertilization, ovules, flower, male, gametes, from, pollen, grains, syrphid, eristalinus, taeniops, polli. For the album by Blondie see Pollinator album A pollinator is an animal that moves pollen from the male anther of a flower to the female stigma of a flower 1 This helps to bring about fertilization of the ovules in the flower by the male gametes from the pollen grains A syrphid fly Eristalinus taeniops pollinating a common hawkweed source source source source source source A mining bee Andrena lonicerae pollinating a honeysuckle Lonicera gracilipes Insects are the major pollinators of most plants and insect pollinators include all families of bees and most families of aculeate wasps ants many families of flies many lepidopterans both butterflies and moths and many families of beetles Vertebrates mainly bats and birds but also some non bat mammals monkeys lemurs possums rodents and some lizards pollinate certain plants Among the pollinating birds are hummingbirds honeyeaters and sunbirds with long beaks they pollinate a number of deep throated flowers Humans may also carry out artificial pollination A pollinator is different from a pollenizer a plant that is a source of pollen for the pollination process Contents 1 Background 2 Types of pollinators 2 1 Insects 2 1 1 Bees 2 1 2 Butterflies and moths 2 1 3 Flies 2 1 4 Other insects 2 2 Other invertebrates 2 3 Vertebrates 3 Floral and non floral resources 4 Pollinator population declines and conservation 4 1 Pesticide usage 4 2 Strategy 4 2 1 North America 4 2 2 Europe 4 2 3 South America 4 2 4 Global 5 Structure of plant pollinator networks 6 See also 7 References 8 Bibliography 9 External linksBackground EditPlants fall into pollination syndromes that reflect the type of pollinator being attracted These are characteristics such as overall flower size the depth and width of the corolla the color including patterns called nectar guides that are visible only in ultraviolet light the scent amount of nectar composition of nectar etc 2 For example birds visit red flowers with long narrow tubes and much nectar but are not as strongly attracted to wide flowers with little nectar and copious pollen which are more attractive to beetles When these characteristics are experimentally modified altering colour size orientation pollinator visitation may decline 3 4 Although non bee pollinators have been seen to be less effective at depositing pollen than bee pollinators 5 one study showed that non bees made more visits than bees resulting in non bees performing 38 of visits to crop flowers outweighing the ineffectiveness of their ability to pollinate 6 5 It has recently been discovered that cycads which are not flowering plants are also pollinated by insects 7 In 2016 researchers showed evidence of pollination occurring underwater which was previously thought not to happen 8 9 Types of pollinators EditInsects Edit Main article Entomophily Bees Edit Lipotriches sp bee pollinating flowersThe most recognized pollinators are the various species of bees 10 which are plainly adapted to pollination Bees typically are fuzzy and carry an electrostatic charge Both features help pollen grains adhere to their bodies but they also have specialized pollen carrying structures in most bees this takes the form of a structure known as the scopa which is on the hind legs of most bees and or the lower abdomen e g of megachilid bees made up of thick plumose setae Honey bees bumblebees and their relatives do not have a scopa but the hind leg is modified into a structure called the corbicula also known as the pollen basket Most bees gather nectar a concentrated energy source and pollen which is high protein food to nurture their young and transfer some among the flowers as they are working 11 Euglossine bees pollinate orchids but these are male bees collecting floral scents rather than females gathering nectar or pollen Female orchid bees act as pollinators but of flowers other than orchids Eusocial bees such as honey bees need an abundant and steady pollen source to multiply Honey bee pollinating a plum tree Bees are the most effective insect pollinators Honey bees travel from flower to flower collecting nectar