fbpx
Wikipedia

Intel Core

Intel Core is a line of multi-core (with the exception of Core Solo and Core 2 Solo) central processing units (CPUs) for midrange, embedded, workstation and enthusiast computer markets marketed by Intel Corporation. These processors displaced the existing mid- to high-end Pentium processors at the time of their introduction, moving the Pentium to the entry level. Identical or more capable versions of Core processors are also sold as Xeon processors for the server and workstation markets.

Intel Core
Logo since 2023
General information
LaunchedJanuary 2006; 18 years ago (2006-01)
Marketed byIntel
Designed byIntel
Common manufacturer(s)
Performance
Max. CPU clock rate400 MHz to 6.2 GHz
FSB speeds533 MT/s to 1.6 GT/s
QPI speeds4.8 GT/s to 6.4 GT/s
DMI speeds2.0 GT/s to 16 GT/s
Data widthUp to 64 bits
Address widthUp to 64 bits
Virtual address widthUp to 57 bits
Cache
L1 cacheUp to 112 KB per P-core
96 KB per E-core or LP E-core
L2 cacheCore and Core 2: Up to 12 MB
Nehalem-present: Up to 2 MB per P-core and up to 3 MB per E-core cluster
L3 cacheUp to 36 MB
Architecture and classification
Technology node65 nm to Intel 4 and TSMC N5
Microarchitecture
Instruction setx86-64
InstructionsMMX, SSE, SSE2, SSE3, SSSE3, SSE4.1, SSE4.2, AVX, AVX2, AVX-512, TSX, AES-NI, FMA3, AVX-VNNI
Extensions
  • EIST, TXT, VT-x, VT-d, SHA, SGX
Physical specifications
Cores
    • P-cores: 2–10
    • E-cores: 4–16
    • Total: 1-24
GPU(s)Intel Graphics Technology
Socket(s)
Products, models, variants
Brand name(s)
    • Core
    • Core 2
    • Core i3 (2010–2023)/Core 3 (2023–present)
    • Core i5 (2009–2023)/Core 5 (2023–present)
    • Core i7 (2008–2023)/Core 7 (2023–present)
    • Core i9 (2017–2023)/Core 9 (2023–present)
Variant(s)
  • Intel Processor (budget CPUs)
History
Predecessor(s)Pentium
The most recent flagship model, the Intel Core i9-14900K

The lineup of Core processors includes the Core i3, Core i5, Core i7, and Core i9.[1]

In 2023, Intel announced that it would drop the "i" moniker from their processor branding, making it "Core 3/5/7/9". The company would introduce the "Ultra" branding for high-end processors as well.[2]

Overview edit

Although Intel Core is a brand that promises no internal consistency or continuity, the processors within this family have been, for the most part, broadly similar.

The first products receiving this designation were the Core Solo and Core Duo Yonah processors for mobile from the Pentium M design tree, fabricated at 65 nm and brought to market in January 2006. These are substantially different in design than the rest of the Intel Core product group, having derived from the Pentium Pro lineage that predated Pentium 4.

The first Intel Core desktop processor—and typical family member—came from the Conroe iteration, a 65 nm dual-core design brought to market in July 2006, based on the Intel Core microarchitecture with substantial enhancements in micro-architectural efficiency and performance, outperforming Pentium 4 across the board (or near to it), while operating at drastically lower clock rates. Maintaining high instructions per cycle (IPC) on a deeply pipelined and resourced out-of-order execution engine has remained a constant fixture of the Intel Core product group ever since.

The new substantial bump in microarchitecture came with the introduction of the 45 nm Bloomfield desktop processor in November 2008 on the Nehalem architecture, whose main advantage came from redesigned I/O and memory systems featuring the new Intel QuickPath Interconnect and an integrated memory controller supporting up to three channels of DDR3 memory.

Subsequent performance improvements have tended toward making additions rather than profound changes, such as adding the Advanced Vector Extensions (AVX) instruction set extensions to Sandy Bridge, first released on 32 nm in January 2011. Time has also brought improved support for virtualization and a trend toward higher levels of system integration and management functionality (and along with that, increased performance) through the ongoing evolution of facilities such as Intel Active Management Technology (iAMT).

Since 2019, the Core brand has been based on four product lines, consisting of the entry level i3, the mainstream i5, the high-end i7, and the "enthusiast" i9. In 2023, Intel announced that it would drop the "i" moniker from their processor branding, making it "Core 3/5/7/9". The company would introduce the "Ultra" branding for high-end processors as well.[2]

Comparison of Intel Core microarchitectures
Microarchitecture Core Nehalem Sandy Bridge Haswell Broadwell Skylake Sunny Cove[a] Willow Cove Golden Cove Raptor Cove
Microarchitecture variants Merom Penryn Westmere Ivy Bridge Tiger Lake
Generation (Core i) - - 1st 2nd/3rd 4th 5th/6th 6th/7th/8th/9th 10th/11th 11th 12th 13th/14th
Year of inception 2006 2007 2010 2011 2013 2014 2015 2019 2020 2021 2022
Fabrication process (nm) 65 45 32/22 22 14 14+/14++/14+++ 10 10SF 10ESF
Cache μop 1.5K μops[3] 2.25K μops 4K μops
L1 Data Size 32 KB/core 48 KB/core
Ways 8 way 12 way
Latency 3 4 3/5 ? 5
Instruction Size 32 KB/core
ways 8 way[4] 4 way 8 way ? ? 8 way
Latency 3 ? ? ? 4 5 ? ?
TLB ? ? 142 144[5] ? ? ? ? ? ?
L2 Size 2-3 MB/core 256 KB 512 KB 1.25 MB 2 MB[b] 2 MB
ways 8 way 4 way 8 way 20 way 10 way
Latency ? ? ? 12 13 ? 14
TLB ? ? ? ? 1024 ? 1536 2048 ? ?
L3 Size 2 MB 3 MB
ways 16 way 12 way[6]
Latency ? ? ? ? 26-37[3] 30-36[3] 43[7] 74
L4 Size None 0–128 MB None ? ?
ways ? 16[8] ? ? ?
Latency ? ? ? ? ?
Type GPU Memory only cache ? ?
Hyper-threading No Yes
OoOE window 96[9] 128[10] 168 192 224[11] 352 ? 512[12]
In-flight Load ? ? 48 64 72 128 ? 192
Store ? ? 32 36 42 56 72 ? 114
Scheduler Entries 32 36 54 60 64 97 160[13] ? ?
Dispatch ? ? ? ? ? ? 8 way 10 way ? ?
Register file Integer ? ? ? 160 168 ? 280[12] ? 280[12]
Floating-point ? ? ? 144 168 ? 224[12] ? 332[12]
Queue Instruction ? ? 18/thread 20/thread 20/thread 25/thread ? ? ? ?
Allocation ? ? 28/thread[c] 56 64/thread ? ? ?
Decode ? ? ? ? ? ? 4 + 1 ? 6
Execution Ports Numbers ? ? 6[14] 8[15] 8[16] 10 ? 12
Port 0 Integer
FP Mul
Branch
Integer
FP Mul
Branch
? ? ? ? ? ?
Port 1 ? ? Integer
FP Mul
Integer
FP Mul
? ? ? ? ? ?
Port 2 ? ? Load
Address
Load
Store
Address
? ? ? ? ? ?
Port 3 ? ? Store Address Store
Load
Address
? ? ? ? ? ?
Port 4 ? ? Store Data Store Data ? ? ? ? ? ?
Port 5 ? ? Integer ? ? ? ? ? ? ?
Port 6 [15] Integer
Branch
? ? ? ?
Port 7 Store Address ? ? ? ?
AGUs ? ? ? ? ? ? 2 + 1 2 + 2 ? ?
Instructions SSE2 Yes
SSE3 Yes
SSE4 Yes
AVX Yes
AVX2 Yes
FMA Yes
AVX512 Yes/No Yes Yes/No
μArchitecture Merom Penryn Nehalem Sandy Bridge Haswell Broadwell Skylake Ice Lake Tiger Lake Alder Lake Raptor Lake
  1. ^ Rocket Lake based on Cypress Cove is a CPU microarchitecture, a variant of Sunny Cove microarchitecture designed for 10 nm, backported to 14 nm.
  2. ^ 1.25 MB in client
  3. ^ 56 unified in Ivy Bridge
Overview of Intel Core microarchitectures
Brand Desktop Mobile
Codename Cores Process Date released Codename Cores Process Date released
Core Solo Desktop version not available Yonah 1 65 nm January 2006
Core Duo Yonah 2
Core 2 Solo Merom-L
Penryn-L
1
1
65 nm
45 nm
September 2007
May 2008
Core 2 Duo Conroe
Allendale
Wolfdale
2
2
2
65 nm
65 nm
45 nm
August 2006
January 2007
January 2008
Merom
Penryn
2
2
65 nm
45 nm
July 2006
January 2008
Core 2 Quad Kentsfield
Yorkfield
4
4
65 nm
45 nm
January 2007
March 2008
Penryn QC 4 45 nm August 2008
Core 2 Extreme Conroe XE
Kentsfield XE
Yorkfield XE
2
4
4
65 nm
65 nm
45 nm
July 2006
November 2006
November 2007
Merom XE
Penryn XE
Penryn QC XE
2
2
4
65 nm
45 nm
45 nm
July 2007
January 2008
August 2008
Core M Desktop version not available Broadwell 2 14 nm September 2014[17]
Core m3 Skylake
Kaby Lake
Kaby Lake
Amber Lake
2
2
2
2
14 nm
14 nm
14 nm
14 nm
August 2015
September 2016
April 2017
August 2018
Core m5 Skylake 2 14 nm August 2015
Core m7 Skylake 2 14 nm August 2015
Core i3 Clarkdale
Sandy Bridge
Ivy Bridge
Haswell
Skylake
Kaby Lake
Coffee Lake
Coffee Lake
Comet Lake
Alder Lake
2
2
2
2
2
2
4
4
4
4
32 nm
32 nm
22 nm
22 nm
14 nm
14 nm
14 nm
14 nm
14 nm
10 nm
January 2010
February 2011
September 2012
September 2013
September 2015
January 2017
October 2017
Jan. & April 2019
April 2020
January 2022
Arrandale
Sandy Bridge
Ivy Bridge
Haswell
Broadwell
Skylake
Kaby Lake
Skylake
Kaby Lake
Coffee Lake
Cannon Lake
Coffee Lake
Whiskey Lake
Ice Lake
Comet Lake
Tiger Lake (initial and B)
Alder Lake
2
2
2
2
2
2
2
2
2
2
2
4
2
2
2
2-4
6-10
32 nm
32 nm
22 nm
22 nm
14 nm
14 nm
14 nm
14 nm
14 nm
14 nm
10 nm
14 nm
14 nm
10 nm
14 nm
10 nm
10 nm
January 2010
February 2011
June 2012
June 2013
January 2015
Sept. 2015 & June 2016
August 2016
November 2016
Jan. & June 2017
April 2018
May 2018
July 2018
August 2018
May & Aug. 2019
September 2019
Sept. 2020, Jan. - May 2021
January 2022
Core i5 Lynnfield
Clarkdale
Sandy Bridge
Sandy Bridge
Ivy Bridge
Haswell
Broadwell
Skylake
Kaby Lake
Coffee Lake
Coffee Lake
Comet Lake
Rocket Lake
Alder Lake
4
2
4
2
2-4
2-4
4
4
4
6
6
6
6
6-10
45 nm
32 nm
32 nm
32 nm
22 nm
22 nm
14 nm
14 nm
14 nm
14 nm
14 nm
14 nm
14 nm
10 nm
September 2009
January 2010
January 2011
February 2011
April 2012
June 2013
June 2015
September 2015
January 2017
October 2017
Oct. 2018 & Jan. 2019
April 2020
March 2021
Nov. 2021 & Jan. 2022
Arrandale
Sandy Bridge
Ivy Bridge
Haswell
Broadwell
Skylake
Kaby Lake
Kaby Lake
Kaby Lake-R
Coffee Lake
Amber Lake
Whiskey Lake
Ice Lake
Comet Lake
Comet Lake-H
Tiger Lake
Tiger Lake-H/B
Alder Lake
Alder Lake-H/HX
2
2
2
2
2
2
2
4
4
4
2
4
4
4
4
4
4-6
10-12
8-12
32 nm
32 nm
22 nm
22 nm
14 nm
14 nm
14 nm
14 nm
14 nm
14 nm
14 nm
14 nm
10 nm
14 nm
14 nm
10 nm
10 nm
10 nm
10 nm
January 2010
February 2011
May 2012
June 2013
January 2015
September 2015
August 2016
January 2017
October 2017
April 2018
Aug. 2018 & Oct. 2018
Aug. 2018 & April 2019
May & Aug. 2019
September 2019
April 2020
Sept. 2020 - May 2021
January - September 2021
January 2022
January & May 2022
Core i7 Bloomfield
Lynnfield
Gulftown
Sandy Bridge
Sandy Bridge-E
Sandy Bridge-E
Ivy Bridge
Haswell
Ivy Bridge-E
Broadwell
Skylake
Kaby Lake
Coffee Lake
Coffee Lake
Comet Lake
Rocket Lake
Alder Lake
4
4
6
4
6
4
4
4
4-6
4
4
4
6
8
8
8
12
45 nm
45 nm
32 nm
32 nm
32 nm
32 nm
22 nm
22 nm
22 nm
14 nm
14 nm
14 nm
14 nm
14 nm
14 nm
14 nm
10 nm
November 2008
September 2009
July 2010
January 2011
November 2011
February 2012
April 2012
June 2013
September 2013
June 2015
August 2015
January 2017
October 2017
October 2018
April 2020
March 2021
Nov. 2021 & Jan. 2022
Clarksfield
Arrandale
Sandy Bridge
Sandy Bridge
Ivy Bridge
Haswell
Broadwell
Broadwell
Skylake
Kaby Lake
Kaby Lake
Coffee Lake
Amber Lake
Whiskey Lake
Ice Lake
Comet Lake
Comet Lake-H
Tiger Lake
Tiger Lake-H/B
Alder Lake
Alder Lake-H/HX
4
2
4
2
2-4
2-4
2
4
2-4
2
4
4-6
2
4
4
4-6
6-8
4
4-8
10-14
10-16
45 nm
32 nm
32 nm
32 nm
22 nm
22 nm
14 nm
14 nm
14 nm
14 nm
14 nm
14 nm
14 nm
14 nm
10 nm
14 nm
14 nm
10 nm
10 nm
10 nm
10 nm
September 2009
January 2010
January 2011
February 2011
May 2012
June 2013
January 2015
June 2015
September 2015
August 2016
January 2017
April 2018
August 2018
Aug. 2018 & April 2019
May & Aug. 2019
September 2019
April 2020
September 2020
January - September 2021
January 2022
January & May 2022
Core i7
Extreme
Bloomfield
Gulftown
Sandy Bridge-E
Ivy Bridge-E
Haswell-E
Broadwell-E
Skylake-X
Kaby Lake-X
4
6
6
6
8
10
6-8
4
45 nm
32 nm
32 nm
22 nm
22 nm
14 nm
14 nm
14 nm
November 2008
March 2010
November 2011
September 2013
August 2014
May 2016
June 2017
June 2017
Clarksfield
Sandy Bridge
Ivy Bridge
Haswell
4
4
4
4
45 nm
32 nm
22 nm
22 nm
September 2009
January 2011
May 2012
June 2013
Core i9 Skylake-X
Skylake-X
Cascade Lake-X
Coffee Lake
Comet Lake
Rocket Lake
Alder Lake

Raptor Lake

10
12
14-18
8
10
8
16

24

14 nm
14 nm
14 nm
14 nm
14 nm
14 nm

Intel 7 Intel 7

June 2017
August 2017
September 2017
October 2018
April 2020
March 2021
Nov. 2021 & Jan. 2022

Oct. 2022 & Jan. 2023

Coffee Lake-H
Comet Lake-H
Tiger Lake-H
Alder Lake-H/HX

Raptor Lake-H/HX

6
8
8
14-16

14-24

14 nm
14 nm
10 nm
Intel 7

Intel 7

April 2018
April 2020
May 2021
January & May 2022

January 2023

List of Intel Core processors • List of Intel Core 2 processors • List of Intel Core M processors • List of Intel Core i3 processors • List of Intel Core i5 processors • List of Intel Core i7 processors • List of Intel Core i9 processors

History edit

Core edit

The original Core brand refers to Intel's 32-bit mobile dual-core x86 CPUs, which derived from the Pentium M branded processors. The processor family used an enhanced version of the Intel P6 microarchitecture. It emerged in parallel with the NetBurst microarchitecture (Intel P68) of the Pentium 4 brand, and was a precursor of the 64-bit Core microarchitecture of Core 2 branded CPUs. The Core brand had two branches: the Duo (dual-core) and Solo (Duo with one disabled core, which replaced the Pentium M brand of single-core mobile processor). Intel launched the Core brand on January 6, 2006, with the release of the 32-bit Yonah CPU – Intel's first dual-core mobile (low-power) processor. Its dual-core layout closely resembled two interconnected Pentium M branded CPUs packaged as a single die (piece) silicon chip (IC). Hence, the 32-bit microarchitecture of Core branded CPUs – contrary to its name – had more in common with Pentium M branded CPUs than with the subsequent 64-bit Core microarchitecture of Core 2 branded CPUs. Despite a major rebranding effort starting January 2006, some companies continued to market computers with the Yonah core marked as Pentium M. The Core series is also the first Intel processor used as the main CPU in an Apple Macintosh computer. The Core Duo was the CPU for the first generation MacBook Pro, while the Core Solo appeared in Apple's Mac Mini line. Core Duo signified the beginning of Apple's shift to Intel processors across the entire Mac line. In 2007, Intel began branding the Yonah core CPUs intended for mainstream mobile computers as Pentium Dual-Core, not to be confused with the desktop 64-bit Core microarchitecture CPUs also branded as Pentium Dual-Core. September 2007 and January 4, 2008, marked the discontinuation of a number of Core branded CPUs including several Core Solo, Core Duo, Celeron and one Core 2 Quad chip.[18][19]

Intel Core Solo[20] uses the same two-core die as the Core Duo, but features only one active core. Depending on demand, Intel may also simply disable one of the cores to sell the chip at the Core Solo price—this requires less effort than launching and maintaining a separate line of CPUs that physically only have one core. Intel had used the same strategy previously with the 486 CPU in which early 486SX CPUs were in fact manufactured as 486DX CPUs but with the FPU disabled. Intel Core Duo[21] consists of two cores on one die, a 2 MB L2 cache shared by both cores, and an arbiter bus that controls both L2 cache and FSB (front-side bus) access.

Model Clock rate L2
cache
FSB Mult. Voltage TDP Socket Release date Release
price (USD)



Core Solo U1300 1.07 GHz 2 MB 533 MT/s 0.95–1.05 V
5.5 W
April 2006 $241


Core Solo U1400 1.2 GHz 2 MB 533 MT/s 0.95–1.05 V
5.5 W
Socket 479/FC-µBGA April 2006 $262


Core Solo U1500 1.33 GHz 2 MB 533 MT/s 10× 0.85–1.1 V
5.5 W
Socket 479/FC-µBGA January 2007 $262


Core Duo U2400 1.07 GHz 2 MB 533 MT/s 0.8–1.1 V
9 W
Socket 479/FC-µBGA June 2006 $262


Core Duo U2500 1.2 GHz 2 MB 533 MT/s 0.8–1.1 V
9 W
Socket 479/FC-µBGA June 2006 $289



Core Duo L2300 1.5 GHz 2 MB 667 MT/s 0.762–1.212 V
15 W
Socket 479/FC-µBGA January 2006 $284


Core Duo L2400 1.67 GHz 2 MB 667 MT/s 10× 0.762–1.212 V
15 W
Socket 479/FC-µBGA January 2006 $316


Core Duo L2500 1.83 GHz 2 MB 667 MT/s 11× 0.762–1.212 V
15 W
Socket 479/FC-µBGA September 2006 $316



Core Solo T1200 1.5 GHz 2 MB 667 MT/s 0.7625–1.3 V
27 W
Socket M July 2006


Core Solo T1250 1.73 GHz 2 MB 533 MT/s 13× 0.7625–1.3 V
31 W
Socket M


Core Solo T1300 1.67 GHz 2 MB 667 MT/s 10× 0.7625–1.3 V
27 W
  • Socket 479/FC-µBGA
  • Socket 479/FC-µBGA
  • Socket M
  • Socket M
January 2006 $209


Core Solo T1350 1.87 GHz 2 MB 533 MT/s 14× 0.7625–1.3 V
31 W
Socket M July 2006


Core Solo T1400 1.83 GHz 2 MB 667 MT/s 11× 0.7625–1.3 V
27 W
  • Socket 479/FC-µBGA
  • Socket 479/FC-µBGA
  • Socket M
  • Socket M
May 2006 $209


Core Solo T1500 2 GHz 2 MB 667 MT/s 12× 0.7625–1.3 V
27 W
  • Socket 479/FC-µBGA
  • Socket M
August 2006


Core Duo T2050 1.6 GHz 2 MB 533 MT/s 12× 0.762–1.3 V
31 W
Socket M May 2006 $140


Core Duo T2250 1.73 GHz 2 MB 533 MT/s 13× 0.762–1.3 V
31 W
Socket M May 2006 OEM


Core Duo T2300 1.67 GHz 2 MB 667 MT/s 10× 0.762–1.3 V
31 W
January 2006 $241


Core Duo T2300E 1.67 GHz 2 MB 667 MT/s 10× 0.762–1.3 V
31 W
  • Socket M
  • Socket M
  • µFCBGA-479
  • µFCBGA-479
May 2006 $209


Core Duo T2350 1.87 GHz 2 MB 533 MT/s 14× 0.762–1.3 V
31 W
Socket M OEM


Core Duo T2400 1.83 GHz 2 MB 667 MT/s 11× 0.762–1.3 V
  • 31 W
  • 31 W
  • 27 W
  • 27 W
  • Socket M
  • Socket M
  • Socket 479/FC-µBGA
  • Socket 479/FC-µBGA
January 2006 $294


Core Duo T2450 2 GHz 2 MB 533 MT/s 15× 0.762–1.3 V
31 W
Socket M OEM


Core Duo T2500 2 GHz 2 MB 667 MT/s 12× 0.762–1.3 V
31 W
  • Socket M
  • Socket M
  • Socket 479/FC-µBGA
  • Socket 479/FC-µBGA
January 2006 $423


Core Duo T2600 2.17 GHz 2 MB 667 MT/s 13× 0.762–1.3 V
31 W
  • Socket M
  • Socket M
  • Socket 479/FC-µBGA
  • Socket 479/FC-µBGA
January 2006 $637


Core Duo T2700 2.33 GHz 2 MB 667 MT/s 14× 0.762–1.3 V
31 W
  • Socket M
  • Socket 479/FC-µBGA
June 2006 $637


Core 2 edit

The successor to Core is the mobile version of the Intel Core 2 line of processors using cores based upon the Intel Core microarchitecture,[22] released on July 27, 2006. The release of the mobile version of Intel Core 2 marks the reunification of Intel's desktop and mobile product lines as Core 2 processors were released for desktops and notebooks, unlike the first Intel Core CPUs that were targeted only for notebooks (although some small form factor and all-in-one desktops, like the iMac and the Mac Mini, also used Core processors).

Unlike the original Core, Intel Core 2 is a 64-bit processor, supporting Intel Extended Memory 64 Technology (EM64T). Another difference between the original Core Duo and the new Core 2 Duo is an increase in the amount of level 2 cache. The new Core 2 Duo has tripled the amount of on-board cache to 6 MB. Core 2 also introduced a quad-core performance variant to the single- and dual-core chips, branded Core 2 Quad, as well as an enthusiast variant, Core 2 Extreme. All three chips are manufactured at a 65 nm lithography, and in 2008, a 45 nm lithography and support front side bus speeds ranging from 533 MT/s to 1.6 GT/s. In addition, the 45 nm die shrink of the Core microarchitecture adds SSE4.1 support to all Core 2 microprocessors manufactured at a 45 nm lithography, therefore increasing the calculation rate of the processors.

Core 2 Solo edit

The Core 2 Solo,[23] introduced in September 2007, is the successor to the Core Solo and is available only as an ultra-low-power mobile processor with 5.5 Watt thermal design power. The original U2xxx series "Merom-L" used a special version of the Merom chip with CPUID number 10661 (model 22, stepping A1) that only had a single core and was also used in some Celeron processors. The later SU3xxx are part of Intel's CULV range of processors in a smaller μFC-BGA 956 package but contain the same Penryn chip as the dual-core variants, with one of the cores disabled during manufacturing.

Codename Brand name (list) L2 cache Socket TDP
Merom-L Mobile Core 2 Solo U2xxx 1 MB FCBGA 5.5 W
Penryn-L Mobile Core 2 Solo SU3xxx 3 MB BGA956 5.5 W

Core 2 Duo edit

 
Inside of a Sony VAIO laptop (VGN-C140G)

The majority of the desktop and mobile Core 2 processor variants are Core 2 Duo[24][25] with two processor cores on a single Merom, Conroe, Allendale, Penryn, or Wolfdale chip. These come in a wide range of performance and power consumption, starting with the relatively slow ultra-low-power Uxxxx (10 W) and low-power Lxxxx (17 W) versions, to the more performance oriented Pxxxx (25 W) and Txxxx (35 W) mobile versions and the Exxxx (65 W) desktop models. The mobile Core 2 Duo processors with an 'S' prefix in the name are produced in a smaller μFC-BGA 956 package, which allows building more compact laptops.

Within each line, a higher number usually refers to a better performance, which depends largely on core and front-side bus clock frequency and amount of second level cache, which are model-specific. Core 2 Duo processors typically use the full L2 cache of 2, 3, 4, or 6 MB available in the specific stepping of the chip, while versions with the amount of cache reduced during manufacturing are sold for the low-end consumer market as Celeron or Pentium Dual-Core processors. Like those processors, some low-end Core 2 Duo models disable features such as Intel Virtualization Technology.

Core 2 Quad edit

Core 2 Quad[26][27] processors are multi-chip modules consisting of two dies similar to those used in Core 2 Duo, forming a quad-core processor. This allows twice the performance of a dual-core processors at the same clock frequency in ideal conditions.

Initially, all Core 2 Quad models were versions of Core 2 Duo desktop processors, Kentsfield derived from Conroe and Yorkfield from Wolfdale, but later Penryn-QC was added as a high-end version of the mobile dual-core Penryn.

The Xeon 32xx and 33xx processors are mostly identical versions of the desktop Core 2 Quad processors and can be used interchangeably.

Codename Brand name (list) L2 cache Socket TDP
Kentsfield Core 2 Quad Q6xxx 2×4 MB LGA 775 95–105 W
Yorkfield Core 2 Quad Q8xxx 2×2 MB 65–95 W
Core 2 Quad Q9xxx 2×3–2×6 MB
Penryn-QC Mobile Core 2 Quad Q9xxx 2×3–2×6 MB Socket P 45 W

Core 2 Extreme edit

Core 2 Extreme processors[28][29] are enthusiast versions of Core 2 Duo and Core 2 Quad processors, usually with a higher clock frequency and an unlocked clock multiplier, which makes them especially attractive for overclocking. This is similar to earlier Pentium D processors labeled as Extreme Edition. Core 2 Extreme processors were released at a much higher price than their regular version, often $999 or more.

1st generation edit

With the release of the Nehalem microarchitecture in November 2008,[30] Intel introduced a new naming scheme for its Core processors. There are three variants, Core i3, Core i5 and Core i7, but the names no longer correspond to specific technical features like the number of cores. Instead, the brand is now divided from low-level (i3), through mid-range (i5) to high-end performance (i7),[31] which correspond to three, four and five stars in Intel's Intel Processor Rating[32] following on from the entry-level Celeron (one star) and Pentium (two stars) processors.[33] Common features of all Nehalem based processors include an integrated DDR3 memory controller as well as QuickPath Interconnect or PCI Express and Direct Media Interface on the processor replacing the aging quad-pumped Front Side Bus used in all earlier Core processors. All these processors have 256 KB L2 cache per core, plus up to 12 MB shared L3 cache. Because of the new I/O interconnect, chipsets and mainboards from previous generations can no longer be used with Nehalem-based processors.

