fbpx
Wikipedia

Human Genome Project

The Human Genome Project (HGP) was an international scientific research project with the goal of determining the base pairs that make up human DNA, and of identifying, mapping and sequencing all of the genes of the human genome from both a physical and a functional standpoint. It started in 1990 and was completed in 2003.[1] It remains the world's largest collaborative biological project.[2] Planning for the project started after it was adopted in 1984 by the US government, and it officially launched in 1990. It was declared complete on April 14, 2003, and included about 92% of the genome.[3] Level "complete genome" was achieved in May 2021, with a remaining only 0.3% bases covered by potential issues.[4][5] The final gapless assembly was finished in January 2022.[6]

Logo of the Human Genome Project

Funding came from the United States government through the National Institutes of Health (NIH) as well as numerous other groups from around the world. A parallel project was conducted outside the government by the Celera Corporation, or Celera Genomics, which was formally launched in 1998. Most of the government-sponsored sequencing was performed in twenty universities and research centres in the United States, the United Kingdom, Japan, France, Germany, and China,[7] working in the International Human Genome Sequencing Consortium (IHGSC).

The Human Genome Project originally aimed to map the complete set of nucleotides contained in a human haploid reference genome, of which there are more than three billion. The "genome" of any given individual is unique; mapping the "human genome" involved sequencing samples collected from a small number of individuals and then assembling the sequenced fragments to get a complete sequence for each of 24 human chromosomes (22 autosomes and 2 sex chromosomes). Therefore, the finished human genome is a mosaic, not representing any one individual. Much of the project's utility comes from the fact that the vast majority of the human genome is the same in all humans.

History

 

The Human Genome Project was a 15 year-long publicly funded project initiated in 1990 with the objective of determining the DNA sequence of the entire euchromatic human genome within 13 years.[8][9]

In May 1985, Robert Sinsheimer organized a workshop at the University of California, Santa Cruz, to discuss the feasibility of building a systematic reference genome using gene sequencing technologies.[10] In March 1986, the Santa Fe Workshop was organized by Charles DeLisi and David Smith of the Department of Energy's Office of Health and Environmental Research (OHER).[11] At the same time Renato Dulbecco, President of the Salk Institute for Biological Studies, first proposed the concept of whole genome sequencing in an essay in Science.[12] The published work, titled "A Turning Point in Cancer Research: Sequencing the Human Genome", was shortened from the original proposal of using the sequence to understand the genetic basis of breast cancer.[13] James Watson, one of the discoverers of the double helix shape of DNA in the 1950s, followed two months later with a workshop held at the Cold Spring Harbor Laboratory. Thus the idea for obtaining a reference sequence had three independent origins: Sinsheimer, Dulbecco and DeLisi. Ultimately it was the actions by DeLisi that launched the project.[14][15][16][17]

The fact that the Santa Fe Workshop was motivated and supported by a federal agency opened a path, albeit a difficult and tortuous one,[18] for converting the idea into public policy in the United States. In a memo to the Assistant Secretary for Energy Research Alvin Trivelpiece, then-Director of the OHER Charles DeLisi outlined a broad plan for the project.[19] This started a long and complex chain of events which led to approved reprogramming of funds that enabled the OHER to launch the project in 1986, and to recommend the first line item for the HGP, which was in President Reagan's 1988 budget submission,[18] and ultimately approved by Congress. Of particular importance in congressional approval was the advocacy of New Mexico Senator Pete Domenici, whom DeLisi had befriended.[20] Domenici chaired the Senate Committee on Energy and Natural Resources, as well as the Budget Committee, both of which were key in the DOE budget process. Congress added a comparable amount to the NIH budget, thereby beginning official funding by both agencies.

Trivelpiece sought and obtained the approval of DeLisi's proposal by Deputy Secretary William Flynn Martin. This chart[21] was used by Trivelpiece in the spring of 1986 to brief Martin and Under Secretary Joseph Salgado regarding his intention to reprogram $4 million to initiate the project with the approval of John S. Herrington. This reprogramming was followed by a line item budget of $16 million in the Reagan administration's 1987 budget submission to Congress.[11] It subsequently passed both Houses. The project was planned to be completed within 15 years.[22]

In 1990, the two major funding agencies, DOE and the National Institutes of Health, developed a memorandum of understanding in order to coordinate plans and set the clock for the initiation of the Project to 1990.[23] At that time, David J. Galas was Director of the renamed "Office of Biological and Environmental Research" in the U.S. Department of Energy's Office of Science and James Watson headed the NIH Genome Program. In 1993, Aristides Patrinos succeeded Galas and Francis Collins succeeded Watson, assuming the role of overall Project Head as Director of the NIH National Center for Human Genome Research (which would later become the National Human Genome Research Institute). A working draft of the genome was announced in 2000 and the papers describing it were published in February 2001. A more complete draft was published in 2003, and genome "finishing" work continued for more than a decade after that.

The $3 billion project was formally founded in 1990 by the US Department of Energy and the National Institutes of Health, and was expected to take 15 years.[24] In addition to the United States, the international consortium comprised geneticists in the United Kingdom, France, Australia, China, and myriad other spontaneous relationships.[25] The project ended up costing less than expected, at about $2.7 billion (equivalent to about $5 billion in 2021).[7][26][27]

Two technologies enabled the project: gene mapping and DNA sequencing. The gene mapping technique of restriction fragment length polymorphism (RFLP) arose from the search for the location of the breast cancer gene by Dr. Mark Skolnick of the University of Utah,[28] which began in 1974.[29] Seeing a linkage marker for the gene, collaboration with David Botstein, Ray White and Ron Davies conceived of a way to construct a genetic linkage map of the human genome. This enabled scientists to launch the larger human genome effort.[30]

Because of widespread international cooperation and advances in the field of genomics (especially in sequence analysis), as well as parallel advances in computing technology, a 'rough draft' of the genome was finished in 2000 (announced jointly by U.S. President Bill Clinton and British Prime Minister Tony Blair on June 26, 2000).[31][32] This first available rough draft assembly of the genome was completed by the Genome Bioinformatics Group at the University of California, Santa Cruz, primarily led by then-graduate student Jim Kent and his advisor David Haussler.[33] Ongoing sequencing led to the announcement of the essentially complete genome on April 14, 2003, two years earlier than planned.[34][35] In May 2006, another milestone was passed on the way to completion of the project when the sequence of the very last chromosome was published in Nature.[36]

The various institutions, companies, and laboratories which participated in the Human Genome Project are listed below, according to the NIH:[7]

No. Nation Name Affiliation
1   The Whitehead Institute/MIT Center for Genome Research Massachusetts Institute of Technology
2   The Wellcome Trust Sanger Institute Wellcome Trust
3   Washington University School of Medicine Genome Sequencing Center Washington University in St. Louis
4   United States DOE Joint Genome Institute United States Department of Energy
5   Baylor College of Medicine Human Genome Sequencing Center Baylor College of Medicine
6   RIKEN Genomic Sciences Center Riken
7   Genoscope and CNRS UMR-8030 French Alternative Energies and Atomic Energy Commission
8   GTC Sequencing Center Genome Therapeutics Corporation, whose sequencing division is acquired by ABI
9   Department of Genome Analysis Fritz Lipmann Institute, name changed from Institute of Molecular Biotechnology
10   Beijing Genomics Institute/Human Genome Center Chinese Academy of Sciences
11   Multimegabase Sequencing Center Institute for Systems Biology
12   Stanford Genome Technology Center Stanford University
13   Stanford Human Genome Center and Department of Genetics Stanford University School of Medicine
14   University of Washington Genome Center University of Washington
15   Department of Molecular Biology Keio University School of Medicine
16   University of Texas Southwestern Medical Center at Dallas University of Texas
17   University of Oklahoma's Advanced Center for Genome Technology Dept. of Chemistry and Biochemistry, University of Oklahoma
18   Max Planck Institute for Molecular Genetics Max Planck Society
19   Lita Annenberg Hazen Genome Center Cold Spring Harbor Laboratory
20   GBF/German Research Centre for Biotechnology Reorganized and renamed to Helmholtz Centre for Infection Research

State of completion

Notably, the project was not able to sequence all of the DNA found in human cells; rather, the aim was to sequence only euchromatic regions of the nuclear genome, which make up 92.1% of the human genome. The remaining 7.9% exists in scattered heterochromatic regions such as those found in centromeres and telomeres. These regions by their nature are generally more difficult to sequence and so were not included as part of the project's original plans.[37]

The Human Genome Project (HGP) was declared complete in April 2003. An initial rough draft of the human genome was available in June 2000 and by February 2001 a working draft had been completed and published followed by the final sequencing mapping of the human genome on April 14, 2003. Although this was reported to cover 99% of the euchromatic human genome with 99.99% accuracy, a major quality assessment of the human genome sequence was published on May 27, 2004, indicating over 92% of sampling exceeded 99.99% accuracy which was within the intended goal.[38]

In March 2009, the Genome Reference Consortium (GRC) released a more accurate version of the human genome, but that still left more than 300 gaps,[39] while 160 such gaps remained in 2015.[40]

Though in May 2020, the GRC reported 79 "unresolved" gaps,[41] accounting for as much as 5% of the human genome,[42] months later, the application of new long-range sequencing techniques and a hydatidiform mole-derived cell line in which both copies of each chromosome are identical led to the first telomere-to-telomere, truly complete sequence of a human chromosome, the X chromosome.[43] Similarly, an end-to-end complete sequence of human autosomal chromosome 8 followed several months later.[44]

In 2021, it was reported that the Telomere-to-Telomere (T2T) consortium had filled in all of the gaps except five in repetitive regions of ribosomal DNA.[45] Months later, those gaps had also been closed. The full sequence did not contain the Y chromosome, which causes the embryo to become male, being absent in the cell line that served as the source for the DNA analyzed. About 0.3% of the full sequence proved difficult to check for quality, and thus might have contained errors,[46] which were being targeted for confirmation.[47] In April 2022, the complete non-Y chromosome sequence was formally published, providing a view of much of the 8% of the genome left out by the HGP.[48] In December, 2022, a preprint article claimed that the sequencing of the remaining missing regions of Y chromosome had been performed, thus completing the sequencing of all 24 human chromosomes.[49]

Applications and proposed benefits

The sequencing of the human genome holds benefits for many fields, from molecular medicine to human evolution. The Human Genome Project, through its sequencing of the DNA, can help researchers understand diseases including: genotyping of specific viruses to direct appropriate treatment; identification of mutations linked to different forms of cancer; the design of medication and more accurate prediction of their effects; advancement in forensic applied sciences; biofuels and other energy applications; agriculture, animal husbandry, bioprocessing; risk assessment; bioarcheology, anthropology and evolution. Another proposed benefit is the commercial development of genomics research related to DNA-based products, a multibillion-dollar industry.

