fbpx
Wikipedia

Cochineal

The cochineal (/ˌkɒɪˈnl, ˈkɒɪnl/ KOTCH-ih-NEEL, -⁠neel, US also /ˌkɪˈnl, ˈkɪnl/ KOH-chih-;[1] Dactylopius coccus) is a scale insect in the suborder Sternorrhyncha, from which the natural dye carmine is derived. A primarily sessile parasite native to tropical and subtropical South America through North America (Mexico and the Southwest United States), this insect lives on cacti in the genus Opuntia, feeding on plant moisture and nutrients. The insects are found on the pads of prickly pear cacti, collected by brushing them off the plants, and dried.

Cochineal
Female (left) and male (right) cochineals
Scientific classification
Kingdom:
Phylum:
Class:
Order:
Family:
Genus:
Species:
D. coccus
Binomial name
Dactylopius coccus
Costa, 1835
Synonyms

Coccus cacti Linnaeus, 1758
Pseudococcus cacti Burmeister, 1839

Chemical structure of carminic acid, the predator-deterring substance found in high concentration in cochineal insects: The insoluble aluminium and calcium salts of this acid form red and purple dyes called "carmine".

The insect produces carminic acid that deters predation by other insects. Carminic acid, typically 17–24% of dried insects' weight, can be extracted from the body and eggs, then mixed with aluminium or calcium salts to make carmine dye, also known as cochineal. Today, carmine is primarily used as a colorant in food and in lipstick (E120 or Natural Red 4).

Carmine dye was used in the Americas for coloring fabrics and became an important export good in the 16th century during the colonial period. Production of cochineal is depicted in the Codex Osuna (1565).[2] After synthetic pigments and dyes such as alizarin were invented in the late 19th century, use of natural-dye products gradually diminished. Fears over the safety of artificial food additives renewed the popularity of cochineal dyes, and the increased demand has made cultivation of the insect profitable again,[3] with Peru being the largest producer, followed by Mexico, Chile, Argentina and the Canary Islands.[4]

Other species in the genus Dactylopius can be used to produce "cochineal extract", and are extremely difficult to distinguish from D. coccus, even for expert taxonomists; that scientific term from the binary nomenclature, and also the vernacular "cochineal insect", may be used (whether intentionally or casually, and whether or not with misleading effect) to refer to other biological species.[note 1]

Etymology

The word cochineal is derived from the French "cochenille", derived from Spanish "cochinilla", in turn derived from Latin "coccinus" meaning "scarlet-colored", or from the Latin "coccum", meaning "berry yielding scarlet dye". A related word kermes refers to the source of a weaker red Mediterranean dye also called crimson, which was used in Europe to color cloth red before cochineal was imported from the New World to Spain in the 1520s. Some sources identify the Spanish source word for cochineal as cochinilla "wood louse" (a diminutive form of Spanish cochino, cognate with French cochon, meaning "pig").[5]

Dactylopius coccus

Life cycle

 
A cluster of females

Cochineal insects are soft-bodied, flat, oval-shaped scale insects. The females, wingless and about 5 mm (0.20 in) long, cluster on cactus pads. They penetrate the cactus with their beak-like mouthparts and feed on its juices, remaining immobile unless alarmed. After mating, the fertilised female increases in size and gives birth to tiny nymphs. The nymphs secrete a waxy white substance over their bodies for protection from water loss and excessive sun. This substance makes the cochineal insect appear white or grey from the outside, though the body of the insect and its nymphs produces the red pigment, which makes the insides of the insect look dark purple. Adult males can be distinguished from females in that males have wings, and are much smaller.[6]

 
Cochineal on opuntia in California

The cochineal disperses in the first nymph stage, called the "crawler" stage. The juveniles move to a feeding spot and produce long wax filaments. Later, they move to the edge of the cactus pad, where the wind catches the wax filaments and carries the insects to a new host. These individuals establish feeding sites on the new host and produce a new generation of cochineals.[7] Male nymphs feed on the cactus until they reach sexual maturity. At this time, they can no longer feed at all and live only long enough to fertilise the eggs.[8] They are, therefore, seldom observed.[7] In addition, females typically outnumber males due to environmental factors.[9]

Host cacti

 
Cochineals on cacti in La Palma, Canary Islands

Dactylopius coccus is native to tropical and subtropical South America and North America in Mexico, where their host cacti grow natively. They have been widely introduced to many regions where their host cacti also grow. About 200 species of Opuntia cacti are known, and while it is possible to cultivate cochineal on almost all of them, the most common is Opuntia ficus-indica.[10] D. coccus has only been noted on Opuntia species, including O. amyclaea, O. atropes, O. cantabrigiensis, O. brasilienis, O. ficus-indica, O. fuliginosa, O. jaliscana, O. leucotricha, O. lindheimeri, O. microdasys, O. megacantha, O. pilifera, O. robusta, O. sarca, O. schikendantzii, O. stricta, O. streptacantha, and O. tomentosa.[3] Feeding cochineals can damage and kill the plant. Other cochineal species feed on many of the same Opuntia, and the wide range of hosts reported for D. coccus likely is because of the difficulty in distinguishing it from other Dactylopius species.[11]

Predation

Several natural enemies can reduce the population of the insects on hosts. Of all the predators, insects seem to be the most important group. Insects and their larvae such as pyralid moths (order Lepidoptera), which destroy the cactus, and predators such as lady bugs (Coleoptera), various Diptera (such as Syrphidae and Chamaemyiidae), lacewings (Neuroptera), and ants (Hymenoptera) have been identified, as well as numerous parasitic wasps. Many birds, human-commensal rodents (especially rats) and reptiles also prey on cochineal insects.[3]

Farming

A nopal cactus farm for the production of cochineal is traditionally known as a nopalry.[12] The two methods of farming cochineal are traditional and controlled. Cochineals are farmed in the traditional method by planting infected cactus pads or infesting existing cacti with cochineals and harvesting the insects by hand. The controlled method uses small baskets called Zapotec nests placed on host cacti. The baskets contain clean, fertile females that leave the nests and settle on the cactus to await fertilization by the males. In both cases, the cochineals must be protected from predation, cold, and rain. The complete cycle lasts three months, during which time the cacti are kept at a constant temperature of 27 °C (81 °F). At the end of the cycle, the new cochineals are left to reproduce or are collected and dried for dye production.[10]