Intel intended the Core i3 as the new low end of the performance processor line, following the retirement of the Core 2 brand.[34][35] The first Core i3 processors were launched on January 7, 2010.[36] The first Nehalem based Core i3 was Clarkdale-based, with an integrated GPU and two cores.[37] The same processor is also available as Core i5 and Pentium, with slightly different configurations. The Core i3-3xxM processors are based on Arrandale, the mobile version of the Clarkdale desktop processor. They are similar to the Core i5-4xx series but running at lower clock speeds and without Turbo Boost.[38] According to an Intel FAQ they do not support Error Correction Code (ECC) memory.[39] According to motherboard manufacturer Supermicro, if a Core i3 processor is used with a server chipset platform such as Intel 3400/3420/3450, the CPU supports ECC with UDIMM.[40] When asked, Intel confirmed that, although the Intel 5 series chipset supports non-ECC memory only with the Core i5 or i3 processors, using those processors on a motherboard with 3400 series chipsets it supports the ECC function of ECC memory.[41] A limited number of motherboards by other companies also support ECC with Intel Core ix processors; the Asus P8B WS is an example, but it does not support ECC memory under Windows non-server operating systems.[42]

Lynnfield was the first Core i5 processors using the Nehalem microarchitecture, introduced on September 8, 2009, as a mainstream variant of the earlier Core i7.[43][44] Lynnfield Core i5 processors have an 8 MB L3 cache, a DMI bus running at 2.5 GT/s and support for dual-channel DDR3-800/1066/1333 memory and have Hyper-threading disabled. The same processors with different sets of features (Hyper-threading and other clock frequencies) enabled are sold as Core i7-8xx and Xeon 3400-series processors, which should not be confused with high-end Core i7-9xx and Xeon W3500-series processors based on Bloomfield. A new feature called Turbo Boost Technology was introduced which maximizes speed for demanding applications, dynamically accelerating performance to match the workload. After Nehalem received a 32 nm Westmere die shrink, Arrandale, the dual-core mobile Core i5 processors and its desktop counterpart Clarkdale was introduced in January 2010, together with Core i7-6xx and Core i3-3xx processors based on the same architecture. Arrandale processors have integrated graphics capability. Core i3-3xx does not support for Turbo Boost, L3 cache in Core i5-5xx processors is reduced to 3 MB, while the Core i5-6xx uses the full cache,[45] Clarkdale is sold as Core i5-6xx, along with related Core i3 and Pentium processors. It has Hyper-Threading enabled and the full 4 MB L3 cache.[46] According to Intel "Core i5 desktop processors and desktop boards typically do not support ECC memory",[47] but information on limited ECC support in the Core i3 section also applies to Core i5 and i7.[citation needed]

Intel Core i7 as a brand name applies to several families of desktop and laptop 64-bit x86-64 processors using the Nehalem, Westmere, Sandy Bridge, Ivy Bridge, Haswell, Broadwell, Skylake, and Kaby Lake microarchitectures. The Core i7 brand targets the business and high-end consumer markets for both desktop and laptop computers,[48] and is distinguished from the Core i3 (entry-level consumer), Core i5 (mainstream consumer), and Xeon (server and workstation) brands. Introduced in late 2008, Bloomfield was the first Core i7 processors based on the Nehalem architecture.[49][50][51][52] The following year, Lynnfield desktop processors and Clarksfield mobile processors brought new quad-core Core i7 models based on the said architecture.[53] After Nehalem received a 32 nm Westmere die shrink, Arrandale dual-core mobile processors were introduced in January 2010, followed by Core i7's first six-core desktop processor Gulftown on March 16, 2010. Both the regular Core i7 and the Extreme Edition are advertised as five stars in the Intel Processor Rating. The first-generation Core i7 uses two different sockets; LGA 1366 designed for high-end desktops and servers, and LGA 1156 used in low- and mid-end desktops and servers. In each generation, the highest-performing Core i7 processors use the same socket and QPI-based architecture as the medium-end Xeon processors of that generation, while lower-performing Core i7 processors use the same socket and PCIe/DMI/FDI architecture as the Core i5. "Core i7" is a successor to the Intel Core 2 brand.[54][55][56][57] Intel representatives stated that they intended the moniker Core i7 to help consumers decide which processor to purchase as Intel releases newer Nehalem-based products in the future.[58]

List of Intel Core 1st generation microprocessors
Brand Model Code name Release date Price[a] Cores
(Threads)
Clock rate
(GHz)
Cache GPU Lithography Socket Memory support TDP
Base Turbo L3 Name Clock rate DDR3 ECC
i3 530[59] Clarkdale Q1 2010 $117 2 (4) 2.93 4 MB HD Graphics 733 MHz 32 nm LGA 1156 DDR3-1333
dual-channel
No 73 W
i5 650[60] Clarkdale $176 3.2 3.47 DDR3-1333
dual-channel
No
750[61] Lynnfield Q3 2009 $193 4 (4) 2.6 3.2 8 MB 45 nm DDR3-1333
dual-channel
No 95 W
i7 920[62] Bloomfield Q4 2008 $305 4 (8) 2.66 2.93 8 MB LGA 1366 DDR3-1066
triple-channel
No 130 W
920XM[63] Clarksfield Q3 2009 2.0 3.2 PGA 988 DDR3-1333
triple-channel
55 W
930[64] Bloomfield Q1 2010 $305 2.8 3.06 LGA 1366 DDR3-1066
triple-channel
130 W
940[65] Q4 2008 $555 2.93 3.2 130 W
940XM Clarksfield Q3 2010 2.13 3.33 PGA 988 DDR3-1333
triple-channel
55 W
950 Bloomfield Q2 2009 $305 3.06 3.33 LGA 1366 DDR3-1066
triple-channel
130 W
960 Q4 2009 $305 3.2 3.46
965 Q4 2008 $990
970 Gulftown Q3'10 $594 6 (12) 12 MB 32 nm
975 Bloomfield Q2 2009 $1059 4 (8) 3.33 3.6 8 MB 45 nm
980 Gulftown Q2 2011 $594 6 (12) 12 MB 32 nm
980X Q1 2010 $1059
990X Q1 2011 $1059 3.46 3.73
  1. ^ Price reflects Recommended Customer Price (RCP) rather than MSRP. RCP is the cost per unit, in bulk sales of 1000 units or more, to OEMs, ODMs, and retail outlets when purchasing from Intel. Actual MSRP is higher than RCP

2nd generation edit

In early 2011, Intel introduced a new microarchitecture named Sandy Bridge. This is the second generation of the Core processor microarchitecture. It kept all the existing brands from Nehalem, including Core i3/i5/i7, and introduced new model numbers. The initial set of Sandy Bridge processors includes dual- and quad-core variants, all of which use a single 32 nm die for both the CPU and integrated GPU cores, unlike the earlier microarchitectures. All Core i3/i5/i7 processors with the Sandy Bridge microarchitecture have a four-digit model number. With the mobile version, the thermal design power can no longer be determined from a one- or two-letter suffix but is encoded into the CPU number. Starting with Sandy Bridge, Intel no longer distinguishes the code names of the processor based on number of cores, socket or intended usage; they all use the same code name as the microarchitecture itself.

Ivy Bridge is the codename for Intel's 22 nm die shrink of the Sandy Bridge microarchitecture based on tri-gate ("3D") transistors, introduced in April 2012.

Core i3

Released on January 20, 2011, the Core i3-2xxx line of desktop and mobile processors is a direct replacement of the 2010 "Clarkdale" Core i3-5xx and "Arrandale" Core i3-3xxM models, based on the new microarchitecture. While they require new sockets and chipsets, the user-visible features of the Core i3 are largely unchanged, including the lack of support for Turbo Boost and AES-NI. Unlike the Sandy Bridge-based Celeron and Pentium processors, the Core i3 line does support the new Advanced Vector Extensions. This particular processor is the entry-level processor of this new series of Intel processors.

Codename Brand name (list) Cores L3 cache Socket TDP I/O Bus
Sandy Bridge (Desktop) Core i3-21xx 2 3 MB LGA 1155 65 W Direct Media Interface,
Integrated GPU
Core i3-21xxT 35 W
Sandy Bridge (Mobile) Core i3-2xx0M rPGA-988B
BGA-1023
Core i3-2xx7M BGA-1023 17 W

Core i5

 
A Core i5-2500K. The K suffix indicates an unlocked clock multiplier, which allows for easier overclocking.

In January 2011, Intel released new quad-core Core i5 processors based on the "Sandy Bridge" microarchitecture at CES 2011. New dual-core mobile processors and desktop processors arrived in February 2011.

The Core i5-2xxx line of desktop processors are mostly quad-core chips, with the exception of the dual-core Core i5-2390T, and include integrated graphics, combining the key features of the earlier Core i5-6xx and Core i5-7xx lines. The suffix after the four-digit model number designates unlocked multiplier (K), low-power (S) and ultra-low-power (T).

The desktop CPUs now all have four non-SMT cores (like the i5-750), with the exception of the i5-2390T. The DMI bus runs at 5 GT/s.

The mobile Core i5-2xxxM processors are all dual-core and hyper-threaded chips like the previous Core i5-5xxM series, and share most of the features with that product line.

Codename Brand name (list) Cores L3 cache Socket TDP I/O Bus
Sandy Bridge (Desktop) Core i5-2xxx
Core i5-2xxxK
4 6 MB LGA 1155 95 W Direct Media Interface,
Integrated GPU
Core i5-2xxxS 65 W
Core i5-25xxT 45 W
Core i5-23xxT 2 3 MB 35 W
Sandy Bridge (Mobile) Core i5-2xxxM rPGA-988B
BGA-1023
Core i5-2xx7M BGA-1023 17 W

Core i7

The Core i7 brand was the high-end for Intel's desktop and mobile processors, until the announcement of the i9 in 2017. Its Sandy Bridge models feature the largest amount of L3 cache and the highest clock frequency. Most of these models are very similar to their smaller Core i5 siblings. The quad-core mobile Core i7-2xxxQM/XM processors follow the previous "Clarksfield" Core i7-xxxQM/XM processors, but now also include integrated graphics.

Codename Brand name (list) Cores L3 cache Socket TDP Process I/O Bus Release
Date
Sandy Bridge-E (Desktop) Core i7-39xxX 6 15 MB LGA 2011 130 W 32 nm Direct Media Interface November 2011
Core i7-39xxK 12 MB
Core i7-38xx 4 10 MB
Sandy Bridge (Desktop) Core i7-2xxxK, i7-2xxx 8 MB LGA 1155 95 W Direct Media Interface,
Integrated GPU
January 2011
Core i7-2xxxS 65 W
Sandy Bridge (Mobile) Core i7-2xxxXM rPGA-988B
BGA-1023
55 W
Core i7-28xxQM 45 W
Core i7-2xxxQE, i7-26xxQM, i7-27xxQM 6 MB
Core i7-2xx0M 2 4 MB 35 W February 2011
Core i7-2xx9M BGA-1023 25 W
Core i7-2xx7M 17 W

3rd generation edit

Ivy Bridge is the codename for a "third generation" line of processors based on the 22 nm manufacturing process developed by Intel. Mobile versions of the CPU were released in April 2012 following with desktop versions in September 2012.

Core i3

The Ivy Bridge-based Core-i3-3xxx line is a minor upgrade to 22 nm process technology and better graphics.

Codename Brand name (list) Cores L3
Cache
Socket TDP I/O Bus
Ivy Bridge (Desktop) Core i3-32xx 2 3 MB LGA 1155 55 W Direct Media Interface,
Integrated GPU
Core i3-32xxT 35 W
Ivy Bridge (Mobile) Core i3-3xx0M rPGA-988B
BGA-1023
Core i3-3xx7U BGA-1023 17 W
Core i3-3xx9Y 13 W

Core i5

Codename Brand name (list) Cores L3
Cache
Socket TDP I/O Bus
Ivy Bridge (Desktop) Core i5-3xxx
Core i5-3xxxK
4 6 MB LGA 1155 77 W Direct Media Interface,
Integrated GPU
Core i5-3xxxS 65 W
Core i5-35xxT 45 W
Core i5-34xxT 2 3 MB 35 W
Ivy Bridge (Mobile) Core i5-3xx0M rPGA-988B
BGA-1023
Core i5-3xx7U BGA-1023 17 W
Core i5-3xx9Y 13 W

Core i7

4th generation edit

Haswell is the fourth generation Core processor microarchitecture, and was released in 2013.

Core i3

Codename Brand name (list) Cores L3 cache GPU Model Socket TDP Process I/O Bus Release
Date
Haswell-DT (Desktop) Core i3-43xx 2 4 MB HD 4600 LGA 1150 54 W 22 nm Direct Media Interface,
Integrated GPU
September 2013
Core i3-43xxT, Core i3-4xxxTE 35 W
Core i3-41xx 3 MB HD 4400 54 W
Core i3-41xxT 35 W
Haswell-MB (Mobile) Core i3-4xx2E HD 4600 BGA 1364 25 W
Core i3-4xx0E 37 W
Core i3-4xxxM Socket G3
Core i3-4xx8U Iris 5100 BGA 1168 28 W June 2013
Core i3-4xx0U, Core i3-4xx5U HD 4400 15 W
Core i3-4xxxY HD 4200 11.5 W

Core i5

Codename Brand name (list) Cores L3 cache GPU Model Socket TDP Process I/O Bus Release Date
Haswell-DT (Desktop) Core i5-4xxx, i5-46xxK 4 6 MB HD 4600 LGA 1150 84 W 22 nm Direct Media Interface,
Integrated GPU
June 2013
Core i5-4xxxS 65 W
Core i5-46xxT 45 W
Core i5-45xxT, Core i5-45xxTE 2 4 MB 35 W
65 W
Haswell-H (MCP) Core i5-4xxxR 4 4 MB Iris Pro 5200 BGA 1364 65 W
Haswell-MB (Mobile) Core i5-4xxxH 2 3 MB HD 4600 47 W September 2013
Core i5-4xx2E 25 W
Core i5-4xx0E 37 W
Core i5-4xxxM Socket G3
Core i5-4xx8U Iris 5100 BGA1168 28 W June 2013
Core i5-4x50U HD 5000 15 W
Core i5-4x00U HD 4400
Core i5-4xxxY HD 4200 11.5 W

Core i7

Codename Brand name (list) Cores L3 cache GPU Model Socket TDP Process I/O Bus Release
Date
Haswell-E (Desktop)[66] Core i7-5960X 8 20 MB N/A LGA 2011-3 140 W 22 nm Direct Media Interface September 2014
Core i7-5930K 6 15 MB
Core i7-5820K
Haswell-DT (Desktop) Core i7-47xx, i7-47xxK 4 8 MB HD 4600 LGA 1150 84 W Direct Media Interface,
Integrated GPU
June 2013
Core i7-47xxS 65 W
Core i7-47x0T 45 W
Core i7-47x5T 35 W
Core i7-47xxR 6 MB Iris Pro 5200 BGA 1364 65 W
Haswell-MB (Mobile) Core i7-4x50HQ, Core i7-4x60HQ
Core i7-4x50EQ, Core i7-4x60EQ
47 W
Core i7-47x2HQ, Core i7-47x2EQ
Core i7-470xHQ, Core i7-470xEQ
HD 4600 37 W
47 W
Core i7-47x2MQ
Core i7-470xMQ
Socket G3 37 W
47 W
Core i7-49xxMQ, Core i7-4xxxXM 8 MB 57 W
Core i7-4xxxM 2 4 MB 35 W September 2013
Core i7-4xx8U Iris 5100 BGA 1168 28 W June 2013
Core i7-4x50U HD 5000 15 W
Core i7-4x00U HD 4400
Core i7-4xxxY HD 4200 11.5 W

5th generation edit

Broadwell is the fifth generation Core processor microarchitecture, and was released by Intel on September 6, 2014, and began shipping in late 2014. It is the first to use a 14 nm chip.[67] Additionally, mobile processors were launched in January 2015[68] and Desktop Core i5 and i7 processors were released in June 2015.[69]

Desktop processor (DT-Series)

Processor branding Model (list) Cores
(Threads)
L3 cache GPU Model Socket TDP Process I/O Bus Release
Date
Core i7 5775C 4 (8) 6 MB Iris 6200 LGA 1150 65 W 14 nm Direct Media Interface,

Integrated GPU

June 2015
5775R
Core i5 5675C 4 (4) 4 MB
5675R
5575R

Mobile processors (U-Series)

Processor branding Model (list) Cores
(Threads)
L3 cache GPU Model Socket TDP Process I/O Bus Release
Date
Core i7 5xx7U 2 (4) 4 MB Iris 6100 BGA 1168 28 W 14 nm Direct Media Interface,
Integrated GPU
January 2015
5x50U HD 6000 15 W
5x00U HD 5500
Core i5 5xx7U 2 (2) 3 MB Iris 6100 28 W
5x50U HD 6000 15 W
5x00U HD 5500
Core i3 5xx7U Iris 6100 28 W
5xx5U HD 5500 15 W
5xx0U

Mobile Processors (Y-Series)

Processor branding Model (list) Cores
(Threads)
L3 cache GPU Model Socket TDP Process I/O Bus Release
Date
Core M 5Yxx 2 (2) 4 MB HD 5300 BGA 1234 4.5 W 14 nm Direct Media Interface,
Integrated GPU
September 2014

6th generation edit

Broadwell microarchitecture edit

Processor branding Model (list) Cores (Threads) L3 cache GPU Model Socket TDP Process I/O Bus Release
Date
Core i7 6800K 6 (12) 15 MB N/A LGA 2011-3 140 W 14 nm Direct Media Interface Q2'16
6850K
6900K 8 (16) 20 MB
6950X 10 (20) 25 MB

Skylake microarchitecture edit

Skylake is the sixth generation Core processor microarchitecture, and was launched in August 2015. Being the successor to the Broadwell line, it is a redesign using the same 14 nm manufacturing process technology; however the redesign has better CPU and GPU performance and reduced power consumption. Intel also disabled overclocking non -K processors.

Desktop processors (DT-Series)
Processor branding Model Cores/Threads L3 cache GPU Model Socket TDP Process I/O Bus Release Date
Core i7 6700K 4/8 8 MB HD 530 LGA 1151 91 W 14 nm Direct Media Interface,

Integrated GPU

August 2015
6700 65 W September 2015
6700T 35 W
6785R Iris Pro 580 65 W May 2016
Core i5 6600K 4/4 6 MB HD 530 91 W September 2015
6600 65 W
6500
6400
6402P HD 510 December 2015
6xx0R HD 530 35 W June 2016
6xx0T September 2015
Core i3 6320 2/4 4 MB HD 530 51 W
6300
6300T 35 W
6100 3 MB HD 530 51 W
6100T 35 W
6098P HD 510 54 W December 2015
Mobile processors (H-Series)
Processor branding Model Cores/Threads L3 cache GPU Model Socket TDP Process I/O Bus Release Date
Core i3 6100H 2/4 3 MB HD 530 FBGA 1356 35 W 14 nm Direct Media Interface,

Integrated GPU

September 2015
Mobile processors (U-Series)
Processor branding Model Cores/Threads L3 cache GPU Model Socket TDP Process I/O Bus Release Date
Core i7 6650U 2/4 4 MB Iris 540 FCBGA 1356 15 W 14 nm Direct Media Interface,

Integrated GPU

September 2015
6600U HD 520 25 W
6567U Iris 550 28 W
6x60U Iris 540 15 W
6x00U HD 520
Core i5 62x7U Iris 550 28 W
6360U Iris 540 9.5 W
6300U HD 520 15 W
6260U Iris 540
6200U 3 MB HD 520
Core i3 6167U HD 550 28 W
6100U HD 520 15 W
6006U HD 520 November 2016

7th generation edit

Skylake microarchitecture edit

High-end Desktop processors (X-Series)
Processor branding Model Cores/Threads L3 cache Socket TDP Process I/O Bus Price
Core i9 7980XE 18/36 24.75 MB LGA 2066 165 W 14 nm Direct Media Interface $1999
7960X 16/32 22 MB $1699
7940X 14/28 19.25 MB $1399
7920X 12/24 16.5 MB 140 W $1199
7900X 10/20 13.75 MB $999
Core i7 7820X 8/16 11 MB $599
7800X 6/12 8.25 MB $389

Kaby Lake edit

Kaby Lake is the codename for the seventh generation Core processor, and was launched in October 2016 (mobile chips)[70] and January 2017 (desktop chips).[71] With the latest generation of microarchitecture, Intel decided to produce Kaby Lake processors without using their "tick–tock" manufacturing and design model.[72] Kaby Lake features the same Skylake microarchitecture and is fabricated using Intel's 14 nanometer manufacturing process technology.[72]

Built on an improved 14 nm process (14FF+), Kaby Lake features faster CPU clock speeds and Turbo frequencies. Beyond these process and clock speed changes, little of the CPU architecture has changed from Skylake, resulting in identical IPC.

Kaby Lake features a new graphics architecture to improve performance in 3D graphics and 4K video playback. It adds native High-bandwidth Digital Content Protection 2.2 support, along with fixed function decode of H.264/MPEG-4 AVC, High Efficiency Video Coding Main and Main10/10-bit, and VP9 10-bit and 8-bit video. Hardware encode is supported for H.264/MPEG-4 AVC, HEVC Main10/10-bit, and VP9 8-bit video. VP9 10-bit encode is not supported in hardware. OpenCL 2.1 is now supported.

Kaby Lake is the first Core architecture to support hyper-threading for the Pentium-branded desktop CPU SKU. Kaby Lake also features the first overclocking-enabled i3-branded CPU.

Features common to desktop Kaby Lake CPUs:

  • LGA 1151 socket
  • DMI 3.0 and PCIe 3.0 interfaces
  • Dual channel memory support in the following configurations: DDR3L-1600 1.35 V (32 GiB maximum) or DDR4-2400 1.2 V (64 GiB maximum)
  • A total of 16 PCIe lanes
  • The Core-branded processors support the AVX2 instruction set. The Celeron and Pentium-branded ones support only SSE4.1/4.2
  • 350 MHz base graphics clock rate
  • No L4 cache (eDRAM).
  • A release date of January 3, 2017
Desktop processors (S-Series)
Processor

branding

Model Cores (threads) CPU

clock rate

CPU Turbo clock rate GPU model Maximum

GPU clock rate

L3

cache

TDP Price (USD)
Single core Dual core Quad core
Core i7 7700K 4 (8) 4.2 GHz 4.5 GHz 4.4 GHz 4.4 GHz HD 630 1150 MHz 8 MB 91 W $350
7700 3.6 GHz 4.2 GHz 4.1 GHz 4.0 GHz 65 W $312
7700T 2.9 GHz 3.8 GHz 3.7 GHz 3.6 GHz 35 W
Core i5 7600K 4 (4) 3.8 GHz 4.2 GHz 4.1 GHz 4.0 GHz 6 MB 91 W $243
7600 3.5 GHz 4.1 GHz 4.0 GHz 3.9 GHz 65 W $224
7600T 2.8 GHz 3.7 GHz 3.6 GHz 3.5 GHz 1100 MHz 35 W
7500 3.4 GHz 3.8 GHz 3.7 GHz 3.6 GHz 65 W $202
7500T 2.7 GHz 3.3 GHz 3.2 GHz 3.1 GHz 35 W
7400 3.0 GHz 3.5 GHz 3.4 GHz 3.3 GHz 1000 MHz 65 W $182
7400T 2.4 GHz 3.0 GHz 2.9 GHz 2.7 GHz 35 W $187
Core i3 7350K 2 (4) 4.2 GHz N/A 1150 MHz 4 MB 60 W $179
7320 4.1 GHz 51 W $157
7300 4.0 GHz $147
7300T 3.5 GHz 1100 MHz 35 W
7100 3.9 GHz 3 MB 51 W $117
7100T 3.4 GHz 35 W
7101E 3.9 GHz 54 W
7101TE 3.4 GHz 35 W
Mobile Processors (H-Series)
Processor

branding

Model Cores (threads) CPU

clock rate

CPU Turbo clock rate GPU GPU clock rate L3

cache

Max. PCIe lanes TDP cTDP Release date Price (USD)
Single core Dual core Quad core Base Max. Up Down
Core i7 7920HQ 4 (8) 3.1 GHz 4.1 GHz 3.9 GHz 3.7 GHz HD 630 350 MHz 1100 MHz 8 MB 16 45 W N/A 35 W Q1 2017 $568
7820HQ 2.9 GHz 3.9 GHz 3.7 GHz 3.5 GHz $378
7820HK
7700HQ 2.8 GHz 3.8 GHz 3.6 GHz 3.4 GHz 6 MB
Core i5 7440HQ 4 (4) 1000 MHz $250
7300HQ 2.5 GHz 3.5 GHz 3.3 GHz 3.1 GHz
Core i3 7100H 2 (4) 3.0 GHz N/A 950 MHz 3 MB 35 W N/A $225
Mobile Processors (U-Series)
Processor

branding

Model Cores

(threads)

CPU

clock rate

CPU Turbo clock rate GPU GPU clock rate L3

cache

L4

cache

Max. PCIe lanes TDP cTDP Release date Price (USD)
Single core Dual core Base Max. Up Down
Core i7 7660U 2 (4) 2.5 GHz 4.0 GHz ? Iris Plus 640 300 MHz 1100 MHz 4 MB 64 MB 12 15 W N/A 9.5 W Q1 2017 ?
7600U 2.8 GHz 3.9 GHz HD 620 1150 MHz N/A 25 W 7.5 W $393
7567U 3.5 GHz 4.0 GHz Iris Plus 650 64 MB 28 W N/A 23 W ?
7560U 2.4 GHz 3.8 GHz Iris Plus 640 1050 MHz 15 W 9.5 W
7500U 2.7 GHz 3.5 GHz HD 620 N/A 25 W 7.5 W Q3 2016 $393
Core i5 7360U 2.3 GHz 3.6 GHz Iris Plus 640 1000 MHz 4 MB 64 MB 12 15 W N/A 9.5 W Q1 2017 ?
7300U 2.6 GHz 3.5 GHz HD 620 1100 MHz 3 MB N/A 12 15 W 25 W 7.5 W $281
7287U 3.3 GHz 3.7 GHz Iris Plus 650 4 MB 64 MB 28 W N/A 23 W ?
7267U 3.1 GHz 3.5 GHz 1050 MHz
7260U 2.2 GHz 3.4 GHz Iris Plus 640 950 MHz 15 W 9.5 W
7200U 2.5 GHz 3.1 GHz HD 620 1000 MHz 3 MB N/A 25 W 7.5 W Q3 2016 $281
Core i3 7167U 2.8 GHz N/A Iris Plus 650 1000 MHz 3 MB 64 MB 12 28 W N/A 23 W Q1 2017 ?
7100U 2.4 GHz HD 620 N/A 15 W 7.5 W Q3 2016 $281
Mobile Processors (Y-Series)
Processor

branding

Model Cores

(threads)

CPU

clock rate

CPU Turbo clock rate GPU GPU clock rate L3

cache

Max. PCIe lanes TDP cTDP Release date Price (USD)
Single core Dual core Base Max. Up Down
Core i7 7Y75 2 (4) 1.3 GHz 3.6 GHz 3.4 GHz HD 615 300 MHz 1050 MHz 4 MB 10 4.5 W 7 W 3.5 W Q3 2016 $393
Core i5 7Y57 1.2 GHz 3.3 GHz 2.9 GHz 950 MHz Q1 2017 $281
7Y54 3.2 GHz 2.8 GHz Q3 2016
Core i3 7Y30 1.0 GHz 2.6 GHz ? 900 MHz
7Y32 1.1 GHz 3.0 GHz Q2 2017

Kaby Lake-X processors are modified versions of Kaby Lake-S processors that fit into the LGA 2066 socket. However, they can't take advantage of the unique features of the platform.

High-end Desktop processors (X-Series)
Processor

branding

Model Cores (threads) CPU

clock rate

CPU Turbo clock rate L3

cache

TDP Price (USD)
Single core Dual core Quad core
Core i7 7740X 4 (8) 4.3 GHz 4.5 GHz 4.4 GHz 4.4 GHz 8 MB 112 W $339
Core i5 7640X 4 (4) 4.0 GHz 4.2 GHz 4.1 GHz 4.0 GHz 6 MB $242

8th generation edit

Kaby Lake Refresh edit

Mobile processors (U-Series)
Processor
branding
Model Cores
(threads)
CPU
clock
rate
CPU Turbo clock rate GPU GPU clock rate L3
cache
L4
cache
Max.
PCIe
lanes
TDP cTDP Release
date
Price
(USD)
Single
core
Dual
core
Quad
core
Base Max. Up Down
Core i7 8650U 4 (8) 1.9 GHz 4.2 GHz 3.9 GHz UHD 620 300 MHz 1150 MHz 8 MB 12 15 W 25 W 10 W Q3 2017 $409
8550U 1.8 GHz 4.0 GHz 3.7 GHz
Core i5 8350U 1.7 GHz 3.6 GHz 1100 MHz 6 MB $297
8250U 1.6 GHz 3.4 GHz

Coffee Lake microarchitecture edit

Coffee Lake is a codename for the eighth generation Intel Core family and was launched in October 2017. For the first time in the ten-year history of Intel Core processors, the Coffee Lake generation features an increase in core counts across the desktop lineup of processors, a significant driver of improved performance versus previous generations despite similar per-clock performance.