The sequence of the DNA is stored in databases available to anyone on the Internet. The U.S. National Center for Biotechnology Information (and sister organizations in Europe and Japan) house the gene sequence in a database known as GenBank, along with sequences of known and hypothetical genes and proteins. Other organizations, such as the UCSC Genome Browser at the University of California, Santa Cruz,[50] and Ensembl[51] present additional data and annotation and powerful tools for visualizing and searching it. Computer programs have been developed to analyze the data because the data itself is difficult to interpret without such programs. Generally speaking, advances in genome sequencing technology have followed Moore's Law, a concept from computer science which states that integrated circuits can increase in complexity at an exponential rate.[52] This means that the speeds at which whole genomes can be sequenced can increase at a similar rate, as was seen during the development of the Human Genome Project.

Techniques and analysis

The process of identifying the boundaries between genes and other features in a raw DNA sequence is called genome annotation and is in the domain of bioinformatics. While expert biologists make the best annotators, their work proceeds slowly, and computer programs are increasingly used to meet the high-throughput demands of genome sequencing projects. Beginning in 2008, a new technology known as RNA-seq was introduced that allowed scientists to directly sequence the messenger RNA in cells. This replaced previous methods of annotation, which relied on the inherent properties of the DNA sequence, with direct measurement, which was much more accurate. Today, annotation of the human genome and other genomes relies primarily on deep sequencing of the transcripts in every human tissue using RNA-seq. These experiments have revealed that over 90% of genes contain at least one and usually several alternative splice variants, in which the exons are combined in different ways to produce 2 or more gene products from the same locus.[53]

The genome published by the HGP does not represent the sequence of every individual's genome. It is the combined mosaic of a small number of anonymous donors, of African, European and east Asian ancestry. The HGP genome is a scaffold for future work in identifying differences among individuals.[citation needed] Subsequent projects sequenced the genomes of multiple distinct ethnic groups, though as of 2019 there is still only one "reference genome".[54]

Findings

Key findings of the draft (2001) and complete (2004) genome sequences include:

  1. There are approximately 22,300[55] protein-coding genes in human beings, the same range as in other mammals.
  2. The human genome has significantly more segmental duplications (nearly identical, repeated sections of DNA) than had been previously suspected.[56][57][58]
  3. At the time when the draft sequence was published, fewer than 7% of protein families appeared to be vertebrate specific.[59]

Accomplishments

 
The first printout of the human genome to be presented as a series of books, displayed at the Wellcome Collection, London

The human genome has approximately 3.1 billion base pairs.[60] The Human Genome Project was started in 1990 with the goal of sequencing and identifying all base pairs in the human genetic instruction set, finding the genetic roots of disease and then developing treatments. It is considered a megaproject.

The genome was broken into smaller pieces; approximately 150,000 base pairs in length.[61] These pieces were then ligated into a type of vector known as "bacterial artificial chromosomes", or BACs, which are derived from bacterial chromosomes which have been genetically engineered. The vectors containing the genes can be inserted into bacteria where they are copied by the bacterial DNA replication machinery. Each of these pieces was then sequenced separately as a small "shotgun" project and then assembled. The larger, 150,000 base pairs go together to create chromosomes. This is known as the "hierarchical shotgun" approach, because the genome is first broken into relatively large chunks, which are then mapped to chromosomes before being selected for sequencing.[62][63]

Funding came from the US government through the National Institutes of Health in the United States, and a UK charity organization, the Wellcome Trust, as well as numerous other groups from around the world. The funding supported a number of large sequencing centers including those at Whitehead Institute, the Wellcome Sanger Institute (then called The Sanger Centre) based at the Wellcome Genome Campus, Washington University in St. Louis, and Baylor College of Medicine.[24][64]

The United Nations Educational, Scientific and Cultural Organization (UNESCO) served as an important channel for the involvement of developing countries in the Human Genome Project.[65]

Public vis-à-vis private approaches

In 1998, a similar, privately funded quest was launched by the American researcher Craig Venter, and his firm Celera Genomics. Venter was a scientist at the NIH during the early 1990s when the project was initiated. The $300M Celera effort was intended to proceed at a faster pace and at a fraction of the cost of the roughly $3 billion publicly funded project. The Celera approach was able to proceed at a much more rapid rate and at a lower cost, than the public project. While it made use of publicly available maps at GenBank, those were of low quality and only slowed down the project.[56]

Celera used a technique called whole genome shotgun sequencing, employing pairwise end sequencing,[66] which had been used to sequence bacterial genomes of up to six million base pairs in length, but not for anything nearly as large as the three billion base pair human genome.

Celera initially announced that it would seek patent protection on "only 200–300" genes, but later amended this to seeking "intellectual property protection" on "fully-characterized important structures" amounting to 100–300 targets. The firm eventually filed preliminary ("place-holder") patent applications on 6,500 whole or partial genes. Celera also promised to publish their findings in accordance with the terms of the 1996 "Bermuda Statement", by releasing new data annually (the HGP released its new data daily), although, unlike the publicly funded project, they would not permit free redistribution or scientific use of the data. The publicly funded competitors were compelled to release the first draft of the human genome before Celera for this reason. On July 7, 2000, the UCSC Genome Bioinformatics Group released a first working draft on the web. The scientific community downloaded about 500 GB of information from the UCSC genome server in the first 24 hours of free and unrestricted access.[67]

In March 2000, President Clinton, along with Prime Minister Tony Blair in a dual statement, urged that all researchers who wished to research the sequence should have "unencumbered access" to the genome sequence.[68] The statement sent Celera's stock plummeting and dragged down the biotechnology-heavy Nasdaq. The biotechnology sector lost about $50 billion in market capitalization in two days.

Although the working draft was announced in June 2000, it was not until February 2001 that Celera and the HGP scientists published details of their drafts. Special issues of Nature (which published the publicly funded project's scientific paper)[56] described the methods used to produce the draft sequence and offered analysis of the sequence. These drafts covered about 83% of the genome (90% of the euchromatic regions with 150,000 gaps and the order and orientation of many segments not yet established). In February 2001, at the time of the joint publications, press releases announced that the project had been completed by both groups. Improved drafts were announced in 2003 and 2005, filling in to approximately 92% of the sequence currently.

Genome donors

In the International Human Genome Sequencing Consortium (IHGSC) public-sector HGP, researchers collected blood (female) or sperm (male) samples from a large number of donors. Only a few of many collected samples were processed as DNA resources. Thus the donor identities were protected so neither donors nor scientists could know whose DNA was sequenced. DNA clones taken from many different libraries were used in the overall project, with most of those libraries being created by Dr. Pieter J. de Jong. Much of the sequence (>70%) of the reference genome produced by the public HGP came from a single anonymous male donor from Buffalo, New York, (code name RP11; the "RP" refers to Roswell Park Comprehensive Cancer Center).[69][70]

 
Schematic karyogram of a human, showing an overview of the human genome, with 22 homologous chromosomes, both the female (XX) and male (XY) versions of the sex chromosome (bottom right), as well as the mitochondrial genome (to scale at bottom left). The blue scale to the left of each chromosome pair (and the mitochondrial genome) shows its length in terms of millions of DNA base pairs.

HGP scientists used white blood cells from the blood of two male and two female donors (randomly selected from 20 of each) – each donor yielding a separate DNA library. One of these libraries (RP11) was used considerably more than others, because of quality considerations. One minor technical issue is that male samples contain just over half as much DNA from the sex chromosomes (one X chromosome and one Y chromosome) compared to female samples (which contain two X chromosomes). The other 22 chromosomes (the autosomes) are the same for both sexes.

Although the main sequencing phase of the HGP has been completed, studies of DNA variation continued in the International HapMap Project, whose goal was to identify patterns of single-nucleotide polymorphism (SNP) groups (called haplotypes, or "haps"). The DNA samples for the HapMap came from a total of 270 individuals; Yoruba people in Ibadan, Nigeria; Japanese people in Tokyo; Han Chinese in Beijing; and the French Centre d'Etude du Polymorphisme Humain (CEPH) resource, which consisted of residents of the United States having ancestry from Western and Northern Europe.

In the Celera Genomics private-sector project, DNA from five different individuals were used for sequencing. The lead scientist of Celera Genomics at that time, Craig Venter, later acknowledged (in a public letter to the journal Science) that his DNA was one of 21 samples in the pool, five of which were selected for use.[71][72]

Developments

With the sequence in hand, the next step was to identify the genetic variants that increase the risk for common diseases like cancer and diabetes.[23][61]

It is anticipated that detailed knowledge of the human genome will provide new avenues for advances in medicine and biotechnology. Clear practical results of the project emerged even before the work was finished. For example, a number of companies, such as Myriad Genetics, started offering easy ways to administer genetic tests that can show predisposition to a variety of illnesses, including breast cancer, hemostasis disorders, cystic fibrosis, liver diseases and many others. Also, the etiologies for cancers, Alzheimer's disease and other areas of clinical interest are considered likely to benefit from genome information and possibly may lead in the long term to significant advances in their management.[73][74]

There are also many tangible benefits for biologists. For example, a researcher investigating a certain form of cancer may have narrowed down their search to a particular gene. By visiting the human genome database on the World Wide Web, this researcher can examine what other scientists have written about this gene, including (potentially) the three-dimensional structure of its product, its functions, its evolutionary relationships to other human genes, or to genes in mice, yeast, or fruit flies, possible detrimental mutations, interactions with other genes, body tissues in which this gene is activated, and diseases associated with this gene or other datatypes. Further, a deeper understanding of the disease processes at the level of molecular biology may determine new therapeutic procedures. Given the established importance of DNA in molecular biology and its central role in determining the fundamental operation of cellular processes, it is likely that expanded knowledge in this area will facilitate medical advances in numerous areas of clinical interest that may not have been possible without them.[75]

The analysis of similarities between DNA sequences from different organisms is also opening new avenues in the study of evolution. In many cases, evolutionary questions can now be framed in terms of molecular biology; indeed, many major evolutionary milestones (the emergence of the ribosome and organelles, the development of embryos with body plans, the vertebrate immune system) can be related to the molecular level. Many questions about the similarities and differences between humans and their closest relatives (the primates, and indeed the other mammals) are expected to be illuminated by the data in this project.[73][76]

The project inspired and paved the way for genomic work in other fields, such as agriculture. For example, by studying the genetic composition of Tritium aestivum, the world's most commonly used bread wheat, great insight has been gained into the ways that domestication has impacted the evolution of the plant.[77] It is being investigated which loci are most susceptible to manipulation, and how this plays out in evolutionary terms. Genetic sequencing has allowed these questions to be addressed for the first time, as specific loci can be compared in wild and domesticated strains of the plant. This will allow for advances in the genetic modification in the future which could yield healthier and disease-resistant wheat crops, among other things.