later converted to honey and pollen grains The bee collects the pollen by rubbing against the anthers The pollen collects on the hind legs in a structure referred to as a pollen basket As the bee flies from flower to flower some of the pollen grains are transferred onto the stigma of other flowers Nectar provides the energy for bee nutrition pollen provides the protein When bees are rearing large quantities of brood beekeepers say hives are building bees deliberately gather pollen to meet the nutritional needs of the brood Good pollination management seeks to have bees in a building state during the bloom period of the crop thus requiring them to gather pollen and making them more efficient pollinators Thus the management techniques of a beekeeper providing pollination services are different from and to some extent in tension with those of a beekeeper who is trying to produce honey Millions of hives of honey bees are contracted out as pollinators by beekeepers and honey bees are by far the most important commercial pollinating agents but many other kinds of pollinators from blue bottle flies to bumblebees orchard mason bees and leaf cutter bees are cultured and sold for managed pollination Other species of bees differ in various details of their behavior and pollen gathering habits and honey bees are not native to the Western Hemisphere all pollination of native plants in the Americas and Australia historically has been performed by various native bees Butterflies and moths Edit An Australian painted lady feeding on nectarLepidoptera butterflies and moths may also pollinate to various degrees 12 They are not major pollinators of food crops but various moths are important pollinators of other commercial crops such as tobacco Pollination by certain moths may be important however or even crucial for some wildflowers mutually adapted to specialist pollinators Spectacular examples include orchids such as Angraecum sesquipedale dependent on a particular hawk moth Morgan s sphinx Yucca species provide other examples being fertilised in elaborate ecological interactions with particular species of yucca moths Flies Edit Many bee flies and some Tabanidae and Nemestrinidae are particularly adapted to pollinating fynbos and Karoo plants with narrow deep corolla tubes such as Lapeirousia species Part of the adaptation takes the form of remarkably long probosces This also applies to empidine dance flies Empidinae that visit a wide range of flowering plants some species of which can pollinate the woodland geranium Geranium sylvaticum L as effectively as bees 13 Tabanid fly on a thistle flowerCarrion flies and flesh flies in families such as Calliphoridae and Sarcophagidae are important for some species of plants whose flowers exude a fetid odor The plants ecological strategy varies several species of Stapelia for example attract carrion flies that futilely lay their eggs on the flower where their larvae promptly starve for lack of carrion Other species do decay rapidly after ripening and offer the visiting insects large masses of food as well as pollen and sometimes seed to carry off when they leave Hoverflies are important pollinators of flowering plants worldwide 14 Often hoverflies are considered to be the second most important pollinators after wild bees 14 Although hoverflies as a whole are generally considered to be nonselective pollinators some species have more specialized relationships The orchid species Epipactis veratrifolia mimics alarm pheromones of aphids to attract hover flies for pollination 15 Another plant the slipper orchid in southwest China also achieves pollination by deceit by exploiting the innate yellow colour preference of syrphids 16 Some male dacine fruit flies are exclusive pollinators of some wild Bulbophyllum orchids that lack nectar and have a specific chemical attractant and reward methyl eugenol raspberry ketone or zingerone present in their floral fragrances 17 18 19 Other insects Edit A Scoliid wasp Scolia chrysotricha foragingMany insects other than bees accomplish pollination by visiting flowers for nectar or pollen or commonly both Many do so adventitiously but the most important pollinators are