Increase in number of CPU cores in desktop Coffee Lake processors
Kaby Lake
(7th Generation)
Coffee Lake
(8th Generation)
Cores / Threads Cores / Threads
Core i3 2 / 40 4 / 40
Core i5 4 / 40 6 / 60
Core i7 4 / 80 6 / 12

* Intel Hyper-threading capabilities allow an enabled processor to execute two threads per physical core

Coffee Lake features largely the same CPU core and performance per MHz as Skylake/Kaby Lake.[73][74] Features specific to Coffee Lake include:

  • Following similar refinements to the 14 nm process in Skylake and Kaby Lake, Coffee Lake is the third 14 nm process refinement ("14nm++") and features increased transistor gate pitch for a lower current density and higher leakage transistors which allows higher peak power and higher frequency at the expense of die area and idle power.
  • Coffee Lake will be used in conjunction with the 300-series chipset and is incompatible with the older 100- and 200-series chipsets.[75][76]
  • Increased L3 cache in accordance to the number of cores
  • Increased turbo clock speeds across i5 and i7 CPUs models (increased by up to 200 MHz)
  • Increased iGPU clock speeds by 50 MHz
  • DDR4 memory support updated for 2666 MHz (for i5 and i7 parts) and 2400 MHz (for i3 parts); DDR3 memory is no longer supported
Desktop processors (S-Series)
Processor
branding
Model Cores

(threads)

Base CPU
clock rate
Turbo clock rate[77] [GHz] GPU max GPU
clock rate
L3
cache
TDP Memory
support
Price
(USD)
Number of cores used
1 2 3 4 5 6
Core i7 8086K 6 (12) 4.0 GHz 5.0 4.6 4.5 4.4 4.3 UHD 630 1.20 GHz 12 MB 95 W DDR4

2666

$425
8700K 3.7 GHz 4.7 $359
8700 3.2 GHz 4.6 4.5 4.4 4.3 65 W $303
8700T 2.4 GHz 4.0 4.0 3.9 3.8 35 W
Core i5 8600K 6 (6) 3.6 GHz 4.3 4.2 4.1 1.15 GHz 9 MB 95 W $257
8600 3.1 GHz 65 W $213
8600T 2.3 GHz 3.7 3.6 3.5 35 W
8500 3.0 GHz 4.1 4.0 3.9 1.10 GHz 65 W $192
8500T 2.1 GHz 3.5 3.4 3.3 3.2 35 W
8400 2.8 GHz 4.0 3.9 3.8 1.05 GHz 65 W $182
8400T 1.7 GHz 3.3 3.2 3.1 3.0 35 W
Core i3 8350K 4 (4) 4.0 GHz 1.15 GHz 8 MB 91 W DDR4

2400

$168
8300 3.7 GHz 62 W $138
8300T 3.2 GHz 35 W
8100 3.6 GHz 1.10 GHz 6 MB 65 W $117
8100T 3.1 GHz 35 W

* Processors Core i3-8100 and Core i3-8350K with stepping B0 actually belong to "Kaby Lake-S" family

Mobile processors (H-Series)
Processor

branding

Model Cores

(threads)

CPU

clock rate

Max. Turbo

clock rate

GPU GPU clock rate L3

cache

TDP cTDP Price

(USD)

Base Max. Down Up
Core i7 8850H 6 (12) 2.6 GHz 4.3 GHz UHD 630 350 MHz 1.15 GHz 9 MB 45 W 35 W N/A $395
8750H 2.2 GHz 4.1 GHz 1.10 GHz
8700B 3.2 GHz 4.6 GHz 1.20 GHz 12 MB 65 W $303
Core i5 8500B 6 (6) 3.0 GHz 4.1 GHz 1.10 GHz 9 MB $192
8400B 2.8 GHz 4.0 GHz 1.05 GHz $182
8400H 4 (8) 2.5 GHz 4.2 GHz 1.10 GHz 8 MB 45 W $250
8300H 2.3 GHz 4.0 GHz 1.00 GHz $250
Core i3 8100H 4 (4) 3.0 GHz N/A 6 MB $225
Mobile processors (U-Series)
Processor

branding

Model Cores

(threads)

CPU

clock rate

Max. Turbo

clock rate

GPU GPU clock rate L3

cache

L4 cache

(eDRAM)

TDP cTDP Price

(USD)

Base Max. Down Up
Core i7 8559U 4 (8) 2.7 GHz 4.5 GHz Iris Plus 655 300 MHz 1.20 GHz 8 MB 128 MB 28 W 20 W N/A $431
Core i5 8269U 2.6 GHz 4.2 GHz 1.10 GHz 6 MB $320

8259U

2.3 GHz 3.8 GHz 1.05 GHz N/A
Core i3 8109U 2 (4) 3.0 GHz 3.6 GHz UHD 630 1.10 GHz 4 MB

Amber Lake microarchitecture edit

Amber Lake is a refinement over the low power Mobile Kaby Lake CPUs.

Mobile Processors (Y-Series)
Processor

branding

Model Cores

(threads)

CPU clock rate GPU Max GPU

clock rate

L3

cache

TDP cTDP Price
Base Max turbo Up Down
Core i7 8510Y July 28, 2020, at the Wayback Machine 2 (4) 1.8 GHz 3.9 GHz UHD 617 1050 MHz 4 MB 7 W N/A $393
8500Y 1.5 GHz 4.2 GHz UHD 615 5 W 7 W 3.5 W $393
Core i5 8310Y 1.6 GHz 3.9 GHz UHD 617 7 W N/A $281
8210Y 3.6 GHz
8200Y 1.3 GHz 3.9 GHz UHD 615 950 MHz 5 W 7 W 3.5 W $291
Core m3 8100Y 1.1 GHz 3.4 GHz 900 MHz 8 W 4.5 W $281

Whiskey Lake microarchitecture edit

Whiskey Lake is Intel's codename for the third 14 nm Skylake process-refinement, following Kaby Lake Refresh and Coffee Lake. Intel announced low power mobile Whiskey Lake CPUs availability on August 28, 2018.[78][79] It has not yet been advertised whether this CPU architecture contains hardware mitigations for Meltdown/Spectre class vulnerabilities—various sources contain conflicting information.[80][81][79][82] Unofficially it was announced that Whiskey Lake has hardware mitigations against Meltdown and L1TF while Spectre V2 requires software mitigations as well as microcode/firmware update.[83][84][85][86]

Architecture changes compared to Kaby Lake Refresh edit
  • 14++ nm process, same as Coffee Lake
  • Increased turbo clocks (300–600 MHz)
  • 14 nm PCH
  • Native USB 3.1 gen 2 support (10 Gbit/s)
  • Integrated 802.11ac 160 MHz Wi-Fi and Bluetooth 5.0
  • Intel Optane Memory support
Mobile processors (U-Series)
Processor

branding

Model Cores

(threads)

CPU

clock rate

Turbo clock GHz

Num of cores

GPU Max GPU

clock rate

L3

cache

cTDP Memory Price
1 2 4 Up Down
Core i7 8665U 4 (8) 1.9 GHz 4.8 UHD
620
1150 MHz 8 MB 25 W 10 W DDR4-2400

LPDDR3-2133

$409
8565U 1.8 GHz 4.6 4.5 4.1 $409
Core i5 8365U 1.6 GHz 4.1 1100 MHz 6 MB $297
8265U 3.9 3.9 3.7 $297
Core i3 8145U 2 (4) 2.1 GHz 3.9 3.7 1000 MHz 4 MB $281

Cannon Lake microarchitecture edit

Cannon Lake (formerly Skymont) is Intel's codename for the 10-nanometer die shrink of the Kaby Lake microarchitecture. As a die shrink, Cannon Lake is a new process in Intel's "process–architecture–optimization" execution plan as the next step in semiconductor fabrication.[87] Cannon Lake are the first mainstream CPUs to include the AVX-512 instruction set. In comparison to the previous generation AVX2 (AVX-256), the new generation AVX-512 most notably provides double the width of data registers and double the number of registers. These enhancements would allow for twice the number of floating point operations per register due to the increased width in addition to doubling the overall number of registers, resulting in theoretical performance improvements of up to four times the performance of AVX2.[88][89]

At CES 2018, Intel announced that they had started shipping mobile Cannon Lake CPUs at the end of 2017 and that they would ramp up production in 2018.[90][91][92] No further details were disclosed.

Architecture changes compared to Coffee Lake edit
  • AVX-512 instruction set extension
  • Intel's first 10 nm process technology

Mobile processors (U-Series) edit

Mobile processors (U-Series)
Processor

branding

Model Cores

(threads)

CPU

clock rate

CPU Turbo

clock rate

GPU GPU clock rate L3

cache

TDP cTDP Price

(USD)

Base Max. Down
Core i3 8121U[93][94] 2 (4) 2.2 GHz 3.2 GHz N/A 4 MB 15 W N/A ?

9th generation edit

Skylake microarchitecture edit

The 9th generation Skylake CPUs are updated versions of previous Skylake X-Series CPUs with clockspeed improvements.

High-end Desktop processors (X-Series)
Processor branding Model Cores/Threads Base Clock Single Core Turbo Clock L3 cache TDP Price
Core i9 9980XE 18/36 3.0 GHz 4.5 GHz 24.75 MB 165 W $1979
9960X 16/32 3.1 GHz 22 MB $1684
9940X 14/28 3.3 GHz 19.25 MB $1387
9920X 12/24 3.5 GHz $1189
9900X 10/20 $989
9820X 3.3 GHz 4.2 GHz 16.5 MB $889
Core i7 9800X 8/16 3.8 GHz 4.5 GHz $589

Coffee Lake Refresh microarchitecture edit

The 9th generation Coffee Lake CPUs were released in the fourth quarter of 2018. They include hardware mitigations against certain Meltdown/Spectre vulnerabilities.[95][96]

For the first time in Intel consumer CPU history, these CPUs support up to 128 GB RAM.[97]

Increase in number of CPU cores in desktop 9th Generation processors
8th Generation 9th Generation
Cores / Threads Cores / Threads
Core i3 4 / 40 4 / 40
Core i5 6 / 60 6 / 60
Core i7 6 / 12 8 / 8
Core i9 8 / 16

* Intel Hyper-threading capabilities allow an enabled processor to execute two threads per physical core

Even though the F suffix CPUs lack an integrated GPU, Intel set the same price for these CPUs as their featureful counterparts.[98]

Desktop processors (S-Series)
Processor
branding
Model Cores

(Threads)

Base CPU
clock rate
Turbo clock rate[99] [GHz] GPU max GPU
clock rate
L3
cache
TDP Memory

support

Price
(USD)
Number of cores used
1 2 3 4 5 6 7 8
Core i9 9900KS 8 (16) 4.0 GHz 5.0 UHD 630 1.20 GHz 16 MB 127 W * DDR4-2666 $524
9900K 3.6 GHz 5.0 4.8 4.7 95 W * $488
9900KF
Core i7 9700K 8 (8) 3.6 GHz 4.9 4.8 4.7 4.6 UHD 630 1.20 GHz 12 MB 95 W $374
9700KF
Core i5 9600K 6 (6) 3.7 GHz 4.6 4.5 4.4 4.3 UHD 630 1.15 GHz 9 MB $262
9600KF
9400 2.9 GHz 4.1 UHD 630 1.05 GHz 65 W $182
9400F
Core i3 9350KF 4 (4) 4.0 GHz 4.6 8 MB 91 W DDR4-2400 $173
9100F 3.6 GHz 4.2 6 MB 65 W $122
9100 UHD 630 1.1 GHz

* various reviews show that the Core i9 9900K CPU may consume over 140 W under load. The Core i9 9900KS may consume even more.[100][101][102][103]

Mobile processors (H-Series)
Processor
branding
Model Cores

(Threads)

Base CPU
clock rate
Single Core Turbo clock rate [GHz] GPU Max GPU
clock rate
L3
cache
TDP Memory
support
Price
(USD)
Core i9 9980HK 8 (16) 2.4 GHz 5.0 HD 630 1.25 GHz 16 MB 45 W DDR4-2666 $583
9880H 2.3 GHz 4.8 1.20 GHz $556
Core i7 9850H 6 (12) 2.6 GHz 4.6 1.15 GHz 12 MB $395
9750H 4.5
Core i5 9400H 4 (8) 2.5 GHz 4.3 1.10 GHz 8 MB $250
9300H 2.4 GHz 4.1 1.05 GHz

10th generation edit

Cascade Lake microarchitecture edit

Cascade Lake X-Series CPUs are the 10th generation versions of the previous Skylake X-Series CPUs. They offer minor clockspeed improvements and a highly reduced price.

High-end Desktop processors (X-Series)
Processor branding Model Cores/Threads Base Clock Single Core Turbo Clock All Core Turbo Clock L3 cache TDP Price
Core i9 10980XE 18/36 3.0 GHz 4.8 GHz 3.8 GHz 24.75 MB 165 W $979
10940X 14/28 3.3 GHz 4.1 GHz 19.25 MB $784
10920X 12/24 3.5 GHz 4.3 GHz $689
10900X 10/20 3.7 GHz 4.7 GHz $590

Ice Lake microarchitecture edit

Ice Lake is codename for Intel's 10th generation Intel Core processors, representing an enhancement of the 'architecture' of the preceding generation Kaby Lake/Cannon Lake processors (as specified in Intel's process–architecture–optimization execution plan). As the successor to Cannon Lake, Ice Lake uses Intel's newer 10 nm+ fabrication process, and is powered by the Sunny Cove microarchitecture.

Ice Lake are the first Intel CPUs to feature in-silicon mitigations for the hardware vulnerabilities discovered in 2017, Meltdown and Spectre. These side-channel attacks exploit branch prediction's use of speculative execution. These exploits may cause the CPU to reveal cached private information which the exploiting process is not intended to be able to access as a form of timing attack.[citation needed]

Features edit

CPU edit
GPU edit
Package edit
  • 10 nm+ transistors
  • New memory controller with DDR4 3200 and LPDDR4X 3733 support
  • Integrated support for Wi-Fi 6 (802.11ax)
  • Thunderbolt 3 support[114]

Mobile processors (U-Series) edit

Processor
branding
Model Cores
(threads)
Base CPU
clock rate
Turbo clock GHz

Num of cores

GPU L3
cache
TDP cTDP Price
1 2 4 Series EUs Max clock
rate
Up Down
Core i7 1065G7 4 (8) 1.3 GHz 3.9 3.5 Iris Plus 64 1.1 GHz 8 MiB 15 W 25 W 12 W $426
Core i5 1035G7 1.2 GHz 3.7 3.3 1.05 GHz 6 MiB 15 W 25 W 12 W $320
1035G4 1.1 GHz 48 $309
1035G1 1.0 GHz 3.6 UHD 32 13 W $297
Core i3 1005G1 2 (4) 1.2 GHz 3.4 UHD 32 0.9 GHz 4 MiB 15 W 25 W 13 W $281

Mobile processors (Y-Series) edit

Processor
branding
Model Cores
(threads)
Base CPU
clock rate
Turbo clock GHz

Num of cores

GPU L3
cache
TDP cTDP Price
1 2 4 Series EUs Max clock
rate
Up Down
Core i7 1060G7 4 (8) 1.0 GHz 3.8 3.4 Iris Plus 64 1.1 GHz 8 MiB 9 W 12 W
Core i5 1030G7 0.8 GHz 3.5 3.2 Iris Plus 64 6 MiB 9 W 12 W
1030G4 0.7 GHz 48
Core i3 1000NG4 2 (4) 1.1 GHz 3.2 Iris Plus 48 0.9 GHz 4 MiB 9 W

1000G4

12 W
1000G1 UHD 32

Comet Lake microarchitecture edit

Comet Lake is Intel's codename for the fourth 14 nm Skylake process-refinement, following Whiskey Lake. Intel announced low power mobile Comet Lake CPUs availability on August 21, 2019.[115]

Architecture changes in Comet Lake-U compared to Whiskey Lake edit

  • Up to six CPU cores; L3 cache up to 12 MiB
  • Higher turbo frequencies
  • LPDDR4x 2933 memory support
  • Wi-Fi 6 AX201 support (Depends on PCH chipset)[116]
Increase in number of CPU cores in desktop 10th generation processors
9th generation 10th generation
Cores / threads Cores / threads
Core i3 4 / 4 4 / 8
Core i5 6 / 6 6 / 12
Core i7 8 / 8 8 / 16
Core i9 8 / 16 10 / 20

Desktop processors (S-Series) edit

Processor
branding
Model Cores

(Threads)

CPU clock rate (GHz) GPU Smart
cache

(MB)

TDP Memory
support
Price
(USD)
Base All-Core

Turbo

Turbo

Boost 2.0

Turbo Boost

Max 3.0

Model max

clock

rate

(GHz)

Down Base
Core i9 10900K 10 (20) 3.7 4.8 5.1 5.2 UHD

630

1.20 20 95 125 DDR4-2933

2-channel

up to 128 GB

$488
10900KF $472
10910 3.6 4.7 5.0 UHD

630

1.20 OEM
10900 2.8 4.5 5.1 65 $438
10900F $422
10900T 1.9 3.7 4.5 4.6 UHD

630

1.20 25 35 $438
10850K 3.6 4.7 5.0 5.1 95 125 $453
Core i7 10700K 8 (16) 3.8 16 $374
10700KF $349
10700 2.9 4.6 4.7 4.8 UHD

630

1.20 65 $323
10700F $298
10700T 2.0 3.7 4.4 4.5 UHD

630

1.20 25 35 $325
Core i5 10600K 6 (12) 4.1 4.5 4.8 12 95 125 DDR4-2666

2-channel

up to 128 GB

$262
10600KF $237
10600 3.3 4.4 4.8 UHD

630

1.20 65 $213
10600T 2.4 3.7 4.0 25 35
10500 3.1 4.2 4.5 1.15 65 $192
10500T 2.3 3.5 3.8 25 35
10400 2.9 4.0 4.3 1.10 65 $182
10400F $157
10400T 2.0 3.2 3.6 UHD

630

1.10 25 35 $182
Core i3 10320 4 (8) 3.8 4.4 4.6 1.15 8 65 $154
10300 3.7 4.2 4.4 $143
10300T 3.0 3.6 3.9 1.10 25 35
10100 3.6 4.1 4.3 6 65 $122
10100F $79 - $97
10100T 3.0 3.5 3.8 UHD

630

1.10 25 35 p

Mobile processors (H-Series) edit

Processor

branding

Model Cores

(Threads)

CPU clock speed (GHz) GPU Smart

cache

(MB)

TDP

(W)

Memory

support

Price

(USD)

Base Max.

Turbo

Model Max.

freq.

(GHz)

Down Base Up
Core i9 10980HK 8 (16) 2.4 5.3 UHD 630 1.25 16 45 65 DDR4-2933

2-channel

up to 128 GB

$583
10885H 35 $556
Core i7 10875H 2.3 5.1 1.20 $450
10870H 2.2 5.0 $417
10850H 6 (12) 2.7 5.1 1.15 12 $395
10750H 2.6 5.0
Core i5 10500H 2.5 4.5 1.05 $250
10400H 4 (8) 2.6 4.6 1.10 8
10300H 2.5 4.5 1.05
10200H 2.4 4.1 UHD 610

Mobile processors (U-Series) edit

Processor

branding

Model Cores

(Threads)

CPU clock speed (GHz) GPU L3

cache

(MB)

TDP Memory

support

Price

(USD)

Base Max.

Turbo

Model Max.

freq.

Down Base Up
Core i7 10810U 6 (12) 1.1 4.9 UHD

620

1.15 12 12.5 15 25 DDR4-2666

LPDDR3-2133

$443
10710U 4.7
10610U 4 (8) 1.8 4.9 8 10 $409
10510U
Core i5 10310U 1.7 4.4 6 $297
10210U 1.6 4.2 1.10
Core i3 10110U 2 (4) 2.1 4.1 1.00 4 $281

Comet Lake Refresh microarchitecture edit

Processor
branding
Model Cores

(Threads)

CPU clock rate (GHz) GPU Smart
cache

(MB)

TDP Memory
support
Price
(USD)
Base All-Core

Turbo

Turbo

Boost 2.0

Model Max.

freq.

Down Base
Core i5 10505 6 (12) 3.2 4.3 4.6 UHD

630

1.2 12 N/A 65 DDR4-2666

2-channel

up to 128 GB

$192
Core i3 10325 4 (8) 3.9 4.5 4.7 1.15 8 65 $154
10305 3.8 4.3 4.5 $143
10305T 3.0 3.7 4.0 1.10 25 35
10105 3.7 4.2 4.4 6 65 $122
10105F $97
10105T 3.0 3.6 3.9 UHD

630

1.10 25 35 $122

Amber Lake Refresh microarchitecture edit

List of Amber Lake Refresh Y-series processors
Processor branding Model Cores (threads) CPU clock rate Turbo Boost clock rate GPU Max GPU clock rate L3 cache TDP cTDP Memory Price
1 core 2 cores 4 cores Up Down
Core i7 10510Y 4 (8) 1.2 GHz 4.5 GHz 3.2 GHz UHD for 10th Gen Processors 1150 MHz 8 MB 7 W 9 W 4.5 W LPDDR3-2133 US$403
Core i5 10310Y 1.1 GHz 4.1 GHz 2.8 GHz 1050 MHz 6 MB 5.5 W US$292
10210Y 1.0 GHz 4.0 GHz 2.7 GHz 4.5 W
Core i3 10110Y 2 (4) 3.7 GHz 1000 MHz 4 MB 5.5 W US$287

11th generation edit

Tiger Lake edit

Launched on September 2, 2020.

Architecture changes compared to Ice Lake edit

CPU edit

  • Intel Willow Cove CPU cores[117]
  • Larger level two and level three (L2/L3) caches
  • A new AVX-512 instruction: Vector Pair Intersection to a Pair of Mask Registers, VP2INTERSECT[118][119]
  • Control Flow Enforcement Technology to prevent Return Oriented Programming and Jump Oriented Programming hacking techniques[120]
  • Full memory (RAM) encryption[121]
  • Indirect branch tracking and shadow stack[122]
  • Intel Key Locker[123][124]
  • AVX/AVX2 instructions support for Pentium Gold and Celeron processors has been unlocked

GPU edit

I/O edit

  • PCI Express 4.0[134] (Pentium and Celeron CPUs are limited to PCI Express 3.0)
  • Thunderbolt 4 (includes USB4)
  • LPDDR4X-4267 memory support
  • LPDDR5-5400 "architecture capability" (Intel expects Tiger Lake products with LPDDR5 to be available around Q1 2021)[135][136][137] Designs with LPDDR5 memory are yet to be announced as of March 2022.

Miniaturization of CPU and motherboard into an M.2 SSD-sized small circuit board[126]

Mobile processors (Tiger Lake-H) edit

  • All models support DDR4-3200 memory
  • All models support 20 reconfigurable PCI Express 4.0 lanes, allowing x16 Gen 4 link for discrete GPU and x4 Gen 4 link for M.2 SSDs
Processor

branding

Model Cores

(threads)

Base freq at TDP Max Turbo freq, active cores UHD Graphics Smart

cache

TDP Price
@35 W @45 W @65 W 1 or 2 4 6 All EUs Max freq
Core i9 11980HK 8 (16) 2.6 GHz 3.3 GHz 5.0 GHz 4.9 GHz 4.7 GHz 4.5 GHz 32 1.45 GHz 24 MB 45-65 W $583
11950H vPro 2.1 GHz N/A 35-45 W $556
11900H 2.5 GHz 4.9 GHz 4.8 GHz 4.6 GHz 4.4 GHz $546
Core i7 11850H vPro 4.8 GHz 4.8 GHz 4.6 GHz 4.3 GHz $395
11800H 1.9 GHz 2.3 GHz 4.6 GHz 4.5 GHz 4.4 GHz 4.2 GHz
Core i5 11500H vPro 6 (12) 2.4 GHz 2.9 GHz 4.6 GHz 4.4 GHz 4.2 GHz 12 MB $250
11400H 2.2 GHz 2.7 GHz 4.5 GHz 4.3 GHz 4.1 GHz 16
11260H 2.1 GHz 2.6 GHz 4.4 GHz 4.2 GHz 4.0 GHz 1.40 GHz

Mobile processors (Tiger Lake-H35) edit

  • All models support DDR4-3200 or LPDDR4X-4267 memory
Processor

branding

Model Cores

(threads)

Base freq at TDP Max Turbo freq

active cores

Iris Xe Graphics Smart

cache

TDP Price
@28 W @35 W 1 2 All EUs Max freq
Core i7 11390H 4 (8) 2.9 GHz 3.4 GHz 5.0 GHz 4.6 GHz 96 1.40 GHz 12 MB 28-35 W $426
11375H 3.0 GHz 3.3 GHz 5.0 GHz 4.8 GHz 4.3 GHz 1.35 GHz $482
11370H 4.8 GHz $426
Core i5 11320H 2.5 GHz 3.2 GHz 4.5 GHz 8 MB $309
11300H 2.6 GHz 3.1 GHz 4.4 GHz 4.0 GHz 80 1.30 GHz

Mobile processors (UP3-class) edit

Processor

branding

Model Cores

(threads)

Base freq at TDP Max Turbo freq GPU Smart

cache

TDP Memory

support

Price
@12 W @15 W @28 W 1 Core All Cores Series EUs Max freq
Core i7 1195G7 4 (8) 1.3 GHz 2.9 GHz 5.0 GHz 4.6 GHz Iris Xe 96 1.40 GHz 12 MB 12-28 W DDR4-3200

LPDDR4X-4267

$426
1185G7 vPro 1.2 GHz 1.8 GHz[136] 3.0 GHz 4.8 GHz 4.3 GHz 1.35 GHz
1165G7 1.2 GHz 1.7 GHz 2.8 GHz 4.7 GHz 4.1 GHz 1.30 GHz
Core i5 1155G7 1.0 GHz 2.5 GHz 4.5 GHz 4.3 GHz 80 1.35 GHz 8 MB $309
1145G7 vPro 1.1 GHz 1.5 GHz 2.6 GHz 4.4 GHz 3.8 GHz 1.30 GHz
1135G7 0.9 GHz 1.4 GHz 2.4 GHz 4.2 GHz 3.8 GHz
Core i3 1125G4 2.0 GHz 3.7 GHz 3.3 GHz UHD 48 1.25 GHz DDR4-3200

LPDDR4X-3733

$281
1115G4 2 (4) 1.7 GHz 2.2 GHz 3.0 GHz 4.1 GHz 6 MB

Embedded mobile processors (UP3-class) edit

Processor

branding

Model Cores

(threads)

Base freq at TDP Max

Turbo freq

GPU Smart

cache

TDP Memory support Price
@12 W @15 W @28 W Series EUs Max freq Type ECC
Core i7 1185GRE vPro 4 (8) 1.2 GHz 1.8 GHz 2.8 GHz 4.4 GHz Iris Xe 96 1.35 GHz 12 MB 15 W DDR4-3200

LPDDR4X-4267

Yes $490
1185G7E vPro No $431
Core i5 1145GRE vPro 1.1 GHz 1.5 GHz 2.6 GHz 4.1 GHz 80 1.30 GHz 8 MB Yes $362
1145G7E vPro No $312
Core i3 1115GRE 2 (4) 1.7 GHz 2.2 GHz 3.0 GHz 3.9 GHz UHD 48 1.25 GHz 6 MB DDR4-3200

LPDDR4X-3733

Yes $338
1115G4E No $285

Mobile processors (UP4-class) edit

Processor

branding

Model Cores

(threads)

Base freq at TDP Max Turbo freq GPU Smart

cache

TDP Memory

support

Price
@7 W @9 W @15 W 1 Core All Cores Series EUs Max freq
Core i7 1180G7 vPro 4 (8) 0.9 GHz 2.2 GHz 4.6 GHz Iris Xe 96 1.10 GHz 12 MB 7-15 W LPDDR4X-4267 $426
1160G7 1.2 GHz 2.1 GHz 4.4 GHz 3.6 GHz
Core i5 1140G7 vPro 0.8 GHz 1.8 GHz 4.2 GHz 80 8 MB $309
1130G7 1.1 GHz 4.0 GHz 3.4 GHz
Core i3 1120G4 1.5 GHz 3.5 GHz 3.0 GHz UHD 48 $281
1110G4 2 (4) 1.5 GHz 1.8 GHz 2.5 GHz 3.9 GHz 6 MB

Desktop/tablet processors (Tiger Lake-B) edit

  • Socket: FCBGA1787, a BGA socket, thus these CPUs are meant only for system integrators
  • Intel Xe UHD Graphics
  • Up to 128 GB DDR4-3200 memory
  • Was initially incorrectly listed as having a 5.3 GHz TVB boost frequency.[138]
Processor

branding

Model Cores

(threads)

Base / Boost Clocks (GHz) L3 cache

(MB)

TDP GPU

EU

GPU

Max freq

Price
Core i9 11900KB 8 (16) 3.3 / 4.9 24 65 W 32 1.45 GHz $539
Core i7 11700B 3.2 / 4.8
Core i5 11500B 6 (12) 3.3 / 4.6 12
Core i3 11100B 4 (8) 3.6 / 4.4 16 1.4 GHz

Rocket Lake microarchitecture edit

Rocket Lake is a codename for Intel's desktop x86 chip family based on the new Cypress Cove microarchitecture, a variant of Sunny Cove (used by Intel's Ice Lake mobile processors) backported to the older 14 nm process.[139] The chips are marketed as "Intel 11th generation Core". Launched March 30, 2021.