 
Zapotec nests on O. ficus-indica

To produce dye from cochineals, the insects are collected when they are around 90 days old. Harvesting the insects is labour-intensive, as they must be individually knocked, brushed, or picked from the cacti and placed into bags. The insects are gathered by small groups of collectors who sell them to local processors or exporters.[13]

In regions dependent on cochineal production, pest control measures are taken seriously. For small-scale cultivation, manual methods of control have proved to be the safest and most effective. For large-scale cultivation, advanced pest control methods have to be developed, including alternative bioinsecticides or traps with pheromones.[3]

Failed farming in Australia

Opuntia species, known commonly as prickly pears, were first brought to Australia in an attempt to start a cochineal dye industry in 1788. Captain Arthur Phillip collected a number of cochineal-infested plants from Brazil on his way to establish the first European settlement at Botany Bay, part of which is now Sydney, New South Wales. At that time, Spain and Portugal had a worldwide cochineal dye monopoly via their New World colonial sources, and the British desired a source under their own control, as the dye was important to their clothing and garment industries; it was used to color the British soldiers' red coats, for example.[14] The attempt was a failure in two ways: the Brazilian cochineal insects soon died off, but the cactus thrived, eventually overrunning about 100,000 sq mi (259,000 km2) of eastern Australia.[15] The cacti were eventually brought under control in the 1920s by the deliberate introduction of a South American moth, Cactoblastis cactorum, the larvae of which feed on the cactus.[15]

Failed farming in Ethiopia

The nopal pear has been traditionally eaten in parts of northern Ethiopia, where it is utilized more than cultivated. Carmine cochineal was introduced into northern Ethiopia early in the 2000s to be cultivated among farming communities. Foodsafe exported 2000 tons of dried carmine cochineal over 3 years.[citation needed]

A conflict of interest among communities led to closure of the cochineal business in Ethiopia, but the insect spread and became a pest. Cochineal infestation continued to expand after the cochineal business had ended. Control measures were unsuccessful and by 2014 about 16,000 hectares (62 sq mi) of cactus land had become infested with cochineal.[16]

In South Africa

There has been a population of Dactylopius insects on prickly pear cactuses around Cuyler Manor in Uitenhage; cochineal was introduced to South Africa as a biocontrol for invasive cactus plants.[17]

Carmine

Preparation

 
Wool dyed with cochineal
External video
  “Cochinea Red Dye - The Use of Cochineal Beetles as Natural Fabric Dye in Chinchero, Peru”, Quechua woman artisan

Cochineal dyes are one of three groups of red insect dyes, all of which are anthraquinone derivatives. The major color components in their respective chemical structures are carminic acid (in cochineal dyes), kermesic acid (in kermes dye) and laccaic acids (in lac dye).[18]

Carminic acid is extracted from the female cochineal insects and is treated to produce carmine, which can yield shades of red such as crimson and scarlet.[19] The dried body of the female insect is 14–26% carminic acid.[20]

 
Steps in the cochineal harvest in Oaxaca, public mural by Arturo Garcia Bustos, Mexico

Workers collect the female cochineal insects from their host plants.[4] The insects are processed by immersion in hot water or by exposure to sunlight, steam, or the heat of an oven. Each method produces a different color that results in the varied appearance of commercial cochineal.[21] The insects must be dried to about 30% of their original body weight before they can be stored without decaying.[13] It takes about 70,000 insects to make one pound of cochineal dye.[4]

The two principal forms of cochineal dye are cochineal extract, a coloring made from the raw dried and pulverised bodies of insects, and carmine, a more purified coloring made from the cochineal. To prepare carmine, the powdered insect bodies are boiled in ammonia or a sodium carbonate solution, the insoluble matter is removed by filtering, and alum is added to the clear salt solution of carminic acid to precipitate the red aluminium salt. Purity of color is ensured by the absence of iron. Stannous chloride, citric acid, borax, or gelatin may be added to regulate the formation of the precipitate. For shades of purple, lime is added to the alum.[22][23]

History

 
Mexican Indian Collecting Cochineal with a Deer Tail by José Antonio de Alzate y Ramírez (1777). The host plant is a prickly pear.

Pre-Columbian dye

Traditionally, cochineal was used for coloring fabrics. Cochineal dye was used by the Aztec and Maya peoples of North and Central America as early as the second century BC.[24]: 12 [25] Inhabitants of Peru have been producing cochineal dyes for textiles since early in the Middle Horizon period (600–1000 CE).[26] Cochineal dye was extensively used in the Pre-Columbian era, often for ceremonial textiles and those worn by rulers.[24]: 12–25 

The dye bonds best with animal fibers rather than plant fibers and was most effective for dying wool from alpacas and other Camelidae, rabbit fur, and feathers. It was also used on cottons and plant-based fabrics, to less effect. Some examples of early cloth have survived in extremely dry areas in Peru. In addition, the use of cochineal is literally illustrated in drawings on codices and maps. Production of cochineal dyes became well-developed under Nazca culture, and beautiful examples of woven cloth colored by cochineal remain from Moche and Wari culture.[24]: 12–25 [27]

Cochineal's importance is also indicated by its prominence in tribute lists such as the Matrícula de Tributos.[24]: 12–20  Eleven cities conquered by Moctezuma II in the 15th century paid a yearly tribute of 2000 decorated cotton blankets and 40 bags of cochineal dye each.[22]

Use as pigment

Prior to the Spanish invasion, Aztecs also used cochineal pigments in their manuscripts. The 16th century Florentine Codex contains a variety of illustrations with multiple variations of the red pigments. Specifically in the case of achiotl (light red), technical analysis of the paint reveals multiple layers of the pigment although the layers of the pigment is not visible to the naked eye. Therefore, it proves that the process of applying multiple layers is more significant in comparison to the actual color itself. Furthermore, the process of layering the various hues of the same pigment on top of each other enabled the Aztec artists to create variations in the intensity of the subject matter. A bolder application of pigment draws the viewer's eye to the subject matter which commands attention and suggests a power of the viewer. A weaker application of pigment commands less attention and has less power. This would suggest that the Aztec associated the intensity of pigments with the idea of power and life.[28]

Pigments are insoluble finely ground particles which are mixed with a liquid to make a paint.[29] To be useful as a pigment, a substance should be insoluble in the vehicle with which it is mixed, in contrast to a dye which is soluble.[30] The activity of carmines can vary widely depending on their preparation and composition: they tend to be unstable and can vary in solubility depending on pH.[31][32]