specialists for at least parts of their life cycles for at least certain functions Prominent among Hymenoptera other than bees are predatory aculeate wasps especially Crabronidae Sphecidae Vespidae and Pompilidae The term pollen wasps in particular is widely applied to the Masarinae a subfamily of the Vespidae they are remarkable among solitary wasps in that they specialise in gathering pollen for feeding their larvae carried internally and regurgitated into a mud chamber prior to oviposition Also males of many species of bees and wasps though they do not gather pollen rely on flowers as sources of energy in the form of nectar and also as territories for meeting fertile females that visit the flowers Some Diptera flies may be the main pollinators at higher elevations of mountains 20 21 whereas bumblebee species are typically the only other pollinators in alpine regions at timberline and beyond Some adult mosquitoes if they feed on nectar may act as pollinators Aedes communis a species found in North America is known to pollinate Platanthera obtusata commonly referred as the blunt leaved orchid 22 23 Beetles of species that specialise in eating pollen nectar or flowers themselves may be important cross pollinators of some plants such as members of the Araceae and Zamiaceae that produce prodigious amounts of pollen Others for example the Hopliini specialise on flowers of Asteraceae and Aizoaceae Minute midges and flower thrips can occur in vast numbers moving between flowers and plant individuals enabling some species to contribute to the pollination of tree crops such as cacao Theobroma cacao 24 L Malvaceae and elderflower Sambucus nigra L Adoxaceae 25 Ants also pollinate some kinds of flowers but for the most part they are parasites consuming nectar and or pollen without conveying useful amounts of pollen to a stigma Other insect orders are rarely pollinators and then typically only incidentally e g Hemiptera such as Anthocoridae and Miridae A strategy of great biological interest is that of sexual deception where plants generally orchids produce remarkably complex combinations of pheromonal attractants and physical mimicry that induce male bees or wasps to attempt to mate with them conveying pollinia in the process Examples are known from all continents apart from Antarctica though Australia appears to be exceptionally rich in examples 26 Whole groups of plants such as certain fynbos Moraea and Erica species produce flowers on sticky peduncles or with sticky corolla tubes that only permit access to flying pollinators whether bird bat or insect Other invertebrates Edit Experimental evidence has shown invertebrates mostly small crustaceans 9 acting as pollinators in underwater environments Beds of seagrass have been shown to reproduce this way in the absence of currents It is not yet known how important invertebrate pollinators might be for other species 8 27 Later Idotea balthica was discovered to help Gracilaria gracilis reproduce the first known case of an animal helping algae reproduce 28 29 Vertebrates Edit Tropical flowers like Tacca chantrieri are bat pollinated Green violetear with pollen on bill Curi Cancha Wildlife Refuge Costa RicaBats are important pollinators of some tropical flowers visiting to take nectar 30 Birds particularly hummingbirds honeyeaters and sunbirds also accomplish much pollination especially of deep throated flowers Other vertebrates such as kinkajous monkeys lemurs possums rodents and lizards 31 32 have been recorded pollinating some plants Humans can be pollinators as many gardeners have discovered that they must hand pollinate garden vegetables whether because of pollinator decline as has been occurring in parts of the U S since the mid 20th century or simply to keep a strain genetically pure This can involve using a small brush or cotton swab to move pollen or to simply tap or shake tomato blossoms to release the pollen for the self pollinating flowers Tomato blossoms are self fertile but with the exception of potato leaf varieties have the pollen inside the anther and the flower requires shaking to release the pollen through pores This can be done by wind by humans or by a sonicating bee one that