Architecture changes in comparison with Comet Lake edit

CPU edit

GPU edit

I/O edit

Desktop processors edit

  • All CPUs listed below support DDR4-3200 natively. The Core i9 K/KF processors enable a 1:1 ratio of DRAM to memory controller by default at DDR4-3200, whereas the Core i9 non K/KF and all other CPUs listed below enable a 2:1 ratio of DRAM to memory controller by default at DDR4-3200 and a 1:1 ratio by default at DDR4-2933.[151]
  • All CPUs support up to 128 GiB of RAM in dual channel mode
  • Core i9 CPUs (except 11900T) support Intel Thermal Velocity Boost technology
Processor
branding
Model Cores

(Threads)

Base

clock rate

All-Core

Turbo

Turbo

Boost 2.0

Turbo Boost

Max 3.0

GPU max GPU
clock rate
Smart
cache
TDP Price
(USD)
Core i9 11900K 8 (16) 3.5 GHz 4.8 GHz 5.1 GHz 5.2 GHz UHD 750 1.3 GHz 16 MiB 125 W $539
11900KF - $513
11900 2.5 GHz 4.7 GHz 5.0 GHz 5.1 GHz UHD 750 1.3 GHz 65 W $439
11900F - $422
11900T 1.5 GHz 3.7 GHz 4.8 GHz 4.9 GHz UHD 750 1.3 GHz 35 W $439
Core i7 11700K 3.6 GHz 4.6 GHz 4.9 GHz 5.0 GHz 125W $399
11700KF - $374
11700 2.5 GHz 4.4 GHz 4.8 GHz 4.9 GHz UHD 750 1.3 GHz 65W $323
11700F - $298
11700T 1.4 GHz 3.6 GHz 4.5 GHz 4.6 GHz UHD 750 1.3 GHz 35 W $323
Core i5 11600K 6 (12) 3.9 GHz 4.6 GHz 4.9 GHz N/A 12 MiB 125 W $262
11600KF - $237
11600 2.8 GHz 4.3 GHz 4.8 GHz UHD 750 1.3 GHz 65 W $213
11600T 1.7 GHz 3.5 GHz 4.1 GHz 35 W
11500 2.7 GHz 4.2 GHz 4.6 GHz 65 W $192
11500T 1.5 GHz 3.4 GHz 3.9 GHz 1.2 GHz 35 W
11400 2.6 GHz 4.2 GHz 4.4 GHz UHD 730 1.3 GHz 65 W $182
11400F - $157
11400T 1.3 GHz 3.3 GHz 3.7 GHz UHD 730 1.2 GHz 35 W $182

12th generation edit

Alder Lake edit

Alder Lake is Intel's codename for the 12th generation of Intel Core processors based on a hybrid architecture utilizing Golden Cove high-performance cores and Gracemont power-efficient cores.[152]
It is fabricated using Intel's Intel 7 process, previously referred to as Intel 10 nm Enhanced SuperFin (10ESF).
Intel officially announced 12th Gen Intel Core CPUs on October 27, 2021, and was launched to the market on November 4, 2021.[153]

Architecture changes in comparison to Rocket Lake edit

CPU edit

  • Golden Cove high-performance "Performance-cores" (P-cores)
    • Dedicated floating-point adders[154]
    • New 6-wide instruction decoder (up from 4-wide in Rocket Lake/Tiger Lake) with the ability to fetch up to 32 bytes of instructions per cycle (up from 16)[154]
    • 12 execution ports (up from 10)
    • 512 reorder-buffer entries (up from 384)
    • 6-wide μOP allocations (up from 5)
    • μOP cache size increased to 4K entries (up from 2.25K)
    • AVX-VNNI, a VEX-coded variant of AVX512-VNNI for 256-bit vectors
    • AVX-512 (including FP16) is present but disabled by default to match E-cores. It still can be enabled on some motherboards by disabling the E-cores[154][155]
    • ~18% IPC uplift.[156]
  • Gracemont high-efficiency "Efficient-cores" (E-cores)
    • E-cores are organized in 4-core modules; L2 cache is shared between E-cores within a module
    • 256 reorder-buffer entries (up from 208 in Tremont)
    • 17 execution ports (up from 12)
    • AVX2, FMA and AVX-VNNI to catch up with P-cores
    • Skylake-like IPC.[156]
  • new instruction set extensions[157]
  • up to 1 TB/s interconnect between cores[154]
  • Intel Thread Director / Hardware Feedback Interface (HFI),[158][159] a hardware technology to assist the OS thread scheduler with more efficient load distribution between heterogeneous CPU cores.[136] Enabling this new capability requires support in operating systems. Microsoft added support for Thread Director to Windows 11,[154][160] while support to Linux was merged in kernel 5.18.[159][161]
  • up to 30 MB L3 cache[154]
  • nomenclature:
    • up to 8 P-cores and 8 E-cores on desktop[156]
    • up to 6 P-cores and 8 E-cores on mobile (UP3 designs)[156]
    • up to 2 P-cores and 8 E-cores on ultra mobile (UP4 designs)[156]
  • only P-cores feature Hyper-threading

GPU edit

  • Intel Xe (Gen12.2) GPU
  • up to 96 EU on mobile and 32 EU on desktop[154]

I/O edit

Desktop processors (Alder Lake-S) edit

  • All the CPUs support up to 128 GB of DDR4-3200 or DDR5-4800 RAM in dual channel mode.[165]
  • Some models feature integrated UHD Graphics 770, UHD Graphics 730 or UHD Graphics 710 GPU with 32/24/16 EUs and base frequency of 300 MHz.
  • By default Alder Lake CPUs are configured to run at Turbo Power at all times and Base Power is only guaranteed when P-Cores/E-cores do not exceed the base clock rate.[154]
  • Max Turbo Power: the maximum sustained (> 1 s) power dissipation of the processor as limited by current and/or temperature controls. Instantaneous power may exceed Maximum Turbo Power for short durations (≤ 10 ms). Maximum Turbo Power is configurable by system vendor and can be system specific.
  • CPUs in bold below feature ECC memory support only when paired with a motherboard based on the W680 chipset.[166]


*By default, Core i9 12900KS achieves 5.5 GHz only when using Thermal Velocity Boost[167]

Processor
branding
Model Cores
(threads)
Base
clock rate
Turbo
Boost
2.0
Turbo
Max 3.0
GPU Smart
cache
Power Price
(USD)
P E P E P E P Model Max.
clock rate
Base Turbo
Core i9 12900KS 8 (16) 8 (8) 3.4 GHz 2.5 GHz 5.2 GHz 4.0 GHz 5.3 GHz UHD 770 1.55 GHz 30 MB 150 W 241 W $739
12900K 3.2 GHz 2.4 GHz 5.1 GHz 3.9 GHz 5.2 GHz 125 W $589
12900KF $564
12900 2.4 GHz 1.8 GHz 5.0 GHz 3.8 GHz 5.1 GHz UHD 770 1.55 GHz 65 W 202 W $489
12900F $464
12900T 1.4 GHz 1.0 GHz 4.8 GHz 3.6 GHz 4.9 GHz UHD 770 1.55 GHz 35 W 106 W $489
Core i7 12700K 4 (4) 3.6 GHz 2.7 GHz 4.9 GHz 3.8 GHz 5.0 GHz 1.50 GHz 25 MB 125 W 190 W $409
12700KF $384
12700 2.1 GHz 1.6 GHz 4.8 GHz 3.6 GHz 4.9 GHz UHD 770 1.50 GHz 65 W 180 W $339
12700F $314
12700T 1.4 GHz 1.0 GHz 4.6 GHz 3.4 GHz 4.7 GHz UHD 770 1.50 GHz 35 W 99 W $339
Core i5 12600K 6 (12) 3.7 GHz 2.8 GHz 4.9 GHz 3.6 GHz 1.45 GHz 20 MB 125 W 150 W $289
12600KF $264
12600 3.3 GHz 4.8 GHz UHD 770 1.45 GHz 18 MB 65 W 117 W $223
12600T 2.1 GHz 4.6 GHz 35 W 74 W
12500 3.0 GHz 65 W 117 W $202
12500T 2.0 GHz 4.4 GHz 35 W 74 W
12490F[168] 3.0 GHz 4.6 GHz 20 MB 65 W 117 W China
exclusive
12400 2.5 GHz 4.4 GHz UHD 730 1.45 GHz 18 MB $192
12400F $167
12400T 1.8 GHz 4.2 GHz UHD 730 1.45 GHz 35 W 74 W $192
Core i3 12300 4 (8) 3.5 GHz 4.4 GHz 12 MB 60 W 89 W $143
12300T 2.3 GHz 4.2 GHz 35 W 69 W
12100 3.3 GHz 4.3 GHz 1.40 GHz 60 W 89 W $122
12100F 58 W $97
12100T 2.2 GHz 4.1 GHz UHD 730 1.40 GHz 35 W 69 W $122

Extreme-performance Mobile Processors (Alder Lake-HX) edit

  • Bold indicates ECC memory support
Processor
branding
Model Cores
(threads)
Base
clock rate
Turbo
Boost
2.0
UHD Graphics Smart
cache
Power Price
(USD)
P E P E P E EUs Max. freq. Base Turbo
Core i9 12950HX 8 (16) 8 (8) 2.3 GHz 1.7 GHz 5.0 GHz 3.6 GHz 32 1.55 GHz 30 MB 55 W 157 W $590
12900HX $606
Core i7 12850HX 2.1 GHz 1.5 GHz 4.8 GHz 3.4 GHz 1.45 GHz 25 MB $428
12800HX 2.0 GHz $457
12650HX 6 (12) 4.7 GHz 3.3 GHz 24 MB
Core i5 12600HX 4 (8) 2.5 GHz 1.8 GHz 4.6 GHz 1.35 GHz 18 MB $284
12450HX 4 (4) 2.4 GHz 4.4 GHz 3.1 GHz 16 1.30 GHz 12 MB

High-performance Mobile Processors (Alder Lake-H) edit

Processor
branding
Model

Cores
(threads)

Base
clock rate
Turbo
Boost
2.0
Iris Xe Graphics Smart
cache
Base

Power

Turbo
power
Price
(USD)
P-cores E-cores P-cores E-cores P-cores E-cores EUs Max freq
Core i9 12900HK 6 (12) 8 (8) 2.5 GHz 1.8 GHz 5.0 GHz 3.8 GHz 96 1.45 GHz 24 MB 45 W 115 W $635
12900H $617
Core i7 12800H 2.4 GHz 4.8 GHz 3.7 GHz 1.4 GHz $457
12700H 2.3 GHz 1.7 GHz 4.7 GHz 3.5 GHz
12650H 4 (4) 64
Core i5 12600H 4 (8) 8 (8) 2.7 GHz 2.0 GHz 4.5 GHz 3.3 GHz 80 18 MB 95 W $311
12500H 2.5 GHz 1.8 GHz 1.3 GHz
12450H 4 (4) 2.0 GHz 1.5 GHz 4.4 GHz 48 1.2 GHz 12 MB

Low Power Performance Mobile Processors (Alder Lake-P) edit

Processor
branding
Model

Cores
(threads)

Base
clock rate
Turbo
Boost
2.0
Iris Xe Graphics Smart
cache
Base

Power

Turbo
power
Price
(USD)
P-cores E-cores P-cores E-cores P-cores E-cores EUs Max freq
Core i7 1280P 6 (12) 8 (8) 1.8 GHz 1.3 GHz 4.8 GHz 3.6 GHz 96 1.45 GHz 24 MB 28 W 64 W $482
1270P 4 (8) 2.2 GHz 1.6 GHz 3.5 GHz 1.40 GHz 18 MB $438
1260P 2.1 GHz 1.5 GHz 4.7 GHz 3.4 GHz
Core i5 1250P 1.7 GHz 1.2 GHz 4.4 GHz 3.3 GHz 80 12 MB $320
1240P 1.30 GHz
Core i3 1220P 2 (4) 1.5 GHz 1.1 GHz 64 1.10 GHz $281

Ultra Low Power Mobile Processors (Alder Lake-U) edit

Processor
branding
Model

Cores
(threads)

Base
clock rate
Turbo
Boost
2.0
Iris Xe Graphics Smart
cache
Base

power

Turbo
power
Price
(USD)
P-cores E-cores P-cores E-cores P-cores E-cores EUs Max freq
Core i7 1265U 2 (4) 8 (8) 1.8 GHz 1.3 GHz 4.8 GHz 3.6 GHz 96 1.25 GHz 12 MB 15 W 55 W $426
1260U 1.1 GHz 0.8 GHz 4.7 GHz 3.5 GHz 0.9 GHz 9 W 29 W
1255U 1.7 GHz 1.2 GHz 1.25 GHz 15 W 55 W $426
1250U 1.1 GHz 0.8 GHz 0.9 GHz 9 W 29 W
Core i5 1245U 1.6 GHz 1.2 GHz 4.4 GHz 3.3 GHz 80 1.2 GHz 15 W 55 W $309
1240U 1.1 GHz 0.8 GHz 0.9 GHz 9 W 29 W
1235U 1.3 GHz 0.9 GHz 1.2 GHz 15 W 55 W $309
1230U 1.0 GHz 0.7 GHz 0.9 GHz 9 W 29 W
Core i3 1215U 4 (4) 1.2 GHz 1.2 GHz 64 1.1 GHz 10 MB 15 W 55 W $281
1210U 1.0 GHz 0.7 GHz 0.85 GHz 9 W 29 W

13th generation edit

Raptor Lake is Intel's codename for the 13th generation of Intel Core processors and the second generation based on a hybrid architecture.[169]
It is fabricated using an improved version of Intel's Intel 7 process.[170] Intel launched Raptor Lake on October 22, 2022.

Architecture changes in comparison to Alder Lake edit

CPU edit

  • Raptor Cove high-performance "Performance Cores" (P-cores)[171]
    • 2 MiB of L2 cache per core (up from 1.28 MiB on Alder Lake)
    • Frequency increase of 600 Mhz
  • Gracemount high-efficiency cores "Efficiency Cores" (E-cores)[171]
    • Doubling of the shared L2 cache per cluster from 2 MiB to 4 MiB.
    • Doubling of E-Cores on most desktop processors
  • Up to 36 MiB of L3 cache[172]

GPU edit

  • Up to 1.65 GHz of maximum frequency on the i9 13900K[171]

I/O edit

  • LGA 1700 socket for desktop (same as Alder Lake)[173][171][174]
  • Intel 700 series chipset (backwards compatible with 600 series)[174]
  • 20 Pcie lanes from CPU
    • 16 Pcie Gen 5 lanes
    • 4 Pcie Gen 4 lanes
  • DDR5, DDR4, LPDDR5, and LPDDR4 support
    • Up to 192 GiB of RAM
    • Up to DDR4 3200 support
    • Up to DDR5 5600 support
    • XMP 3.0 support

Integrated Thunderbolt 4 and WiFi 6E support

Desktop Processors (Raptor Lake-S) edit

  • All CPUs support up to DDR5 4800 and 192 GiB of RAM
    • 13600 and better support DDR5 5600
    • 13500 and lower support DDR5 4800
  • Intel 600 and 700 chipset support with LGA 1700
    • Intel 600 Series chipsets require BIOS update to achieve support for Raptor Lake-S
  • First 6 GHz processor (13900KS)*

*By default, Core i9 13900KS achieves 6.0 GHz only when using Thermal Velocity Boost with sufficient power and cooling.

Processor

branding

Model Cores

(Threads)

Base

clock rate

Turbo

Boost 2.0

Turbo

Boost 3.0

Iris Xe Graphics Smart

cache

Power Price

(USD)

P-core E-core P-core E-core P-core E-core P-core EUs Max freq Base Turbo
Core i9 13900KS 8 (16) 16 (16) 3.2 GHz 2.4 GHz 5.4 GHz 4.3 GHz 5.8 GHz 32 1.65 GHz 36 MB 150 W 253 W $689
13900K 3.0 GHz 2.2 GHz 5.7 GHz 125 W $589
13900KF $564
13900 2.0 GHz 1.5 GHz 5.2 GHz 4.2 GHz 5.5 GHz 32 1.65 GHz 65 W 219 W $549
13900F $524
13900T 1.1 GHz 0.8 GHz 5.1 GHz 3.9 GHz 5.3 GHz 32 1.65 GHz 35 W 106 W $549
Core i7 13700K 8 (8) 3.4 GHz 2.5 GHz 5.3 GHz 4.2 GHz 5.4 GHz 1.60 GHz 30 MB 125 W 253 W $409
13700KF $384
13700 2.1 GHz 1.5 GHz 5.1 GHz 4.1 GHz 5.2 GHz 32 1.60 GHz 65 W 219 W
13700F $359
13700T 1.4 GHz 1.0 GHz 4.8 GHz 3.6 GHz 4.9 GHz 32 1.60 GHz 35 W 106 W $384
Core i5 13600K 6 (12) 3.5 GHz 2.6 GHz 5.1 GHz 3.9 GHz 1.50 GHz 24 MB 125 W 181 W $319
13600KF $294
13600 2.7 GHz 2.0 GHz 5.0 GHz 3.7 GHz 32 1.55 GHz 65 W 154 W $255
13600T 1.8 GHz 1.3 GHz 4.8 GHz 3.4 GHz 35 W 92 W
13500 2.5 GHz 1.8 GHz 3.5 GHz 65 W 154 W $232
13500T 1.6 GHz 1.2 GHz 4.6 GHz 3.2 GHz 35 W 92 W
13400 4 (4) 2.5 GHz 1.8 GHz 3.3 GHz 24 20 MB 65 W 148 W $221
13400F $196
13400T 1.3 GHz 1.0 GHz 4.4 GHz 3.0 GHz 24 1.55 GHz 35 W 82 W $221
Core i3 13100 4 (8) 3.4 GHz 4.5 GHz 1.50 GHz 12 MB 60 W 89 W $134
13100F 58 W $109
13100T 2.5 GHz 4.2 GHz 24 1.50 GHz 35 W 69 W $134

14th generation edit

Raptor Lake Refresh is Intel's codename for the 14th generation of Intel Core processors. It is a refresh and based on the same architecture of the 13th generation with clock speeds of up to 6 GHz on the Core i9 14900K and 14900KF, 5.6 GHz on the Core i7 14700K and 14700KF, and 5.3 GHz on the Core i5 14600K and 13400KF as well as UHD Graphics 770 on non-F processors. They are still based on the Intel 7 process node.[175] Introduced on October 17, 2023, these CPUs are designed for the LGA 1700 socket, which allows for compatibility with 600 and 700 series motherboards.[176]

The 14th generation CPU does not feature any major architectural changes over Raptor Lake, but does feature some minor improvements.[177] The 14th generation CPU is widely criticized as a last-ditch effort to beat AMD's Zen 4 with X3D V-Cache[178][179] as Intel's desktop version of the next generation architecture, Meteor Lake, was cancelled and the Arrow Lake architecture was not yet ready for release.[180]

Architecture comparison to 13th generation desktop[175][177] edit

  • Same LGA 1700 socket
    • 600 and 700 series chipsets require a BIOS update to support 14th generation CPU.
  • Same DDR4 and DDR5 support
    • DDR4-3200
    • DDR5-5600
  • Increased E-core count on i7s when compared to 13700K (added four E-cores)

Reception edit

Vulnerabilities edit

In early 2018, news reports indicated that the security flaws Meltdown and Spectre were found "in virtually all Intel processors [made in the past two decades] that will require fixes within Windows, macOS and Linux". The flaw also affected cloud servers. At the time, Intel was not commenting on this issue.[181][182] According to a New York Times report, "There is no easy fix for Spectre ... as for Meltdown, the software patch needed to fix the issue could slow down computers by as much as 30 percent".[183]

In mid 2018, the majority of Intel Core processors were found to possess a defect (the Foreshadow vulnerability), which undermines the Software Guard Extensions (SGX) feature of the processor.[184][185][186]

In March 2020, computer security experts reported another Intel chip security flaw, besides the Meltdown and Spectre flaws, with the systematic name CVE-2019-0090 (or, "Intel CSME Bug", referencing the Converged Security and Management Engine). This newly found flaw is not fixable with a firmware update, and affects nearly "all Intel chips released in the past five years".[187][188][189]

