fbpx
Wikipedia

Chalcogenide

A chalcogenide is a chemical compound consisting of at least one chalcogen anion and at least one more electropositive element. Although all group 16 elements of the periodic table are defined as chalcogens, the term chalcogenide is more commonly reserved for sulfides, selenides, tellurides, and polonides, rather than oxides.[1] Many metal ores exist as chalcogenides. Photoconductive chalcogenide glasses are used in xerography. Some pigments and catalysts are also based on chalcogenides. The metal dichalcogenide MoS2 is a common solid lubricant.

Cadmium sulfide, a prototypical metal chalcogenide, is used as a yellow pigment.

Alkali metal and alkaline earth chalcogenides edit

Alkali metal and alkaline earth monochalcogenides are salt-like, being colourless and often water-soluble. The sulfides tend to undergo hydrolysis to form derivatives containing bisulfide (SH) anions. The alkali metal chalcogenides often crystallize with the antifluorite structure and the alkaline earth salts in the sodium chloride motif.

 
The zinc blende structure is a common motif for metal monochalcogenides.

Transition metal chalcogenides edit

Transition metal chalcogenides occur with many stoichiometries and many structures.[2] Most common and most important technologically, however, are the chalcogenides of simple stoichiometries, such as 1:1 and 1:2. Extreme cases include metal-rich phases (e.g. Ta2S), which exhibit extensive metal-metal bonding,[3] and chalcogenide-rich materials such as Re2S7, which features extensive chalcogen-chalcogen bonding.

For the purpose of classifying these materials, the chalcogenide is often viewed as a dianion, i.e., S2−, Se2−, Te2−, and Po2−. In fact, transition metal chalcogenides are highly covalent, not ionic, as indicated by their semiconducting properties.[2]

Metal-rich chalcogenides edit

 
Structure of the metal-rich sulfide Nb21S8.[4]

In most of their chalcogenides, transition metals adopt oxidation states of II or greater. Nonetheless, several examples exist where the metallic atoms far outnumber the chalcogens. Such compounds typically have extensive metal-metal bonding.[5]

Monochalcogenides edit

Metal monochalcogenides have the formula ME, where M = a transition metal and E = S, Se, Te. They typically crystallize in one of two motifs, named after the corresponding forms of zinc sulfide. In the zinc blende structure, the sulfide atoms pack in a cubic symmetry and the Zn2+ ions occupy half of the tetrahedral holes. The result is a diamondoid framework. The main alternative structure for the monochalcogenides is the wurtzite structure wherein the atom connectivities are similar (tetrahedral), but the crystal symmetry is hexagonal. A third motif for metal monochalcogenide is the nickel arsenide lattice, where the metal and chalcogenide each have octahedral and trigonal prismatic coordination, respectively. This motif is commonly subject to nonstoichiometry.[6]

Important monochalcogenides include some pigments, notably cadmium sulfide. Many minerals and ores are monosulfides.[1]

Dichalcogenides edit

 
MoS2, the most common metal dichalcogenide, adopts a layered structure.

Metal dichalcogenides have the formula ME2, where M = a transition metal and E = S, Se, Te.[7] The most important members are the sulfides. They are always dark diamagnetic solids, insoluble in all solvents, and exhibit semiconducting properties. Some are superconductors.[8]

In terms of their electronic structures, these compounds are usually viewed as derivatives of M4+, where M4+ = Ti4+ (d0 configuration), V4+ (d1 configuration), Mo4+ (d2 configuration). Titanium disulfide was investigated in prototype cathodes for secondary batteries, exploiting its ability to reversibly undergo intercalation by lithium. Molybdenum disulfide is the subject of thousands of articles and the main ore of molybdenum, termed molybdenite. It is used as a solid lubricant and catalyst for hydrodesulfurization. The corresponding diselenides and even ditellurides are known, e.g., TiSe2, MoSe2, and WSe2.