Recipes for artists' use of crimson appear in many early painting and alchemical handbooks throughout the Middle Ages. Red lake pigments were known to be particularly unstable as early as the 1400s.[33][34] When cochineal lakes were introduced in Europe, artists soon found that they were not light-fast. The paint turns brown and fades in sunlight, although it is somewhat more permanent if mixed with oil rather than water color.[35] As a result, carmine's use as a pigment was discouraged: its primary use was as a dye rather than in paints.[33][34]

“Beautiful and rich as are the colours prepared from cochineal, not one of them should ever find a place upon the palette of the artist. They all become brownish and ultimately almost disappear after a short exposure to sunlight or the more prolonged attack of strong diffused daylight”, Arthur Herbert Church[33][36]

Comparable colors

In Europe, there was no comparable red dye or pigment. The closest color was Kermes (technically, crimson), one of the oldest organic pigments. Its key ingredient, kermesic acid, was also extracted from an insect, Kermes vermilio, which lives on Quercus coccifera oaks native to the Near East, and the European side of the Mediterranean Basin. Kermes was used as a dye and a laked pigment in ancient Egypt, Greece, Armenia and the Near East.[37]

Colonial export

The Spanish conquest of the Aztec Empire in the 16th century introduced new colors to peoples on both sides of the Atlantic. The Spanish were quick to exploit the vibrant, intense color of cochineal for new trade opportunities. Carmine attained great status and value in Europe.[38][39]

During the colonial period, with the introduction of sheep to Latin America, the use of cochineal increased. It provided the most intense color and it set more firmly on woolen garments compared to clothes made of materials of pre-Hispanic origin such as cotton or agave and yucca fibers. In general, cochineal is more successful on protein-based animal fibres (including silk) than plant-based material.[39]

Once the European market discovered the qualities of this product (grana fina), the demand for it increased dramatically.[39][38]Carmine became the region's second-most-valuable export next to silver.[40] The dyestuff was used throughout Europe and was so highly prized, its price was regularly quoted on the London and Amsterdam Commodity Exchanges (with the latter one beginning to record it in 1589).[38] By the 17th century cochineal was a commodity traded as far away as India.[39]

The production and the use of luxury colors and textiles were regulated in countries such as Spain and Italy.[24]: 45–46  Dyestuffs produced from the cochineal insect were used for dyeing the clothes of kings, nobles, and the clergy.[39] In 1454, Pope Paul II officially changed the color of the robes worn by Catholic cardinals from "Cardinal's purple" to vibrant red. By 1558, their red robes would have been created with American cochineal.[24]: 45  By the 1600s, cochineal also gave the English "Redcoats" their distinctive officers' uniforms.[24]: 28–29  Carmine became strong competition for other colorants such as madder root, kermes, Polish cochineal, Armenian cochineal, brazilwood, and Tyrian purple.[41] It became the most important insect dye used in the production of hand-woven oriental rugs, almost completely displacing lac.[39] It was also used for handicrafts, and tapestries.[42]

 
Moctezuma dead in the waters of the grand canal

Spanish influence also changed the way in which Aztecs used pigments, particularly in their manuscripts. The use of cochineal in manuscripts was replaced by Spanish dyes like minium and alizarin crimson.[28] The image of Moctezuma's death (seen to the right) uses both indigenous and Spanish pigments, and is therefore representative of the transition and influence between cultures.[citation needed]

During the colonial period in Latin America, many indigenous communities produced cochineal under a type of contract known as Repartimiento de Mercancías. This was a type of ”contract forwarding” agreement, in which a trader lent money to producers in advance, with a "call option" to buy the product once it was harvested. Communities with a history of cochineal production and export have been found to have lower poverty rates and higher female literacy, but also smaller indigenous populations.[43]

Production elsewhere

In 1777, French botanist Nicolas-Joseph Thiéry de Menonville, presenting himself as a botanizing physician, smuggled the insects and pads of the Opuntia cactus to Saint Domingue. This particular collection failed to thrive and ultimately died out, leaving the Mexican monopoly intact.[44] After the Mexican War of Independence in 1810–1821, the Mexican monopoly on cochineal came to an end. Large-scale production of cochineal emerged, especially in Guatemala and the Canary Islands; it was also cultivated in Spain and North Africa.[39]

Competition from artificial dyes

The demand for cochineal fell sharply in the middle of the 19th century, with the appearance of artificial dyes such as alizarin crimson. This caused a significant financial shock in Spain as a major industry almost ceased to exist.[40] The delicate manual labour required for the breeding of the insect could not compete with the modern methods of the new industry, and even less so with the lowering of production costs. The "tuna blood" dye (from the Mexican name for the Opuntia fruit) stopped being used and trade in cochineal almost totally disappeared in the course of the 20th century. For a time, the breeding of cochineal was done mainly for the purposes of maintaining the tradition rather than to satisfy any sort of demand.[42]

However, the product has become commercially valuable again.[19] One reason for the increasing interest in natural dyes is consumer concern over the possibility that some commercial synthetic red dyes and food colorings may be carcinogenic.[45] Being natural is not a guarantee of safety,[46] but studies show that cochineal is neither carcinogenic nor toxic. Cochineal does, however, have a slight potential to trigger an allergic reaction.[47][48]

Modern uses

 
Cochineal use in histology: Carmine staining of a monogenean (parasitic worm)

Cochineal continues to be used as a fabric dye, a cosmetics dye and as a food coloring.[4] It is also used in histology as a preparatory stain for the examination of tissues and carbohydrates.[49]

As of 2005,[needs update] Peru produced 200 tons of cochineal dye per year and the Canary Islands produced 20 tons per year.[19][13] Chile and Mexico also export cochineal.[3] France is believed to be the world's largest importer, and Japan and Italy also import the insect. Much of these imports are processed and re-exported to other developed economies.[13] As of 2005,[needs update] the market price of cochineal was between US$50 and 80 per kilogram,[needs update][10] while synthetic raw food dyes are available at prices as low as $10–20 per kilogram.[50]

Natural carmine dye used in food and cosmetics can render the product unacceptable to vegetarian or vegan consumers. Many Muslims consider carmine-containing food forbidden (haraam) because the dye is extracted from insects and all insects except the locust are haram in Islam.[51] Jews also avoid food containing this additive, though it is not treif, and some authorities allow its use because the insect is dried and reduced to powder.[52]