vibrates its wing muscles while perched on the flower such as a bumblebee Sonicating bees are extremely efficient pollinators of tomatoes and colonies of bumblebees are quickly replacing humans as the primary pollinators for greenhouse tomatoes Floral and non floral resources EditPollinators require a variety of resources Most native bees in North America are solitary ground nesting species that collect a variety of natural resources including pollen nectar leaves petals and resins to be used as sources of food supplies for their larva or nest linings 33 Floral diet diversity has been seen to increase immunocompetence levels in honeybees Apis mellifera where diets that consisted of a wide variety of flowering species induced higher glucose oxidase activity which honeybees produce to sterilize their colony 34 More than 30 of global bee species depend on non floral resources for nest building protection health pest resistance and alternative food sources 35 Non floral resources include leaves soil plant resins and secretions and are often provided by woody vegetation Pollinator population declines and conservation EditMain article Pollinator decline Pollinators provide a key ecosystem service vital to the maintenance of both wild and agricultural plant communities In 1999 the Convention on Biological Diversity issued the Sao Paulo Declaration on Pollinators recognizing the critical role that these species play in supporting and maintaining terrestrial productivity as well as the survival challenges they face due to anthropogenic change Today pollinators are considered to be in a state of decline 36 some species such as Franklin s bumble bee Bombus franklini have been red listed and are in danger of extinction Although managed bee hives are increasing worldwide these can not compensate for the loss of wild pollinators in many locations A 2017 report done for the Center of Biological Diversity utilized data documented in the United States on native bee species and found that nearly 1 in 4 347 species of 1 437 species is imperiled and at increasing risk of extinction More than half of the native bee species is in decline and 40 of global insect pollinators primarily native bees are highly threatened 33 Declines in the health and population of pollinators pose what could be a significant threat to the integrity of biodiversity to global food webs and to human health At least 80 of our world s crop species require pollination to set seed A 2021 study estimated that without pollinators fertility would be reduced by 80 in half all wild plant species and one third of all wild plant species would fail to produce any seeds at all 37 An estimated one out of every three bites of food comes to us through the work of animal pollinators The quality of pollinator service has declined over time and this had led to concerns that pollination will be less resistant to extinction in the future A 2022 study concludes that the decline of pollinator populations is responsible for 500 000 early human deaths per year by reducing the supply of healthy foods A decline of pollinators has caused 3 5 loss of fruits vegetables and nuts Lower consumption of these healthy foods translates to 1 of all deaths according to the authors 38 39 Pesticide usage Edit Neonicotinoids Neonics are a class of synthetic insecticides that are the most widely applied pesticides today due to its water solubility and ability to treat a wide variety of pests Neonics are highly environmentally persistent and may contaminate terrestrial and aquatic habitats for as much as six years Exposed honeybees Apis mellifera have been seen to have lower reproductive output reduction in nest building or failed to build nests reduced foraging abilities and weakened immunity 40 Strategy Edit The examples and perspective in this section deal primarily with the United States and do not represent a worldwide view of the subject You may improve this section discuss the issue on the talk page or create a new section as appropriate May 2019 Learn how and when to remove this template message Researchers are still trying to determine how to scientifically best restore and maintain the diverse pollinator