See also edit

References edit

  1. ^ . Intel. Archived from the original on December 5, 2010. Retrieved December 13, 2010.
  2. ^ a b Cao, Peter (June 15, 2023). "Intel drops 'i' processor branding after 15 years, introduces 'Ultra' for higher-end chips". Engadget. Retrieved June 17, 2023.
  3. ^ a b c Cutress, Ian. "The Ice Lake Benchmark Preview: Inside Intel's 10nm". www.anandtech.com. Retrieved October 23, 2020.
  4. ^ "Hiérarchie des caches - L'architecture Intel Nehalem - HardWare.fr". www.hardware.fr. Retrieved October 23, 2020.
  5. ^ Kanter, David. "Intel's Sandy Bridge Microarchitecture". Retrieved October 24, 2020.
  6. ^ "Willow Cove - Microarchitectures - Intel - WikiChip". en.wikichip.org. Retrieved October 23, 2020.
  7. ^ Cutress, Ian; Frumusanu, Andrei. "Intel's Tiger Lake 11th Gen Core i7-1185G7 Review and Deep Dive: Baskin' for the Exotic". www.anandtech.com. Retrieved November 8, 2020.
  8. ^ "Intel Core i7-5775C - CM8065802483301 / BX80658I75775C". www.cpu-world.com. Retrieved November 6, 2020.
  9. ^ "Noyau (suite) - L'architecture Intel Nehalem - HardWare.fr". www.hardware.fr. Retrieved October 23, 2020.
  10. ^ "File:broadwell buffer window.png - WikiChip". en.wikichip.org. Retrieved October 23, 2020.
  11. ^ "File:sunny cove buffer capacities.png - WikiChip". en.wikichip.org. Retrieved October 23, 2020.
  12. ^ a b c d e "Popping the Hood on Golden Cove". chipsandcheese.com. December 2, 2021. Retrieved April 12, 2023.
  13. ^ "Sunny Cove - Microarchitectures - Intel - WikiChip". en.wikichip.org. Retrieved November 4, 2020.
  14. ^ Kanter, David. "Intel's Sandy Bridge Microarchitecture". Retrieved November 9, 2020.
  15. ^ a b Shimpi, Anand Lal. "Intel's Haswell Architecture Analyzed: Building a New PC and a New Intel". www.anandtech.com. Retrieved November 9, 2020.
  16. ^ Cutress, Ian. "Examining Intel's Ice Lake Processors: Taking a Bite of the Sunny Cove Microarchitecture". www.anandtech.com. Retrieved November 9, 2020.
  17. ^ "Intel launches three Core M CPUs, promises more Broadwell "early 2015"". Ars Technica. September 5, 2014. from the original on January 5, 2015.
  18. ^ . TG Daily. Archived from the original on September 13, 2007. Retrieved September 7, 2007.
  19. ^ . TG Daily. Archived from the original on November 2, 2007. Retrieved October 1, 2007.
  20. ^ . Intel. Archived from the original on April 19, 2010. Retrieved December 13, 2010.
  21. ^ . Intel. Archived from the original on April 17, 2010. Retrieved December 13, 2010.
  22. ^ . Intel. Archived from the original on June 12, 2009. Retrieved December 13, 2010.
  23. ^ . Intel. Archived from the original on September 26, 2011. Retrieved December 13, 2010.{{cite web}}: CS1 maint: unfit URL (link)
  24. ^ . Intel. Archived from the original on January 7, 2011. Retrieved December 13, 2010.
  25. ^ . Intel. Archived from the original on April 3, 2009. Retrieved December 13, 2010.
  26. ^ . Intel. Archived from the original on March 6, 2011. Retrieved December 13, 2010.{{cite web}}: CS1 maint: unfit URL (link)
  27. ^ . Intel. Archived from the original on May 6, 2015. Retrieved December 13, 2010.{{cite web}}: CS1 maint: unfit URL (link)
  28. ^ . Intel. Archived from the original on March 16, 2010. Retrieved December 13, 2010.
  29. ^ . Intel. Archived from the original on February 21, 2011. Retrieved December 13, 2010.{{cite web}}: CS1 maint: unfit URL (link)
  30. ^ . Intel. Archived from the original on July 22, 2010. Retrieved December 13, 2010.
  31. ^ (PDF). Intel. Archived from the original (PDF) on February 5, 2009. Retrieved December 13, 2010.
  32. ^ . Intel. Archived from the original on April 15, 2011. Retrieved July 21, 2011.
  33. ^ . Intel. July 9, 2010. Archived from the original on January 1, 2011. Retrieved December 13, 2010.
  34. ^ "Intel Quietly Announces Core i5 and Core i3 Branding". AnandTech. from the original on March 23, 2010. Retrieved December 13, 2010.
  35. ^ . Apcmag.com. September 14, 2009. Archived from the original on September 7, 2011. Retrieved December 13, 2010.
  36. ^ . Hardware.slashdot.org. January 4, 2010. Archived from the original on January 12, 2012. Retrieved December 13, 2010.
  37. ^ "Intel May Unveil Microprocessors with Integrated Graphics Cores at Consumer Electronics Show". Xbitlabs.com. from the original on October 30, 2010. Retrieved December 13, 2010.
  38. ^ "Intel to launch four Arrandale CPUs for mainstream notebooks in January 2010". Digitimes.com. November 13, 2009. from the original on December 7, 2010. Retrieved December 13, 2010.
  39. ^ "Intel Core i3 Desktop Processor — Frequently Asked Questions". Intel. from the original on September 25, 2011.
  40. ^ . www.Supermicro.com. Archived from the original on July 2, 2017. Retrieved January 5, 2018.
  41. ^ . silentpcreview.com. Archived from the original on January 5, 2012. Retrieved September 26, 2011.
  42. ^ Asus P8B WS specification September 25, 2011, at the Wayback Machine: supports "ECC, Non-ECC, un-buffered Memory", but "Non-ECC, un-buffered memory only support for client OS (Windows 7, Vista and XP)."
  43. ^ . Intel. Archived from the original on April 11, 2010. Retrieved December 13, 2010.
  44. ^ Anand Lal Shimpi, Intel's Core i7 870 & i5 750, Lynnfield: Harder, Better, Faster Stronger, anandtech.com, archived from the original on July 22, 2011
  45. ^ "Login to Digitimes archive & research". www.digitimes.com. November 13, 2009. from the original on March 20, 2016. Retrieved May 7, 2018.
  46. ^ . it168.com. Archived from the original on October 9, 2011.
  47. ^ "Intel Core i5 Desktop Processor — Integration, Compatibility, and Memory FAQ". Intel. from the original on February 11, 2012.
  48. ^ "Support for the Intel Core i7 Processor". Intel. from the original on November 29, 2010. Retrieved December 13, 2010.
  49. ^ Modine, Austin (November 18, 2008). "Intel celebrates Core i7 launch with Dell and Gateway". The Register. from the original on December 20, 2008. Retrieved December 6, 2008.
  50. ^ "IDF Fall 2008: Intel un-retires Craig Barrett, AMD sets up anti-IDF camp". Tigervision Media. August 11, 2008. Archived from the original on March 19, 2012. Retrieved August 11, 2008.
  51. ^ "Meet the Bloggers". Intel Corporation. from the original on February 2, 2012. Retrieved August 11, 2008.
  52. ^ "Getting to the Core – Intel's new flagship client brand". Intel Corporation. from the original on August 18, 2008. Retrieved August 11, 2008.
  53. ^ "[Intel Roadmap update] Nehalem to enter mainstream market". ExpReview. June 10, 2008. from the original on December 11, 2011. Retrieved August 11, 2008.
  54. ^ (Press release). Intel Corporate. August 11, 2008. Archived from the original on October 6, 2009.
  55. ^ "Intel Core i7-920 Processor (8M Cache, 2.66 GHz, 4.80 GT/s Intel QPI)". Intel. Archived from the original on December 8, 2008. Retrieved December 6, 2008.
  56. ^ "Intel Core i7-940 Processor (8M Cache, 2.93 GHz, 4.80 GT/s Intel QPI)". Intel. Archived from the original on December 6, 2008. Retrieved December 6, 2008.
  57. ^ "Intel Core i7-965 Processor Extreme Edition (8M Cache, 3.20 GHz, 6.40 GT/s Intel QPI)". Intel. Archived from the original on December 7, 2008. Retrieved December 6, 2008.
  58. ^ . Technology@Intel. Archived from the original on August 18, 2008.
  59. ^ "Intel® Core™ i3-530 Processor". Intel. Retrieved January 21, 2023.
  60. ^ "Intel® Core™ i5-650 Processor (4M Cache, 3.20 GHz) - Product Specifications". Intel. Retrieved December 9, 2023.
  61. ^ "Intel® Core™ i5-750 Processor". Intel. Retrieved January 21, 2023.
  62. ^ "Intel® Core™ i7-920 Processor". Intel. Retrieved January 21, 2023.
  63. ^ "Intel® Core™ i7-920XM Processor Extreme Edition". Intel. Retrieved January 21, 2023.
  64. ^ "Intel® Core™ i7-930 Processor". Intel. Retrieved January 21, 2023.
  65. ^ "Intel® Core™ i7-940 Processor". Intel. Retrieved January 21, 2023.
  66. ^ "Intel Haswell-E Core i7-5960X, Core i7-5930K, Core i7-5820K Specifications Unveiled – Flagship 8 Core To Boost Up To 3.3 GHz". May 27, 2014. from the original on June 13, 2015. Retrieved June 12, 2015.
  67. ^ . Intel. Intel Corporation. August 11, 2014. Archived from the original on August 26, 2014. Retrieved September 6, 2014.
  68. ^ "Intel launched U-series Broadwell processors". January 10, 2015. from the original on February 15, 2015. Retrieved February 15, 2015.
  69. ^ "Intel's Broadwell goes broad with new desktop, mobile, server variants – The Tech Report – Page 1". techreport.com. June 2, 2015. from the original on June 12, 2015. Retrieved June 11, 2015.
  70. ^ "Intel begins shipping Kaby Lake CPUs to manufacturers". The Tech Report. from the original on January 26, 2017. Retrieved January 21, 2017.
  71. ^ "Intel pushes out the rest of its Kaby Lake processors for 2017's PCs". Ars Technica. from the original on January 21, 2017. Retrieved January 21, 2017.
  72. ^ a b "Intel Kaby Lake details: The first post-"tick-tock" CPU architecture". Ars Technica UK. from the original on January 6, 2017. Retrieved January 21, 2017.
  73. ^ "Intel Coffee Lake Core i7-8700K review: The best gaming CPU you can buy". Ars Technica. from the original on October 5, 2017. Retrieved October 5, 2017.
  74. ^ "Intel Core i7-8700K Review: The New Gaming King". TechSpot. from the original on October 5, 2017. Retrieved October 5, 2017.
  75. ^ "Intel 300-series chipsets to provide USB 3.1 Gen2 and Gigabit Wi-Fi | KitGuru". www.kitguru.net. from the original on May 6, 2017. Retrieved April 29, 2017.
  76. ^ Cutress, Ian. "The AnandTech Coffee Lake Review: Initial Numbers on the Core i7-8700K and Core i5-8400". p. 3. from the original on October 5, 2017. Retrieved October 6, 2017.
  77. ^ Cutress, Ian (June 11, 2018). "The Intel Core i7-8086K Review".
  78. ^ "New 8th Gen Intel Core Processors Optimize Connectivity, Great Performance, Battery Life for Laptops | Intel Newsroom". Intel Newsroom. Retrieved August 28, 2018.
  79. ^ a b c Cutress, Ian. "Intel Launches Whiskey Lake-U and Amber Lake-Y: New MacBook CPUs?". Retrieved August 28, 2018.
  80. ^ "Intel launches Whiskey Lake-U and Amber Lake-Y CPUs with focus on enhanced mobile connectivity". Notebookcheck. Retrieved August 28, 2018.
  81. ^ "Intel launches Whiskey and Amber Lakes: Kaby Lake with better Wi-Fi, USB". Ars Technica. Retrieved August 28, 2018.
  82. ^ "Intel Launches Whiskey Lake And Amber Lake CPUs for Laptops". Tom's Hardware. August 28, 2018. Retrieved August 28, 2018.
  83. ^ "Ashraf Eassa on Twitter". Twitter. Retrieved August 29, 2018.
  84. ^ "Ian Cutress on Twitter". Twitter. Retrieved August 29, 2018.
  85. ^ Cutress, Ian (August 30, 2018). "Spectre and Meltdown in Hardware: Intel Clarifies Whiskey Lake and Amber Lake". anadtech.com. Retrieved September 4, 2019.
  86. ^ Alcorn, Paul (August 30, 2018). "Intel's Whiskey Lake Brings In-Silicon Meltdown and Foreshadow Fixes". Tom's Hardware.
  87. ^ . WCCFTech. June 6, 2014. Archived from the original on October 6, 2014. Retrieved September 24, 2014.
intel, core, solo, cpus, yonah, microprocessor, line, multi, core, with, exception, core, solo, core, solo, central, processing, units, cpus, midrange, embedded, workstation, enthusiast, computer, markets, marketed, intel, corporation, these, processors, displ. For the 32 bit Intel Core Solo Duo CPUs see Yonah microprocessor Intel Core is a line of multi core with the exception of Core Solo and Core 2 Solo central processing units CPUs for midrange embedded workstation and enthusiast computer markets marketed by Intel Corporation These processors displaced the existing mid to high end Pentium processors at the time of their introduction moving the Pentium to the entry level Identical or more capable versions of Core processors are also sold as Xeon processors for the server and workstation markets Intel CoreLogo since 2023General informationLaunchedJanuary 2006 18 years ago 2006 01 Marketed byIntelDesigned byIntelCommon manufacturer s IntelTSMCPerformanceMax CPU clock rate400 MHz to 6 2 GHzFSB speeds533 MT s to 1 6 GT sQPI speeds4 8 GT s to 6 4 GT sDMI speeds2 0 GT s to 16 GT sData widthUp to 64 bitsAddress widthUp to 64 bitsVirtual address widthUp to 57 bitsCacheL1 cacheUp to 112 KB per P core96 KB per E core or LP E coreL2 cacheCore and Core 2 Up to 12 MBNehalem present Up to 2 MB per P core and up to 3 MB per E core clusterL3 cacheUp to 36 MBArchitecture and classificationTechnology node65 nm to Intel 4 and TSMC N5MicroarchitectureCoreNehalemWestmereSandy BridgeIvy BridgeHaswellBroadwellSkylakeSunny CoveWillow CoveCypress CoveGolden CoveRaptor CoveGracemontRedwood CoveCrestmontInstruction setx86 64InstructionsMMX SSE SSE2 SSE3 SSSE3 SSE4 1 SSE4 2 AVX AVX2 AVX 512 TSX AES NI FMA3 AVX VNNIExtensionsEIST TXT VT x VT d SHA SGXPhysical specificationsCoresP cores 2 10E cores 4 16Total 1 24GPU s Intel Graphics TechnologySocket s LGA 775LGA 1156LGA 1155LGA 1150LGA 1151LGA 1151v2LGA 1200LGA 1700LGA 1851Products models variantsBrand name s CoreCore 2Core i3 2010 2023 Core 3 2023 present Core i5 2009 2023 Core 5 2023 present Core i7 2008 2023 Core 7 2023 present Core i9 2017 2023 Core 9 2023 present Variant s Intel Processor budget CPUs HistoryPredecessor s PentiumThe most recent flagship model the Intel Core i9 14900KThe lineup of Core processors includes the Core i3 Core i5 Core i7 and Core i9 1 In 2023 Intel announced that it would drop the i moniker from their processor branding making it Core 3 5 7 9 The company would introduce the Ultra branding for high end processors as well 2 Contents 1 Overview 2 History 2 1 Core 2 2 Core 2 2 2 1 Core 2 Solo 2 2 2 Core 2 Duo 2 2 3 Core 2 Quad 2 2 4 Core 2 Extreme 2 3 1st generation 2 4 2nd generation 2 5 3rd generation 2 6 4th generation 2 7 5th generation 2 8 6th generation 2 8 1 Broadwell microarchitecture 2 8 2 Skylake microarchitecture 2 9 7th generation 2 9 1 Skylake microarchitecture 2 9 2 Kaby Lake 2 10 8th generation 2 10 1 Kaby Lake Refresh 2 10 2 Coffee Lake microarchitecture 2 10 3 Amber Lake microarchitecture 2 10 4 Whiskey Lake microarchitecture 2 10 4 1 Architecture changes compared to Kaby Lake Refresh 2 10 5 Cannon Lake microarchitecture 2 10 5 1 Architecture changes compared to Coffee Lake 2 10 6 Mobile processors U Series 2 11 9th generation 2 11 1 Skylake microarchitecture 2 11 2 Coffee Lake Refresh microarchitecture 2 12 10th generation 2 12 1 Cascade Lake microarchitecture 2 12 2 Ice Lake microarchitecture 2 12 3 Features 2 12 3 1 CPU 2 12 3 2 GPU 2 12 3 3 Package 2 12 4 Mobile processors U Series 2 12 5 Mobile processors Y Series 2 12 6 Comet Lake microarchitecture 2 12 7 Architecture changes in Comet Lake U compared to Whiskey Lake 2 12 8 Desktop processors S Series 2 12 9 Mobile processors H Series 2 12 10 Mobile processors U Series 2 12 11 Comet Lake Refresh microarchitecture 2 12 12 Amber Lake Refresh microarchitecture 2 13 11th generation 2 13 1 Tiger Lake 2 13 2 Architecture changes compared to Ice Lake 2 13 3 CPU 2 13 4 GPU 2 13 5 I O 2 13 6 Mobile processors Tiger Lake H 2 13 7 Mobile processors Tiger Lake H35 2 13 8 Mobile processors UP3 class 2 13 9 Embedded mobile processors UP3 class 2 13 10 Mobile processors UP4 class 2 13 11 Desktop tablet processors Tiger Lake B 2 13 12 Rocket Lake microarchitecture 2 13 13 Architecture changes in comparison with Comet Lake 2 13 14 CPU 2 13 15 GPU 2 13 16 I O 2 13 17 Desktop processors 2 14 12th generation 2 14 1 Alder Lake 2 14 2 Architecture changes in comparison to Rocket Lake 2 14 3 CPU 2 14 4 GPU 2 14 5 I O 2 14 6 Desktop processors Alder Lake S 2 14 7 Extreme performance Mobile Processors Alder Lake HX 2 14 8 High performance Mobile Processors Alder Lake H 2 14 9 Low Power Performance Mobile Processors Alder Lake P 2 14 10 Ultra Low Power Mobile Processors Alder Lake U 2 15 13th generation 2 15 1 Architecture changes in comparison to Alder Lake 2 15 2 CPU 2 15 3 GPU 2 15 4 I O 2 15 5 Desktop Processors Raptor Lake S 2 16 14th generation 2 16 1 Architecture comparison to 13th generation desktop 175 177 3 Reception 3 1 Vulnerabilities 4 See also 5 References 6 External linksOverview editAlthough Intel Core is a brand that promises no internal consistency or continuity the processors within this family have been for the most part broadly similar The first products receiving this designation were the Core Solo and Core Duo Yonah processors for mobile from the Pentium M design tree fabricated at 65 nm and brought to market in January 2006 These are substantially different in design than the rest of the Intel Core product group having derived from the Pentium Pro lineage that predated Pentium 4 The first Intel Core desktop processor and typical family member came from the Conroe iteration a 65 nm dual core design brought to market in July 2006 based on the Intel Core microarchitecture with substantial enhancements in micro architectural efficiency and performance outperforming Pentium 4 across the board or near to it while operating at drastically lower clock rates Maintaining high instructions per cycle IPC on a deeply pipelined and resourced out of order execution engine has remained a constant fixture of the Intel Core product group ever since The new substantial bump in microarchitecture came with the introduction of the 45 nm Bloomfield desktop processor in November 2008 on the Nehalem architecture whose main advantage came from redesigned I O and memory systems featuring the new Intel QuickPath Interconnect and an integrated memory controller supporting up to three channels of DDR3 memory Subsequent performance improvements have tended toward making additions rather than profound changes such as adding the Advanced Vector Extensions AVX instruction set extensions to Sandy Bridge first released on 32 nm in January 2011 Time has also brought improved support for virtualization and a trend toward higher levels of system integration and management functionality and along with that increased performance through the ongoing evolution of facilities such as Intel Active Management Technology iAMT Since 2019 the Core brand has been based on four product lines consisting of the entry level i3 the mainstream i5 the high end i7 and the enthusiast i9 In 2023 Intel announced that it would drop the i moniker from their processor branding making it Core 3 5 7 9 The company would introduce the Ultra branding for high end processors as well 2 Comparison of Intel Core microarchitectures Microarchitecture Core Nehalem Sandy Bridge Haswell Broadwell Skylake Sunny Cove a Willow Cove Golden Cove Raptor CoveMicroarchitecture variants Merom Penryn Westmere Ivy Bridge Kaby LakeCoffee LakeComet Lake Ice LakeRocket Lake Tiger Lake Alder LakeSapphire Rapids Raptor LakeEmerald RapidsGeneration Core i 1st 2nd 3rd 4th 5th 6th 6th 7th 8th 9th 10th 11th 11th 12th 13th 14thYear of inception 2006 2007 2010 2011 2013 2014 2015 2019 2020 2021 2022Fabrication process nm 65 45 32 22 22 14 14 14 14 10 10SF 10ESFCache mop 1 5K mops 3 2 25K mops 4K mopsL1 Data Size 32 KB core 48 KB coreWays 8 way 12 wayLatency 3 4 3 5 5Instruction Size 32 KB coreways 8 way 4 4 way 8 way 8 wayLatency 3 4 5 TLB 142 144 5 L2 Size 2 3 MB core 256 KB 512 KB 1 25 MB 2 MB b 2 MBways 8 way 4 way 8 way 20 way 10 wayLatency 12 13 14TLB 1024 1536 2048 L3 Size 2 MB 3 MBways 16 way 12 way 6 Latency 26 37 3 30 36 3 43 7 74L4 Size None 0 128 MB None ways 16 8 Latency Type GPU Memory only cache Hyper threading No YesOoOE window 96 9 128 10 168 192 224 11 352 512 12 In flight Load 48 64 72 128 192Store 32 36 42 56 72 114Scheduler Entries 32 36 54 60 64 97 160 13 Dispatch 8 way 10 way Register file Integer 160 168 280 12 280 12 Floating point 144 168 224 12 332 12 Queue Instruction 18 thread 20 thread 20 thread 25 thread Allocation 28 thread c 56 64 thread Decode 4 1 6Execution Ports Numbers 6 14 8 15 8 16 10 12Port 0 IntegerFP MulBranch IntegerFP MulBranch Port 1 IntegerFP Mul IntegerFP Mul Port 2 LoadAddress LoadStoreAddress Port 3 Store Address StoreLoadAddress Port 4 Store Data Store Data Port 5 Integer Port 6 15 IntegerBranch Port 7 Store Address AGUs 2 1 2 2 Instructions SSE2 YesSSE3 YesSSE4 YesAVX YesAVX2 YesFMA YesAVX512 Yes No Yes Yes NomArchitecture Merom Penryn Nehalem Sandy Bridge Haswell Broadwell Skylake Ice Lake Tiger Lake Alder Lake Raptor Lake Rocket Lake based on Cypress Cove is a CPU microarchitecture a variant of Sunny Cove microarchitecture designed for 10 nm backported to 14 nm 1 25 MB in client 56 unified in Ivy Bridge Overview of Intel Core microarchitectures Brand Desktop MobileCodename Cores Process Date released Codename Cores Process Date releasedCore Solo Desktop version not available Yonah 1 65 nm January 2006Core Duo Yonah 2Core 2 Solo Merom LPenryn L 11 65 nm45 nm September 2007May 2008Core 2 Duo ConroeAllendaleWolfdale 222 65 nm65 nm45 nm August 2006January 2007January 2008 MeromPenryn 22 65 nm45 nm July 2006January 2008Core 2 Quad KentsfieldYorkfield 44 65 nm45 nm January 2007March 2008 Penryn QC 4 45 nm August 2008Core 2 Extreme Conroe XEKentsfield XEYorkfield XE 244 65 nm65 nm45 nm July 2006November 2006November 2007 Merom XEPenryn XEPenryn QC XE 224 65 nm45 nm45 nm July 2007January 2008August 2008Core M Desktop version not available Broadwell 2 14 nm September 2014 17 Core m3 SkylakeKaby LakeKaby LakeAmber Lake 2222 14 nm14 nm14 nm14 nm August 2015September 2016April 2017August 2018Core m5 Skylake 2 14 nm August 2015Core m7 Skylake 2 14 nm August 2015Core i3 ClarkdaleSandy BridgeIvy BridgeHaswellSkylakeKaby LakeCoffee LakeCoffee LakeComet LakeAlder Lake 2222224444 32 nm32 nm22 nm22 nm14 nm14 nm14 nm14 nm14 nm10 nm January 2010February 2011September 2012September 2013September 2015January 2017October 2017Jan amp April 2019April 2020January 2022 ArrandaleSandy BridgeIvy BridgeHaswellBroadwellSkylakeKaby LakeSkylakeKaby LakeCoffee LakeCannon LakeCoffee LakeWhiskey LakeIce LakeComet LakeTiger Lake initial and B Alder Lake 2222222222242222 4 6 10 32 nm32 nm22 nm22 nm14 nm14 nm14 nm14 nm14 nm14 nm10 nm14 nm14 nm10 nm14 nm10 nm10 nm January 2010February 2011June 2012June 2013January 2015Sept 2015 amp June 2016August 2016November 2016Jan amp June 2017April 2018May 2018July 2018August 2018May amp Aug 2019September 2019Sept 2020 Jan May 2021January 2022Core i5 LynnfieldClarkdaleSandy BridgeSandy BridgeIvy BridgeHaswellBroadwellSkylakeKaby LakeCoffee LakeCoffee LakeComet LakeRocket LakeAlder Lake 42422 42 444466666 10 45 nm32 nm32 nm32 nm22 nm22 nm14 nm14 nm14 nm14 nm14 nm14 nm14 nm10 nm September 2009January 2010January 2011February 2011April 2012June 2013June 2015September 2015January 2017October 2017Oct 2018 amp Jan 2019April 2020March 2021Nov 2021 amp Jan 2022 ArrandaleSandy BridgeIvy BridgeHaswellBroadwellSkylakeKaby LakeKaby LakeKaby Lake RCoffee LakeAmber LakeWhiskey LakeIce LakeComet LakeComet Lake HTiger LakeTiger Lake H BAlder LakeAlder Lake H HX 22222224442444444 610 128 12 32 nm32 nm22 nm22 nm14 nm14 nm14 nm14 nm14 nm14 nm14 nm14 nm10 nm14 nm14 nm10 nm10 nm10 nm10 nm January 2010February 2011May 2012June 2013January 2015September 2015August 2016January 2017October 2017April 2018Aug 2018 amp Oct 2018Aug 2018 amp April 2019May amp Aug 2019September 2019April 2020Sept 2020 May 2021January September 2021January 2022January amp May 2022Core i7 BloomfieldLynnfieldGulftownSandy BridgeSandy Bridge ESandy Bridge EIvy BridgeHaswellIvy Bridge EBroadwellSkylakeKaby LakeCoffee LakeCoffee LakeComet LakeRocket LakeAlder Lake 446464444 6444688812 45 nm45 nm32 nm32 nm32 nm32 nm22 nm22 nm22 nm14 nm14 nm14 nm14 nm14 nm14 nm14 nm10 nm November 2008September 2009July 2010January 2011November 2011February 2012April 2012June 2013September 2013June 2015August 2015January 2017October 2017October 2018April 2020March 2021Nov 2021 amp Jan 2022 ClarksfieldArrandaleSandy BridgeSandy BridgeIvy BridgeHaswellBroadwellBroadwellSkylakeKaby LakeKaby LakeCoffee LakeAmber LakeWhiskey LakeIce LakeComet LakeComet Lake HTiger LakeTiger Lake H BAlder LakeAlder Lake H HX 42422 42 4242 4244 62444 66 844 810 1410 16 45 nm32 nm32 nm32 nm22 nm22 nm14 nm14 nm14 nm14 nm14 nm14 nm14 nm14 nm10 nm14 nm14 nm10 nm10 nm10 nm10 nm September 2009January 2010January 2011February 2011May 2012June 2013January 2015June 2015September 2015August 2016January 2017April 2018August 2018Aug 2018 amp April 2019May amp Aug 2019September 2019April 2020September 2020January September 2021 January 2022January amp May 2022Core i7Extreme BloomfieldGulftownSandy Bridge EIvy Bridge EHaswell EBroadwell ESkylake XKaby Lake X 46668106 84 45 nm32 nm32 nm22 nm22 nm14 nm14 nm14 nm November 2008March 2010November 2011September 2013August 2014May 2016June 2017June 2017 ClarksfieldSandy BridgeIvy BridgeHaswell 4444 45 nm32 nm22 nm22 nm September 2009January 2011May 2012June 2013Core i9 Skylake XSkylake XCascade Lake XCoffee LakeComet LakeRocket LakeAlder Lake Raptor Lake 101214 18810816 24 14 nm14 nm14 nm14 nm14 nm14 nm Intel 7 Intel 7 June 2017August 2017September 2017October 2018April 2020March 2021Nov 2021 amp Jan 2022 Oct 2022 amp Jan 2023 Coffee Lake HComet Lake HTiger Lake HAlder Lake H HX Raptor Lake H HX 68814 16 14 24 14 nm14 nm10 nmIntel 7 Intel 7 April 2018April 2020May 2021January amp May 2022 January 2023List of Intel Core processors List of Intel Core 2 processors List of Intel Core M processors List of Intel Core i3 processors List of Intel Core i5 processors List of Intel Core i7 processors List of Intel Core i9 processorsIntel Core sub brand logos from 2020 coinciding with the release of its 11th generation to 2023 nbsp Intel Core i3 logo nbsp Intel Core i5 logo nbsp Intel Core i7 logo nbsp Intel Core i9 logoThe shade of blue in each logo gets progressively darker the more advanced the sub brand is History editCore edit Main article Enhanced Pentium M microarchitecture For details about the processor core see Yonah microprocessor The original Core brand refers to Intel s 32 bit mobile dual core x86 CPUs which derived from the Pentium M branded processors The processor family used an enhanced version of the Intel P6 microarchitecture It emerged in parallel with the NetBurst microarchitecture Intel P68 of the Pentium 4 brand and was a precursor of the 64 bit Core microarchitecture of Core 2 branded CPUs The Core brand had two branches the Duo dual core and Solo Duo with one disabled core which replaced the Pentium M brand of single core mobile processor Intel launched the Core brand on January 6 2006 with the release of the 32 bit Yonah CPU Intel s first dual core mobile low power processor Its dual core layout closely resembled two interconnected Pentium M branded CPUs packaged as a single die piece silicon chip IC Hence the 32 bit microarchitecture of Core branded CPUs contrary to its name had more in common with Pentium M branded CPUs than with the subsequent 64 bit Core microarchitecture of Core 2 branded CPUs Despite a major rebranding effort starting January 2006 some companies continued to market computers with the Yonah core marked as Pentium M The Core series is also the first Intel processor used as the main CPU in an Apple Macintosh computer The Core Duo was the CPU for the first generation MacBook Pro while the Core Solo appeared in Apple s Mac Mini line Core Duo signified the beginning of Apple s shift to Intel processors across the entire Mac line In 2007 Intel began branding the Yonah core CPUs