Cochineal is one of the few water-soluble colorants to resist degradation with time. It is one of the most light- and heat-stable and oxidation-resistant of all the natural organic colorants and is even more stable than many synthetic food colors.[53] The water-soluble form is used in alcoholic drinks with calcium carmine; the insoluble form is used in a wide variety of products. Together with ammonium carmine, they can be found in meat, sausages, processed poultry products (meat products cannot be colored in the United States unless they are labeled as such), surimi, marinades, alcoholic drinks, bakery products and toppings, cookies, desserts, icings, pie fillings, jams, preserves, gelatin desserts, juice beverages, varieties of cheddar cheese and other dairy products, sauces, and sweets.[53]

Carmine is considered safe enough for cosmetic use in the eye area.[54] A significant proportion of the insoluble carmine pigment produced is used in the cosmetics industry for hair- and skin-care products, lipsticks, face powders, rouges, and blushes.[53] A bright red dye and the stain carmine used in microbiology is often made from the carmine extract, too.[8] The pharmaceutical industry uses cochineal to color pills and ointments.[13]

Cochineal-colored wool and cotton continue to be important materials for Mexican folk art and crafts.[55][24] Some towns in the Mexican state of Oaxaca continue to follow traditional practices of producing and using cochineal when making handmade textiles.[56] In Guatemala, Heifer International has partnered with local women who wished to reintroduce traditional artisanal practices of cochineal production and use.[57]

Because it has a complicated structure involving multiple chemical groups, it is very difficult to create a synthetic molecule for cochineal. In 1991, carminic acid was first synthesized in the laboratory by organic chemists.[58] In 2018, researchers genetically engineered the microbe Aspergillus nidulans to produce carminic acid.[4][59]

Risks and labeling

In spite of the widespread use of carmine-based dyes in food and cosmetic products, a small number of people have been found to experience occupational asthma, food allergy and cosmetic allergies (such as allergic rhinitis and cheilitis), IgE-mediated respiratory hypersensitivity, and in rare cases anaphylactic shock.[60][61][62] In 2009 the FDA ruled that labels of cosmetics and food that include cochineal extract must include that information on their labels (under the name "cochineal extract" or "carmine").[63][64] In 2006 the FDA stated it found no evidence of a "significant hazard" to the general population.[65] In the EU authorities list carmine as additive E 120 in the list of EU-approved food additives.[66] An artificial, non-allergenic cochineal dye is labeled E 124.[60]

Explanatory notes

  1. ^ The primary biological distinctions between species are minor differences in host plant preferences, along with very different geographic distributions.