habitats found around the world Many studies conclude that restoration and conservation are key to maintaining biodiversity and pollinator populations According to the Kansas National Park Service native tallgrass prairie was widespread through North America and home to over 300 species of flowering plants This habitat is crucial to wild pollinators and now only covers 4 of its original 170 million acre range 41 By restoring wild pollinators natural habitat and maintaining Earth s biodiversity populations are assumed to increase In recent times environmental groups have put pressure on the Environmental Protection Agency to ban neonicotinoids a type of insecticide In May 2015 the Obama administration released a strategy called National Strategy to Promote the Health of Honey Bees and Other Pollinators The administration announced it would include input from the pesticide industry in putting together the initiative 42 The task force goal is tackling and reducing the impact of multiple stressors on pollinator health including pests and pathogens reduced habitat lack of nutritional resources and exposure to pesticides 43 The EPA and U S Department of Agriculture are leading the task force 42 North America Edit The North American Pollinator Protection Campaign NAPPC aims to promote pollinator health across the North America and has organized annual conferences since 1997 creates task forces to implement specific objectives that includes public education and policy research and is developing strategic plans for conservation that looks to establish partnership between government entities 11 pollinator protection agreements have been signed between NAPCC and federal government agencies responsible for more than 1 5 billion acres of land protections and management 44 Europe Edit Along with the European Green Deal which contains initiatives that support pollinator populations the European Union has implemented the EU Biodiversity Strategy for 2030 which includes the EU Pollinators Initiative that sets long term objectives to reverse pollinator decline in diversity and numbers by 2030 This initiative includes 1 improving knowledge of pollinator decline its causes and consequences 2 tackling the causes of pollinator decline and 3 raising awareness engaging society at large and promoting collaboration 45 South America Edit The Healthy Hives Latin America 2020 Salud Apicola 2020 Latinoamerica program is a collaboration between the Bayer Bee Care Center and the Fraunhofer Chile Research Foundation that works alongside local researchers at universities and beekeepers associations The program focuses on increasing the number of healthy worker bees and their colonies by monitoring honey bee health and the contributing factors This includes educating beekeepers and research collaborations to jointly work on honey bee health Founded in 2015 with a preliminary project in Chile the program has expanded to Colombia Argentina and Costa Rica 46 Global Edit The Coalition of the Willing on Pollinators Promote Pollinators was initiated in 2016 during the Convention on Biological Diversity s Conference of the Parties CBD COP13 and is a growing alliance of countries and observers who support the notion that country led politics can lead to policy measures and innovative action to protect pollinators Their supporters are growing steadily in which 30 countries currently participate 47 Structure of plant pollinator networks EditMain articles Pollination syndrome and List of crop plants pollinated by bees Wild pollinators often visit many plant species and plants are visited by many pollinator species All these relations together form a network of interactions between plants and pollinators Surprising similarities were found in the structure of networks consisting out of the interactions between plants and pollinators This structure was found to be similar in very different ecosystems on different continents consisting of entirely different species 48 The structure of plant pollinator networks may have large consequences for the way in which pollinator communities respond to increasingly harsh conditions Mathematical models examining the consequences of this