Ethical, legal, and social issues

At the onset of the Human Genome Project, several ethical, legal, and social concerns were raised in regard to how increased knowledge of the human genome could be used to discriminate against people. One of the main concerns of most individuals was the fear that both employers and health insurance companies would refuse to hire individuals or refuse to provide insurance to people because of a health concern indicated by someone's genes.[78] In 1996, the United States passed the Health Insurance Portability and Accountability Act (HIPAA), which protects against the unauthorized and non-consensual release of individually identifiable health information to any entity not actively engaged in the provision of healthcare services to a patient.[79]

Along with identifying all of the approximately 20,000–25,000 genes in the human genome (estimated at between 80,000 and 140,000 at the start of the project), the Human Genome Project also sought to address the ethical, legal, and social issues that were created by the onset of the project.[80] For that, the Ethical, Legal, and Social Implications (ELSI) program was founded in 1990. Five percent of the annual budget was allocated to address the ELSI arising from the project.[24][81] This budget started at approximately $1.57 million in the year 1990, but increased to approximately $18 million in the year 2014.[82]

Whilst the project may offer significant benefits to medicine and scientific research, some authors have emphasized the need to address the potential social consequences of mapping the human genome. Historian of science Hans-Jörg Rheinberger wrote that "the prospect of 'molecularizing' diseases and their possible cure will have a profound impact on what patients expect from medical help, and on a new generation of doctors' perception of illness."[83]