Transition metals edit

Transition metal dichalcogenides typically adopt either cadmium diiodide or molybdenum disulfide structures. In the CdI2 motif, the metals exhibit octahedral structures. In the MoS2 motif, which is not observed for dihalides, the metals exhibit trigonal prismatic structures.[1] The strong bonding between the metal and chalcogenide ligands, contrasts with the weak chalcogenide—chalcogenide bonding between the layers. Owing to these contrasting bond strengths, these materials engage in intercalation by alkali metals. The intercalation process is accompanied by charge transfer, reducing the M(IV) centers to M(III). The attraction between electrons and holes in 2D tungsten diselenide is 100s of times stronger than in a typical 3D semiconductor.[8]

Pyrite and related disulfides edit

In contrast to classical metal dichalcogenides, iron pyrite, a common mineral, is usually described as consisting of Fe2+ and the persulfido anion S22−. The sulfur atoms within the persulfido dianion are bound together via a short S-S bond.[2] "Late" transition metal disulfides (Mn, Fe, Co, Ni) almost always adopt the pyrite or the related marcasite motif, in contrast to early metals (V, Ti, Mo, W) which adopt 4+ oxidation state with two chalcogenide dianions.

Tri- and tetrachalcogenides edit

Several metals, mainly for the early metals (Ti, V, Cr, Mn groups) also form trichalcogenides. These materials are usually described as M4+(E22−)(E2−) (where E = S, Se, Te). A well known example is niobium triselenide. Amorphous MoS3 is produced by treatment of tetrathiomolybdate with acid:

MoS42− + 2 H+ → MoS3 + H2S

The mineral patrónite, which has the formula VS4, is an example of a metal tetrachalcogenide. Crystallographic analysis shows that the material can be considered a bis(persulfide), i.e. V4+,(S22−)2.[2]

Main group chalcogenides edit

 
As2S3 is a crosslinked polymer where the As and S centers obey the octet rule.

Chalcogen derivatives are known for all of the main group elements except the noble gases. Usually, their stoichiometries follow the classical valence trends, e.g. SiS2, B2S3, Sb2S3. Many exceptions exist however, e.g. P4S3 and S4N4. The structures of many main group materials are dictated by directional covalent bonding, rather than by close packing.[1]

The chalcogen is assigned positive oxidation states for the halides, nitrides, and oxides.

See also edit

References edit

  1. ^ a b c d Greenwood, N. N.; & Earnshaw, A. (1997). Chemistry of the Elements (2nd Edn.), Oxford:Butterworth-Heinemann. ISBN 0-7506-3365-4.
  2. ^ a b c d Vaughan, D. J.; Craig, J. R. "Mineral Chemistry of Metal Sulfides" Cambridge University Press, Cambridge: 1978. ISBN 0-521-21489-0.
  3. ^ Hughbanks, Timothy (1995). "Exploring the metal-rich chemistry of the early transition elements". Journal of Alloys and Compounds. 229: 40–53. doi:10.1016/0925-8388(95)01688-0.
  4. ^ Franzen, H.F.; Beineke, T.A.; Conrad, B.R. (1968). "The crystal structure of Nb21S8". Acta Crystallographica B. 24 (3): 412–p416. doi:10.1107/S0567740868002463.
  5. ^ Franzen, Hugo F. (1978). "Structure and Bonding of Metal-Rich Compounds: Pnictides, chalcogenides and halides". Progress in Solid State Chemistry. 12: 1–39. doi:10.1016/0079-6786(78)90002-X.
  6. ^ "Sulfide Mineralogy: Volume 1" Paul H. Ribbe, editor, 1974, Mineralogical Society of America. ISBN 0-939950-01-4
  7. ^ Wells, A.F. (1984) Structural Inorganic Chemistry, Oxford: Clarendon Press. ISBN 0-19-855370-6.
  8. ^ a b Wood, Charlie (2022-08-16). "Physics Duo Finds Magic in Two Dimensions". Quanta Magazine. Retrieved 2022-08-22.