network structure for the stability of pollinator communities suggest that the specific way in which plant pollinator networks are organized minimizes competition between pollinators 49 and may even lead to strong indirect facilitation between pollinators when conditions are harsh 50 This allows pollinator species to survive together under harsh conditions But it also means that pollinator species collapse simultaneously when conditions pass a critical point This simultaneous collapse occurs because pollinator species depend on each other when surviving under difficult conditions 50 Such a community wide collapse involving many pollinator species can occur suddenly when increasingly harsh conditions pass a critical point and recovery from such a collapse might not be easy The improvement in conditions needed for pollinators to recover could be substantially larger than the improvement needed to return to conditions at which the pollinator community collapsed 50 See also EditSelf pollination Pollinator Partnership Polli NationReferences Edit Pollinator What is a pollinator 2021 02 03 Faegri K van der Pijl L 1979 The Principles of Pollination Ecology Oxford Pergamon Fulton M Hodges SA 1999 Floral isolation between Aquilegia formosa and A pubescens Proceedings of the Royal Society of London Series B 266 1435 2247 2252 doi 10 1098 rspb 1999 0915 PMC 1690454 Hodges SA Whittall JB Fulton M Yang JY March 2002 Genetics of floral traits influencing reproductive isolation between Aquilegia formosa and Aquilegia pubescens The American Naturalist 159 Suppl 3 S51 60 doi 10 1086 338372 PMID 18707369 S2CID 3399289 a b Rader Romina Howlett Bradley G Cunningham Saul A Westcott David A Newstrom Lloyd Linda E Walker Melanie K Teulon David A J Edwards Will October 2009 Alternative pollinator taxa are equally efficient but not as effective as the honeybee in a mass flowering crop Journal of Applied Ecology 46 5 1080 1087 doi 10 1111 j 1365 2664 2009 01700 x Rader Romina Bartomeus Ignasi Garibaldi Lucas A Garratt Michael P D Howlett Brad G Winfree Rachael Cunningham Saul A Mayfield Margaret M Arthur Anthony D Andersson Georg K S Bommarco Riccardo Brittain Claire Carvalheiro Luisa G Chacoff Natacha P Entling Martin H 2016 01 05 Non bee insects are important contributors to global crop pollination Proceedings of the National Academy of Sciences 113 1 146 151 Bibcode 2016PNAS 113 146R doi 10 1073 pnas 1517092112 ISSN 0027 8424 PMC 4711867 PMID 26621730 Stevenson DW Norstog LJ Fawcett PK 1998 Pollination Biology Of Cycads In Owens SJ Rudall PJ eds Reproductive Biology Kew Royal Botanic Gardens Retrieved 9 December 2014 a b The new underwater world of pollination Conservation 2016 10 05 Retrieved 2021 10 18 a b Benson E Bees of the sea Tiny crustaceans pollinate underwater plants New Scientist Retrieved 2021 10 18 Klein AM Vaissiere BE Cane JH Steffan Dewenter I Cunningham SA Kremen C Tscharntke T February 2007 Importance of pollinators in changing landscapes for world crops Proceedings Biological Sciences 274 1608 303 313 doi 10 1098 rspb 2006 3721 PMC 1702377 PMID 17164193 Westbrook FE Bergman PW Wearne RA 1975 Pollination and the Honey Bee Washington D C U S Government Printing Office Butterfly Pollination Celebrating Butterflies U S Forestry Service Archived from the original on July 23 2011 Lefebvre V Daugeron C Villemant C Fontaine C July 2019 Empidine dance flies pollinate the woodland geranium as effectively as bees Biology Letters 15 7 20190230 doi 10 1098 rsbl 2019 0230 PMC 6684995 PMID 31362609 a b Larson BM Kevan PG Inouye DW 2001 Flies and flowers taxonomic diversity of anthophiles and pollinators Canadian Entomologist 133 4 439 465 doi 10 4039 ent133439 4 S2CID 55767580 Stokl J Brodmann J Dafni A Ayasse M Hansson BS April 2011 Smells like aphids orchid flowers mimic aphid alarm pheromones to attract hoverflies for pollination Proceedings Biological Sciences 278 1709 1216 1222 doi 10 1098 rspb 2010 1770 PMC 3049078 PMID 20943694 Shi J Luo YB Bernhardt P Ran JC Liu ZJ Zhou Q January 2009 Pollination by deceit in Paphiopedilum barbigerum Orchidaceae a staminode exploits the innate colour preferences of hoverflies Syrphidae Plant Biology 11 1 