See also

References

  1. ^ Robert Krulwich (2003). Cracking the Code of Life (Television Show). PBS.
  2. ^ (PDF). Archived from the original (PDF) on 23 December 2012. Retrieved 1 August 2013.
  3. ^ "Human Genome Project Completion: Frequently Asked Questions". National Human Genome Research Institute (NHGRI).
  4. ^ "CHM13 T2T v1.1 – Genome – Assembly – NCBI". www.ncbi.nlm.nih.gov. Retrieved 16 June 2021.
  5. ^ "Genome List – Genome – NCBI". www.ncbi.nlm.nih.gov. Retrieved 16 June 2021.
  6. ^ "T2T-CHM13v2.0 – Genome – Assembly – NCBI". www.ncbi.nlm.nih.gov. Retrieved 14 June 2022.
  7. ^ a b c "Human Genome Project Completion: Frequently Asked Questions". genome.gov.
  8. ^ "Human Genome Project: Sequencing the Human Genome | Learn Science at Scitable". www.nature.com. Retrieved 25 January 2016.
  9. ^ "History of the Human Genome Project". web.ornl.gov.
  10. ^ Sinsheimer RL (November 1989). "The Santa Cruz Workshop – May 1985 and". Genomics. 5 (4): 954–956. doi:10.1016/0888-7543(89)90142-0. PMID 2591974.
  11. ^ a b DeLisi C (October 2008). "Meetings that changed the world: Santa Fe 1986: Human genome baby-steps". Nature. 455 (7215): 876–877. Bibcode:2008Natur.455..876D. doi:10.1038/455876a. PMID 18923499. S2CID 41637733.
  12. ^ Dulbecco R (March 1986). "A turning point in cancer research: sequencing the human genome". Science. 231 (4742): 1055–1056. Bibcode:1986Sci...231.1055D. doi:10.1126/science.3945817. PMID 3945817.
  13. ^ Cook-Deegan, Robert M. (1994). The Gene Wars: Science, Politics, and the Human Genome. New York: W.W. Norton. p. 108.
  14. ^ "President Clinton Awards the Presidential Citizens Medals". clintonwhitehouse5.archives.gov.
  15. ^ "File:Plaque commemorating the Human Genome Project, outside Charles DeLisi's former office at DOE.png – Wikimedia Commons".
  16. ^ Bevatron's Encyclopedia of Inventions: a compendium of technological leaps, ground break discoveries and scientific breakthroughs that changed the world. The Human Genome Project, Charles DeLisi, pp. 360–362.
  17. ^ Origins of the Human Genome Project: A Political History – Bob Cook-Deegan https://www.youtube.com/watch?v=-opMu4Ld21Q&t=3885s
  18. ^ a b Gene Wars, Op.Cit. p. 102.
  19. ^ "Search". georgetown.edu.
  20. ^ . nara.gov. Archived from the original on 1 August 2012. Retrieved 6 August 2014.
  21. ^ . Archived from the original on 3 March 2016. Retrieved 19 August 2013.{{cite web}}: CS1 maint: archived copy as title (link)
  22. ^ DeLisi C (1988). "The Human Genome Project". American Scientist. 76 (5): 488. Bibcode:1988AmSci..76..488D.
  23. ^ a b . The Human Genome Management Information System (HGMIS). 18 July 2011. Archived from the original on 2 September 2011. Retrieved 2 September 2011.
  24. ^ a b c Human Genome Information Archive. . U.S. Department of Energy & Human Genome Project program. Archived from the original on 2 September 2011. Retrieved 1 August 2013.
  25. ^ Collins F, Galas D (1 October 1993). "A New Five-Year Plan for the United States: Human Genome Program". National Human Genome Research Institute. Retrieved 1 August 2013.
  26. ^ "Life on Earth to have its DNA analysed in the name of conservation". Nature. 563 (7730): 155–156. November 2018. Bibcode:2018Natur.563..155.. doi:10.1038/d41586-018-07323-y. PMID 30401859.
  27. ^ Lewin HA, Robinson GE, Kress WJ, Baker WJ, Coddington J, Crandall KA, et al. (April 2018). "Earth BioGenome Project: Sequencing life for the future of life". Proceedings of the National Academy of Sciences of the United States of America. 115 (17): 4325–4333. Bibcode:2018PNAS..115.4325L. doi:10.1073/pnas.1720115115. PMC 5924910. PMID 29686065.
  28. ^ Cook-Deegan, Robert M. (1994). The Gene Wars: Science, Politics, and the Human Genome. New York: W.W. Norton. pp. 95–96.
  29. ^ Bishop, Jerry E.; Waldholz, Michael (1990). Genome: The Story of the Most Astonishing Scientific Adventure of Our Time--the Attempt to Map All the Genes in the Human Body. New York: Simon and Schuster. p. 54.
  30. ^ Bishop, Jerry E.; Waldholz, Michael (1990). Genome: The Story of the Most Astonishing Scientific Adventure of Our Time – the Attempt to Map All the Genes in the Human Body. New York: Simon and Schuster. p. 201.
  31. ^ "White House Press Release". Retrieved 22 July 2006.
  32. ^ "Scientists Complete Rough Draft of Human Genome".
  33. ^ Gitschier, Jane (31 January 2013). "Life, the Universe, and Everything: An Interview with David Haussler". PLOS Genetics. 9 (1): e1003282. doi:10.1371/journal.pgen.1003282. ISSN 1553-7390. PMC 3561096. PMID 23382705.
  34. ^ Noble I (14 April 2003). "Human genome finally complete". BBC News. Retrieved 22 July 2006.
  35. ^ Kolata G (15 April 2013). "Human Genome, Then and Now". The New York Times. Retrieved 24 April 2014.
  36. ^ "Guardian Unlimited |UK Latest | Human Genome Project finalised". The Guardian. London. Retrieved 22 July 2006.[dead link]
  37. ^ . Genoscope. Centre National de Séquençage. 19 October 2013. Archived from the original on 22 July 2015. Retrieved 12 February 2015.
  38. ^ Schmutz J, Wheeler J, Grimwood J, Dickson M, Yang J, Caoile C, et al. (May 2004). "Quality assessment of the human genome sequence". Nature. 429 (6990): 365–368. Bibcode:2004Natur.429..365S. doi:10.1038/nature02390. PMID 15164052.
  39. ^ Dolgin E (December 2009). "Human genomics: The genome finishers". Nature. 462 (7275): 843–845. doi:10.1038/462843a. PMID 20016572.
  40. ^ Chaisson MJ, Huddleston J, Dennis MY, Sudmant PH, Malig M, Hormozdiari F, Antonacci F, Surti U, Sandstrom R, Boitano M, Landolin JM, Stamatoyannopoulos JA, Hunkapiller MW, Korlach J, Eichler EE (January 2015). "Resolving the complexity of the human genome using single-molecule sequencing". Nature. 517 (7536): 608–611. Bibcode:2015Natur.517..608C. doi:10.1038/nature13907. PMC 4317254. PMID 25383537.
  41. ^ "Human Genome Issues". Genome Reference Consortium. Retrieved 29 June 2019.
  42. ^ The (near) complete sequence of a human genome, 6 October 2020
  43. ^ Miga, Karen H.; Koren, Sergey; Rhie, Arang; Vollger, Mitchell R.; Gershman, Ariel; Bzikadze, Andrey; Brooks, Shelise; Howe, Edmund; Porubsky, David; Logsdon, Glennis A.; Schneider, Valerie A. (September 2020). "Telomere-to-telomere assembly of a complete human X chromosome". Nature. 585 (7823): 79–84. Bibcode:2020Natur.585...79M. doi:10.1038/s41586-020-2547-7. ISSN 1476-4687. PMC 7484160. PMID 32663838.
  44. ^ Logsdon, Glennis A.; Vollger, Mitchell R.; Hsieh, PingHsun; Mao, Yafei; Liskovykh, Mikhail A.; Koren, Sergey; Nurk, Sergey; Mercuri, Ludovica; Dishuck, Philip C.; Rhie, Arang; de Lima, Leonardo G. (May 2021). "The structure, function and evolution of a complete human chromosome 8". Nature. 593 (7857): 101–107. Bibcode:2021Natur.593..101L. doi:10.1038/s41586-021-03420-7. ISSN 1476-4687. PMC 8099727. PMID 33828295.
  45. ^ Wrighton, Katharine (February 2021). "Filling in the gaps telomere to telomere". Nature Milestones: Genomic Sequencing: S21.
  46. ^ Reardon, Sara (4 June 2021). "A complete human genome sequence is close: how scientists filled in the gaps". Nature. 594 (7862): 158–159. Bibcode:2021Natur.594..158R. doi:10.1038/d41586-021-01506-w. PMID 34089035. S2CID 235346408.
  47. ^ "GitHub – marbl/CHM13-issues: CHM13 human reference genome issue tracking". GitHub. Retrieved 26 July 2021.
  48. ^ Special Issue: Completing the human genome, Science, vol. 376, no. 6588 (1 April 2022).
  49. ^ Rhie; et al. (1 December 2022). "The complete sequence of a human Y chromosome". bioRxiv. doi:10.1101/2022.12.01.518724. S2CID 254181409.
  50. ^ "UCSC Genome Browser Home". genome.ucsc.edu.
  51. ^ "Ensembl Genome Browser". ensembl.org.
  52. ^ Mardis ER (March 2008). "The impact of next-generation sequencing technology on genetics". Trends in Genetics. 24 (3): 133–141. doi:10.1016/j.tig.2007.12.007. PMC 2680276. PMID 18262675.
  53. ^ Liu Y, Gonzàlez-Porta M, Santos S, Brazma A, Marioni JC, Aebersold R, et al. (August 2017). "Impact of Alternative Splicing on the Human Proteome". Cell Reports. 20 (5): 1229–1241. doi:10.1016/j.celrep.2017.07.025. PMC 5554779. PMID 28768205.
  54. ^ Ballouz S, Dobin A, Gillis JA (August 2019). "Is it time to change the reference genome?". Genome Biology. 20 (1): 159. doi:10.1186/s13059-019-1774-4. PMC 6688217. PMID 31399121.
  55. ^ Pertea M, Salzberg SL (2010). "Between a chicken and a grape: estimating the number of human genes". Genome Biology. 11 (5): 206. doi:10.1186/gb-2010-11-5-206. PMC 2898077. PMID 20441615.
  56. ^ a b c Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, et al. (February 2001). "The sequence of the human genome". Science. 291 (5507): 1304–1351. Bibcode:2001Sci...291.1304V. doi:10.1126/science.1058040. PMID 11181995.
  57. ^ Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, et al. (International Human Genome Sequencing Consortium (IHGSC)) (October 2004). "Finishing the euchromatic sequence of the human genome". Nature. 431 (7011): 931–945. Bibcode:2004Natur.431..931H. doi:10.1038/nature03001. PMID 15496913.
  58. ^ Spencer G (20 December 2004). "International Human Genome Sequencing Consortium Describes Finished Human Genome Sequence". NIH Nes Release. National Institutes of Health.
  59. ^ Bryant JA (2007). Design and information in biology: From molecules to systems. p. 108. ISBN 978-1-85312-853-0. ...brought to light about 1200 protein families. Only 94 protein families, or 7%, appear to be vertebrate specific
  60. ^ Piovesan, A.; Pelleri, M. C.; Antonaros, F.; Strippoli, P.; Caracausi, M.; Vitale, L. (2019). "On the length, weight and GC content of the human genome". BMC Research Notes. 12 (1): 106. doi:10.1186/s13104-019-4137-z. PMC 6391780. PMID 30813969.
  61. ^ a b Wellcome Sanger Institute. . Wellcome Trust Sanger Institute, Genome Research Limited. Archived from the original on 1 August 2013. Retrieved 1 August 2013.
  62. ^ "Celera: A Unique Approach to Genome Sequencing". ocf.berkeley.edu. Biocomputing. 2006. Retrieved 1 August 2013.
  63. ^ Davidson College (2002). "Sequencing Whole Genomes: Hierarchical Shotgun Sequencing v. Shotgun Sequencing". bio.davidson.edu. Department of Biology, Davidson College. Retrieved 1 August 2013.
  64. ^ Human Genome Project Information Archive (2013). "U.S. & International HGP Research Sites". U.S. Department of Energy & Human Genome Project. Retrieved 1 August 2013.
  65. ^ Vizzini C (19 March 2015). "The Human Variome Project: Global Coordination in Data Sharing". Science & Diplomacy. 4 (1).
  66. ^ Roach JC, Boysen C, Wang K, Hood L (March 1995). "Pairwise end sequencing: a unified approach to genomic mapping and sequencing". Genomics. 26 (2): 345–353. doi:10.1016/0888-7543(95)80219-C. PMID 7601461.
  67. ^ Center for Biomolecular Science & Engineering. "The Human Genome Project Race". Center for Biomolecular Science and Engineering. Retrieved 1 August 2013.
  68. ^ Gillis, Justin (15 March 2000). "Clinton, Blair Urge Open Access to Gene Data". Washington Post.
  69. ^ Osoegawa K, Mammoser AG, Wu C, Frengen E, Zeng C, Catanese JJ, de Jong PJ (March 2001). "A bacterial artificial chromosome library for sequencing the complete human genome". Genome Research. 11 (3): 483–496. doi:10.1101/gr.169601. PMC 311044. PMID 11230172.
  70. ^ Tuzun E, Sharp AJ, Bailey JA, Kaul R, Morrison VA, Pertz LM, et al. (July 2005). "Fine-scale structural variation of the human genome". Nature Genetics. 37 (7): 727–732. doi:10.1038/ng1562. PMID 15895083. S2CID 14162962.
  71. ^ Kennedy D (August 2002). "Not wicked, perhaps, but tacky". Science. 297 (5585): 1237. doi:10.1126/science.297.5585.1237. PMID 12193755.
  72. ^ Venter JC (February 2003). "A part of the human genome sequence". Science. 299 (5610): 1183–1184. doi:10.1126/science.299.5610.1183. PMID 12595674. S2CID 5188811.
  73. ^ a b Naidoo N, Pawitan Y, Soong R, Cooper DN, Ku CS (October 2011). "Human genetics and genomics a decade after the release of the draft sequence of the human genome". Human Genomics. 5 (6): 577–622. doi:10.1186/1479-7364-5-6-577. PMC 3525251. PMID 22155605.
  74. ^ Gonzaga-Jauregui C, Lupski JR, Gibbs RA (2012). "Human genome sequencing in health and disease". Annual Review of Medicine. 63 (1): 35–61. doi:10.1146/annurev-med-051010-162644. PMC 3656720. PMID 22248320.
  75. ^ Snyder M, Du J, Gerstein M (March 2010). "Personal genome sequencing: current approaches and challenges". Genes & Development. 24 (5): 423–31. doi:10.1101/gad.1864110. PMC 2827837. PMID 20194435.
  76. ^ Lander ES (February 2011). "Initial impact of the sequencing of the human genome" (PDF). Nature. 470 (7333): 187–97. Bibcode:2011Natur.470..187L. doi:10.1038/nature09792. hdl:1721.1/69154. PMID 21307931. S2CID 4344403.
  77. ^ Peng JH, Sun D, Nevo E (2011). "Domestication Evolution, Genetics And Genomics In Wheat". Molecular Breeding. 28 (3): 281–301. doi:10.1007/s11032-011-9608-4. S2CID 24886686.
  78. ^ Greely H (1992). The Code of Codes: Scientific and Social Issues in the Human Genome Project. Cambridge, Massachusetts: Harvard University Press. pp. 264–265. ISBN 978-0-674-13646-5.
  79. ^ US Department of Health and Human Services (26 August 2015). "Understanding Health Information Privacy".
  80. ^ Human Genome Information Archive. . U.S. Department of Energy & Human Genome Project program. Archived from the original on 3 September 2011. Retrieved 20 February 2021.
  81. ^ "What were some of the ethical, legal, and social implications addressed by the Human Genome Project?". Genetics Home Reference. U.S. National Library of Medicine. 2013. Retrieved 1 August 2013.
  82. ^ "ELSI Research Program Fact Sheet – National Human Genome Research Institute (NHGRI)". www.genome.gov. Retrieved 27 September 2016.
  83. ^ Rheinberger HJ (2000). Living and Working with the New Medical Technologies. Cambridge: Cambridge University Press. p. 20.