References

  1. ^ Wells, John C. (2008). Longman Pronunciation Dictionary (3rd ed.). Longman. ISBN 978-1-4058-8118-0.
  2. ^ Nahuatl Community: Cultivation of cacti for the production of the red dye cochineal. Codex Osuna: Seven documents presented as evidence against the Viceroy Luis de Velasco during the 1563-1566 inquiry by Jeronimo de Valderrama. Folio 500v. Biblioteca Nacional, Madrid. 1565. p. 258.
  3. ^ a b c d e Liberato Portillo Martinez; Ana Lilia Vigueras Guzmán (1998-04-15). "Natural Enemies of Cochineal (Dactylopius coccus Costa): Importance in Mexico". Journal of the Professional Association for Cactus Development. 3. Retrieved 28 March 2022.[permanent dead link]
  4. ^ a b c d e Miller, Brittney J. (25 March 2022). "Cochineal, a red dye from bugs, moves to the lab". Knowable Magazine. doi:10.1146/knowable-032522-1. from the original on 21 April 2022. Retrieved 28 March 2022.
  5. ^ "Cochineal". Online Etymology Dictionary. from the original on 2015-06-01. Retrieved 2015-05-06.
  6. ^ Eisner, T. (2003). For Love of Insects. Cambridge, Massachusetts: Belknap Press of Harvard University Press. ISBN 0-674-01827-3.
  7. ^ a b Olson, C. . Urban Integrated Pest Management. Archived from the original on November 19, 2005. Retrieved July 19, 2005.
  8. ^ a b Armstrong, W. P. "Cochineal, Saffron & Woad Photos". Economic Plant Photographs. from the original on November 24, 2010. Retrieved July 14, 2005.
  9. ^ Nobel, P. S. (2002). Cacti: Biology and Uses. Berkeley: University of California Press. p. 226. ISBN 0-520-23157-0.
  10. ^ a b c . Go-Oaxaca Newsletter. Archived from the original on June 8, 2008. Retrieved July 15, 2005.
  11. ^ Ferris, G. Floyd (1955). Atlas of the Scale Insects of North America, Volume VII. Stanford University Press. pp. 85–90. ISBN 0-8047-1667-6.
  12. ^ "definition of nopalry from Webster Dictionary. Accessed Nov. 4, 2009". Webster-dictionary.net. from the original on July 16, 2011. Retrieved November 13, 2009.
  13. ^ a b c d e Foodnet. "Tropical commodities and their markets". Archived from the original on July 31, 2012. Retrieved July 14, 2005.
  14. ^ . Northwestweeds.nsw.gov.au. June 26, 1987. Archived from the original on October 30, 2009. Retrieved November 13, 2009.
  15. ^ a b Greenfield 2005, p. 188.
  16. ^ Tesfay Belay Reda. 2014. Cactus Pear & Carmine Cochineal: introduction & use in Ethiopia. Lambert Academic Publishing.[page needed]
  17. ^ "Cochineal insects (Dactylopius species)" (PDF). Agricultural Research Council (arc.agric.za). 2002. ISBN 1-86849-168-4.
  18. ^ Cooksey, C. J. (17 February 2019). "The red insect dyes: carminic, kermesic and laccaic acids and their derivatives". Biotechnic & Histochemistry. 94 (2): 100–107. doi:10.1080/10520295.2018.1511065. ISSN 1052-0295. PMID 30354531. S2CID 53023592. Retrieved 28 March 2022.
  19. ^ a b c . Archived from the original on June 24, 2005. Retrieved July 14, 2005.
  20. ^ Kannangara, Rubini; Siukstaite, Lina; Borch-Jensen, Jonas; Madsen, Bjørn; Kongstad, Kenneth T.; Staerk, Dan; Bennedsen, Mads; Okkels, Finn T.; Rasmussen, Silas A.; Larsen, Thomas O.; Frandsen, Rasmus J. N.; Møller, Birger Lindberg (7 December 2017). "Characterization of a membrane-bound C-glucosyltransferase responsible for carminic acid biosynthesis in Dactylopius coccus Costa". Nature Communications. 8 (1): 1987. Bibcode:2017NatCo...8.1987K. doi:10.1038/s41467-017-02031-z. ISSN 2041-1723. PMC 5719414. PMID 29215010.
  21. ^ MacGillivray, Alexander Dyer (1921). The Coccidae: Tables for the Identification of the Subfamilies and Some of the More Important Genera and Species, Together with Discussions of Their Anatomy and Life History. Urbana, Illinois: Scarab Company. p. 100. from the original on 29 March 2022. Retrieved 29 March 2022.
  22. ^ a b Threads In Tyme, LTD. . Archived from the original on October 28, 2005. Retrieved July 14, 2005.
  23. ^ Dutton, LaVerne M. "Appendix III: Cochineal Recipes" (PDF). Cochineal: A Bright Red Animal Dye. Master's Thesis, Baylor University. from the original on January 24, 2021. Retrieved March 30, 2022.
  24. ^ a b c d e f g h Phipps, Elena (2010). Cochineal Red: The Art History of a Color. New York, NY: Metropolitan Museum of Art. ISBN 978-1-58839-361-6. from the original on 28 March 2022. Retrieved 28 March 2022..[page needed]
  25. ^ St. Clair, Kassia (2016). The Secret Lives of Colour. London: John Murray. p. 141. ISBN 9781473630819. OCLC 936144129.
  26. ^ Pearlstein, Ellen; MacKenzie, Mark; Kaplan, Emily; Howe, Ellen; Levinson, Judith (2015). "Tradition and Innovation, Cochineal and Andean keros". In Anderson, Barbara; Padilla, Carmella (eds.). A Red Like No Other: How Cochineal Colored the World. Rizzoli and Museum of International Folk Art, Santa Fe, New Mexico. pp. 44–51. from the original on 14 September 2022. Retrieved 29 March 2022.
  27. ^ a b Orna, Mary Virginia (1 July 2011). "Chemistry and Art: Ancient textiles and medieval manuscripts examined through chemistry". Educación Química (in Spanish). 22 (3): 191–197. doi:10.1016/S0187-893X(18)30133-2. ISSN 0187-893X. from the original on 29 March 2022. Retrieved 29 March 2022.
  28. ^ a b Magaloni Kerpel, Diana (2014). The colors of the new world : artists, materials, and the creation of the Florentine codex. Los Angeles, CA: The Getty Research Institute. pp. 35–40, 45. ISBN 978-1-60606-329-3.
  29. ^ "pigment | chemistry |". Britannica. from the original on 30 March 2022. Retrieved 30 March 2022.
  30. ^ "Cochineal 4 oz vol". Natural Pigments. from the original on 14 September 2022. Retrieved 30 March 2022.
  31. ^ Gabrielli, Luca; Origgi, Davide; Zampella, Giuseppe; Bertini, Luca; Bonetti, Simone; Vaccaro, Gianfranco; Meinardi, Francesco; Simonutti, Roberto; Cipolla, Laura (2018). "Towards hydrophobic carminic acid derivatives and their incorporation in polyacrylates". Royal Society Open Science. 5 (7): 172399. Bibcode:2018RSOS....572399G. doi:10.1098/rsos.172399. PMC 6083691. PMID 30109060. from the original on 14 September 2022. Retrieved 30 March 2022.
  32. ^ Dapson, RW (1 January 2005). "Dye–tissue interactions: mechanisms, quantification and bonding parameters for dyes used in biological staining". Biotechnic & Histochemistry. 80 (2): 49–72. doi:10.1080/10520290500219982. ISSN 1052-0295. PMID 16195171. S2CID 21822356. from the original on 30 March 2022. Retrieved 30 March 2022.