intended for mainstream mobile computers as Pentium Dual Core not to be confused with the desktop 64 bit Core microarchitecture CPUs also branded as Pentium Dual Core September 2007 and January 4 2008 marked the discontinuation of a number of Core branded CPUs including several Core Solo Core Duo Celeron and one Core 2 Quad chip 18 19 Intel Core Solo 20 uses the same two core die as the Core Duo but features only one active core Depending on demand Intel may also simply disable one of the cores to sell the chip at the Core Solo price this requires less effort than launching and maintaining a separate line of CPUs that physically only have one core Intel had used the same strategy previously with the 486 CPU in which early 486SX CPUs were in fact manufactured as 486DX CPUs but with the FPU disabled Intel Core Duo 21 consists of two cores on one die a 2 MB L2 cache shared by both cores and an arbiter bus that controls both L2 cache and FSB front side bus access Model Clock rate L2cache FSB Mult Voltage TDP Socket Release date Releaseprice USD Core Solo U1300 1 07 GHz 2 MB 533 MT s 8 0 95 1 05 V 5 5 W Socket 479 FC µBGA April 2006 241Core Solo U1400 1 2 GHz 2 MB 533 MT s 9 0 95 1 05 V 5 5 W Socket 479 FC µBGA April 2006 262Core Solo U1500 1 33 GHz 2 MB 533 MT s 10 0 85 1 1 V 5 5 W Socket 479 FC µBGA January 2007 262Core Duo U2400 1 07 GHz 2 MB 533 MT s 8 0 8 1 1 V 9 W Socket 479 FC µBGA June 2006 262Core Duo U2500 1 2 GHz 2 MB 533 MT s 9 0 8 1 1 V 9 W Socket 479 FC µBGA June 2006 289Core Duo L2300 1 5 GHz 2 MB 667 MT s 9 0 762 1 212 V 15 W Socket 479 FC µBGA January 2006 284Core Duo L2400 1 67 GHz 2 MB 667 MT s 10 0 762 1 212 V 15 W Socket 479 FC µBGA January 2006 316Core Duo L2500 1 83 GHz 2 MB 667 MT s 11 0 762 1 212 V 15 W Socket 479 FC µBGA September 2006 316Core Solo T1200 1 5 GHz 2 MB 667 MT s 9 0 7625 1 3 V 27 W Socket M July 2006Core Solo T1250 1 73 GHz 2 MB 533 MT s 13 0 7625 1 3 V 31 W Socket MCore Solo T1300 1 67 GHz 2 MB 667 MT s 10 0 7625 1 3 V 27 W Socket 479 FC µBGA Socket 479 FC µBGA Socket M Socket M January 2006 209Core Solo T1350 1 87 GHz 2 MB 533 MT s 14 0 7625 1 3 V 31 W Socket M July 2006Core Solo T1400 1 83 GHz 2 MB 667 MT s 11 0 7625 1 3 V 27 W Socket 479 FC µBGA Socket 479 FC µBGA Socket M Socket M May 2006 209Core Solo T1500 2 GHz 2 MB 667 MT s 12 0 7625 1 3 V 27 W Socket 479 FC µBGA Socket M August 2006Core Duo T2050 1 6 GHz 2 MB 533 MT s 12 0 762 1 3 V 31 W Socket M May 2006 140Core Duo T2250 1 73 GHz 2 MB 533 MT s 13 0 762 1 3 V 31 W Socket M May 2006 OEMCore Duo T2300 1 67 GHz 2 MB 667 MT s 10 0 762 1 3 V 31 W Socket M Socket M Socket 479 FC µBGA Socket 479 FC µBGA January 2006 241Core Duo T2300E 1 67 GHz 2 MB 667 MT s 10 0 762 1 3 V 31 W Socket M Socket M µFCBGA 479 µFCBGA 479 May 2006 209Core Duo T2350 1 87 GHz 2 MB 533 MT s 14 0 762 1 3 V 31 W Socket M OEMCore Duo T2400 1 83 GHz 2 MB 667 MT s 11 0 762 1 3 V 31 W 31 W 27 W 27 W Socket M Socket M Socket 479 FC µBGA Socket 479 FC µBGA January 2006 294Core Duo T2450 2 GHz 2 MB 533 MT s 15 0 762 1 3 V 31 W Socket M OEMCore Duo T2500 2 GHz 2 MB 667 MT s 12 0 762 1 3 V 31 W Socket M Socket M Socket 479 FC µBGA Socket 479 FC µBGA January 2006 423Core Duo T2600 2 17 GHz 2 MB 667 MT s 13 0 762 1 3 V 31 W Socket M Socket M Socket 479 FC µBGA Socket 479 FC µBGA January 2006 637Core Duo T2700 2 33 GHz 2 MB 667 MT s 14 0 762 1 3 V 31 W Socket M Socket 479 FC µBGA June 2006 637Core 2 edit Main article Intel Core microarchitecture The successor to Core is the mobile version of the Intel Core 2 line of processors using cores based upon the Intel Core microarchitecture 22 released on July 27 2006 The release of the mobile version of Intel Core 2 marks the reunification of Intel s desktop and mobile product lines as Core 2 processors were released for desktops and notebooks unlike the first Intel Core CPUs that were targeted only for notebooks although some small form factor and all in one desktops like the iMac and the Mac Mini also used Core processors Unlike the original Core Intel Core 2 is a 64 bit processor supporting Intel Extended Memory 64 Technology EM64T Another difference between the original Core Duo and the new Core 2 Duo is an increase in the amount of level 2 cache The new Core 2 Duo has tripled the amount of on board cache to 6 MB Core 2 also introduced a quad core performance variant to the single and dual core chips branded Core 2 Quad as well as an enthusiast variant Core 2 Extreme All three chips are manufactured at a 65 nm lithography and in 2008 a 45 nm lithography and support front side bus speeds ranging from 533 MT s to 1 6 GT s In addition the 45 nm die shrink of the Core microarchitecture adds SSE4 1 support to all Core 2 microprocessors manufactured at a 45 nm lithography therefore increasing the calculation rate of the processors Core 2 Solo edit The Core 2 Solo 23 introduced in September 2007 is the successor to the Core Solo and is available only as an ultra low power mobile processor with 5 5 Watt thermal design power The original U2xxx series Merom L used a special version of the Merom chip with CPUID number 10661 model 22 stepping A1 that only had a single core and was also used in some Celeron processors The later SU3xxx are part of Intel s CULV range of processors in a smaller mFC BGA 956 package but contain the same Penryn chip as the dual core variants with one of the cores disabled during manufacturing Codename Brand name list L2 cache Socket TDPMerom L Mobile Core 2 Solo U2xxx 1 MB FCBGA 5 5 WPenryn L Mobile Core 2 Solo SU3xxx 3 MB BGA956 5 5 WCore 2 Duo edit nbsp Inside of a Sony VAIO laptop VGN C140G The majority of the desktop and mobile Core 2 processor variants are Core 2 Duo 24 25 with two processor cores on a single Merom Conroe Allendale Penryn or Wolfdale chip These come in a wide range of performance and power consumption starting with the relatively slow ultra low power Uxxxx 10 W and low power Lxxxx 17 W versions to the more performance oriented Pxxxx 25 W and Txxxx 35 W mobile versions and the Exxxx 65 W desktop models The mobile Core 2 Duo processors with an S prefix in the name are produced in a smaller mFC BGA 956 package which allows building more compact laptops Within each line a higher number usually refers to a better performance which depends largely on core and front side bus clock frequency and amount of second level cache which are model specific Core 2 Duo processors typically use the full L2 cache of 2 3 4 or 6 MB available in the specific stepping of the chip while versions with the amount of cache reduced during manufacturing are sold for the low end consumer market as Celeron or Pentium Dual Core processors Like those processors some low end Core 2 Duo models disable features such as Intel Virtualization Technology Codename Brand name list L2 cache Socket TDPMerom Mobile Core 2 Duo U7xxx 2 MB BGA479 10 WMobile Core 2 Duo L7xxx 4 MB 17 WMobile Core 2 Duo T5xxx 2 MB Socket MSocket PBGA479 35 WMobile Core 2 Duo T7xxx 2 4 MBConroe andAllendale Core 2 Duo E4xxx 2 MB LGA 775 65 WCore 2 Duo E6xxx 2 4 MBPenryn Mobile Core 2 Duo SU7xxx 3 MB BGA956 10 WMobile Core 2 Duo SU9xxxMobile Core 2 Duo SL9xxx 6 MB 17 WMobile Core 2 Duo SP9xxx 25 WMobile Core 2 Duo P7xxx 3 MB Socket PFCBGA6 25 WMobile Core 2 Duo P8xxxMobile Core 2 Duo P9xxx 6 MBMobile Core 2 Duo T6xxx 2 MB 35 WMobile Core 2 Duo T8xxx 3 MBMobile Core 2 Duo T9xxx 6 MBMobile Core 2 Duo E8xxx 6 MB Socket P 35 55 WWolfdale Core 2 Duo E7xxx 3 MB LGA 775 65 WCore 2 Duo E8xxx 6 MBCore 2 Quad edit Core 2 Quad 26 27 processors are multi chip modules consisting of two dies similar to those used in Core 2 Duo forming a quad core processor This allows twice the performance of a dual core processors at the same clock frequency in ideal conditions Initially all Core 2 Quad models were versions of Core 2 Duo desktop processors Kentsfield derived from Conroe and Yorkfield from Wolfdale but later Penryn QC was added as a high end version of the mobile dual core Penryn The Xeon 32xx and 33xx processors are mostly identical versions of the desktop Core 2 Quad processors and can be used interchangeably Codename Brand name list L2 cache Socket TDPKentsfield Core 2 Quad Q6xxx 2 4 MB LGA 775 95 105 WYorkfield Core 2 Quad Q8xxx 2 2 MB 65 95 WCore 2 Quad Q9xxx 2 3 2 6 MBPenryn QC Mobile Core 2 Quad Q9xxx 2 3 2 6 MB Socket P 45 WCore 2 Extreme edit Core 2 Extreme processors 28 29 are enthusiast versions of Core 2 Duo and Core 2 Quad processors usually with a higher clock frequency and an unlocked clock multiplier which makes them especially attractive for overclocking This is similar to earlier Pentium D processors labeled as Extreme Edition Core 2 Extreme processors were released at a much higher price than their regular version often 999 or more Codename Brand name list L2 cache Socket TDPMerom XE Mobile Core 2 Extreme X7xxx 4 MB Socket P 44 WConroe XE Core 2 Extreme X6xxx 4 MB LGA 775 75 WKentsfield Core 2 Extreme QX6xxx 2 4 MB LGA 775 130 WPenryn XE Mobile Core 2 Extreme X9xxx 6 MB Socket P 44 WPenryn QC XE Mobile Core 2 Extreme QX9xxx 2 6 MB Socket P 45 WYorkfield Core 2 Extreme QX9xxx 2 6 MB LGA 775 LGA 771 130 150 W1st generation edit Main article Nehalem microarchitecture With the release of the Nehalem microarchitecture in November 2008 30 Intel introduced a new naming scheme for its Core processors There are three variants Core i3 Core i5 and Core i7 but the names no longer correspond to specific technical features like the number of cores Instead the brand is now divided from low level i3 through mid range i5 to high end performance i7 31 which correspond to three four and five stars in Intel s Intel Processor Rating 32 following on from the entry level Celeron one star and Pentium two stars processors 33 Common features of all Nehalem based processors include an integrated DDR3 memory controller as well as QuickPath Interconnect or PCI Express and Direct Media Interface on the processor replacing the aging quad pumped Front Side Bus used in all earlier Core processors All these processors have 256 KB L2 cache per core plus up to 12 MB shared L3 cache Because of the new I O interconnect chipsets and mainboards from previous generations can no longer be used with Nehalem based processors Intel intended the Core i3 as the new low end of the performance processor line following the retirement of the Core 2 brand 34 35 The first Core i3 processors were launched on January 7 2010 36 The first Nehalem based Core i3 was Clarkdale based with an integrated GPU and two cores 37 The same processor is also available as Core i5 and Pentium with slightly different configurations The Core i3 3xxM processors are based on Arrandale the mobile version of the Clarkdale desktop processor They are similar to the Core i5 4xx series but running at lower clock speeds and without Turbo Boost 38 According to an Intel FAQ they do not support Error Correction Code ECC memory 39 According to motherboard manufacturer Supermicro if a Core i3 processor is used with a server chipset platform such as Intel 3400 3420 3450 the CPU supports ECC with UDIMM 40 When asked Intel confirmed that although the Intel 5 series chipset supports non ECC memory only with the Core i5 or i3 processors using those processors on a motherboard with 3400 series chipsets it supports the ECC function of ECC memory 41 A limited number of motherboards by other companies also support ECC with Intel Core ix processors the Asus P8B WS is an example but it does not support ECC memory under Windows non server operating systems 42 Lynnfield was the first Core i5 processors using the Nehalem microarchitecture introduced on September 8 2009 as a mainstream variant of the earlier Core i7 43 44 Lynnfield Core i5 processors have an 8 MB L3 cache a DMI bus running at 2 5 GT s and support for dual channel DDR3 800 1066 1333 memory and have Hyper threading disabled The same processors with different sets of features Hyper threading and other clock frequencies enabled are sold as Core i7 8xx and Xeon 3400 series processors which should not be confused with high end Core i7 9xx and Xeon W3500 series processors based on Bloomfield A new feature called Turbo Boost Technology was introduced which maximizes speed for demanding applications dynamically accelerating performance to match the workload After Nehalem received a 32 nm Westmere die shrink Arrandale the dual core mobile Core i5 processors and its desktop counterpart Clarkdale was introduced in January 2010 together with Core i7 6xx and Core i3 3xx processors based on the same architecture Arrandale processors have integrated graphics capability Core i3 3xx does not support for Turbo Boost L3 cache in Core i5 5xx processors is reduced to 3 MB while the Core i5 6xx uses the full cache 45 Clarkdale is sold as Core i5 6xx along with related Core i3 and Pentium processors It has Hyper Threading enabled and the full 4 MB L3 cache 46 According to Intel Core i5 desktop processors and desktop boards typically do not support ECC memory 47 but information on limited ECC support in the Core i3 section also applies to Core i5 and i7 citation needed Intel Core i7 as a brand name applies to several families of desktop and laptop 64 bit x86 64 processors using the Nehalem Westmere Sandy Bridge Ivy Bridge Haswell Broadwell Skylake and Kaby Lake microarchitectures The Core i7 brand targets the business and high end consumer markets for both desktop and laptop computers 48 and is distinguished from the Core i3 entry level consumer Core i5 mainstream consumer and Xeon server and workstation brands Introduced in late 2008 Bloomfield was the first Core i7 processors based on the Nehalem architecture 49 50 51 52 The following year Lynnfield desktop processors and Clarksfield mobile processors brought new quad core Core i7 models based on the said architecture 53 After Nehalem received a 32 nm Westmere die shrink Arrandale dual core mobile processors were introduced in January 2010 followed by Core i7 s first six core desktop processor Gulftown on March 16 2010 Both the regular Core i7 and the Extreme Edition are advertised as five stars in the Intel Processor Rating The first generation Core i7 uses two different sockets LGA 1366 designed for high end desktops and servers and LGA 1156 used in low and mid end desktops and servers In each generation the highest performing Core i7 processors use the same socket and QPI based architecture as the medium end Xeon processors of that generation while lower performing Core i7 processors use the same socket and PCIe DMI FDI architecture as the Core i5 Core i7 is a successor to the Intel Core 2 brand 54 55 56 57 Intel representatives stated that they intended the moniker Core i7 to help consumers decide which processor to purchase as Intel releases newer Nehalem based products in the future 58 This list is incomplete you can help by adding missing items January 2023 List of Intel Core 1st generation microprocessors Brand Model Code name Release date Price a Cores Threads Clock rate GHz Cache GPU Lithography Socket Memory support TDPBase Turbo L3 Name Clock rate DDR3 ECCi3 530 59 Clarkdale Q1 2010 117 2 4 2 93 4 MB HD Graphics 733 MHz 32 nm LGA 1156 DDR3 1333 dual channel No 73 Wi5 650 60 Clarkdale 176 3 2 3 47 DDR3 1333 dual channel No750 61 Lynnfield Q3 2009 193 4 4 2 6 3 2 8 MB 45 nm DDR3 1333 dual channel No 95 Wi7 920 62 Bloomfield Q4 2008 305 4 8 2 66 2 93 8 MB LGA 1366 DDR3 1066 triple channel No 130 W920XM 63 Clarksfield Q3 2009 2 0 3 2 PGA 988 DDR3 1333 triple channel 55 W930 64 Bloomfield Q1 2010 305 2 8 3 06 LGA 1366 DDR3 1066 triple channel 130 W940 65 Q4 2008 555 2 93 3 2 130 W940XM Clarksfield Q3 2010 2 13 3 33 PGA 988 DDR3 1333 triple channel 55 W950 Bloomfield Q2 2009 305 3 06 3 33 LGA 1366 DDR3 1066 triple channel 130 W960 Q4 2009 305 3 2 3 46 965 Q4 2008 990 970 Gulftown Q3 10 594 6 12 12 MB 32 nm975 Bloomfield Q2 2009 1059 4 8 3 33 3 6 8 MB 45 nm980 Gulftown Q2 2011 594 6 12 12 MB 32 nm980X Q1 2010 1059 990X Q1 2011 1059 3 46 3 73 Price reflects Recommended Customer Price RCP rather than MSRP RCP is the cost per unit in bulk sales of 1000 units or more to OEMs ODMs and retail outlets when purchasing from Intel Actual MSRP is higher than RCP 2nd generation edit Main article Sandy Bridge In early 2011 Intel introduced a new microarchitecture named Sandy Bridge This is the second generation of the Core processor microarchitecture It kept all the existing brands from Nehalem including Core i3 i5 i7 and introduced new model numbers The initial set of Sandy Bridge processors includes dual and quad core variants all of which use a single 32 nm die for both the CPU and integrated GPU cores unlike the earlier microarchitectures All Core i3 i5 i7 processors with the Sandy Bridge microarchitecture have a four digit model number With the mobile version the thermal design power can no longer be determined from a one or two letter suffix but is encoded into the CPU number Starting with Sandy Bridge Intel no longer distinguishes the code names of the processor based on number of cores socket or intended usage they all use the same code name as the microarchitecture itself Ivy Bridge is the codename for Intel s 22 nm die shrink of the Sandy Bridge microarchitecture based on tri gate 3D transistors introduced in April 2012 Core i3Released on January 20 2011 the Core i3 2xxx line of desktop and mobile processors is a direct replacement of the 2010 Clarkdale Core i3 5xx and Arrandale Core i3 3xxM models based on the new microarchitecture While they require new sockets and chipsets the user visible features of the Core i3 are largely unchanged including the lack of support for Turbo Boost and AES NI Unlike the Sandy Bridge based Celeron and Pentium processors the Core i3 line does support the new Advanced Vector Extensions This particular processor is the entry level processor of this new series of Intel processors Codename Brand name list Cores L3 cache Socket TDP I O BusSandy Bridge Desktop Core i3 21xx 2 3 MB LGA 1155 65 W Direct Media Interface Integrated GPUCore i3 21xxT 35 WSandy Bridge Mobile Core i3 2xx0M rPGA 988BBGA 1023Core i3 2xx7M BGA 1023 17 WCore i5 nbsp A Core i5 2500K The K suffix indicates an unlocked clock multiplier which allows for easier overclocking In January 2011 Intel released new quad core Core i5 processors based on the Sandy Bridge microarchitecture at CES 2011 New dual core mobile processors and desktop processors arrived in February 2011 The Core i5 2xxx line of desktop processors are mostly quad core chips with the exception of the dual core Core i5 2390T and include integrated graphics combining the key features of the earlier Core i5 6xx and Core i5 7xx lines The suffix after the four digit model number designates unlocked multiplier K low power S and ultra low power T The desktop CPUs now all have four non SMT cores like the i5 750 with the exception of the i5 2390T The DMI bus runs at 5 GT s The mobile Core i5 2xxxM processors are all dual core and hyper threaded chips like the previous Core i5 5xxM series and share most of the features with that product line Codename Brand name list Cores L3 cache Socket TDP I O BusSandy Bridge Desktop Core i5 2xxxCore i5 2xxxK 4 6 MB LGA 1155 95 W Direct Media Interface Integrated GPUCore i5 2xxxS 65 WCore i5 25xxT 45 WCore i5 23xxT 2 3 MB 35 WSandy Bridge Mobile Core i5 2xxxM rPGA 988BBGA 1023Core i5 2xx7M BGA 1023 17 WCore i7The Core i7 brand was the high end for Intel s desktop and mobile processors until the announcement of the i9 in 2017 Its Sandy Bridge models feature the largest amount of L3 cache and the highest clock frequency Most of these models are very similar to their smaller Core i5 siblings The quad core mobile Core i7 2xxxQM XM processors follow the previous Clarksfield Core i7 xxxQM XM processors but now also include integrated graphics Codename Brand name list Cores L3 cache Socket TDP Process I O Bus ReleaseDateSandy Bridge E Desktop Core i7 39xxX 6 15 MB LGA 2011 130 W 32 nm Direct Media Interface November 2011Core i7 39xxK 12 MBCore i7 38xx 4 10 MBSandy Bridge Desktop Core i7 2xxxK i7 2xxx 8 MB LGA 1155 95 W Direct Media Interface Integrated GPU January 2011Core i7 2xxxS 65 WSandy Bridge Mobile Core i7 2xxxXM rPGA 988BBGA 1023 55 WCore i7 28xxQM 45 WCore i7 2xxxQE i7 26xxQM i7 27xxQM 6 MBCore i7 2xx0M 2 4 MB 35 W February 2011Core i7 2xx9M BGA 1023 25 WCore i7 2xx7M 17 W3rd generation edit Main article Ivy Bridge microarchitecture Ivy Bridge is the codename for a third generation line of processors based on the 22 nm manufacturing process developed by Intel Mobile versions of the CPU were released in April 2012 following with desktop versions in September 2012 This section needs expansion You can help by adding to it April 2014 Core i3This section needs expansion You can help by adding to it April 2014 The Ivy Bridge based Core i3 3xxx line is a minor upgrade to 22 nm process technology and better graphics Codename Brand name list Cores L3Cache Socket TDP I O BusIvy Bridge Desktop Core i3 32xx 2 3 MB LGA 1155 55 W Direct Media Interface Integrated GPUCore i3 32xxT 35 WIvy Bridge Mobile Core i3 3xx0M rPGA 988BBGA 1023Core i3 3xx7U BGA 1023 17 WCore i3 3xx9Y 13 WCore i5 Codename Brand name list Cores L3Cache Socket TDP I O BusIvy Bridge Desktop Core i5 3xxxCore i5 3xxxK 4 6 MB LGA 1155 77 W Direct Media Interface Integrated GPUCore i5 3xxxS 65 WCore i5 35xxT 45 WCore i5 34xxT 2 3 MB 35 WIvy Bridge Mobile Core i5 3xx0M rPGA 988BBGA 1023Core i5 3xx7U BGA 1023 17 WCore i5 3xx9Y 13 WCore i7 Codename Brand name list Cores L3 cache Socket TDP Process I O Bus ReleaseDateIvy Bridge E Desktop Core i7 4960X 6 15 MB LGA 2011 130 W 22 nm Direct Media Interface September 2013Core i7 4930K 12 MBCore i7 4820K 4 10 MBIvy Bridge Desktop Core i7 37xx i7 37xxK 8 MB LGA 1155 77 W Direct Media Interface Integrated GPU April 2012Core i7 37xxS 65 WCore i7 37xxT 45 WIvy Bridge Mobile Core i7 3xxxXM 55 WCore i7 38xxQM 45 WCore i7 36x0QM i7 3xx0QE i7 36x5QM i7 3xx5QE i7 37xxQM 6 MBCore i7 3xx2QM i7 3xx2QE 35 WCore i7 3xxxM 2 4 MBCore i7 3xxxLE 25 WCore i7 3xx7U i7 3xx7UE 17 WCore i7 3xx9Y 13 W January 20134th generation edit Main article Haswell microarchitecture Haswell is the fourth generation Core processor microarchitecture and was released in 2013 Core i3 Codename Brand name list Cores L3 cache GPU Model Socket TDP Process I O Bus ReleaseDateHaswell DT Desktop Core i3 43xx 2 4 MB HD 4600 LGA 1150 54 W 22 nm Direct Media Interface Integrated GPU September 2013Core i3 43xxT Core i3 4xxxTE 35 WCore i3 41xx 3 MB HD 4400 54 WCore i3 41xxT 35 WHaswell MB Mobile Core i3 4xx2E HD 4600 BGA 1364 25 WCore i3 4xx0E 37 WCore i3 4xxxM Socket G3Core i3 4xx8U Iris 5100 BGA 1168 28 W June 2013Core i3 4xx0U Core i3 4xx5U HD 4400 15 WCore i3 4xxxY HD 4200 11 5 WCore i5 Codename Brand name list Cores L3 cache GPU Model Socket TDP Process I O Bus Release DateHaswell DT Desktop Core i5 4xxx i5 46xxK 4 6 MB HD 4600 LGA 1150 84 W 22 nm Direct Media Interface Integrated GPU June 2013Core i5 4xxxS 65 WCore i5 46xxT 45 WCore i5 45xxT Core i5 45xxTE 2 4 MB 35 W65 WHaswell H MCP Core i5 4xxxR 4 4 MB Iris Pro 5200 BGA 1364 65 WHaswell MB Mobile Core i5 4xxxH 2 3 MB HD 4600 47 W September 2013Core i5 4xx2E 25 WCore i5 4xx0E 37 WCore i5 4xxxM Socket G3Core i5 4xx8U Iris 5100 BGA1168 28 W June 2013Core i5 4x50U HD 5000 15 WCore i5 4x00U HD 4400Core i5 4xxxY HD 4200 11 5 WCore i7 Codename Brand name list Cores L3 cache GPU Model Socket TDP Process I O Bus ReleaseDateHaswell E Desktop 66 Core i7 5960X 8 20 MB N A LGA 2011 3 140 W 22 nm Direct Media Interface September 2014Core i7 5930K 6 15 MBCore i7 5820KHaswell DT Desktop Core i7 47xx i7 47xxK 4 8 MB HD 4600 LGA 1150 84 W Direct Media Interface Integrated GPU June 2013Core i7 47xxS 65 WCore i7 47x0T 45 WCore i7 47x5T 35 WCore i7 47xxR 6 MB Iris Pro 5200 BGA 1364 65 WHaswell MB Mobile Core i7 4x50HQ Core i7 4x60HQCore i7 4x50EQ Core i7 4x60EQ 47 WCore i7 47x2HQ Core i7 47x2EQCore i7 470xHQ Core i7 470xEQ HD 4600 37 W47 WCore i7 47x2MQCore i7 470xMQ Socket G3 37 W47 WCore i7 49xxMQ Core i7 4xxxXM 8 MB 57 WCore i7 4xxxM 2 4 MB 35 W September 2013Core i7 4xx8U Iris 5100 BGA 1168 28 W June 2013Core i7 4x50U HD 5000 15 WCore i7 4x00U HD 4400Core i7 4xxxY HD 4200 11 5 W5th generation edit Main article Broadwell microarchitecture Broadwell is the fifth generation Core processor microarchitecture and was released by Intel on September 6 2014 and began shipping in late 2014 It is the first to use a 14 nm chip 67 Additionally mobile processors were launched in January 2015 68 and Desktop Core i5 and i7 processors were released in June 2015 69 Desktop processor DT Series Processor branding Model list Cores Threads L3 cache GPU Model Socket TDP Process I O Bus ReleaseDateCore i7 5775C 4 8 6 MB Iris 6200 LGA 1150 65 W 14 nm Direct Media Interface Integrated GPU June 20155775RCore i5 5675C 4 4 4 MB5675R5575RMobile processors U Series Processor branding Model list Cores Threads L3 cache GPU Model Socket TDP Process I O Bus ReleaseDateCore i7 5xx7U 2 4 4 MB Iris 6100 BGA 1168 28 W 14 nm Direct Media Interface Integrated GPU January 20155x50U HD 6000 15 W5x00U HD 5500Core i5 5xx7U 2 2 3 MB Iris 6100 28 W5x50U HD 6000 15 W5x00U HD 5500Core i3 5xx7U Iris 6100 28 W5xx5U HD 5500 15 W5xx0UMobile Processors Y Series Processor branding Model list Cores Threads L3 cache GPU Model Socket TDP Process I O Bus ReleaseDateCore M 5Yxx 2 2 4 MB HD 5300 BGA 1234 4 5 W 14 nm Direct Media Interface Integrated GPU September 20146th generation edit Broadwell microarchitecture edit Processor branding Model list Cores Threads L3 cache GPU Model Socket TDP Process I O Bus ReleaseDateCore i7 6800K 6 12 15 MB N A LGA 2011 3 140 W 14 nm Direct Media Interface Q2 166850K6900K 8 16 20 MB6950X 10 20 25 MBSkylake microarchitecture edit Main article Skylake microarchitecture Skylake is the sixth generation Core processor microarchitecture and was launched in August 2015 Being the successor to the Broadwell line it is a redesign using the same 14 nm manufacturing process technology however the redesign has better CPU and GPU performance and reduced power consumption Intel also disabled overclocking non K processors Desktop processors DT Series Processor branding Model Cores Threads L3 cache GPU Model Socket TDP Process I O Bus Release DateCore i7 6700K 4 8 8 MB HD 530 LGA 1151 91 W 14 nm Direct Media Interface Integrated GPU August 20156700 65 W September 20156700T 35 W6785R Iris Pro 580 65 W May 2016Core i5 6600K 4 4 6 MB HD 530 91 W September 20156600 65 W650064006402P HD 510 December 20156xx0R HD 530 35 W June 20166xx0T September 2015Core i3 6320 2 4 4 MB HD 530 51 W63006300T 35 W6100 3 MB HD 530 51 W6100T 35 W6098P HD 510 54 W December 2015Mobile processors H Series Processor branding Model Cores Threads L3 cache GPU Model Socket TDP Process I O Bus Release DateCore i3 6100H 2 4 3 MB HD 530 FBGA 1356 35 W 14 nm Direct Media Interface Integrated GPU September 2015Mobile processors U Series Processor branding Model Cores Threads L3 cache GPU Model Socket TDP Process I O Bus Release DateCore i7 6650U 2 4 4 MB Iris 540 FCBGA 1356 15 W 14 nm Direct Media Interface Integrated GPU September 20156600U HD 520 25 W6567U Iris 550 28 W6x60U Iris 540 15 W6x00U HD 520Core i5 62x7U Iris 550 28 W6360U Iris 540 9 5 W6300U HD 520 15 W6260U Iris 5406200U 3 MB HD 