Further reading

External links

  • National Human Genome Research Institute (NHGRI). NHGRI led the National Institutes of Health's contribution to the International Human Genome Project. This project, which had as its primary goal the sequencing of the three billion base pairs that make up the human genome, was successfully completed in April 2003.
  • Human Genome News. Published from 1989 to 2002 by the US Department of Energy, this newsletter was a major communications method for coordination of the Human Genome Project. Complete online archives are available.
  • The HGP information pages Department of Energy's portal to the international Human Genome Project, Microbial Genome Program, and Genomics:GTL systems biology for energy and environment
  • yourgenome.org: The Sanger Institute public information pages has general and detailed primers on DNA, genes, and genomes, the Human Genome Project and science spotlights.
  • Ensembl project, an automated annotation system and browser for the human genome
  • UCSC genome browser, This site contains the reference sequence and working draft assemblies for a large collection of genomes. It also provides a portal to the ENCODE project.
  • Nature magazine's human genome gateway, including the HGP's paper on the draft genome sequence
  • A free resource allowing you to explore the human genome, your health and your future.
  • Learning about the Human Genome. Part 1: Challenge to Science Educators. ERIC Digest.
  • Learning about the Human Genome. Part 2: Resources for Science Educators. ERIC Digest.
  • Venter discusses Celera's progress in deciphering the human genome sequence and its relationship to healthcare and to the federally funded Human Genome Project.
  • Cracking the Code of Life Companion website to 2-hour NOVA program documenting the race to decode the genome, including the entire program hosted in 16 parts in either QuickTime or RealPlayer format.
  • Bioethics Research Library Numerous original documents at Georgetown University.
  • David J. Galas
Works by archive
  • Works by Human Genome Project at Project Gutenberg
    • Project Gutenberg hosts e-texts for Human Genome Project, titled Human Genome Project, Chromosome Number # (# denotes 01–22, X and Y). This information is the raw sequence, released in November 2002; access to entry pages with download links is available through Human Genome Project, Chromosome Number 01 for Chromosome 1 sequentially to Human Genome Project, Y Chromosome for the Y Chromosome. Note that this sequence might not be considered definitive because of ongoing revisions and refinements. In addition to the chromosome files, there is a supplementary information file dated March 2004 which contains additional sequence information.
  • Works by or about Human Genome Project at Internet Archive