  33. ^ a b c Berrie, Barbara H.; Strumfels, Yoonjoo (26 July 2017). "Change is permanent: thoughts on the fading of cochineal-based watercolor pigments". Heritage Science. 5 (1): 30. doi:10.1186/s40494-017-0143-4. ISSN 2050-7445. S2CID 9900634. from the original on 15 June 2022. Retrieved 29 March 2022.
  34. ^ a b Whitney, Alyson V.; Van Duyne, Richard P.; Casadio, Francesca (2006). "An innovative surface-enhanced Raman spectroscopy (SERS) method for the identification of six historical red lakes and dyestuffs". Journal of Raman Spectroscopy. 37 (10): 993–1002. Bibcode:2006JRSp...37..993W. doi:10.1002/jrs.1576.
  35. ^ "Carmine lake". Pigments through the Ages. from the original on 6 August 2020. Retrieved 30 March 2022.
  36. ^ Church, A. H. (1890). The chemistry of paints and painting. London: Seeley and Co., Ltd. p. 208.
  37. ^ Barber, E. J. W. (1991). Prehistoric Textiles. Princeton University Press.[page needed]
  38. ^ a b c Dr. Aguilar, Moreno (2006). Handbook to Life in the Aztec World. Los Angeles: California State University. pp. 344. ISBN 0-8160-5673-0.
  39. ^ a b c d e f g Eiland & Eiland 1998, p. 55.
  40. ^ a b Behan, J. . Archived from the original on June 21, 2006. Retrieved June 26, 2006.
  41. ^ Meyer, L. . West Kingdom (SCA) Arts and Sciences Tourney, July 2004. Archived from the original on February 2, 2006. Retrieved July 19, 2005.
  42. ^ a b Hernández, O. . Mexico Desconocido Online. Archived from the original on October 16, 2007. Retrieved July 15, 2005.
  43. ^ Diaz-Cayeros, Alberto; Jha, Saumitra (2012). "Contracts and Poverty Alleviation in Indigenous Communities: Cochineal in Mexico" (PDF). Global Trade. (PDF) from the original on 2015-01-30. Retrieved 2015-01-30.
  44. ^ Schiebinger 2004, p. 44.
  45. ^ Okafor, Sunday N.; Obonga, Wilfred; Ezeokonkwo, Mercy A.; Nurudeen, Jamiu; Orovwigho, Ufoma; Ahiabuike, Joshua (2016). "Assessment of the Health implications of Synthetic and Natural Food Colourants – A Critical Review". UK Journal of Pharmaceutical and Biosciences. 4 (4): 1–11. from the original on 14 September 2022. Retrieved 30 March 2022.
  46. ^ "Natural Doesn't Necessarily Mean Safer, or Better". NCCIH (in Spanish). from the original on 28 March 2022. Retrieved 30 March 2022.
  47. ^ Silva, Maria Manuela; Reboredo, Fernando Henrique; Lidon, Fernando Cebola (January 2022). "Food Colour Additives: A Synoptical Overview on Their Chemical Properties, Applications in Food Products, and Health Side Effects". Foods. 11 (3): 379. doi:10.3390/foods11030379. ISSN 2304-8158. PMC 8834239. PMID 35159529.
  48. ^ Mori, H.; Iwata, H.; Tanaka, T.; Morishita, Y.; Mori, Y.; Kojima, T.; Okumura, A. (January 1991). "Carcinogenicity study of cochineal in B6C3F1 mice". Food and Chemical Toxicology. 29 (9): 585–588. doi:10.1016/0278-6915(91)90138-w. PMID 1937288.
  49. ^ Athens, G.A. (PDF). Histologic. XLVI (2). Archived from the original (PDF) on 2015-07-16.
  50. ^ . Archived from the original on December 8, 2008. Retrieved July 15, 2005.
  51. ^ "E-Numbers List: Cochineal / Carminic Acid". Muslim Consumer Group. from the original on June 2, 2015. Retrieved June 16, 2015.
  52. ^ Pischei Teshuvah Yoreh Deah 87-20
  53. ^ a b c Wild Flavors, Inc. . The wild world of solutions. Archived from the original on October 22, 2010. Retrieved July 19, 2005.
  54. ^ U.S. Food and Drug Administration (June 9, 2015). "Summary of Color Additives for Use in United States in Foods, Drugs, Cosmetics, and Medical Devices". Silver Spring, Maryland: U.S. Department of Health and Human Services. from the original on April 22, 2019. Retrieved July 10, 2015.
  55. ^ Wood, W. W. (2008). Made in Mexico: Zapotec weavers and the global ethnic art market. Indiana University Press.[page needed]
  56. ^ "Demetrio Bautista Lazo - Master Weaver". Teotitlán del Valle, Oaxaca, Mexico. from the original on 25 May 2021. Retrieved 28 March 2022.
  57. ^ "Indigenous Guatemalan Women Earn Income from Carmine, a Traditional Red Dye Made from Bugs". Heifer International. from the original on 22 October 2021. Retrieved 29 March 2022.
  58. ^ Allevi, P.; et al. (1991). "The First Total Synthesis of Carminic Acid". Journal of the Chemical Society, Chemical Communications. 18 (18): 1319–1320. doi:10.1039/C39910001319.
  59. ^ Seo, Seung-Oh; Jin, Yong-Su (25 March 2022). "Next-Generation Genetic and Fermentation Technologies for Safe and Sustainable Production of Food Ingredients: Colors and Flavorings". Annual Review of Food Science and Technology. 13 (1): 463–488. doi:10.1146/annurev-food-052720-012228. ISSN 1941-1413. PMID 34990222. S2CID 245809673. Retrieved 30 March 2022.
  60. ^ a b Voltolini S, Pellegrini S, Contatore M, Bignardi D, Minale P (2014). "New risks from ancient food dyes: cochineal red allergy" (PDF). European Annals of Allergy and Clinical Immunology. 46 (6): 232–3. PMID 25398168. (PDF) from the original on 2015-07-16. Retrieved 2015-07-16.
  61. ^ D'Mello, J. P. Felix (2003). Food Safety: Contaminants and Toxins. Wallingford, Oxon: CABI Pub. p. 256. ISBN 0-85199-607-8.
  62. ^ DiCello, Michael C.; Myc, Andrzej; Baker, James R.; Baldwin, James L. (1999). "Anaphylaxis After Ingestion of Carmine Colored Foods: Two Case Reports and a Review of the Literature". Allergy and Asthma Proceedings. 20 (6): 377–82. doi:10.2500/108854199778251816. PMID 10624494.
  63. ^ FDA. Guidance for Industry: Cochineal Extract and Carmine: Declaration by Name on the Label of All Foods and Cosmetic Products That Contain These Color Additives; Small Entity Compliance Guide 2022-03-29 at the Wayback Machine. Silver Spring, MD:U.S. Food & Drug Administration (updated June 7, 2011). [accessed July 16, 2015].
  64. ^ "Listing of Color Additives Exempt From Certification; Food, Drug, and Cosmetic Labeling: Cochineal Extract and Carmine Declaration". Federal Register. January 5, 2009. from the original on 11 February 2022. Retrieved 29 March 2022.
  65. ^ . Archived from the original on February 10, 2006.
  66. ^ "Food Standards Agency – Current EU approved additives and their E Numbers". Food.gov.uk. March 14, 2012. from the original on October 7, 2010. Retrieved October 4, 2013.