520Core i3 6167U HD 550 28 W6100U HD 520 15 W6006U HD 520 November 20167th generation edit Skylake microarchitecture edit High end Desktop processors X Series Processor branding Model Cores Threads L3 cache Socket TDP Process I O Bus PriceCore i9 7980XE 18 36 24 75 MB LGA 2066 165 W 14 nm Direct Media Interface 19997960X 16 32 22 MB 16997940X 14 28 19 25 MB 13997920X 12 24 16 5 MB 140 W 11997900X 10 20 13 75 MB 999Core i7 7820X 8 16 11 MB 5997800X 6 12 8 25 MB 389Kaby Lake edit Main article Kaby Lake This section needs expansion You can help by adding to it January 2017 Kaby Lake is the codename for the seventh generation Core processor and was launched in October 2016 mobile chips 70 and January 2017 desktop chips 71 With the latest generation of microarchitecture Intel decided to produce Kaby Lake processors without using their tick tock manufacturing and design model 72 Kaby Lake features the same Skylake microarchitecture and is fabricated using Intel s 14 nanometer manufacturing process technology 72 Built on an improved 14 nm process 14FF Kaby Lake features faster CPU clock speeds and Turbo frequencies Beyond these process and clock speed changes little of the CPU architecture has changed from Skylake resulting in identical IPC Kaby Lake features a new graphics architecture to improve performance in 3D graphics and 4K video playback It adds native High bandwidth Digital Content Protection 2 2 support along with fixed function decode of H 264 MPEG 4 AVC High Efficiency Video Coding Main and Main10 10 bit and VP9 10 bit and 8 bit video Hardware encode is supported for H 264 MPEG 4 AVC HEVC Main10 10 bit and VP9 8 bit video VP9 10 bit encode is not supported in hardware OpenCL 2 1 is now supported Kaby Lake is the first Core architecture to support hyper threading for the Pentium branded desktop CPU SKU Kaby Lake also features the first overclocking enabled i3 branded CPU Features common to desktop Kaby Lake CPUs LGA 1151 socket DMI 3 0 and PCIe 3 0 interfaces Dual channel memory support in the following configurations DDR3L 1600 1 35 V 32 GiB maximum or DDR4 2400 1 2 V 64 GiB maximum A total of 16 PCIe lanes The Core branded processors support the AVX2 instruction set The Celeron and Pentium branded ones support only SSE4 1 4 2 350 MHz base graphics clock rate No L4 cache eDRAM A release date of January 3 2017Desktop processors S Series Processor branding Model Cores threads CPU clock rate CPU Turbo clock rate GPU model Maximum GPU clock rate L3 cache TDP Price USD Single core Dual core Quad coreCore i7 7700K 4 8 4 2 GHz 4 5 GHz 4 4 GHz 4 4 GHz HD 630 1150 MHz 8 MB 91 W 3507700 3 6 GHz 4 2 GHz 4 1 GHz 4 0 GHz 65 W 3127700T 2 9 GHz 3 8 GHz 3 7 GHz 3 6 GHz 35 WCore i5 7600K 4 4 3 8 GHz 4 2 GHz 4 1 GHz 4 0 GHz 6 MB 91 W 2437600 3 5 GHz 4 1 GHz 4 0 GHz 3 9 GHz 65 W 2247600T 2 8 GHz 3 7 GHz 3 6 GHz 3 5 GHz 1100 MHz 35 W7500 3 4 GHz 3 8 GHz 3 7 GHz 3 6 GHz 65 W 2027500T 2 7 GHz 3 3 GHz 3 2 GHz 3 1 GHz 35 W7400 3 0 GHz 3 5 GHz 3 4 GHz 3 3 GHz 1000 MHz 65 W 1827400T 2 4 GHz 3 0 GHz 2 9 GHz 2 7 GHz 35 W 187Core i3 7350K 2 4 4 2 GHz N A 1150 MHz 4 MB 60 W 1797320 4 1 GHz 51 W 1577300 4 0 GHz 1477300T 3 5 GHz 1100 MHz 35 W7100 3 9 GHz 3 MB 51 W 1177100T 3 4 GHz 35 W7101E 3 9 GHz 54 W7101TE 3 4 GHz 35 WMobile Processors H Series Processor branding Model Cores threads CPU clock rate CPU Turbo clock rate GPU GPU clock rate L3 cache Max PCIe lanes TDP cTDP Release date Price USD Single core Dual core Quad core Base Max Up DownCore i7 7920HQ 4 8 3 1 GHz 4 1 GHz 3 9 GHz 3 7 GHz HD 630 350 MHz 1100 MHz 8 MB 16 45 W N A 35 W Q1 2017 5687820HQ 2 9 GHz 3 9 GHz 3 7 GHz 3 5 GHz 3787820HK7700HQ 2 8 GHz 3 8 GHz 3 6 GHz 3 4 GHz 6 MBCore i5 7440HQ 4 4 1000 MHz 2507300HQ 2 5 GHz 3 5 GHz 3 3 GHz 3 1 GHzCore i3 7100H 2 4 3 0 GHz N A 950 MHz 3 MB 35 W N A 225Mobile Processors U Series Processor branding Model Cores threads CPU clock rate CPU Turbo clock rate GPU GPU clock rate L3 cache L4 cache Max PCIe lanes TDP cTDP Release date Price USD Single core Dual core Base Max Up DownCore i7 7660U 2 4 2 5 GHz 4 0 GHz Iris Plus 640 300 MHz 1100 MHz 4 MB 64 MB 12 15 W N A 9 5 W Q1 2017 7600U 2 8 GHz 3 9 GHz HD 620 1150 MHz N A 25 W 7 5 W 3937567U 3 5 GHz 4 0 GHz Iris Plus 650 64 MB 28 W N A 23 W 7560U 2 4 GHz 3 8 GHz Iris Plus 640 1050 MHz 15 W 9 5 W7500U 2 7 GHz 3 5 GHz HD 620 N A 25 W 7 5 W Q3 2016 393Core i5 7360U 2 3 GHz 3 6 GHz Iris Plus 640 1000 MHz 4 MB 64 MB 12 15 W N A 9 5 W Q1 2017 7300U 2 6 GHz 3 5 GHz HD 620 1100 MHz 3 MB N A 12 15 W 25 W 7 5 W 2817287U 3 3 GHz 3 7 GHz Iris Plus 650 4 MB 64 MB 28 W N A 23 W 7267U 3 1 GHz 3 5 GHz 1050 MHz7260U 2 2 GHz 3 4 GHz Iris Plus 640 950 MHz 15 W 9 5 W7200U 2 5 GHz 3 1 GHz HD 620 1000 MHz 3 MB N A 25 W 7 5 W Q3 2016 281Core i3 7167U 2 8 GHz N A Iris Plus 650 1000 MHz 3 MB 64 MB 12 28 W N A 23 W Q1 2017 7100U 2 4 GHz HD 620 N A 15 W 7 5 W Q3 2016 281Mobile Processors Y Series Processor branding Model Cores threads CPU clock rate CPU Turbo clock rate GPU GPU clock rate L3 cache Max PCIe lanes TDP cTDP Release date Price USD Single core Dual core Base Max Up DownCore i7 7Y75 2 4 1 3 GHz 3 6 GHz 3 4 GHz HD 615 300 MHz 1050 MHz 4 MB 10 4 5 W 7 W 3 5 W Q3 2016 393Core i5 7Y57 1 2 GHz 3 3 GHz 2 9 GHz 950 MHz Q1 2017 2817Y54 3 2 GHz 2 8 GHz Q3 2016Core i3 7Y30 1 0 GHz 2 6 GHz 900 MHz7Y32 1 1 GHz 3 0 GHz Q2 2017Kaby Lake X processors are modified versions of Kaby Lake S processors that fit into the LGA 2066 socket However they can t take advantage of the unique features of the platform High end Desktop processors X Series Processor branding Model Cores threads CPU clock rate CPU Turbo clock rate L3 cache TDP Price USD Single core Dual core Quad coreCore i7 7740X 4 8 4 3 GHz 4 5 GHz 4 4 GHz 4 4 GHz 8 MB 112 W 339Core i5 7640X 4 4 4 0 GHz 4 2 GHz 4 1 GHz 4 0 GHz 6 MB 2428th generation edit Kaby Lake Refresh edit Mobile processors U Series Processorbranding Model Cores threads CPUclockrate CPU Turbo clock rate GPU GPU clock rate L3cache L4cache Max PCIelanes TDP cTDP Releasedate Price USD Singlecore Dualcore Quadcore Base Max Up DownCore i7 8650U 4 8 1 9 GHz 4 2 GHz 3 9 GHz UHD 620 300 MHz 1150 MHz 8 MB 12 15 W 25 W 10 W Q3 2017 4098550U 1 8 GHz 4 0 GHz 3 7 GHzCore i5 8350U 1 7 GHz 3 6 GHz 1100 MHz 6 MB 2978250U 1 6 GHz 3 4 GHzCoffee Lake microarchitecture edit Main article Coffee Lake Coffee Lake is a codename for the eighth generation Intel Core family and was launched in October 2017 For the first time in the ten year history of Intel Core processors the Coffee Lake generation features an increase in core counts across the desktop lineup of processors a significant driver of improved performance versus previous generations despite similar per clock performance Increase in number of CPU cores in desktop Coffee Lake processors Kaby Lake 7th Generation Coffee Lake 8th Generation Cores Threads Cores ThreadsCore i3 2 40 4 40Core i5 4 40 6 60Core i7 4 80 6 12 Intel Hyper threading capabilities allow an enabled processor to execute two threads per physical coreCoffee Lake features largely the same CPU core and performance per MHz as Skylake Kaby Lake 73 74 Features specific to Coffee Lake include Following similar refinements to the 14 nm process in Skylake and Kaby Lake Coffee Lake is the third 14 nm process refinement 14nm and features increased transistor gate pitch for a lower current density and higher leakage transistors which allows higher peak power and higher frequency at the expense of die area and idle power Coffee Lake will be used in conjunction with the 300 series chipset and is incompatible with the older 100 and 200 series chipsets 75 76 Increased L3 cache in accordance to the number of cores Increased turbo clock speeds across i5 and i7 CPUs models increased by up to 200 MHz Increased iGPU clock speeds by 50 MHz DDR4 memory support updated for 2666 MHz for i5 and i7 parts and 2400 MHz for i3 parts DDR3 memory is no longer supportedDesktop processors S Series Processorbranding Model Cores threads Base CPUclock rate Turbo clock rate 77 GHz GPU max GPUclock rate L3cache TDP Memorysupport Price USD Number of cores used1 2 3 4 5 6Core i7 8086K 6 12 4 0 GHz 5 0 4 6 4 5 4 4 4 3 UHD 630 1 20 GHz 12 MB 95 W DDR4 2666 4258700K 3 7 GHz 4 7 3598700 3 2 GHz 4 6 4 5 4 4 4 3 65 W 3038700T 2 4 GHz 4 0 4 0 3 9 3 8 35 WCore i5 8600K 6 6 3 6 GHz 4 3 4 2 4 1 1 15 GHz 9 MB 95 W 2578600 3 1 GHz 65 W 2138600T 2 3 GHz 3 7 3 6 3 5 35 W8500 3 0 GHz 4 1 4 0 3 9 1 10 GHz 65 W 1928500T 2 1 GHz 3 5 3 4 3 3 3 2 35 W8400 2 8 GHz 4 0 3 9 3 8 1 05 GHz 65 W 1828400T 1 7 GHz 3 3 3 2 3 1 3 0 35 WCore i3 8350K 4 4 4 0 GHz 1 15 GHz 8 MB 91 W DDR4 2400 1688300 3 7 GHz 62 W 1388300T 3 2 GHz 35 W8100 3 6 GHz 1 10 GHz 6 MB 65 W 1178100T 3 1 GHz 35 W Processors Core i3 8100 and Core i3 8350K with stepping B0 actually belong to Kaby Lake S family Mobile processors H Series Processor branding Model Cores threads CPU clock rate Max Turbo clock rate GPU GPU clock rate L3 cache TDP cTDP Price USD Base Max Down UpCore i7 8850H 6 12 2 6 GHz 4 3 GHz UHD 630 350 MHz 1 15 GHz 9 MB 45 W 35 W N A 3958750H 2 2 GHz 4 1 GHz 1 10 GHz8700B 3 2 GHz 4 6 GHz 1 20 GHz 12 MB 65 W 303Core i5 8500B 6 6 3 0 GHz 4 1 GHz 1 10 GHz 9 MB 1928400B 2 8 GHz 4 0 GHz 1 05 GHz 1828400H 4 8 2 5 GHz 4 2 GHz 1 10 GHz 8 MB 45 W 2508300H 2 3 GHz 4 0 GHz 1 00 GHz 250Core i3 8100H 4 4 3 0 GHz N A 6 MB 225Mobile processors U Series Processor branding Model Cores threads CPU clock rate Max Turbo clock rate GPU GPU clock rate L3 cache L4 cache eDRAM TDP cTDP Price USD Base Max Down UpCore i7 8559U 4 8 2 7 GHz 4 5 GHz Iris Plus 655 300 MHz 1 20 GHz 8 MB 128 MB 28 W 20 W N A 431Core i5 8269U 2 6 GHz 4 2 GHz 1 10 GHz 6 MB 3208259U 2 3 GHz 3 8 GHz 1 05 GHz N ACore i3 8109U 2 4 3 0 GHz 3 6 GHz UHD 630 1 10 GHz 4 MBAmber Lake microarchitecture edit Amber Lake is a refinement over the low power Mobile Kaby Lake CPUs Mobile Processors Y Series Processor branding Model Cores threads CPU clock rate GPU Max GPU clock rate L3 cache TDP cTDP PriceBase Max turbo Up DownCore i7 8510Y Archived July 28 2020 at the Wayback Machine 2 4 1 8 GHz 3 9 GHz UHD 617 1050 MHz 4 MB 7 W N A 3938500Y 1 5 GHz 4 2 GHz UHD 615 5 W 7 W 3 5 W 393Core i5 8310Y 1 6 GHz 3 9 GHz UHD 617 7 W N A 2818210Y 3 6 GHz8200Y 1 3 GHz 3 9 GHz UHD 615 950 MHz 5 W 7 W 3 5 W 291Core m3 8100Y 1 1 GHz 3 4 GHz 900 MHz 8 W 4 5 W 281Whiskey Lake microarchitecture edit Main article Whiskey Lake Whiskey Lake is Intel s codename for the third 14 nm Skylake process refinement following Kaby Lake Refresh and Coffee Lake Intel announced low power mobile Whiskey Lake CPUs availability on August 28 2018 78 79 It has not yet been advertised whether this CPU architecture contains hardware mitigations for Meltdown Spectre class vulnerabilities various sources contain conflicting information 80 81 79 82 Unofficially it was announced that Whiskey Lake has hardware mitigations against Meltdown and L1TF while Spectre V2 requires software mitigations as well as microcode firmware update 83 84 85 86 Architecture changes compared to Kaby Lake Refresh edit 14 nm process same as Coffee Lake Increased turbo clocks 300 600 MHz 14 nm PCH Native USB 3 1 gen 2 support 10 Gbit s Integrated 802 11ac 160 MHz Wi Fi and Bluetooth 5 0 Intel Optane Memory supportMobile processors U Series Processor branding Model Cores threads CPU clock rate Turbo clock GHz Num of cores GPU Max GPU clock rate L3 cache cTDP Memory Price1 2 4 Up DownCore i7 8665U 4 8 1 9 GHz 4 8 UHD620 1150 MHz 8 MB 25 W 10 W DDR4 2400 LPDDR3 2133 4098565U 1 8 GHz 4 6 4 5 4 1 409Core i5 8365U 1 6 GHz 4 1 1100 MHz 6 MB 2978265U 3 9 3 9 3 7 297Core i3 8145U 2 4 2 1 GHz 3 9 3 7 1000 MHz 4 MB 281Cannon Lake microarchitecture edit Main article Cannon Lake microprocessor Cannon Lake formerly Skymont is Intel s codename for the 10 nanometer die shrink of the Kaby Lake microarchitecture As a die shrink Cannon Lake is a new process in Intel s process architecture optimization execution plan as the next step in semiconductor fabrication 87 Cannon Lake are the first mainstream CPUs to include the AVX 512 instruction set In comparison to the previous generation AVX2 AVX 256 the new generation AVX 512 most notably provides double the width of data registers and double the number of registers These enhancements would allow for twice the number of floating point operations per register due to the increased width in addition to doubling the overall number of registers resulting in theoretical performance improvements of up to four times the performance of AVX2 88 89 At CES 2018 Intel announced that they had started shipping mobile Cannon Lake CPUs at the end of 2017 and that they would ramp up production in 2018 90 91 92 No further details were disclosed Architecture changes compared to Coffee Lake edit AVX 512 instruction set extension Intel s first 10 nm process technologyMobile processors U Series edit Mobile processors U Series Processor branding Model Cores threads CPU clock rate CPU Turbo clock rate GPU GPU clock rate L3 cache TDP cTDP Price USD Base Max DownCore i3 8121U 93 94 2 4 2 2 GHz 3 2 GHz N A 4 MB 15 W N A 9th generation edit Skylake microarchitecture edit The 9th generation Skylake CPUs are updated versions of previous Skylake X Series CPUs with clockspeed improvements High end Desktop processors X Series Processor branding Model Cores Threads Base Clock Single Core Turbo Clock L3 cache TDP PriceCore i9 9980XE 18 36 3 0 GHz 4 5 GHz 24 75 MB 165 W 19799960X 16 32 3 1 GHz 22 MB 16849940X 14 28 3 3 GHz 19 25 MB 13879920X 12 24 3 5 GHz 11899900X 10 20 9899820X 3 3 GHz 4 2 GHz 16 5 MB 889Core i7 9800X 8 16 3 8 GHz 4 5 GHz 589Coffee Lake Refresh microarchitecture edit The 9th generation Coffee Lake CPUs were released in the fourth quarter of 2018 They include hardware mitigations against certain Meltdown Spectre vulnerabilities 95 96 For the first time in Intel consumer CPU history these CPUs support up to 128 GB RAM 97 Increase in number of CPU cores in desktop 9th Generation processors 8th Generation 9th GenerationCores Threads Cores ThreadsCore i3 4 40 4 40Core i5 6 60 6 60Core i7 6 12 8 8Core i9 8 16 Intel Hyper threading capabilities allow an enabled processor to execute two threads per physical coreEven though the F suffix CPUs lack an integrated GPU Intel set the same price for these CPUs as their featureful counterparts 98 Desktop processors S Series Processorbranding Model Cores Threads Base CPUclock rate Turbo clock rate 99 GHz GPU max GPUclock rate L3cache TDP Memory support Price USD Number of cores used1 2 3 4 5 6 7 8Core i9 9900KS 8 16 4 0 GHz 5 0 UHD 630 1 20 GHz 16 MB 127 W DDR4 2666 5249900K 3 6 GHz 5 0 4 8 4 7 95 W 4889900KF Core i7 9700K 8 8 3 6 GHz 4 9 4 8 4 7 4 6 UHD 630 1 20 GHz 12 MB 95 W 3749700KF Core i5 9600K 6 6 3 7 GHz 4 6 4 5 4 4 4 3 UHD 630 1 15 GHz 9 MB 2629600KF 9400 2 9 GHz 4 1 UHD 630 1 05 GHz 65 W 1829400F Core i3 9350KF 4 4 4 0 GHz 4 6 8 MB 91 W DDR4 2400 1739100F 3 6 GHz 4 2 6 MB 65 W 1229100 UHD 630 1 1 GHz various reviews show that the Core i9 9900K CPU may consume over 140 W under load The Core i9 9900KS may consume even more 100 101 102 103 Mobile processors H Series Processorbranding Model Cores Threads Base CPUclock rate Single Core Turbo clock rate GHz GPU Max GPUclock rate L3cache TDP Memorysupport Price USD Core i9 9980HK 8 16 2 4 GHz 5 0 HD 630 1 25 GHz 16 MB 45 W DDR4 2666 5839880H 2 3 GHz 4 8 1 20 GHz 556Core i7 9850H 6 12 2 6 GHz 4 6 1 15 GHz 12 MB 3959750H 4 5Core i5 9400H 4 8 2 5 GHz 4 3 1 10 GHz 8 MB 2509300H 2 4 GHz 4 1 1 05 GHz10th generation edit Cascade Lake microarchitecture edit Cascade Lake X Series CPUs are the 10th generation versions of the previous Skylake X Series CPUs They offer minor clockspeed improvements and a highly reduced price High end Desktop processors X Series Processor branding Model Cores Threads Base Clock Single Core Turbo Clock All Core Turbo Clock L3 cache TDP PriceCore i9 10980XE 18 36 3 0 GHz 4 8 GHz 3 8 GHz 24 75 MB 165 W 97910940X 14 28 3 3 GHz 4 1 GHz 19 25 MB 78410920X 12 24 3 5 GHz 4 3 GHz 68910900X 10 20 3 7 GHz 4 7 GHz 590Ice Lake microarchitecture edit Main article Ice Lake microprocessor Ice Lake is codename for Intel s 10th generation Intel Core processors representing an enhancement of the architecture of the preceding generation Kaby Lake Cannon Lake processors as specified in Intel s process architecture optimization execution plan As the successor to Cannon Lake Ice Lake uses Intel s newer 10 nm fabrication process and is powered by the Sunny Cove microarchitecture Ice Lake are the first Intel CPUs to feature in silicon mitigations for the hardware vulnerabilities discovered in 2017 Meltdown and Spectre These side channel attacks exploit branch prediction s use of speculative execution These exploits may cause the CPU to reveal cached private information which the exploiting process is not intended to be able to access as a form of timing attack citation needed Features edit CPU edit On average 18 increase in IPC in comparison to 2015 Skylake running at the same frequency and memory configuration 104 105 L1 instruction data cache 32 KB 48 KiB L2 cache 512 KiB 79 Dynamic Tuning 2 0 which allows the CPU to stay at turbo frequencies for longer 106 107 Six new AVX 512 instruction subsets VPOPCNTDQ VBMI2 BITALG VPCLMULQDQ GFNI and VAES AI tasks acceleration Intel Deep Learning Boost 108 107 GPU edit Gen 11 GPU with up to 64 execution units 109 110 4K 120 Hz 5K 8K display output 111 Variable Rate Shading 112 113 DisplayPort 1 4a with Display Stream Compression HDMI 2 0b Up to 1 15 TFLOPS of computational performance Two HEVC 10 bit encode pipelines either two 4K60 4 4 4 streams simultaneously or one 8K30 4 2 2 107 Package edit 10 nm transistors New memory controller with DDR4 3200 and LPDDR4X 3733 support Integrated support for Wi Fi 6 802 11ax Thunderbolt 3 support 114 Mobile processors U Series edit Processorbranding Model Cores threads Base CPUclock rate Turbo clock GHz Num of cores GPU L3cache TDP cTDP Price1 2 4 Series EUs Max clockrate Up DownCore i7 1065G7 4 8 1 3 GHz 3 9 3 5 Iris Plus 64 1 1 GHz 8 MiB 15 W 25 W 12 W 426Core i5 1035G7 1 2 GHz 3 7 3 3 1 05 GHz 6 MiB 15 W 25 W 12 W 3201035G4 1 1 GHz 48 3091035G1 1 0 GHz 3 6 UHD 32 13 W 297Core i3 1005G1 2 4 1 2 GHz 3 4 UHD 32 0 9 GHz 4 MiB 15 W 25 W 13 W 281Mobile processors Y Series edit Processorbranding Model Cores threads Base CPUclock rate Turbo clock GHz Num of cores GPU L3cache TDP cTDP Price1 2 4 Series EUs Max clockrate Up DownCore i7 1060G7 4 8 1 0 GHz 3 8 3 4 Iris Plus 64 1 1 GHz 8 MiB 9 W 12 WCore i5 1030G7 0 8 GHz 3 5 3 2 Iris Plus 64 6 MiB 9 W 12 W1030G4 0 7 GHz 48Core i3 1000NG4 2 4 1 1 GHz 3 2 Iris Plus 48 0 9 GHz 4 MiB 9 W1000G4 12 W1000G1 UHD 32Comet Lake microarchitecture edit Main article Comet Lake Comet Lake is Intel s codename for the fourth 14 nm Skylake process refinement following Whiskey Lake Intel announced low power mobile Comet Lake CPUs availability on August 21 2019 115 Architecture changes in Comet Lake U compared to Whiskey Lake edit Up to six CPU cores L3 cache up to 12 MiB Higher turbo frequencies LPDDR4x 2933 memory support Wi Fi 6 AX201 support Depends on PCH chipset 116 Increase in number of CPU cores in desktop 10th generation processors 9th generation 10th generationCores threads Cores threadsCore i3 4 4 4 8Core i5 6 6 6 12Core i7 8 8 8 16Core i9 8 16 10 20Desktop processors S Series edit Processorbranding Model Cores Threads CPU clock rate GHz GPU Smartcache MB TDP Memorysupport Price USD Base All Core Turbo Turbo Boost 2 0 Turbo Boost Max 3 0 Model max clockrate GHz Down BaseCore i9 10900K 10 20 3 7 4 8 5 1 5 2 UHD 630 1 20 20 95 125 DDR4 2933 2 channelup to 128 GB 48810900KF 47210910 3 6 4 7 5 0 UHD 630 1 20 OEM10900 2 8 4 5 5 1 65 43810900F 42210900T 1 9 3 7 4 5 4 6 UHD 630 1 20 25 35 43810850K 3 6 4 7 5 0 5 1 95 125 453Core i7 10700K 8 16 3 8 16 37410700KF 34910700 2 9 4 6 4 7 4 8 UHD 630 1 20 65 32310700F 29810700T 2 0 3 7 4 4 4 5 UHD 630 1 20 25 35 325Core i5 10600K 6 12 4 1 4 5 4 8 12 95 125 DDR4 2666 2 channelup to 128 GB 26210600KF 23710600 3 3 4 4 4 8 UHD 630 1 20 65 21310600T 2 4 3 7 4 0 25 3510500 3 1 4 2 4 5 1 15 65 19210500T 2 3 3 5 3 8 25 3510400 2 9 4 0 4 3 1 10 65 18210400F 15710400T 2 0 3 2 3 6 UHD 630 1 10 25 35 182Core i3 10320 4 8 3 8 4 4 4 6 1 15 8 65 15410300 3 7 4 2 4 4 14310300T 3 0 3 6 3 9 1 10 25 3510100 3 6 4 1 4 3 6 65 12210100F 79 9710100T 3 0 3 5 3 8 UHD 630 1 10 25 35 pMobile processors H Series edit Processor branding Model Cores Threads CPU clock speed GHz GPU Smart cache MB TDP W Memory support Price USD Base Max Turbo Model Max freq GHz Down Base UpCore i9 10980HK 8 16 2 4 5 3 UHD 630 1 25 16 45 65 DDR4 2933 2 channelup to 128 GB 58310885H 35 556Core i7 10875H 2 3 5 1 1 20 45010870H 2 2 5 0 41710850H 6 12 2 7 5 1 1 15 12 39510750H 2 6 5 0Core i5 10500H 2 5 4 5 1 05 25010400H 4 8 2 6 4 6 1 10 810300H 2 5 4 5 1 0510200H 2 4 4 1 UHD 610Mobile processors U Series edit Processor branding Model Cores Threads CPU clock speed GHz GPU L3 cache MB TDP Memory support Price USD Base Max Turbo Model Max freq Down Base UpCore i7 10810U 6 12 1 1 4 9 UHD 620 1 15 12 12 5 15 25 DDR4 2666 LPDDR3 2133 44310710U 4 710610U 4 8 1 8 4 9 8 10 40910510UCore i5 10310U 1 7 4 4 6 29710210U 1 6 4 2 1 10Core i3 10110U 2 4 2 1 4 1 1 00 4 281Comet Lake Refresh microarchitecture edit Processorbranding Model Cores Threads CPU clock rate GHz GPU Smartcache MB TDP Memorysupport Price USD Base All Core Turbo Turbo Boost 2 0 Model Max freq Down BaseCore i5 10505 6 12 3 2 4 3 4 6 UHD 630 1 2 12 N A 65 DDR4 2666 2 channelup to 128 GB 192Core i3 10325 4 8 3 9 4 5 4 7 1 15 8 65 15410305 3 8 4 3 4 5 14310305T 3 0 3 7 4 0 1 10 25 3510105 3 7 4 2 4 4 6 65 12210105F 9710105T 3 0 3 6 3 9 UHD 630 1 10 25 35 122Amber Lake Refresh microarchitecture edit List of Amber Lake Refresh Y series processors Processor branding Model Cores threads CPU clock rate Turbo Boost clock rate GPU Max GPU clock rate L3 cache TDP cTDP Memory Price1 core 2 cores 4 cores Up DownCore i7 10510Y 4 8 1 2 GHz 4 5 GHz 3 2 GHz UHD for 10th Gen Processors 1150 MHz 8 MB 7 W 9 W 4 5 W LPDDR3 2133 US 403Core i5 10310Y 1 1 GHz 4 1 GHz 2 8 GHz 1050 MHz 6 MB 5 5 W US 29210210Y 1 0 GHz 4 0 GHz 2 7 GHz 4 5 WCore i3 10110Y 2 4 3 7 GHz 1000 MHz 4 MB 5 5 W US 28711th generation edit Tiger Lake edit Main article Tiger Lake Launched on September 2 2020 Architecture changes compared to Ice Lake edit CPU edit Intel Willow Cove CPU cores 117 Larger level two and level three L2 L3 caches A new AVX 512 instruction Vector Pair Intersection to a Pair of Mask Registers VP2INTERSECT 118 119 Control Flow Enforcement Technology to prevent Return Oriented Programming and Jump Oriented Programming hacking techniques 120 Full memory RAM encryption 121 Indirect branch tracking and shadow stack 122 Intel Key Locker 123 124 AVX AVX2 instructions support for Pentium Gold and Celeron processors has been unlockedGPU edit Intel Xe LP Gen12 GPU with up to 96 execution units 125 50 uplift compared to Ice Lake with some yet to be announced processors using Intel s discrete GPU DG1 126 127 Fixed function hardware decoding for High Efficiency Video Coding 12 bit 4 2 2 4 4 4 VP9 12 bit 4 4 4 and AV1 8K 10 bit 4 2 0 128 129 130 Support for a single 8K 12 bit High dynamic range video display or two 4K resolution 10 bit HDR displays Hardware accelerated Dolby Vision Sampler Feedback 131 132 133 supportI O edit PCI Express 4 0 134 Pentium and Celeron CPUs are limited to PCI Express 3 0 Thunderbolt 4 includes USB4 LPDDR4X 4267 memory support LPDDR5 5400 architecture capability Intel expects Tiger Lake products with LPDDR5 to be available around Q1 2021 135 136 137 Designs with LPDDR5 memory are yet to be announced as of March 2022 Miniaturization of CPU and motherboard into an M 2 SSD sized small circuit board 126 Mobile processors Tiger Lake H edit All models support DDR4 3200 memory All models support 20 reconfigurable PCI Express 4 0 lanes allowing x16 Gen 4 link for discrete GPU and x4 Gen 4 link for M 2 SSDsProcessor branding Model Cores threads Base freq at TDP Max Turbo freq active cores UHD Graphics Smart cache TDP Price 35 W 45 W 65 W 1 or 2 4 6 All EUs Max freqCore i9 11980HK 8 16 2 6 GHz 3 3 GHz 5 0 GHz 4 9 GHz 4 7 GHz 4 5 GHz 32 1 45 GHz 24 MB 45 65 W 58311950H vPro 2 1 GHz N A 35 45 W 55611900H 2 5 GHz 4 9 GHz 4 8 GHz 4 6 GHz 4 4 GHz 546Core i7 11850H vPro 4 8 GHz 4 8 GHz 4 6 GHz 4 3 GHz 39511800H 1 9 GHz 2 3 GHz 4 6 GHz 4 5 GHz 4 4 GHz 4 2 GHzCore i5 11500H vPro 6 12 2 4 GHz 2 9 GHz 4 6 GHz 4 4 GHz 4 2 GHz 12 MB 25011400H 2 2 GHz 2 7 GHz 4 5 GHz 4 3 GHz 4 1 GHz 1611260H 2 1 GHz 2 6 GHz 4 4 GHz 4 2 GHz 4 0 GHz 1 40 GHzMobile processors Tiger Lake H35 edit All models support DDR4 3200 or LPDDR4X 4267 memoryProcessor branding Model Cores threads Base freq at TDP Max Turbo freq active cores Iris Xe Graphics Smart cache TDP Price 28 W 35 W 1 2 All EUs Max freqCore i7 11390H 4 8 2 9 GHz 3 4 GHz 5 0 GHz 4 6 GHz 96 1 40 GHz 12 MB 28 35 W 42611375H 3 0 GHz 3 3 GHz 5 0 GHz 4 8 GHz 4 3 GHz 1 35 GHz 48211370H 4 8 GHz 426Core i5 11320H 2 5 GHz 3 2 GHz 4 5 GHz 8 MB 30911300H 2 6 GHz 3 1 GHz 4 4 GHz 4 0 GHz 80 1 30 GHzMobile processors UP3 class edit Processor branding Model Cores threads Base freq at TDP Max Turbo freq GPU Smart cache TDP Memory support Price 12 W 15 W 28 W 1 Core All Cores Series EUs Max freqCore i7 1195G7 4 8 1 3 GHz 2 9 GHz 5 0 GHz 4 6 GHz Iris Xe 96 1 40 GHz 12 MB 12 28 W DDR4 3200 LPDDR4X 4267 4261185G7 vPro 1 2 GHz 1 8 GHz 136 3 0 GHz 4 8 GHz 4 3 GHz 1 35 GHz1165G7 1 2 GHz 1 7 GHz 2 8 GHz 4 7 GHz 4 1 GHz 1 30 GHzCore i5 1155G7 1 0 GHz 2 5 GHz 4 5 GHz 4 3 GHz 80 1 35 GHz 8 MB 3091145G7 vPro 1 1 GHz 1 5 GHz 2 6 GHz 4 4 GHz 3 8 GHz 1 30 GHz1135G7 0 9 GHz 1 4 GHz 2 4 GHz 4 2 GHz 3 8 GHzCore i3 1125G4 2 0 GHz 3 7 GHz 3 3 GHz UHD 48 1 25 GHz DDR4 3200 LPDDR4X 3733 2811115G4 2 4 1 7 GHz 2 2 GHz 3 0 GHz 4 1 GHz 6 MBEmbedded mobile processors UP3 class edit Processor branding Model Cores threads Base freq at TDP Max Turbo freq GPU Smart cache TDP Memory support Price 12 W 15 W 28 W Series EUs Max freq Type ECCCore i7 1185GRE vPro 4 8 1 2 GHz 1 8 GHz 2 8 GHz 4 4 GHz Iris Xe 96 1 35 GHz 12 MB 15 W DDR4 3200 LPDDR4X 4267 Yes 4901185G7E vPro No 431Core i5 1145GRE vPro 1 1 GHz 1 5 GHz 2 6 GHz 4 1 GHz 80 1 30 GHz 8 MB Yes 3621145G7E vPro No 312Core i3 1115GRE 2 4 1 7 GHz 2 2 GHz 3 0 GHz 3 9 GHz UHD 48 1 25 GHz 6 MB DDR4 3200 LPDDR4X 3733 Yes 3381115G4E No 285Mobile processors UP4 class edit Processor branding Model Cores threads Base freq at TDP Max Turbo freq GPU Smart cache TDP Memory support Price 7 W 9 W 15 W 1 Core All Cores Series EUs Max freqCore i7 1180G7 vPro 4 8 0 9 GHz 2 2 GHz 4 6 GHz Iris Xe 96 1 10 GHz 12 MB 7 15 W LPDDR4X 4267 4261160G7 1 2 GHz 2 1 GHz 4 4 GHz 3 6 GHzCore i5 1140G7 vPro 0 8 GHz 1 8 GHz 4 2 GHz 80 8 MB 3091130G7 1 1 GHz 4 0 GHz 3 4 GHzCore i3 1120G4 1 5 GHz 3 5 GHz 3 0 GHz UHD 48 2811110G4 2 4 1 5 GHz 1 8 GHz 2 5 GHz 3 9 GHz 6 MBDesktop tablet processors Tiger Lake B edit Socket FCBGA1787 a BGA socket thus these CPUs are meant only for system integrators Intel Xe UHD Graphics Up to 128 GB DDR4 3200 memory Was initially incorrectly listed as having a 5 3 GHz TVB boost frequency 138 Processor branding Model Cores threads Base Boost Clocks GHz L3 cache MB TDP GPU EU GPU Max freq PriceCore i9 11900KB 8 16 3 3 4 9 24 65 W 32 1 45 GHz 539Core i7 11700B 3 2 4 8Core i5 11500B 6 12 3 3 4 6 12Core i3 11100B 4 8 3 6 