human, genome, project, international, scientific, research, project, with, goal, determining, base, pairs, that, make, human, identifying, mapping, sequencing, genes, human, genome, from, both, physical, functional, standpoint, started, 1990, completed, 2003,. The Human Genome Project HGP was an international scientific research project with the goal of determining the base pairs that make up human DNA and of identifying mapping and sequencing all of the genes of the human genome from both a physical and a functional standpoint It started in 1990 and was completed in 2003 1 It remains the world s largest collaborative biological project 2 Planning for the project started after it was adopted in 1984 by the US government and it officially launched in 1990 It was declared complete on April 14 2003 and included about 92 of the genome 3 Level complete genome was achieved in May 2021 with a remaining only 0 3 bases covered by potential issues 4 5 The final gapless assembly was finished in January 2022 6 Logo of the Human Genome ProjectFunding came from the United States government through the National Institutes of Health NIH as well as numerous other groups from around the world A parallel project was conducted outside the government by the Celera Corporation or Celera Genomics which was formally launched in 1998 Most of the government sponsored sequencing was performed in twenty universities and research centres in the United States the United Kingdom Japan France Germany and China 7 working in the International Human Genome Sequencing Consortium IHGSC The Human Genome Project originally aimed to map the complete set of nucleotides contained in a human haploid reference genome of which there are more than three billion The genome of any given individual is unique mapping the human genome involved sequencing samples collected from a small number of individuals and then assembling the sequenced fragments to get a complete sequence for each of 24 human chromosomes 22 autosomes and 2 sex chromosomes Therefore the finished human genome is a mosaic not representing any one individual Much of the project s utility comes from the fact that the vast majority of the human genome is the same in all humans Contents 1 History 2 State of completion 3 Applications and proposed benefits 4 Techniques and analysis 4 1 Findings 4 2 Accomplishments 5 Public vis a vis private approaches 6 Genome donors 7 Developments 8 Ethical legal and social issues 9 See also 10 References 11 Further reading 12 External linksHistory Edit The Human Genome Project was a 15 year long publicly funded project initiated in 1990 with the objective of determining the DNA sequence of the entire euchromatic human genome within 13 years 8 9 In May 1985 Robert Sinsheimer organized a workshop at the University of California Santa Cruz to discuss the feasibility of building a systematic reference genome using gene sequencing technologies 10 In March 1986 the Santa Fe Workshop was organized by Charles DeLisi and David Smith of the Department of Energy s Office of Health and Environmental Research OHER 11 At the same time Renato Dulbecco President of the Salk Institute for Biological Studies first proposed the concept of whole genome sequencing in an essay in Science 12 The published work titled A Turning Point in Cancer Research Sequencing the Human Genome was shortened from the original proposal of using the sequence to understand the genetic basis of breast cancer 13 James Watson one of the discoverers of the double helix shape of DNA in the 1950s followed two months later with a workshop held at the Cold Spring Harbor Laboratory Thus the idea for obtaining a reference sequence had three independent origins Sinsheimer Dulbecco and DeLisi Ultimately it was the actions by DeLisi that launched the project 14 15 16 17 The fact that the Santa Fe Workshop was motivated and supported by a federal agency opened a path albeit a difficult and tortuous one 18 for converting the idea into public policy in the United States In a memo to the Assistant Secretary for Energy Research Alvin Trivelpiece then Director of the OHER Charles DeLisi outlined a broad plan for the project 19 This started a long and complex chain of events which led to approved reprogramming of funds that enabled the OHER to launch the project in 1986 and to recommend the first line item for the HGP which was in President Reagan s 1988 budget submission 18 and ultimately approved by Congress Of particular importance in congressional approval was the advocacy of New Mexico Senator Pete Domenici whom DeLisi had befriended 20 Domenici chaired the Senate Committee on Energy and Natural Resources as well as the Budget Committee both of which were key in the DOE budget process Congress added a comparable amount to the NIH budget thereby beginning official funding by both agencies Trivelpiece sought and obtained the approval of DeLisi s proposal by Deputy Secretary William Flynn Martin This chart 21 was used by Trivelpiece in the spring of 1986 to brief Martin and Under Secretary Joseph Salgado regarding his intention to reprogram 4 million to initiate the project with the approval of John S Herrington This reprogramming was followed by a line item budget of 16 million in the Reagan administration s 1987 budget submission to Congress 11 It subsequently passed both Houses The project was planned to be completed within 15 years 22 In 1990 the two major funding agencies DOE and the National Institutes of Health developed a memorandum of understanding in order to coordinate plans and set the clock for the initiation of the Project to 1990 23 At that time David J Galas was Director of the renamed Office of Biological and Environmental Research in the U S Department of Energy s Office of Science and James Watson headed the NIH Genome Program In 1993 Aristides Patrinos succeeded Galas and Francis Collins succeeded Watson assuming the role of overall Project Head as Director of the NIH National Center for Human Genome Research which would later become the National Human Genome Research Institute A working draft of the genome was announced in 2000 and the papers describing it were published in February 2001 A more complete draft was published in 2003 and genome finishing work continued for more than a decade after that The 3 billion project was formally founded in 1990 by the US Department of Energy and the National Institutes of Health and was expected to take 15 years 24 In addition to the United States the international consortium comprised geneticists in the United Kingdom France Australia China and myriad other spontaneous relationships 25 The project ended up costing less than expected at about 2 7 billion equivalent to about 5 billion in 2021 7 26 27 Two technologies enabled the project gene mapping and DNA sequencing The gene mapping technique of restriction fragment length polymorphism RFLP arose from the search for the location of the breast cancer gene by Dr Mark Skolnick of the University of Utah 28 which began in 1974 29 Seeing a linkage marker for the gene collaboration with David Botstein Ray White and Ron Davies conceived of a way to construct a genetic linkage map of the human genome This enabled scientists to launch the larger human genome effort 30 Because of widespread international cooperation and advances in the field of genomics especially in sequence analysis as well as parallel advances in computing technology a rough draft of the genome was finished in 2000 announced jointly by U S President Bill Clinton and British Prime Minister Tony Blair on June 26 2000 31 32 This first available rough draft assembly of the genome was completed by the Genome Bioinformatics Group at the University of California Santa Cruz primarily led by then graduate student Jim Kent and his advisor David Haussler 33 Ongoing sequencing led to the announcement of the essentially complete genome on April 14 2003 two years earlier than planned 34 35 In May 2006 another milestone was passed on the way to completion of the project when the sequence of the very last chromosome was published in Nature 36 The various institutions companies and laboratories which participated in the Human Genome Project are listed below according to the NIH 7 No Nation Name Affiliation1 The Whitehead Institute MIT Center for Genome Research Massachusetts Institute of Technology2 The Wellcome Trust Sanger Institute Wellcome Trust3 Washington University School of Medicine Genome Sequencing Center Washington University in St Louis4 United States DOE Joint Genome Institute United States Department of Energy5 Baylor College of Medicine Human Genome Sequencing Center Baylor College of Medicine6 RIKEN Genomic Sciences Center Riken7 Genoscope and CNRS UMR 8030 French Alternative Energies and Atomic Energy Commission8 GTC Sequencing Center Genome Therapeutics Corporation whose sequencing division is acquired by ABI9 Department of Genome Analysis Fritz Lipmann Institute name changed from Institute of Molecular Biotechnology10 Beijing Genomics Institute Human Genome Center Chinese Academy of Sciences11 Multimegabase Sequencing Center Institute for Systems Biology12 Stanford Genome Technology Center Stanford University13 Stanford Human Genome Center and Department of Genetics Stanford University School of Medicine14 University of Washington Genome Center University of Washington15 Department of Molecular Biology Keio University School of Medicine16 University of Texas Southwestern Medical Center at Dallas University of Texas17 University of Oklahoma s Advanced Center for Genome Technology Dept of Chemistry and Biochemistry University of Oklahoma18 Max Planck Institute for Molecular Genetics Max Planck Society19 Lita Annenberg Hazen Genome Center Cold Spring Harbor Laboratory20 GBF German Research Centre for Biotechnology Reorganized and renamed to Helmholtz Centre for Infection ResearchState of completion EditNotably the project was not able to sequence all of the DNA found in human cells rather the aim was to sequence only euchromatic regions of the nuclear genome which make up 92 1 of the human genome The remaining 7 9 exists in scattered heterochromatic regions such as those found in centromeres and telomeres These regions by their nature are generally more difficult to sequence and so were not included as part of the project s original plans 37 The Human Genome Project HGP was declared complete in April 2003 An initial rough draft of the human genome was available in June 2000 and by February 2001 a working draft had been completed and published followed by the final sequencing mapping of the human genome on April 14 2003 Although this was reported to cover 99 of the euchromatic human genome with 99 99 accuracy a major quality assessment of the human genome sequence was published on May 27 2004 indicating over 92 of sampling exceeded 99 99 accuracy which was within the intended goal 38 In March 2009 the Genome Reference Consortium GRC released a more accurate version of the human genome but that still left more than 300 gaps 39 while 160 such gaps remained in 2015 40 Though in May 2020 the GRC reported 79 unresolved gaps 41 accounting for as much as 5 of the human genome 42 months later the application of new long range sequencing techniques and a hydatidiform mole derived cell line in which both copies of each chromosome are identical led to the first telomere to telomere truly complete sequence of a human chromosome the X chromosome 43 Similarly an end to end complete sequence of human autosomal chromosome 8 followed several months later 44 In 2021 it was reported that the Telomere to Telomere T2T consortium had filled in all of the gaps except five in repetitive regions of ribosomal DNA 45 Months later those gaps had also been closed The full sequence did not contain the Y chromosome which causes the embryo to become male being absent in the cell line that served as the source for the DNA analyzed About 0 3 of the full sequence proved difficult to check for quality and thus might have contained errors 46 which were being targeted for confirmation 47 In April 2022 the complete non Y chromosome sequence was formally published providing a view of much of the 8 of the genome left out by the HGP 48 In December 2022 a preprint article claimed that the sequencing of the remaining missing regions of Y chromosome had been performed thus completing the sequencing of all 24 human chromosomes 49 Applications and proposed benefits EditThe sequencing of the human genome holds benefits for many fields from molecular medicine to human evolution The Human Genome Project through its sequencing of the DNA can help researchers understand diseases including genotyping of specific viruses to direct appropriate treatment identification of mutations linked to different forms of cancer the design of medication and more accurate prediction of their effects advancement in forensic applied sciences biofuels and other energy applications agriculture animal husbandry bioprocessing risk assessment bioarcheology anthropology and evolution Another proposed benefit is the commercial development of genomics research related to DNA based products a multibillion dollar industry The sequence of the DNA is stored in databases available to anyone on the Internet The U S National Center for Biotechnology Information and sister organizations in Europe and Japan house the gene sequence in a database known as GenBank along with sequences of known and hypothetical genes and proteins Other organizations such as the UCSC Genome Browser at the University of California Santa Cruz 50 and Ensembl 51 present additional data and annotation and powerful tools for visualizing and searching it Computer programs have been developed to analyze the data because the data itself is difficult to interpret without such programs Generally speaking advances in genome sequencing technology have followed Moore s Law a concept from computer science which states that integrated circuits can increase in complexity at an exponential rate 52 This means that the speeds at which whole genomes can be sequenced can increase at a similar rate as was seen during the development of the Human Genome Project Techniques and analysis EditThe process of identifying the boundaries between genes and other features in a raw DNA sequence is called genome annotation and is in the domain of bioinformatics While expert biologists make the best annotators their work proceeds slowly and computer programs are increasingly used to meet the high throughput demands of genome sequencing projects Beginning in 2008 a new technology known as RNA seq was introduced that allowed scientists to directly sequence the messenger RNA in cells This replaced previous methods of annotation which relied on the inherent properties of the DNA sequence with direct measurement which was much more accurate Today annotation of the human genome and other genomes relies primarily on deep sequencing of the transcripts in every human tissue using RNA seq These experiments have revealed that over 90 of genes contain at least one and usually several alternative splice variants in which the exons are combined in different ways to produce 2 or more gene products from the same locus 53 The genome published by the HGP does not represent the sequence of every individual s genome It is the combined