17 28 doi 10 1111 j 1438 8677 2008 00120 x PMID 19121110 Tan KH Nishida R Toong YC 2002 Bulbophyllum cheiri floral synomone lures fruit flies to perform pollination Journal of Chemical Ecology 28 6 1161 1172 doi 10 1023 A 1016277500007 PMID 12184394 S2CID 36621985 Tan K Nishida R 2005 Synomone or kairomone Bulbophyllum apertum flower releases raspberry ketone to attract Bactrocera fruit flies Journal of Chemical Ecology 31 3 497 507 doi 10 1007 s10886 005 2023 8 PMID 15898497 S2CID 39173699 Tan KH Nishida R June 2007 Zingerone in the floral synomone of Bulbophyllum baileyi Orchidaceae attracts Bactrocera fruit flies during pollination Biochemical Systematics and Ecology 35 6 334 341 doi 10 1016 j bse 2007 01 013 Lefebvre V Fontaine C Villemant C Daugeron C November 2014 Are empidine dance flies major flower visitors in alpine environments A case study in the Alps France Biology Letters 10 11 20140742 doi 10 1098 rsbl 2014 0742 PMC 4261866 PMID 25376804 Lefebvre V Villemant C Fontaine C Daugeron C March 2018 Altitudinal temporal and trophic partitioning of flower visitors in Alpine communities Scientific Reports 8 1 4706 Bibcode 2018NatSR 8 4706L doi 10 1038 s41598 018 23210 y PMC 5856740 PMID 29549294 Year of Pollination Mosquitoes as Pollinators awkward botany 8 July 2015 Retrieved 28 July 2017 Statman Weil Z Aedes communis The Pollinating Mosquito United States Forest Service Retrieved 28 July 2017 Arnold S E J Forbes S J Hall D R Farman D I Bridgemohan P Spinelli G R Bray D P Perry G B Grey L Belmain S R Stevenson P C 2019 Floral Odors and the Interaction between Pollinating Ceratopogonid Midges and Cacao Journal of Chemical Ecology 45 10 869 878 doi 10 1007 s10886 019 01118 9 PMID 31741191 S2CID 208086796 Scott Brown A S Arnold S E J Kite G C Farrell I F Collins D W Stevenson P C 2019 Mechanisms in mutualisms A chemically mediated thrips pollination strategy in common elder Planta 250 1 367 379 doi 10 1007 s00425 019 03176 5 PMID 31069523 S2CID 253886497 Mant JG Schiestl FP Peakall R Weston PH May 2002 A phylogenetic study of pollinator conservatism among sexually deceptive orchids Evolution International Journal of Organic Evolution 56 5 888 98 doi 10 1111 j 0014 3820 2002 tb01402 x PMID 12093025 S2CID 42724740 van Tussenbroek BI Villamil N Marquez Guzman J Wong R Monroy Velazquez LV Solis Weiss V September 2016 Experimental evidence of pollination in marine flowers by invertebrate fauna Nature Communications 7 1 12980 Bibcode 2016NatCo 712980V doi 10 1038 ncomms12980 PMC 5056424 PMID 27680661 Roth A 28 July 2022 Like Bees of the Seas These Crustaceans Pollinate Seaweed The New York Times Retrieved 21 August 2022 Lavaut E Guillemin ML Colin S Faure A Coudret J Destombe C Valero M July 2022 Pollinators of the sea A discovery of animal mediated fertilization in seaweed PDF Science 377 6605 528 530 Bibcode 2022Sci 377 528L doi 10 1126 science abo6661 PMID 35901149 S2CID 251159505 Stewart AB Dudash MR 2018 01 01 Foraging strategies of generalist and specialist Old World nectar bats in response to temporally variable floral resources Biotropica 50 1 98 105 doi 10 1111 btp 12492 S2CID 90515964 Olesen JM Valido A April 2003 Lizards as pollinators and seed dispersers an island phenomenon Trends in Ecology amp Evolution 18 4 177 181 doi 10 1016 S0169 5347 03 00004 1 Baeckens S Van Damme R April 2020 The island syndrome Current Biology 30 8 R338 R339 doi 10 1016 j cub 2020 03 029 PMID 32315628 a b Kopec K amp Burd L A 2017 Pollinators in Peril A systematic status review of North American and Hawaiian native bees Center for Biological Diversity See https www biologicaldiversity org campaigns native pollinators pdfs Pollinators in Peril pdf Alaux Cedric Ducloz Francois Crauser Didier Le Conte Yves 2010 08 23 Diet effects on honeybee immunocompetence Biology Letters 6 4 562 565 doi 10 1098 rsbl 2009 0986 ISSN 1744 9561 PMC 2936196 PMID 20089536 Requier Fabrice Leonhardt Sara D February 2020 Beyond flowers including non floral resources in bee conservation schemes Journal of Insect Conservation 24 1 5 16 doi 10 1007 s10841 019 00206 1 ISSN 1366 638X S2CID 254600870 Predicting the collapse of pollinators News Communications New Zealand