External links edit

  • Advanced Chalcogenide Technologies and Applications Lab ACTAlab Jun 14, 2016
  • Phase change memory-based 'moneta' system points to the future of computer storage ScienceBlog Jun 03, 2011
  • Kovalenko, Maksym V.; Scheele, Marcus; Talapin, Dmitri V. (2009). "Colloidal Nanocrystals with Molecular Metal Chalcogenide Surface Ligands". Science. 324 (5933): 1417–1420. Bibcode:2009Sci...324.1417K. doi:10.1126/science.1170524. PMID 19520953. S2CID 21845356.
  • Big Blue boffins hatch dirt-cheap solar cells The Register, 12 February 2010

chalcogenide, chalcogenide, chemical, compound, consisting, least, chalcogen, anion, least, more, electropositive, element, although, group, elements, periodic, table, defined, chalcogens, term, chalcogenide, more, commonly, reserved, sulfides, selenides, tell. A chalcogenide is a chemical compound consisting of at least one chalcogen anion and at least one more electropositive element Although all group 16 elements of the periodic table are defined as chalcogens the term chalcogenide is more commonly reserved for sulfides selenides tellurides and polonides rather than oxides 1 Many metal ores exist as chalcogenides Photoconductive chalcogenide glasses are used in xerography Some pigments and catalysts are also based on chalcogenides The metal dichalcogenide MoS2 is a common solid lubricant Cadmium sulfide a prototypical metal chalcogenide is used as a yellow pigment Contents 1 Alkali metal and alkaline earth chalcogenides 2 Transition metal chalcogenides 2 1 Metal rich chalcogenides 2 2 Monochalcogenides 2 3 Dichalcogenides 2 4 Transition metals 2 4 1 Pyrite and related disulfides 2 5 Tri and tetrachalcogenides 3 Main group chalcogenides 4 See also 5 References 6 External linksAlkali metal and alkaline earth chalcogenides editAlkali metal and alkaline earth monochalcogenides are salt like being colourless and often water soluble The sulfides tend to undergo hydrolysis to form derivatives containing bisulfide SH anions The alkali metal chalcogenides often crystallize with the antifluorite structure and the alkaline earth salts in the sodium chloride motif nbsp The zinc blende structure is a common motif for metal monochalcogenides Transition metal chalcogenides editTransition metal chalcogenides occur with many stoichiometries and many structures 2 Most common and most important technologically however are the chalcogenides of simple stoichiometries such as 1 1 and 1 2 Extreme cases include metal rich phases e g Ta2S which exhibit extensive metal metal bonding 3 and chalcogenide rich materials such as Re2S7 which features extensive chalcogen chalcogen bonding For the purpose of classifying these materials the chalcogenide is often viewed as a dianion i e S2 Se2 Te2 and Po2 In fact transition metal chalcogenides are highly covalent not ionic as indicated by their semiconducting properties 2 Metal rich chalcogenides edit nbsp Structure of the metal rich sulfide Nb21S8 4 In most of their chalcogenides transition metals adopt oxidation states of II or greater Nonetheless several examples exist where the metallic atoms far outnumber the chalcogens Such compounds typically have extensive metal metal bonding 5 Monochalcogenides edit Metal monochalcogenides have the formula ME where M a transition metal and E S Se Te They typically crystallize in one of two motifs named after the corresponding forms of zinc sulfide In the zinc blende structure the sulfide atoms pack in a cubic symmetry and the Zn2 ions occupy half of the tetrahedral holes The result is a diamondoid framework The main alternative structure for the monochalcogenides is the wurtzite structure wherein the atom connectivities are similar tetrahedral but the crystal symmetry is hexagonal A third motif for metal monochalcogenide is the nickel arsenide lattice where the metal and chalcogenide each have octahedral and trigonal prismatic coordination respectively This motif is commonly subject to nonstoichiometry 6 Important monochalcogenides include some pigments notably cadmium sulfide Many minerals and ores are monosulfides 1 Dichalcogenides edit nbsp MoS2 the most common metal dichalcogenide adopts a layered structure Metal dichalcogenides have the formula ME2 where M a transition metal and E S Se Te 7 The most important members are the sulfides They are always dark diamagnetic solids insoluble in all solvents and exhibit semiconducting properties Some are superconductors 8 In terms of their electronic structures these compounds are usually viewed as derivatives of M4 where M4 Ti4 d0 configuration