Further reading

  • Baskes, Jeremy (2000). Indians, Merchants and Markets: A Reinterpretation of the Repartimiento and Spanish-Indian Economic Relations in Colonial Oaxaca, 1750–1821. Stanford: Stanford University Press. ISBN 0-8047-3512-3.
  • Donkin, R. A. (1977). "Spanish Red: An Ethnogeographical Study of Cochineal and the Opuntia Cactus". Transactions of the American Philosophical Society. 67 (5): 1–84. doi:10.2307/1006195. JSTOR 1006195.
  • Eiland, Murray L. Jr. & Eiland, Murray L., III (1998). Oriental Carpets. Boston: Little, Brown and Company. ISBN 0-8212-2548-0.
  • Greenfield, Amy Butler (2005). A Perfect Red: Empire, Espionage, and the Quest for the Color of Desire. New York: Harper Collins Press. ISBN 0-06-052276-3.
  • Hamnett, Brian (1971). Politics and Trade in Southern Mexico, 1750–1821. Cambridge: Cambridge University Press. ISBN 0-521-07860-1.
  • McCreery, David (1996). Rural Guatemala 1760–1940. Stanford: Stanford University Press. ISBN 0-8047-2792-9.
  • Schiebinger, L. L. (2004). Plants and Empire: Colonial Bioprospecting in the Atlantic World. Cambridge, Massachusetts: Harvard University Press. ISBN 0-674-01487-1.