4 4 16 1 4 GHzRocket Lake microarchitecture edit Main article Rocket Lake Rocket Lake is a codename for Intel s desktop x86 chip family based on the new Cypress Cove microarchitecture a variant of Sunny Cove used by Intel s Ice Lake mobile processors backported to the older 14 nm process 139 The chips are marketed as Intel 11th generation Core Launched March 30 2021 Architecture changes in comparison with Comet Lake edit CPU edit Intel Cypress Cove CPU cores Up to 19 claimed increase in IPC instructions per clock 139 140 DL Boost low precision arithmetic for Deep Learning and AVX 512 instructions Compared to its predecessors SGX instruction set extensions are removed 141 142 GPU edit Intel Xe LP Gen12 GPU with up to 32 execution units 125 143 Fixed function hardware decoding for HEVC 12 bit 4 2 2 4 4 4 VP9 12 bit 4 4 4 and AV1 8K 10 bit 4 2 0 128 129 130 DisplayPort 1 4a with Display Stream Compression HDMI 2 0b Support for a single 8K 12 bit HDR display or two 4K 10 bit HDR displays Hardware accelerated Dolby Vision Sampler Feedback 131 132 133 144 support Dual Queue Support 145 Variable Rate Shading 143 146 Integer and nearest neighbor image scaling 147 GPUs on desktop CPUs support 5K 60 HzI O edit Up to 20 CPU lanes of PCI Express 4 0 148 DDR4 3200 memory support 139 USB 3 2 Gen 2 2 Optional USB4 Thunderbolt 4 when paired with Intel JHL8540 Thunderbolt 4 Controller 149 150 DMI 3 0 x8 link with Intel 500 Series ChipsetsDesktop processors edit All CPUs listed below support DDR4 3200 natively The Core i9 K KF processors enable a 1 1 ratio of DRAM to memory controller by default at DDR4 3200 whereas the Core i9 non K KF and all other CPUs listed below enable a 2 1 ratio of DRAM to memory controller by default at DDR4 3200 and a 1 1 ratio by default at DDR4 2933 151 All CPUs support up to 128 GiB of RAM in dual channel mode Core i9 CPUs except 11900T support Intel Thermal Velocity Boost technologyProcessorbranding Model Cores Threads Base clock rate All Core Turbo Turbo Boost 2 0 Turbo Boost Max 3 0 GPU max GPUclock rate Smartcache TDP Price USD Core i9 11900K 8 16 3 5 GHz 4 8 GHz 5 1 GHz 5 2 GHz UHD 750 1 3 GHz 16 MiB 125 W 53911900KF 51311900 2 5 GHz 4 7 GHz 5 0 GHz 5 1 GHz UHD 750 1 3 GHz 65 W 43911900F 42211900T 1 5 GHz 3 7 GHz 4 8 GHz 4 9 GHz UHD 750 1 3 GHz 35 W 439Core i7 11700K 3 6 GHz 4 6 GHz 4 9 GHz 5 0 GHz 125W 39911700KF 37411700 2 5 GHz 4 4 GHz 4 8 GHz 4 9 GHz UHD 750 1 3 GHz 65W 32311700F 29811700T 1 4 GHz 3 6 GHz 4 5 GHz 4 6 GHz UHD 750 1 3 GHz 35 W 323Core i5 11600K 6 12 3 9 GHz 4 6 GHz 4 9 GHz N A 12 MiB 125 W 26211600KF 23711600 2 8 GHz 4 3 GHz 4 8 GHz UHD 750 1 3 GHz 65 W 21311600T 1 7 GHz 3 5 GHz 4 1 GHz 35 W11500 2 7 GHz 4 2 GHz 4 6 GHz 65 W 19211500T 1 5 GHz 3 4 GHz 3 9 GHz 1 2 GHz 35 W11400 2 6 GHz 4 2 GHz 4 4 GHz UHD 730 1 3 GHz 65 W 18211400F 15711400T 1 3 GHz 3 3 GHz 3 7 GHz UHD 730 1 2 GHz 35 W 18212th generation edit Alder Lake edit Main article Alder Lake Alder Lake is Intel s codename for the 12th generation of Intel Core processors based on a hybrid architecture utilizing Golden Cove high performance cores and Gracemont power efficient cores 152 It is fabricated using Intel s Intel 7 process previously referred to as Intel 10 nm Enhanced SuperFin 10ESF Intel officially announced 12th Gen Intel Core CPUs on October 27 2021 and was launched to the market on November 4 2021 153 Architecture changes in comparison to Rocket Lake edit CPU edit Further information Golden Cove and Gracemont microarchitecture Golden Cove high performance Performance cores P cores Dedicated floating point adders 154 New 6 wide instruction decoder up from 4 wide in Rocket Lake Tiger Lake with the ability to fetch up to 32 bytes of instructions per cycle up from 16 154 12 execution ports up from 10 512 reorder buffer entries up from 384 6 wide mOP allocations up from 5 mOP cache size increased to 4K entries up from 2 25K AVX VNNI a VEX coded variant of AVX512 VNNI for 256 bit vectors AVX 512 including FP16 is present but disabled by default to match E cores It still can be enabled on some motherboards by disabling the E cores 154 155 18 IPC uplift 156 Gracemont high efficiency Efficient cores E cores E cores are organized in 4 core modules L2 cache is shared between E cores within a module 256 reorder buffer entries up from 208 in Tremont 17 execution ports up from 12 AVX2 FMA and AVX VNNI to catch up with P cores Skylake like IPC 156 new instruction set extensions 157 up to 1 TB s interconnect between cores 154 Intel Thread Director Hardware Feedback Interface HFI 158 159 a hardware technology to assist the OS thread scheduler with more efficient load distribution between heterogeneous CPU cores 136 Enabling this new capability requires support in operating systems Microsoft added support for Thread Director to Windows 11 154 160 while support to Linux was merged in kernel 5 18 159 161 up to 30 MB L3 cache 154 nomenclature up to 8 P cores and 8 E cores on desktop 156 up to 6 P cores and 8 E cores on mobile UP3 designs 156 up to 2 P cores and 8 E cores on ultra mobile UP4 designs 156 only P cores feature Hyper threadingGPU edit Intel Xe Gen12 2 GPU up to 96 EU on mobile and 32 EU on desktop 154 I O edit LGA 1700 socket 162 for desktop processors BGA Type3 and Type4 HDI for mobile processors 136 20 PCIe lanes from CPU 16 PCIe 5 0 lanes 154 0 4 PCIe 4 0 lanes 154 Chipset link DMI 4 0 x8 link with Intel 600 series PCH chipsets DDR5 DDR4 LPDDR5 and LPDDR4 memory support up to DDR4 3200 up to DDR5 4800 XMP 3 0 163 Dynamic Memory Boost 163 Integrated Thunderbolt 4 and WiFi 6E support 164 Desktop processors Alder Lake S edit All the CPUs support up to 128 GB of DDR4 3200 or DDR5 4800 RAM in dual channel mode 165 Some models feature integrated UHD Graphics 770 UHD Graphics 730 or UHD Graphics 710 GPU with 32 24 16 EUs and base frequency of 300 MHz By default Alder Lake CPUs are configured to run at Turbo Power at all times and Base Power is only guaranteed when P Cores E cores do not exceed the base clock rate 154 Max Turbo Power the maximum sustained gt 1 s power dissipation of the processor as limited by current and or temperature controls Instantaneous power may exceed Maximum Turbo Power for short durations 10 ms Maximum Turbo Power is configurable by system vendor and can be system specific CPUs in bold below feature ECC memory support only when paired with a motherboard based on the W680 chipset 166 By default Core i9 12900KS achieves 5 5 GHz only when using Thermal Velocity Boost 167 Processor branding Model Cores threads Base clock rate TurboBoost 2 0 Turbo Max 3 0 GPU Smart cache Power Price USD P E P E P E P Model Max clock rate Base TurboCore i9 12900KS 8 16 8 8 3 4 GHz 2 5 GHz 5 2 GHz 4 0 GHz 5 3 GHz UHD 770 1 55 GHz 30 MB 150 W 241 W 73912900K 3 2 GHz 2 4 GHz 5 1 GHz 3 9 GHz 5 2 GHz 125 W 58912900KF 56412900 2 4 GHz 1 8 GHz 5 0 GHz 3 8 GHz 5 1 GHz UHD 770 1 55 GHz 65 W 202 W 48912900F 46412900T 1 4 GHz 1 0 GHz 4 8 GHz 3 6 GHz 4 9 GHz UHD 770 1 55 GHz 35 W 106 W 489Core i7 12700K 4 4 3 6 GHz 2 7 GHz 4 9 GHz 3 8 GHz 5 0 GHz 1 50 GHz 25 MB 125 W 190 W 40912700KF 38412700 2 1 GHz 1 6 GHz 4 8 GHz 3 6 GHz 4 9 GHz UHD 770 1 50 GHz 65 W 180 W 33912700F 31412700T 1 4 GHz 1 0 GHz 4 6 GHz 3 4 GHz 4 7 GHz UHD 770 1 50 GHz 35 W 99 W 339Core i5 12600K 6 12 3 7 GHz 2 8 GHz 4 9 GHz 3 6 GHz 1 45 GHz 20 MB 125 W 150 W 28912600KF 26412600 3 3 GHz 4 8 GHz UHD 770 1 45 GHz 18 MB 65 W 117 W 22312600T 2 1 GHz 4 6 GHz 35 W 74 W12500 3 0 GHz 65 W 117 W 20212500T 2 0 GHz 4 4 GHz 35 W 74 W12490F 168 3 0 GHz 4 6 GHz 20 MB 65 W 117 W Chinaexclusive12400 2 5 GHz 4 4 GHz UHD 730 1 45 GHz 18 MB 19212400F 16712400T 1 8 GHz 4 2 GHz UHD 730 1 45 GHz 35 W 74 W 192Core i3 12300 4 8 3 5 GHz 4 4 GHz 12 MB 60 W 89 W 14312300T 2 3 GHz 4 2 GHz 35 W 69 W12100 3 3 GHz 4 3 GHz 1 40 GHz 60 W 89 W 12212100F 58 W 9712100T 2 2 GHz 4 1 GHz UHD 730 1 40 GHz 35 W 69 W 122Extreme performance Mobile Processors Alder Lake HX edit Bold indicates ECC memory supportProcessor branding Model Cores threads Base clock rate TurboBoost 2 0 UHD Graphics Smart cache Power Price USD P E P E P E EUs Max freq Base TurboCore i9 12950HX 8 16 8 8 2 3 GHz 1 7 GHz 5 0 GHz 3 6 GHz 32 1 55 GHz 30 MB 55 W 157 W 59012900HX 606Core i7 12850HX 2 1 GHz 1 5 GHz 4 8 GHz 3 4 GHz 1 45 GHz 25 MB 42812800HX 2 0 GHz 45712650HX 6 12 4 7 GHz 3 3 GHz 24 MBCore i5 12600HX 4 8 2 5 GHz 1 8 GHz 4 6 GHz 1 35 GHz 18 MB 28412450HX 4 4 2 4 GHz 4 4 GHz 3 1 GHz 16 1 30 GHz 12 MBHigh performance Mobile Processors Alder Lake H edit Processorbranding Model Cores threads Baseclock rate TurboBoost 2 0 Iris Xe Graphics Smartcache Base Power Turbopower Price USD P cores E cores P cores E cores P cores E cores EUs Max freqCore i9 12900HK 6 12 8 8 2 5 GHz 1 8 GHz 5 0 GHz 3 8 GHz 96 1 45 GHz 24 MB 45 W 115 W 63512900H 617Core i7 12800H 2 4 GHz 4 8 GHz 3 7 GHz 1 4 GHz 45712700H 2 3 GHz 1 7 GHz 4 7 GHz 3 5 GHz12650H 4 4 64Core i5 12600H 4 8 8 8 2 7 GHz 2 0 GHz 4 5 GHz 3 3 GHz 80 18 MB 95 W 31112500H 2 5 GHz 1 8 GHz 1 3 GHz12450H 4 4 2 0 GHz 1 5 GHz 4 4 GHz 48 1 2 GHz 12 MBLow Power Performance Mobile Processors Alder Lake P edit Processorbranding Model Cores threads Baseclock rate TurboBoost 2 0 Iris Xe Graphics Smartcache Base Power Turbopower Price USD P cores E cores P cores E cores P cores E cores EUs Max freqCore i7 1280P 6 12 8 8 1 8 GHz 1 3 GHz 4 8 GHz 3 6 GHz 96 1 45 GHz 24 MB 28 W 64 W 4821270P 4 8 2 2 GHz 1 6 GHz 3 5 GHz 1 40 GHz 18 MB 4381260P 2 1 GHz 1 5 GHz 4 7 GHz 3 4 GHzCore i5 1250P 1 7 GHz 1 2 GHz 4 4 GHz 3 3 GHz 80 12 MB 3201240P 1 30 GHzCore i3 1220P 2 4 1 5 GHz 1 1 GHz 64 1 10 GHz 281Ultra Low Power Mobile Processors Alder Lake U edit Processorbranding Model Cores threads Baseclock rate TurboBoost 2 0 Iris Xe Graphics Smartcache Base power Turbopower Price USD P cores E cores P cores E cores P cores E cores EUs Max freqCore i7 1265U 2 4 8 8 1 8 GHz 1 3 GHz 4 8 GHz 3 6 GHz 96 1 25 GHz 12 MB 15 W 55 W 4261260U 1 1 GHz 0 8 GHz 4 7 GHz 3 5 GHz 0 9 GHz 9 W 29 W1255U 1 7 GHz 1 2 GHz 1 25 GHz 15 W 55 W 4261250U 1 1 GHz 0 8 GHz 0 9 GHz 9 W 29 WCore i5 1245U 1 6 GHz 1 2 GHz 4 4 GHz 3 3 GHz 80 1 2 GHz 15 W 55 W 3091240U 1 1 GHz 0 8 GHz 0 9 GHz 9 W 29 W1235U 1 3 GHz 0 9 GHz 1 2 GHz 15 W 55 W 3091230U 1 0 GHz 0 7 GHz 0 9 GHz 9 W 29 WCore i3 1215U 4 4 1 2 GHz 1 2 GHz 64 1 1 GHz 10 MB 15 W 55 W 2811210U 1 0 GHz 0 7 GHz 0 85 GHz 9 W 29 W13th generation edit Main article Raptor Lake Raptor Lake is Intel s codename for the 13th generation of Intel Core processors and the second generation based on a hybrid architecture 169 It is fabricated using an improved version of Intel s Intel 7 process 170 Intel launched Raptor Lake on October 22 2022 Architecture changes in comparison to Alder Lake edit CPU edit Raptor Cove high performance Performance Cores P cores 171 2 MiB of L2 cache per core up from 1 28 MiB on Alder Lake Frequency increase of 600 Mhz Gracemount high efficiency cores Efficiency Cores E cores 171 Doubling of the shared L2 cache per cluster from 2 MiB to 4 MiB Doubling of E Cores on most desktop processors Up to 36 MiB of L3 cache 172 GPU edit Up to 1 65 GHz of maximum frequency on the i9 13900K 171 I O edit LGA 1700 socket for desktop same as Alder Lake 173 171 174 Intel 700 series chipset backwards compatible with 600 series 174 20 Pcie lanes from CPU 16 Pcie Gen 5 lanes 4 Pcie Gen 4 lanes DDR5 DDR4 LPDDR5 and LPDDR4 support Up to 192 GiB of RAM Up to DDR4 3200 support Up to DDR5 5600 support XMP 3 0 supportIntegrated Thunderbolt 4 and WiFi 6E support Desktop Processors Raptor Lake S edit All CPUs support up to DDR5 4800 and 192 GiB of RAM 13600 and better support DDR5 5600 13500 and lower support DDR5 4800 Intel 600 and 700 chipset support with LGA 1700 Intel 600 Series chipsets require BIOS update to achieve support for Raptor Lake S First 6 GHz processor 13900KS By default Core i9 13900KS achieves 6 0 GHz only when using Thermal Velocity Boost with sufficient power and cooling Processor branding Model Cores Threads Base clock rate Turbo Boost 2 0 Turbo Boost 3 0 Iris Xe Graphics Smart cache Power Price USD P core E core P core E core P core E core P core EUs Max freq Base TurboCore i9 13900KS 8 16 16 16 3 2 GHz 2 4 GHz 5 4 GHz 4 3 GHz 5 8 GHz 32 1 65 GHz 36 MB 150 W 253 W 68913900K 3 0 GHz 2 2 GHz 5 7 GHz 125 W 58913900KF 56413900 2 0 GHz 1 5 GHz 5 2 GHz 4 2 GHz 5 5 GHz 32 1 65 GHz 65 W 219 W 54913900F 52413900T 1 1 GHz 0 8 GHz 5 1 GHz 3 9 GHz 5 3 GHz 32 1 65 GHz 35 W 106 W 549Core i7 13700K 8 8 3 4 GHz 2 5 GHz 5 3 GHz 4 2 GHz 5 4 GHz 1 60 GHz 30 MB 125 W 253 W 40913700KF 38413700 2 1 GHz 1 5 GHz 5 1 GHz 4 1 GHz 5 2 GHz 32 1 60 GHz 65 W 219 W13700F 35913700T 1 4 GHz 1 0 GHz 4 8 GHz 3 6 GHz 4 9 GHz 32 1 60 GHz 35 W 106 W 384Core i5 13600K 6 12 3 5 GHz 2 6 GHz 5 1 GHz 3 9 GHz 1 50 GHz 24 MB 125 W 181 W 31913600KF 29413600 2 7 GHz 2 0 GHz 5 0 GHz 3 7 GHz 32 1 55 GHz 65 W 154 W 25513600T 1 8 GHz 1 3 GHz 4 8 GHz 3 4 GHz 35 W 92 W13500 2 5 GHz 1 8 GHz 3 5 GHz 65 W 154 W 23213500T 1 6 GHz 1 2 GHz 4 6 GHz 3 2 GHz 35 W 92 W13400 4 4 2 5 GHz 1 8 GHz 3 3 GHz 24 20 MB 65 W 148 W 22113400F 19613400T 1 3 GHz 1 0 GHz 4 4 GHz 3 0 GHz 24 1 55 GHz 35 W 82 W 221Core i3 13100 4 8 3 4 GHz 4 5 GHz 1 50 GHz 12 MB 60 W 89 W 13413100F 58 W 10913100T 2 5 GHz 4 2 GHz 24 1 50 GHz 35 W 69 W 13414th generation edit Main article Raptor Lake Refresh Raptor Lake Refresh is Intel s codename for the 14th generation of Intel Core processors It is a refresh and based on the same architecture of the 13th generation with clock speeds of up to 6 GHz on the Core i9 14900K and 14900KF 5 6 GHz on the Core i7 14700K and 14700KF and 5 3 GHz on the Core i5 14600K and 13400KF as well as UHD Graphics 770 on non F processors They are still based on the Intel 7 process node 175 Introduced on October 17 2023 these CPUs are designed for the LGA 1700 socket which allows for compatibility with 600 and 700 series motherboards 176 The 14th generation CPU does not feature any major architectural changes over Raptor Lake but does feature some minor improvements 177 The 14th generation CPU is widely criticized as a last ditch effort to beat AMD s Zen 4 with X3D V Cache 178 179 as Intel s desktop version of the next generation architecture Meteor Lake was cancelled and the Arrow Lake architecture was not yet ready for release 180 Architecture comparison to 13th generation desktop 175 177 edit Same LGA 1700 socket 600 and 700 series chipsets require a BIOS update to support 14th generation CPU Same DDR4 and DDR5 support DDR4 3200 DDR5 5600 Increased E core count on i7s when compared to 13700K added four E cores Reception editThis section needs expansion You can help by adding to it January 2023 Vulnerabilities edit In early 2018 news reports indicated that the security flaws Meltdown and Spectre were found in virtually all Intel processors made in the past two decades that will require fixes within Windows macOS and Linux The flaw also affected cloud servers At the time Intel was not commenting on this issue 181 182 According to a New York Times report There is no easy fix for Spectre as for Meltdown the software patch needed to fix the issue could slow down computers by as much as 30 percent 183 In mid 2018 the majority of Intel Core processors were found to possess a defect the Foreshadow vulnerability which undermines the Software Guard Extensions SGX feature of the processor 184 185 186 In March 2020 computer security experts reported another Intel chip security flaw besides the Meltdown and Spectre flaws with the systematic name CVE 2019 0090 or Intel CSME Bug referencing the Converged Security and Management Engine This newly found flaw is not fixable with a firmware update and affects nearly all Intel chips released in the past five years 187 188 189 See also editIntel Core microarchitecture List of Intel graphics processing units List of Intel processors List of Intel Core processors List of Intel Core 2 processors List of Intel Core M processors List of Intel Core i3 processors List of Intel Core i5 processors List of Intel Core i7 processors List of Intel Core i9 processors List of Intel chipsets Ryzen Zen microarchitecture References edit Desktop Processors Intel Archived from the original on December 5 2010 Retrieved December 13 2010 a b Cao Peter June 15 2023 Intel drops i processor branding after 15 years introduces Ultra for higher end chips Engadget Retrieved June 17 2023 a b c Cutress Ian The Ice Lake Benchmark Preview Inside Intel s 10nm www anandtech com Retrieved October 23 2020 Hierarchie des caches L architecture Intel Nehalem HardWare fr www hardware fr Retrieved October 23 2020 Kanter David Intel s Sandy Bridge Microarchitecture Retrieved October 24 2020 Willow Cove Microarchitectures Intel WikiChip en wikichip org Retrieved October 23 2020 Cutress Ian Frumusanu Andrei Intel s Tiger Lake 11th Gen Core i7 1185G7 Review and Deep Dive Baskin for the Exotic www anandtech com Retrieved November 8 2020 Intel Core i7 5775C CM8065802483301 BX80658I75775C www cpu world com Retrieved November 6 2020 Noyau suite L architecture Intel Nehalem HardWare fr www hardware fr Retrieved October 23 2020 File broadwell buffer window png WikiChip en wikichip org Retrieved October 23 2020 File sunny cove buffer capacities png WikiChip en wikichip org Retrieved October 23 2020 a b c d e Popping the Hood on Golden Cove chipsandcheese com December 2 2021 Retrieved April 12 2023 Sunny Cove Microarchitectures Intel WikiChip en wikichip org Retrieved November 4 2020 Kanter David Intel s Sandy Bridge Microarchitecture Retrieved November 9 2020 a b Shimpi Anand Lal Intel s Haswell Architecture Analyzed Building a New PC and a New Intel www anandtech com Retrieved November 9 2020 Cutress Ian Examining Intel s Ice Lake Processors Taking a Bite of the Sunny Cove Microarchitecture www anandtech com Retrieved November 9 2020 Intel launches three Core M CPUs promises more Broadwell early 2015 Ars Technica September 5 2014 Archived from the original on January 5 2015 Intel already phasing out first quad core CPU TG Daily Archived from the original on September 13 2007 Retrieved September 7 2007 Intel to discontinue older Centrino CPUs in Q1 08 TG Daily Archived from the original on November 2 2007 Retrieved October 1 2007 Support for the Intel Core Solo processor Intel Archived from the original on April 19 2010 Retrieved December 13 2010 Support for the Intel Core Duo Processor Intel Archived from the original on April 17 2010 Retrieved December 13 2010 Intel Microarchitecture Intel Archived from the original on June 12 2009 Retrieved December 13 2010 Intel Core2 Solo Mobile Processor Overview Intel Archived from the original on September 26 2011 Retrieved December 13 2010 a href Template Cite web html title Template Cite web cite web a CS1 maint unfit URL link Intel Core2 Duo Processor Upgrade Today Intel Archived from the original on January 7 2011 Retrieved December 13 2010 Intel Core2 Duo Mobile Processor Intel Archived from the original on April 3 2009 Retrieved December 13 2010 Intel Core2 Quad Processor Overview Intel Archived from the original on March 6 2011 Retrieved December 13 2010 a href Template Cite web html title Template Cite web cite web a CS1 maint unfit URL link Intel Core2 Quad Mobile Processors Overview Intel Archived from the original on May 6 2015 Retrieved December 13 2010 a href Template Cite web html title Template Cite web cite web a CS1 maint unfit URL link Support for the Intel Core2 Extreme Processor Intel Archived from the original on March 16 2010 Retrieved December 13 2010 Intel Core2 Extreme Processor Intel Archived from the original on February 21 2011 Retrieved December 13 2010 a href Template Cite web html title Template Cite web cite web a CS1 maint unfit URL link Intel Microarchitecture Codenamed Nehalem Intel Archived from the original on July 22 2010 Retrieved December 13 2010 Public Roadmap Desktop Mobile amp Data Center PDF Intel Archived from the original PDF on February 5 2009 Retrieved December 13 2010 Intel Processor Ratings Intel Archived from the original on April 15 2011 Retrieved July 21 2011 Processor Ratings Intel July 9 2010 Archived from the original on January 1 2011 Retrieved December 13 2010 Intel Quietly Announces Core i5 and Core i3 Branding AnandTech Archived from the original on March 23 2010 Retrieved December 13 2010 Intel confirms Core i3 as entry level Nehalem chip Apcmag com September 14 2009 Archived from the original on September 7 2011 Retrieved December 13 2010 Core i5 and i3 CPUs With On Chip GPUs Launched Hardware slashdot org January 4 2010 Archived from the original on January 12 2012 Retrieved December 13 2010 Intel May Unveil Microprocessors with Integrated Graphics Cores at Consumer Electronics Show Xbitlabs com Archived from the original on October 30 2010 Retrieved December 13 2010 Intel to launch four Arrandale CPUs for mainstream notebooks in January 2010 Digitimes com November 13 2009 Archived from the original on December 7 2010 Retrieved December 13 2010 Intel Core i3 Desktop Processor Frequently Asked Questions Intel Archived from the original on September 25 2011 FAQ Entry Online Support Support Super Micro Computer Inc www Supermicro com Archived from the original on July 2 2017 Retrieved January 5 2018 SPCR View topic ECC Support offshoot of Silent Server Build silentpcreview com Archived from the original on January 5 2012 Retrieved September 26 2011 Asus P8B WS specification Archived September 25 2011 at the Wayback Machine supports ECC Non ECC un buffered Memory but Non ECC un buffered memory only support for client OS Windows 7 Vista and XP Support for the Intel Core i5 Processor Intel Archived from the original on April 11 2010 Retrieved December 13 2010 Anand Lal Shimpi Intel s Core i7 870 amp i5 750 Lynnfield Harder Better Faster Stronger anandtech com archived from the original on July 22 2011 Login to Digitimes archive amp research www digitimes com November 13 2009 Archived from the original on March 20 2016 Retrieved May 7 2018 Intel 奔腾双核 E5300 盒 资讯 CPU 资讯 新奔腾同现身 多款Core i5 i3正式确认 IT168 diy硬件 it168 com Archived from the original on October 9 2011 Intel Core i5 Desktop Processor Integration Compatibility and Memory FAQ Intel Archived from the original on February 11 2012 Support for the Intel Core i7 Processor Intel Archived from the original on November 29 2010 Retrieved December 13 2010 Modine Austin November 18 2008 Intel celebrates Core i7 launch with Dell and Gateway The Register Archived from the original on December 20 2008 Retrieved December 6 2008 IDF Fall 2008 Intel un retires Craig Barrett AMD sets up anti IDF camp Tigervision Media August 11 2008 Archived from the original on March 19 2012 Retrieved August 11 2008 Meet the Bloggers Intel Corporation Archived from the original on February 2 2012 Retrieved August 11 2008 Getting to the Core Intel s new flagship client brand Intel Corporation Archived from the original on August 18 2008 Retrieved August 11 2008 Intel Roadmap update Nehalem to enter mainstream market ExpReview June 10 2008 Archived from the original on December 11 2011 Retrieved August 11 2008 Intel Details Upcoming New Processor Generations Press release Intel Corporate August 11 2008 Archived from the original on October 6 2009 Intel Core i7 920 Processor 8M Cache 2 66 GHz 4 80 GT s Intel QPI Intel Archived from the original on December 8 2008 Retrieved December 6 2008 Intel Core i7 940 Processor 8M Cache 2 93 GHz 4 80 GT s Intel QPI Intel Archived from the original on December 6 2008 Retrieved December 6 2008 Intel Core i7 965 Processor Extreme Edition 8M Cache 3 20 GHz 6 40 GT s Intel QPI Intel Archived from the original on December 7 2008 Retrieved December 6 2008 Getting to the Core Intel s new flagship client brand Technology Intel Archived from the original on August 18 2008 Intel Core i3 530 Processor Intel Retrieved January 21 2023 Intel Core i5 650 Processor 4M Cache 3 20 GHz Product Specifications Intel Retrieved December 9 2023 Intel Core i5 750 Processor Intel Retrieved January 21 2023 Intel Core i7 920 Processor Intel Retrieved January 21 2023 Intel Core i7 920XM Processor Extreme Edition Intel Retrieved January 21 2023 Intel Core i7 930 Processor Intel Retrieved January 21 2023 Intel Core i7 940 Processor Intel Retrieved January 21 2023 Intel Haswell E Core i7 5960X Core i7 5930K Core i7 5820K Specifications Unveiled Flagship 8 Core To Boost Up To 3 3 GHz May 27 2014 Archived from the original on June 13 2015 Retrieved June 12 2015 Intel Discloses Newest Microarchitecture and 14 Nanometer Manufacturing Process Technical Details Intel Intel Corporation August 11 2014 Archived from the original on August 26 2014 Retrieved September 6 2014 Intel launched U series Broadwell processors January 10 2015 Archived from the original on February 15 2015 Retrieved February 15 2015 Intel s Broadwell goes broad with new desktop mobile server variants The Tech Report Page 1 techreport com June 2 2015 Archived from the original on June 12 2015 Retrieved June 11 2015 Intel begins shipping Kaby Lake CPUs to manufacturers The Tech Report Archived from the original on January 26 2017 Retrieved January 21 2017 Intel pushes out the rest of its Kaby Lake processors for 2017 s PCs Ars Technica Archived from the original on January 21 2017 Retrieved January 21 2017 a b Intel Kaby Lake details The first post tick tock CPU architecture Ars Technica UK Archived from the original on January 6 2017 Retrieved January 21 2017 Intel Coffee Lake Core i7 8700K review The best gaming CPU you can buy Ars Technica Archived from the original on October 5 2017 Retrieved October 5 2017 Intel Core i7 8700K Review The New Gaming King TechSpot Archived from the original on October 5 2017 Retrieved October 5 2017 Intel 300 series chipsets to provide USB 3 1 Gen2 and Gigabit Wi Fi KitGuru www kitguru net Archived from the original on May 6 2017 Retrieved April 29 2017 Cutress Ian The AnandTech Coffee Lake Review Initial Numbers on the Core i7 8700K and Core i5 8400 p 3 Archived from the original on October 5 2017 Retrieved October 6 2017 Cutress Ian June 11 2018 The Intel Core i7 8086K Review New 8th Gen Intel Core Processors Optimize Connectivity Great Performance Battery Life for Laptops Intel Newsroom Intel Newsroom Retrieved August 28 2018 a b c Cutress Ian Intel Launches Whiskey Lake U and Amber Lake Y New MacBook CPUs Retrieved August 28 2018 Intel launches Whiskey Lake U and Amber Lake Y CPUs with focus on enhanced mobile connectivity Notebookcheck Retrieved August 28 2018 Intel launches Whiskey and Amber Lakes Kaby Lake with better Wi Fi USB Ars Technica Retrieved August 28 2018 Intel Launches Whiskey Lake And Amber Lake CPUs for Laptops Tom s Hardware August 28 2018 Retrieved August 28 2018 Ashraf Eassa on Twitter Twitter Retrieved August 29 2018 Ian Cutress on Twitter Twitter Retrieved August 29 2018 Cutress Ian August 30 2018 Spectre and Meltdown in Hardware Intel Clarifies Whiskey Lake and Amber Lake anadtech com Retrieved September 4 2019 Alcorn Paul August 30 2018 Intel s Whiskey Lake Brings In Silicon Meltdown and Foreshadow Fixes Tom s Hardware Intel s Cannonlake 10nm Microarchitecture is Due For 2016 Compatible On Union Bay With Union Point PCH WCCFTech June 6 2014 Archived from the original on October 6 2014 Retrieved September 24 2014 span, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.