V4 d1 configuration Mo4 d2 configuration Titanium disulfide was investigated in prototype cathodes for secondary batteries exploiting its ability to reversibly undergo intercalation by lithium Molybdenum disulfide is the subject of thousands of articles and the main ore of molybdenum termed molybdenite It is used as a solid lubricant and catalyst for hydrodesulfurization The corresponding diselenides and even ditellurides are known e g TiSe2 MoSe2 and WSe2 Transition metals edit Transition metal dichalcogenides typically adopt either cadmium diiodide or molybdenum disulfide structures In the CdI2 motif the metals exhibit octahedral structures In the MoS2 motif which is not observed for dihalides the metals exhibit trigonal prismatic structures 1 The strong bonding between the metal and chalcogenide ligands contrasts with the weak chalcogenide chalcogenide bonding between the layers Owing to these contrasting bond strengths these materials engage in intercalation by alkali metals The intercalation process is accompanied by charge transfer reducing the M IV centers to M III The attraction between electrons and holes in 2D tungsten diselenide is 100s of times stronger than in a typical 3D semiconductor 8 Pyrite and related disulfides edit In contrast to classical metal dichalcogenides iron pyrite a common mineral is usually described as consisting of Fe2 and the persulfido anion S22 The sulfur atoms within the persulfido dianion are bound together via a short S S bond 2 Late transition metal disulfides Mn Fe Co Ni almost always adopt the pyrite or the related marcasite motif in contrast to early metals V Ti Mo W which adopt 4 oxidation state with two chalcogenide dianions Tri and tetrachalcogenides edit Several metals mainly for the early metals Ti V Cr Mn groups also form trichalcogenides These materials are usually described as M4 E22 E2 where E S Se Te A well known example is niobium triselenide Amorphous MoS3 is produced by treatment of tetrathiomolybdate with acid MoS42 2 H MoS3 H2S The mineral patronite which has the formula VS4 is an example of a metal tetrachalcogenide Crystallographic analysis shows that the material can be considered a bis persulfide i e V4 S22 2 2 Main group chalcogenides edit nbsp As2S3 is a crosslinked polymer where the As and S centers obey the octet rule Chalcogen derivatives are known for all of the main group elements except the noble gases Usually their stoichiometries follow the classical valence trends e g SiS2 B2S3 Sb2S3 Many exceptions exist however e g P4S3 and S4N4 The structures of many main group materials are dictated by directional covalent bonding rather than by close packing 1 The chalcogen is assigned positive oxidation states for the halides nitrides and oxides See also editCarbon dichalcogenide Chalcogen Chalcogenide glass Hydrogen chalcogenide Negative resistance Phase change memoryReferences edit a b c d Greenwood N N amp Earnshaw A 1997 Chemistry of the Elements 2nd Edn Oxford Butterworth Heinemann ISBN 0 7506 3365 4 a b c d Vaughan D J Craig J R Mineral Chemistry of Metal Sulfides Cambridge University Press Cambridge 1978 ISBN 0 521 21489 0 Hughbanks Timothy 1995 Exploring the metal rich chemistry of the early transition elements Journal of Alloys and Compounds 229 40 53 doi 10 1016 0925 8388 95 01688 0 Franzen H F Beineke T A Conrad B R 1968 The crystal structure of Nb21S8 Acta Crystallographica B 24 3 412 p416 doi 10 1107 S0567740868002463 Franzen Hugo F 1978 Structure and Bonding of Metal Rich Compounds Pnictides chalcogenides and halides Progress in Solid State Chemistry 12 1 39 doi 10 1016 0079 6786 78 90002 X Sulfide Mineralogy Volume 1 Paul H Ribbe editor 1974 Mineralogical Society of America ISBN 0 939950 01 4 Wells A F 1984 Structural Inorganic Chemistry Oxford Clarendon Press ISBN 0 19 855370 6 a b Wood Charlie 2022 08 16 Physics Duo Finds Magic in Two Dimensions Quanta Magazine Retrieved 2022 08 22 External links editAdvanced Chalcogenide Technologies and Applications Lab ACTAlab Jun 14 2016 Phase change memory based moneta system points to the future of computer storage ScienceBlog Jun 03 2011 Kovalenko Maksym V Scheele Marcus Talapin Dmitri V 2009 Colloidal Nanocrystals with Molecular Metal Chalcogenide Surface Ligands Science 324 5933 1417 1420 Bibcode 2009Sci 324 1417K doi 10 1126 science 1170524 PMID 19520953 S2CID 21845356 Big Blue boffins hatch dirt cheap solar cells The Register 12 February 2010 Retrieved from https en wikipedia org w index php title Chalcogenide amp oldid 1182326148, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.