mosaic of a small number of anonymous donors of African European and east Asian ancestry The HGP genome is a scaffold for future work in identifying differences among individuals citation needed Subsequent projects sequenced the genomes of multiple distinct ethnic groups though as of 2019 there is still only one reference genome 54 Findings Edit Key findings of the draft 2001 and complete 2004 genome sequences include There are approximately 22 300 55 protein coding genes in human beings the same range as in other mammals The human genome has significantly more segmental duplications nearly identical repeated sections of DNA than had been previously suspected 56 57 58 At the time when the draft sequence was published fewer than 7 of protein families appeared to be vertebrate specific 59 Accomplishments Edit The first printout of the human genome to be presented as a series of books displayed at the Wellcome Collection LondonThe human genome has approximately 3 1 billion base pairs 60 The Human Genome Project was started in 1990 with the goal of sequencing and identifying all base pairs in the human genetic instruction set finding the genetic roots of disease and then developing treatments It is considered a megaproject The genome was broken into smaller pieces approximately 150 000 base pairs in length 61 These pieces were then ligated into a type of vector known as bacterial artificial chromosomes or BACs which are derived from bacterial chromosomes which have been genetically engineered The vectors containing the genes can be inserted into bacteria where they are copied by the bacterial DNA replication machinery Each of these pieces was then sequenced separately as a small shotgun project and then assembled The larger 150 000 base pairs go together to create chromosomes This is known as the hierarchical shotgun approach because the genome is first broken into relatively large chunks which are then mapped to chromosomes before being selected for sequencing 62 63 Funding came from the US government through the National Institutes of Health in the United States and a UK charity organization the Wellcome Trust as well as numerous other groups from around the world The funding supported a number of large sequencing centers including those at Whitehead Institute the Wellcome Sanger Institute then called The Sanger Centre based at the Wellcome Genome Campus Washington University in St Louis and Baylor College of Medicine 24 64 The United Nations Educational Scientific and Cultural Organization UNESCO served as an important channel for the involvement of developing countries in the Human Genome Project 65 Public vis a vis private approaches EditIn 1998 a similar privately funded quest was launched by the American researcher Craig Venter and his firm Celera Genomics Venter was a scientist at the NIH during the early 1990s when the project was initiated The 300M Celera effort was intended to proceed at a faster pace and at a fraction of the cost of the roughly 3 billion publicly funded project The Celera approach was able to proceed at a much more rapid rate and at a lower cost than the public project While it made use of publicly available maps at GenBank those were of low quality and only slowed down the project 56 Celera used a technique called whole genome shotgun sequencing employing pairwise end sequencing 66 which had been used to sequence bacterial genomes of up to six million base pairs in length but not for anything nearly as large as the three billion base pair human genome Celera initially announced that it would seek patent protection on only 200 300 genes but later amended this to seeking intellectual property protection on fully characterized important structures amounting to 100 300 targets The firm eventually filed preliminary place holder patent applications on 6 500 whole or partial genes Celera also promised to publish their findings in accordance with the terms of the 1996 Bermuda Statement by releasing new data annually the HGP released its new data daily although unlike the publicly funded project they would not permit free redistribution or scientific use of the data The publicly funded competitors were compelled to release the first draft of the human genome before Celera for this reason On July 7 2000 the UCSC Genome Bioinformatics Group released a first working draft on the web The scientific community downloaded about 500 GB of information from the UCSC genome server in the first 24 hours of free and unrestricted access 67 In March 2000 President Clinton along with Prime Minister Tony Blair in a dual statement urged that all researchers who wished to research the sequence should have unencumbered access to the genome sequence 68 The statement sent Celera s stock plummeting and dragged down the biotechnology heavy Nasdaq The biotechnology sector lost about 50 billion in market capitalization in two days Although the working draft was announced in June 2000 it was not until February 2001 that Celera and the HGP scientists published details of their drafts Special issues of Nature which published the publicly funded project s scientific paper 56 described the methods used to produce the draft sequence and offered analysis of the sequence These drafts covered about 83 of the genome 90 of the euchromatic regions with 150 000 gaps and the order and orientation of many segments not yet established In February 2001 at the time of the joint publications press releases announced that the project had been completed by both groups Improved drafts were announced in 2003 and 2005 filling in to approximately 92 of the sequence currently Genome donors EditIn the International Human Genome Sequencing Consortium IHGSC public sector HGP researchers collected blood female or sperm male samples from a large number of donors Only a few of many collected samples were processed as DNA resources Thus the donor identities were protected so neither donors nor scientists could know whose DNA was sequenced DNA clones taken from many different libraries were used in the overall project with most of those libraries being created by Dr Pieter J de Jong Much of the sequence gt 70 of the reference genome produced by the public HGP came from a single anonymous male donor from Buffalo New York code name RP11 the RP refers to Roswell Park Comprehensive Cancer Center 69 70 Schematic karyogram of a human showing an overview of the human genome with 22 homologous chromosomes both the female XX and male XY versions of the sex chromosome bottom right as well as the mitochondrial genome to scale at bottom left The blue scale to the left of each chromosome pair and the mitochondrial genome shows its length in terms of millions of DNA base pairs Further information KaryotypeHGP scientists used white blood cells from the blood of two male and two female donors randomly selected from 20 of each each donor yielding a separate DNA library One of these libraries RP11 was used considerably more than others because of quality considerations One minor technical issue is that male samples contain just over half as much DNA from the sex chromosomes one X chromosome and one Y chromosome compared to female samples which contain two X chromosomes The other 22 chromosomes the autosomes are the same for both sexes Although the main sequencing phase of the HGP has been completed studies of DNA variation continued in the International HapMap Project whose goal was to identify patterns of single nucleotide polymorphism SNP groups called haplotypes or haps The DNA samples for the HapMap came from a total of 270 individuals Yoruba people in Ibadan Nigeria Japanese people in Tokyo Han Chinese in Beijing and the French Centre d Etude du Polymorphisme Humain CEPH resource which consisted of residents of the United States having ancestry from Western and Northern Europe In the Celera Genomics private sector project DNA from five different individuals were used for sequencing The lead scientist of Celera Genomics at that time Craig Venter later acknowledged in a public letter to the journal Science that his DNA was one of 21 samples in the pool five of which were selected for use 71 72 Developments EditWith the sequence in hand the next step was to identify the genetic variants that increase the risk for common diseases like cancer and diabetes 23 61 It is anticipated that detailed knowledge of the human genome will provide new avenues for advances in medicine and biotechnology Clear practical results of the project emerged even before the work was finished For example a number of companies such as Myriad Genetics started offering easy ways to administer genetic tests that can show predisposition to a variety of illnesses including breast cancer hemostasis disorders cystic fibrosis liver diseases and many others Also the etiologies for cancers Alzheimer s disease and other areas of clinical interest are considered likely to benefit from genome information and possibly may lead in the long term to significant advances in their management 73 74 There are also many tangible benefits for biologists For example a researcher investigating a certain form of cancer may have narrowed down their search to a particular gene By visiting the human genome database on the World Wide Web this researcher can examine what other scientists have written about this gene including potentially the three dimensional structure of its product its functions its evolutionary relationships to other human genes or to genes in mice yeast or fruit flies possible detrimental mutations interactions with other genes body tissues in which this gene is activated and diseases associated with this gene or other datatypes Further a deeper understanding of the disease processes at the level of molecular biology may determine new therapeutic procedures Given the established importance of DNA in molecular biology and its central role in determining the fundamental operation of cellular processes it is likely that expanded knowledge in this area will facilitate medical advances in numerous areas of clinical interest that may not have been possible without them 75 The analysis of similarities between DNA sequences from different organisms is also opening new avenues in the study of evolution In many cases evolutionary questions can now be framed in terms of molecular biology indeed many major evolutionary milestones the emergence of the ribosome and organelles the development of embryos with body plans the vertebrate immune system can be related to the molecular level Many questions about the similarities and differences between humans and their closest relatives the primates and indeed the other mammals are expected to be illuminated by the data in this project 73 76 The project inspired and paved the way for genomic work in other fields such as agriculture For example by studying the genetic composition of Tritium aestivum the world s most commonly used bread wheat great insight has been gained into the ways that domestication has impacted the evolution of the plant 77 It is being investigated which loci are most susceptible to manipulation and how this plays out in evolutionary terms Genetic sequencing has allowed these questions to be addressed for the first time as specific loci can be compared in wild and domesticated strains of the plant This will allow for advances in the genetic modification in the future which could yield healthier and disease resistant wheat crops among other things Ethical legal and social issues EditAt the onset of the Human Genome Project several ethical legal and social concerns were raised in regard to how increased knowledge of the human genome could be used to discriminate against people One of the main concerns of most individuals was the fear that both employers and health insurance companies would refuse to hire individuals or refuse to provide insurance to people because of a health concern indicated by someone s genes 78 In 1996 the United States passed the Health Insurance Portability and Accountability Act HIPAA which protects against the unauthorized and non consensual release of individually identifiable health information to any entity not actively engaged in the provision of healthcare services to a patient 79 Along with identifying all of the approximately 20 000 25 000 genes in the human genome estimated at between 80 000 and 140 000 at the start of the project the Human Genome Project also sought to address the ethical legal and social issues that were created by the onset of the project 80 For that the Ethical Legal and Social Implications ELSI program was founded in 1990 Five percent of the annual budget was allocated to address the ELSI arising from the project 24 81 This budget started at approximately 1 57 million in the year 1990 but increased to approximately 18 million in the year 2014 82 Whilst the project may offer significant benefits to medicine and scientific research some authors have emphasized the need to address the potential social consequences of mapping the human genome Historian of science Hans Jorg Rheinberger wrote that the prospect of molecularizing diseases and their possible cure will have a profound impact on what patients expect from medical help and on a new generation of doctors perception of illness 83 See also Edit1000 Genomes Project International research effort on genetic variation 100 000 Genomes Project UK Government project that is sequencing whole genomes from National Health Service patients Chimpanzee genome project Effort to determine the DNA sequence of the chimpanzee genome ENCODE Research consortium investigating functional elements in human and model organism DNA Physiome HUGO Gene Nomenclature Committee Committee for human gene name standards Human Brain Project Scientific research project Human Connectome Project Research project Human Cytome Project Human Epigenome Project Human Microbiome Project Former research initiative Human proteome project Scientific project coordinated by the Human Proteome OrganizationPages displaying short descriptions of redirect targets Human Variome Project List of biological databases Neanderthal genome project Effort to sequence the Neanderthal genome Wellcome Sanger Institute British genomics research institute Genographic Project Citizen science projectReferences Edit Robert Krulwich 2003 Cracking the Code of Life Television Show PBS Economic Impact of the Human Genome Project Battelle PDF Archived from the original PDF on 23 December 2012 Retrieved 1 August 2013 Human Genome Project Completion Frequently Asked Questions National Human Genome Research Institute NHGRI CHM13 T2T v1 1 Genome Assembly NCBI www ncbi nlm nih gov Retrieved 16 June 2021 Genome List Genome NCBI www ncbi nlm nih gov Retrieved 16 June 2021 T2T CHM13v2 0 Genome Assembly NCBI www ncbi nlm nih gov Retrieved 14 June 2022 a b c Human Genome Project Completion Frequently Asked Questions genome gov Human Genome Project Sequencing the Human Genome Learn Science at Scitable www nature com Retrieved 25 January 2016 History of the Human Genome Project web ornl gov Sinsheimer RL November 1989 The Santa Cruz Workshop May 1985 and Genomics 5 4 954 956 doi 10 1016 0888 7543 89 90142 0 PMID 2591974 a b DeLisi C October 2008 Meetings that changed the world Santa Fe 1986 Human genome baby steps Nature 455 7215 876 877 Bibcode 2008Natur 