University of Canterbury 23 March 2012 Archived from the original on 24 November 2012 Retrieved 2012 04 21 Rodger James G Bennett Joanne M Razanajatovo Mialy Knight Tiffany M van Kleunen Mark Ashman Tia Lynn Steets Janette A Hui Cang Arceo Gomez Gerardo Burd Martin Burkle Laura A Burns Jean H Durka Walter Freitas Leandro Kemp Jurene E 2021 10 15 Widespread vulnerability of flowering plant seed production to pollinator declines Science Advances 7 42 eabd3524 Bibcode 2021SciA 7 3524R doi 10 1126 sciadv abd3524 ISSN 2375 2548 PMC 8514087 PMID 34644118 Carrington D 2023 01 09 Global pollinator losses causing 500 000 early deaths a year study the Guardian Retrieved 2023 01 09 Smith MR Mueller ND Springmann M Sulser TB Garibaldi LA Gerber J et al December 2022 Pollinator Deficits Food Consumption and Consequences for Human Health A Modeling Study Environmental Health Perspectives 130 12 127003 doi 10 1289 EHP10947 PMC 9749483 PMID 36515549 Wood Thomas James Goulson Dave 2017 06 07 The environmental risks of neonicotinoid pesticides a review of the evidence post 2013 Environmental Science and Pollution Research 24 21 17285 17325 doi 10 1007 s11356 017 9240 x ISSN 0944 1344 PMC 5533829 PMID 28593544 City Mailing Address 2480B KS Hwy 177 Strong Us KS 66869 Phone 620 273 8494 x270 Contact Tallgrass Prairie National Preserve U S National Park Service www nps gov Retrieved 2023 02 22 a b New U S pollinator strategy emphasizes science industry collaboration EPNewswire 19 May 2015 Retrieved 29 September 2015 National Strategy to Promote the Health of Honey Bees and Other Pollinators PDF whitehouse gov 19 May 2015 Archived PDF from the original on 21 January 2017 Retrieved 29 September 2015 via National Archives NAPPC Pollinator org Retrieved 2023 02 21 Pollinators European Commission Retrieved 2023 02 20 Salud Apicola 2020 Salud Apicola 2020 Retrieved 2023 02 22 Home Promote Pollinators promotepollinators org Retrieved 2023 02 21 Bascompte J Jordano P Melian CJ Olesen JM August 2003 The nested assembly of plant animal mutualistic networks Proceedings of the National Academy of Sciences of the United States of America 100 16 9383 7 Bibcode 2003PNAS 100 9383B doi 10 1073 pnas 1633576100 PMC 170927 PMID 12881488 Bastolla U Fortuna MA Pascual Garcia A Ferrera A Luque B Bascompte J April 2009 The architecture of mutualistic networks minimizes competition and increases biodiversity Nature 458 7241 1018 20 Bibcode 2009Natur 458 1018B doi 10 1038 nature07950 PMID 19396144 S2CID 4395634 a b c Lever JJ van Nes EH Scheffer M Bascompte J March 2014 The sudden collapse of pollinator communities Ecology Letters 17 3 350 9 doi 10 1111 ele 12236 hdl 10261 91808 PMID 24386999 Bibliography EditSprengel CK 1793 Das entdeckte Geheimnis der Natur im Bau und in der Befruchtung der Blumen The discovered secret of nature in the construction and fertilization of flowers in German Berlin Faegri K van der Pijl L 1979 The Principles of Pollination Ecology New York Pergamon Press Percival MS 1965 Floral Biology New York Pergamon Press Real L 1983 Pollination Biology New York Academic Press Bascompte J Jordano P Melian CJ Olesen JM August 2003 The nested assembly of plant animal mutualistic networks Proceedings of the National Academy of Sciences of the United States of America 100 16 9383 7 Bibcode 2003PNAS 100 9383B doi 10 1073 pnas 1633576100 PMC 170927 PMID 12881488 Bastolla U Fortuna MA Pascual Garcia A Ferrera A Luque B Bascompte J April 2009 The architecture of mutualistic networks minimizes competition and increases biodiversity Nature 458 7241 1018 20 Bibcode 2009Natur 458 1018B doi 10 1038 nature07950 PMID 19396144 S2CID 4395634 Lever JJ van Nes EH Scheffer M Bascompte J March 2014 The sudden collapse of pollinator communities Ecology Letters 17 3 350 9 doi 10 1111 ele 12236 hdl 10261 91808 PMID 24386999 External links Edit Wikimedia Commons has media related to Pollination Pollinator Partnership Pollinators Project Regeneration Pollinator amp Visitor Image Database Resources on Pollinators from the National Academies Retrieved from https en wikipedia org w index php title Pollinator amp oldid 1171070659, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.