455 876D doi 10 1038 455876a PMID 18923499 S2CID 41637733 Dulbecco R March 1986 A turning point in cancer research sequencing the human genome Science 231 4742 1055 1056 Bibcode 1986Sci 231 1055D doi 10 1126 science 3945817 PMID 3945817 Cook Deegan Robert M 1994 The Gene Wars Science Politics and the Human Genome New York W W Norton p 108 President Clinton Awards the Presidential Citizens Medals clintonwhitehouse5 archives gov File Plaque commemorating the Human Genome Project outside Charles DeLisi s former office at DOE png Wikimedia Commons Bevatron s Encyclopedia of Inventions a compendium of technological leaps ground break discoveries and scientific breakthroughs that changed the world The Human Genome Project Charles DeLisi pp 360 362 Origins of the Human Genome Project A Political History Bob Cook Deegan https www youtube com watch v opMu4Ld21Q amp t 3885s a b Gene Wars Op Cit p 102 Search georgetown edu President Clinton Awards the Presidential Citizens Medals nara gov Archived from the original on 1 August 2012 Retrieved 6 August 2014 Archived copy Archived from the original on 3 March 2016 Retrieved 19 August 2013 a href Template Cite web html title Template Cite web cite web a CS1 maint archived copy as title link DeLisi C 1988 The Human Genome Project American Scientist 76 5 488 Bibcode 1988AmSci 76 488D a b About the Human Genome Project What is the Human Genome Project The Human Genome Management Information System HGMIS 18 July 2011 Archived from the original on 2 September 2011 Retrieved 2 September 2011 a b c Human Genome Information Archive About the Human Genome Project U S Department of Energy amp Human Genome Project program Archived from the original on 2 September 2011 Retrieved 1 August 2013 Collins F Galas D 1 October 1993 A New Five Year Plan for the United States Human Genome Program National Human Genome Research Institute Retrieved 1 August 2013 Life on Earth to have its DNA analysed in the name of conservation Nature 563 7730 155 156 November 2018 Bibcode 2018Natur 563 155 doi 10 1038 d41586 018 07323 y PMID 30401859 Lewin HA Robinson GE Kress WJ Baker WJ Coddington J Crandall KA et al April 2018 Earth BioGenome Project Sequencing life for the future of life Proceedings of the National Academy of Sciences of the United States of America 115 17 4325 4333 Bibcode 2018PNAS 115 4325L doi 10 1073 pnas 1720115115 PMC 5924910 PMID 29686065 Cook Deegan Robert M 1994 The Gene Wars Science Politics and the Human Genome New York W W Norton pp 95 96 Bishop Jerry E Waldholz Michael 1990 Genome The Story of the Most Astonishing Scientific Adventure of Our Time the Attempt to Map All the Genes in the Human Body New York Simon and Schuster p 54 Bishop Jerry E Waldholz Michael 1990 Genome The Story of the Most Astonishing Scientific Adventure of Our Time the Attempt to Map All the Genes in the Human Body New York Simon and Schuster p 201 White House Press Release Retrieved 22 July 2006 Scientists Complete Rough Draft of Human Genome Gitschier Jane 31 January 2013 Life the Universe and Everything An Interview with David Haussler PLOS Genetics 9 1 e1003282 doi 10 1371 journal pgen 1003282 ISSN 1553 7390 PMC 3561096 PMID 23382705 Noble I 14 April 2003 Human genome finally complete BBC News Retrieved 22 July 2006 Kolata G 15 April 2013 Human Genome Then and Now The New York Times Retrieved 24 April 2014 Guardian Unlimited UK Latest Human Genome Project finalised The Guardian London Retrieved 22 July 2006 dead link The Human Genome Project FAQ Genoscope Centre National de Sequencage 19 October 2013 Archived from the original on 22 July 2015 Retrieved 12 February 2015 Schmutz J Wheeler J Grimwood J Dickson M Yang J Caoile C et al May 2004 Quality assessment of the human genome sequence Nature 429 6990 365 368 Bibcode 2004Natur 429 365S doi 10 1038 nature02390 PMID 15164052 Dolgin E December 2009 Human genomics The genome finishers Nature 462 7275 843 845 doi 10 1038 462843a PMID 20016572 Chaisson MJ Huddleston J Dennis MY Sudmant PH Malig M Hormozdiari F Antonacci F Surti U Sandstrom R Boitano M Landolin JM Stamatoyannopoulos JA Hunkapiller MW Korlach J Eichler EE January 2015 Resolving the complexity of the human genome using single molecule sequencing Nature 517 7536 608 611 Bibcode 2015Natur 517 608C doi 10 1038 nature13907 PMC 4317254 PMID 25383537 Human Genome Issues Genome Reference Consortium Retrieved 29 June 2019 The near complete sequence of a human genome 6 October 2020 Miga Karen H Koren Sergey Rhie Arang Vollger Mitchell R Gershman Ariel Bzikadze Andrey Brooks Shelise Howe Edmund Porubsky David Logsdon Glennis A Schneider Valerie A September 2020 Telomere to telomere assembly of a complete human X chromosome Nature 585 7823 79 84 Bibcode 2020Natur 585 79M doi 10 1038 s41586 020 2547 7 ISSN 1476 4687 PMC 7484160 PMID 32663838 Logsdon Glennis A Vollger Mitchell R Hsieh PingHsun Mao Yafei Liskovykh Mikhail A Koren Sergey Nurk Sergey Mercuri Ludovica Dishuck Philip C Rhie Arang de Lima Leonardo G May 2021 The structure function and evolution of a complete human chromosome 8 Nature 593 7857 101 107 Bibcode 2021Natur 593 101L doi 10 1038 s41586 021 03420 7 ISSN 1476 4687 PMC 8099727 PMID 33828295 Wrighton Katharine February 2021 Filling in the gaps telomere to telomere Nature Milestones Genomic Sequencing S21 Reardon Sara 4 June 2021 A complete human genome sequence is close how scientists filled in the gaps Nature 594 7862 158 159 Bibcode 2021Natur 594 158R doi 10 1038 d41586 021 01506 w PMID 34089035 S2CID 235346408 GitHub marbl CHM13 issues CHM13 human reference genome issue tracking GitHub Retrieved 26 July 2021 Special Issue Completing the human genome Science vol 376 no 6588 1 April 2022 Rhie et al 1 December 2022 The complete sequence of a human Y chromosome bioRxiv doi 10 1101 2022 12 01 518724 S2CID 254181409 UCSC Genome Browser Home genome ucsc edu Ensembl Genome Browser ensembl org Mardis ER March 2008 The impact of next generation sequencing technology on genetics Trends in Genetics 24 3 133 141 doi 10 1016 j tig 2007 12 007 PMC 2680276 PMID 18262675 Liu Y Gonzalez Porta M Santos S Brazma A Marioni JC Aebersold R et al August 2017 Impact of Alternative Splicing on the Human Proteome Cell Reports 20 5 1229 1241 doi 10 1016 j celrep 2017 07 025 PMC 5554779 PMID 28768205 Ballouz S Dobin A Gillis JA August 2019 Is it time to change the reference genome Genome Biology 20 1 159 doi 10 1186 s13059 019 1774 4 PMC 6688217 PMID 31399121 Pertea M Salzberg SL 2010 Between a chicken and a grape estimating the number of human genes Genome Biology 11 5 206 doi 10 1186 gb 2010 11 5 206 PMC 2898077 PMID 20441615 a b c Venter JC Adams MD Myers EW Li PW Mural RJ Sutton GG et al February 2001 The sequence of the human genome Science 291 5507 1304 1351 Bibcode 2001Sci 291 1304V doi 10 1126 science 1058040 PMID 11181995 Lander ES Linton LM Birren B Nusbaum C Zody MC Baldwin J et al International Human Genome Sequencing Consortium IHGSC October 2004 Finishing the euchromatic sequence of the human genome Nature 431 7011 931 945 Bibcode 2004Natur 431 931H doi 10 1038 nature03001 PMID 15496913 Spencer G 20 December 2004 International Human Genome Sequencing Consortium Describes Finished Human Genome Sequence NIH Nes Release National Institutes of Health Bryant JA 2007 Design and information in biology From molecules to systems p 108 ISBN 978 1 85312 853 0 brought to light about 1200 protein families Only 94 protein families or 7 appear to be vertebrate specific Piovesan A Pelleri M C Antonaros F Strippoli P Caracausi M Vitale L 2019 On the length weight and GC content of the human genome BMC Research Notes 12 1 106 doi 10 1186 s13104 019 4137 z PMC 6391780 PMID 30813969 a b Wellcome Sanger Institute The Human Genome Project a new reality Wellcome Trust Sanger Institute Genome Research Limited Archived from the original on 1 August 2013 Retrieved 1 August 2013 Celera A Unique Approach to Genome Sequencing ocf berkeley edu Biocomputing 2006 Retrieved 1 August 2013 Davidson College 2002 Sequencing Whole Genomes Hierarchical Shotgun Sequencing v Shotgun Sequencing bio davidson edu Department of Biology Davidson College Retrieved 1 August 2013 Human Genome Project Information Archive 2013 U S amp International HGP Research Sites U S Department of Energy amp Human Genome Project Retrieved 1 August 2013 Vizzini C 19 March 2015 The Human Variome Project Global Coordination in Data Sharing Science amp Diplomacy 4 1 Roach JC Boysen C Wang K Hood L March 1995 Pairwise end sequencing a unified approach to genomic mapping and sequencing Genomics 26 2 345 353 doi 10 1016 0888 7543 95 80219 C PMID 7601461 Center for Biomolecular Science amp Engineering The Human Genome Project Race Center for Biomolecular Science and Engineering Retrieved 1 August 2013 Gillis Justin 15 March 2000 Clinton Blair Urge Open Access to Gene Data Washington Post Osoegawa K Mammoser AG Wu C Frengen E Zeng C Catanese JJ de Jong PJ March 2001 A bacterial artificial chromosome library for sequencing the complete human genome Genome Research 11 3 483 496 doi 10 1101 gr 169601 PMC 311044 PMID 11230172 Tuzun E Sharp AJ Bailey JA Kaul R Morrison VA Pertz LM et al July 2005 Fine scale structural variation of the human genome Nature Genetics 37 7 727 732 doi 10 1038 ng1562 PMID 15895083 S2CID 14162962 Kennedy D August 2002 Not wicked perhaps but tacky Science 297 5585 1237 doi 10 1126 science 297 5585 1237 PMID 12193755 Venter JC February 2003 A part of the human genome sequence Science 299 5610 1183 1184 doi 10 1126 science 299 5610 1183 PMID 12595674 S2CID 5188811 a b Naidoo N Pawitan Y Soong R Cooper DN Ku CS October 2011 Human genetics and genomics a decade after the release of the draft sequence of the human genome Human Genomics 5 6 577 622 doi 10 1186 1479 7364 5 6 577 PMC 3525251 PMID 22155605 Gonzaga Jauregui C Lupski JR Gibbs RA 2012 Human genome sequencing in health and disease Annual Review of Medicine 63 1 35 61 doi 10 1146 annurev med 051010 162644 PMC 3656720 PMID 22248320 Snyder M Du J Gerstein M March 2010 Personal genome sequencing current approaches and challenges Genes amp Development 24 5 423 31 doi 10 1101 gad 1864110 PMC 2827837 PMID 20194435 Lander ES February 2011 Initial impact of the sequencing of the human genome PDF Nature 470 7333 187 97 Bibcode 2011Natur 470 187L doi 10 1038 nature09792 hdl 1721 1 69154 PMID 21307931 S2CID 4344403 Peng JH Sun D Nevo E 2011 Domestication Evolution Genetics And Genomics In Wheat Molecular Breeding 28 3 281 301 doi 10 1007 s11032 011 9608 4 S2CID 24886686 Greely H 1992 The Code of Codes Scientific and Social Issues in the Human Genome Project Cambridge Massachusetts Harvard University Press pp 264 265 ISBN 978 0 674 13646 5 US Department of Health and Human Services 26 August 2015 Understanding Health Information Privacy Human Genome Information Archive Insights Learned from the Human DNA Sequence U S Department of Energy amp Human Genome Project program Archived from the original on 3 September 2011 Retrieved 20 February 2021 What were some of the ethical legal and social implications addressed by the Human Genome Project Genetics Home Reference U S National Library of Medicine 2013 Retrieved 1 August 2013 ELSI Research Program Fact Sheet National Human Genome Research Institute NHGRI www genome gov Retrieved 27 September 2016 Rheinberger HJ 2000 Living and Working with the New Medical Technologies Cambridge Cambridge University Press p 20 Further reading EditMcElheny VK 2010 Drawing the Map of Life Inside the Human Genome Project Basic Books ISBN 978 0 465 03260 0 361 pages Examines the intellectual origins history and motivations of the project to map the human genome draws on interviews with key figures Collins F 2006 The Language of God A Scientist Presents Evidence for Belief Free Press ISBN 978 0 7432 8639 8 OCLC 65978711 Venter JC 18 October 2007 A Life Decoded My Genome My Life New York New York Viking Adult ISBN 978 0 670 06358 1 OCLC 165048736 Cook Deegan R 1994 The Gene Wars Science Politics and the Human Genome New York W W Norton ISBN 978 0 393 03572 8 Lone Dog L 1999 Whose genes are they The Human Genome Diversity Project Journal of Health amp Social Policy 10 4 51 66 doi 10 1300 J045v10n04 04 PMID 10538186 External links Edit Wikinews has related news Mexico presents first population wide genome map for a Latin country Wikibooks has a book on the topic of Genes Technology and Policy National Human Genome Research Institute NHGRI NHGRI led the National Institutes of Health s contribution to the International Human Genome Project This project which had as its primary goal the sequencing of the three billion base pairs that make up the human genome was successfully completed in April 2003 Human Genome News Published from 1989 to 2002 by the US Department of Energy this newsletter was a major communications method for coordination of the Human Genome Project Complete online archives are available The HGP information pages Department of Energy s portal to the international Human Genome Project Microbial Genome Program and Genomics GTL systems biology for energy and environment yourgenome org The Sanger Institute public information pages has general and detailed primers on DNA genes and genomes the Human Genome Project and science spotlights Ensembl project an automated annotation system and browser for the human genome UCSC genome browser This site contains the reference sequence and working draft assemblies for a large collection of genomes It also provides a portal to the ENCODE project Nature magazine s human genome gateway including the HGP s paper on the draft genome sequence Wellcome Trust Human Genome website A free resource allowing you to explore the human genome your health and your future Learning about the Human Genome Part 1 Challenge to Science Educators ERIC Digest Learning about the Human Genome Part 2 Resources for Science Educators ERIC Digest Patenting Life by Merrill Goozner Prepared Statement of Craig Venter of Celera Venter discusses Celera s progress in deciphering the human genome sequence and its relationship to healthcare and to the federally funded Human Genome Project Cracking the Code of Life Companion website to 2 hour NOVA program documenting the race to decode the genome including the entire program hosted in 16 parts in either QuickTime or RealPlayer format Bioethics Research Library Numerous original documents at Georgetown University David J GalasWorks by archiveWorks by Human Genome Project at Project Gutenberg Project Gutenberg hosts e texts for Human Genome Project titled Human Genome Project Chromosome Number denotes 01 22 X and Y This information is the raw sequence released in November 2002 access to entry pages with download links is available through Human Genome Project Chromosome Number 01 for Chromosome 1 sequentially to Human Genome Project Y Chromosome for the Y Chromosome Note that this sequence might not be considered definitive because of ongoing revisions and refinements In addition to the chromosome files there is a supplementary information file dated March 2004 which contains additional sequence information Works by or about Human Genome Project at Internet Archive Portals Biology Technology Medicine Retrieved from https en wikipedia org w index php title Human Genome Project amp oldid 1171162211, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.