See also

External links

  • Felter, Harvey Wickes; Lloyd, John Uri (1898). "Coccus (U.S.P.)—Cochineal". King's American Dispensatory (Eighteenth ed.). Cincinnati: Ohio Valley Co. Retrieved July 14, 2005.
  • Direction of the Council of the Pharmaceutical Society of Great Britain (1911). "Coccus, B.P.". The British Pharmaceutical Codex. London: The Pharmaceutical Press. Retrieved July 14, 2005.
  • Sayre, Lucius E. (1917). "Coccus.—Cochineal". A Manual of Organic Materia Medica and Pharmacognosy. Philadelphia: P. Blakiston's Son & Co. Retrieved July 14, 2005.
  • Zhang, Jane (January 27, 2006). . The Wall Street Journal. Archived from the original on January 12, 2009.
  • Greig, J. B. "Cochineal extract, carmine, and carminic acid". WHO food additive series 46. Retrieved June 2, 2007.
  • Dutton, LaVerne M. "Cochineal: A Bright Red Animal Dye". Master's Thesis for Baylor University. Retrieved November 13, 2010.

cochineal, this, article, about, crimson, producing, insect, dactylopiidae, family, confused, with, crimson, producing, insects, margarodidae, family, sometimes, called, armenian, cochineal, polish, cochineal, cochineal, kotch, neel, neel, also, chih, dactylop. This article is about the crimson dye producing insect of the Dactylopiidae family Not to be confused with the crimson dye producing insects of the Margarodidae family sometimes called Armenian cochineal and Polish cochineal The cochineal ˌ k ɒ tʃ ɪ ˈ n iː l ˈ k ɒ tʃ ɪ n iː l KOTCH ih NEEL neel US also ˌ k oʊ tʃ ɪ ˈ n iː l ˈ k oʊ tʃ ɪ n iː l KOH chih 1 Dactylopius coccus is a scale insect in the suborder Sternorrhyncha from which the natural dye carmine is derived A primarily sessile parasite native to tropical and subtropical South America through North America Mexico and the Southwest United States this insect lives on cacti in the genus Opuntia feeding on plant moisture and nutrients The insects are found on the pads of prickly pear cacti collected by brushing them off the plants and dried CochinealFemale left and male right cochinealsScientific classificationKingdom AnimaliaPhylum ArthropodaClass InsectaOrder HemipteraFamily DactylopiidaeGenus DactylopiusSpecies D coccusBinomial nameDactylopius coccusCosta 1835SynonymsCoccus cacti Linnaeus 1758Pseudococcus cacti Burmeister 1839 Chemical structure of carminic acid the predator deterring substance found in high concentration in cochineal insects The insoluble aluminium and calcium salts of this acid form red and purple dyes called carmine The insect produces carminic acid that deters predation by other insects Carminic acid typically 17 24 of dried insects weight can be extracted from the body and eggs then mixed with aluminium or calcium salts to make carmine dye also known as cochineal Today carmine is primarily used as a colorant in food and in lipstick E120 or Natural Red 4 Carmine dye was used in the Americas for coloring fabrics and became an important export good in the 16th century during the colonial period Production of cochineal is depicted in the Codex Osuna 1565 2 After synthetic pigments and dyes such as alizarin were invented in the late 19th century use of natural dye products gradually diminished Fears over the safety of artificial food additives renewed the popularity of cochineal dyes and the increased demand has made cultivation of the insect profitable again 3 with Peru being the largest producer followed by Mexico Chile Argentina and the Canary Islands 4 Other species in the genus Dactylopius can be used to produce cochineal extract and are extremely difficult to distinguish from D coccus even for expert taxonomists that scientific term from the binary nomenclature and also the vernacular cochineal insect may be used whether intentionally or casually and whether or not with misleading effect to refer to other biological species note 1 Contents 1 Etymology 2 Dactylopius coccus 2 1 Life cycle 2 2 Host cacti 2 3 Predation 2 4 Farming 2 4 1 Failed farming in Australia 2 4 2 Failed farming in Ethiopia 2 4 3 In South Africa 3 Carmine 3 1 Preparation 3 2 History 3 2 1 Pre Columbian dye 3 2 2 Use as pigment 3 2 3 Comparable colors 3 2 4 Colonial export 3 2 5 Production elsewhere 3 2 6 Competition from artificial dyes 3 3 Modern uses 3 3 1 Risks and labeling 4 Explanatory notes 5 References 6 Further reading 7 See also 8 External linksEtymology EditThe word cochineal is derived from the French cochenille derived from Spanish cochinilla in turn derived from Latin coccinus meaning scarlet colored or from the Latin coccum meaning berry yielding scarlet dye A related word kermes refers to the source of a weaker red Mediterranean dye also called crimson which was used in Europe to color cloth red before cochineal was imported from the New World to Spain in the 1520s Some sources identify the Spanish source word for cochineal as cochinilla wood louse a diminutive form of Spanish cochino cognate with French cochon meaning pig 5 Dactylopius coccus EditLife cycle Edit A cluster of females Cochineal insects are soft bodied flat oval shaped scale insects The females wingless and about 5 mm 0 20 in long cluster on cactus pads They penetrate the cactus with their beak like mouthparts and feed on its juices remaining immobile unless alarmed After mating the fertilised female increases in size and gives birth to tiny nymphs The nymphs secrete a waxy white substance over their bodies for protection from water loss and excessive sun This substance makes the cochineal insect appear white or grey from the outside though the body of the insect and its nymphs produces the red pigment which makes the insides of the insect look dark purple Adult males can be distinguished from females in that males have wings and are much smaller 6 Cochineal on opuntia in California The cochineal disperses in the first nymph stage called the crawler stage The juveniles move to a feeding spot and produce long wax filaments Later they move to the edge of the cactus pad where the wind catches the wax filaments and carries the insects to a new host These individuals establish feeding sites on the new host and produce a new generation of cochineals 7 Male nymphs feed on the cactus until they reach sexual maturity At this time they can no longer feed at all and live only long enough to fertilise the eggs 8 They are therefore seldom observed 7 In addition females typically outnumber males due to environmental factors 9 Host cacti Edit Cochineals on cacti in La Palma Canary Islands Dactylopius coccus is native to tropical and subtropical South America and North America in Mexico where their host cacti grow natively They have been widely introduced to many regions where their host cacti also grow About 200 species of Opuntia cacti are known and while it is possible to cultivate cochineal on almost all of them the most common is Opuntia ficus indica 10 D coccus has only been noted on Opuntia species including O amyclaea O atropes O cantabrigiensis O brasilienis O ficus indica O fuliginosa O jaliscana O leucotricha O lindheimeri O microdasys O megacantha O pilifera O robusta O sarca O schikendantzii O stricta O streptacantha and O tomentosa 3 Feeding cochineals can damage and kill the plant Other cochineal species feed on many of the same Opuntia and the wide range of hosts reported for D coccus likely is because of the difficulty in distinguishing it from other Dactylopius species 11 Predation Edit Several natural enemies can reduce the population of the insects on hosts Of all the predators insects seem to be the most important group Insects and their larvae such as pyralid moths order Lepidoptera which destroy the cactus and predators such as lady bugs Coleoptera various Diptera such as Syrphidae and Chamaemyiidae lacewings Neuroptera and ants Hymenoptera have been identified as well as numerous parasitic wasps Many birds human commensal rodents especially rats and reptiles also prey on cochineal insects 3 Farming Edit A nopal cactus farm for the production of cochineal is traditionally known as a nopalry 12 The two methods of farming cochineal are traditional and controlled Cochineals are farmed in the traditional method by planting infected cactus pads or infesting existing cacti with cochineals and harvesting the insects by hand The controlled method uses small baskets called Zapotec nests placed on host cacti The baskets contain clean fertile females that leave the nests and settle on the cactus to await fertilization by the males In both cases the cochineals must be protected from predation cold and rain The complete cycle lasts three months during which time the cacti are kept at a constant temperature of 27 C 81 F At the end of the cycle the new cochineals are left to reproduce or are collected and dried for dye production 10 Zapotec nests on O ficus indica To produce dye from cochineals the insects are collected when they are around 90 days old Harvesting the insects is labour intensive as they must be individually knocked brushed or picked from the cacti and placed into bags The insects are gathered by small groups of collectors who sell them to local processors or exporters 13 In regions dependent on cochineal production pest control measures are taken seriously For small scale cultivation manual methods of control have proved to be the safest and most effective For large scale cultivation advanced pest control methods have to be developed including alternative bioinsecticides or traps with pheromones 3 Failed farming in Australia Edit Opuntia species known commonly as prickly pears were first brought to Australia in an attempt to start a cochineal dye industry in 1788 Captain Arthur Phillip collected a number of cochineal infested plants from Brazil on his way to establish the first European settlement at Botany Bay part of which is now Sydney New South Wales At that time Spain and Portugal had a worldwide cochineal dye monopoly via their New World colonial sources and the British desired a source under their own control as the dye was important to their clothing and garment industries it was used to color the British soldiers red coats for example 14 The attempt was a failure in two ways the Brazilian cochineal insects soon died off but the cactus thrived eventually overrunning about 100 000 sq mi 259 000 km2 of eastern Australia 15 The cacti were eventually brought under control in the 1920s by the deliberate introduction of a South American moth Cactoblastis cactorum the larvae of which feed on the cactus 15 Failed farming in Ethiopia Edit The nopal pear has been traditionally eaten in parts of northern Ethiopia where it is utilized more than cultivated Carmine cochineal was introduced into northern Ethiopia early in the 2000s to be cultivated among farming communities Foodsafe exported 2000 tons of dried carmine cochineal over 3 years citation needed A conflict of interest among communities led to closure of the cochineal business in Ethiopia but the insect spread and became a pest Cochineal infestation continued to expand after the cochineal business had ended Control measures were unsuccessful and by 2014 about 16 000 hectares 62 sq mi of cactus land had become infested with cochineal 16 In South Africa Edit There has been a population of Dactylopius insects on prickly pear cactuses around Cuyler Manor in Uitenhage cochineal was introduced to South Africa as a biocontrol for invasive cactus plants 17 Carmine EditMain article Carmine Preparation Edit Wool dyed with cochineal External video Cochinea Red Dye The Use of Cochineal Beetles as Natural Fabric Dye in Chinchero Peru Quechua woman artisanCochineal dyes are one of three groups of red insect dyes all of which are anthraquinone derivatives The major color components in their respective chemical structures are carminic acid in cochineal dyes kermesic acid in kermes dye and laccaic acids in lac dye 18 Carminic acid is extracted from the female cochineal insects and is treated to produce carmine which can yield shades of red such as crimson and scarlet 19 The dried body of the female insect is 14 26 carminic acid 20 Steps in the cochineal harvest in Oaxaca public mural by Arturo Garcia Bustos Mexico Workers collect the female cochineal insects from their host plants 4 The insects are processed by immersion in hot water or by exposure to sunlight steam or the heat of an oven Each method produces a different color that results in the varied appearance of commercial cochineal 21 The insects must be dried to about 30 of their original body weight before they can be stored without decaying 13 It takes about 70 000 insects to make one pound of cochineal dye 4 The two principal forms of cochineal dye are cochineal extract a coloring made from the raw dried and pulverised bodies of insects and carmine a more purified coloring made from the cochineal To prepare carmine the powdered insect bodies are boiled in ammonia or a sodium carbonate solution the insoluble matter is removed by filtering and alum is added to the clear salt solution of carminic acid to precipitate the red aluminium salt Purity of color is ensured by the absence of iron Stannous chloride citric acid borax or gelatin may be added to regulate the formation of the precipitate For shades of purple lime is added to the alum 22 23 History Edit Mexican Indian Collecting Cochineal with a Deer Tail by Jose Antonio de Alzate y Ramirez 1777 The host plant is a prickly pear Pre Columbian dye Edit Traditionally cochineal was used for coloring fabrics Cochineal dye was used by the Aztec and Maya peoples of North and Central America as early as the second century BC 24 12 25 Inhabitants of Peru have been producing cochineal dyes for textiles since early in the Middle Horizon period 600 1000 CE 26 Cochineal dye was extensively used in the Pre Columbian era often for ceremonial textiles and those worn by rulers 24 12 25 The dye bonds best with animal fibers rather than plant fibers and was most effective for dying wool from alpacas and other Camelidae rabbit fur and feathers It was also used on cottons and plant based fabrics to less effect Some examples of early cloth have survived in extremely dry areas in Peru In addition the use of cochineal is literally illustrated in drawings on codices and maps Production of cochineal dyes became well developed under Nazca culture and beautiful examples of woven cloth colored by cochineal remain from Moche and Wari culture 24 12 25 27 Carrying Cloth Peru c 600 1000 AD Moche Wari Yoke from a Tunic c 800 1200 AD Pre Columbian textile from Peru c 800 1300 AD 27 Tapestry shirt fragment Peru Chancay c 1000 1470 ADCochineal s importance is also indicated by its prominence in tribute lists such as the Matricula de Tributos 24 12 20 Eleven cities conquered by Moctezuma II in the 15th century paid a yearly tribute of 2000 decorated cotton blankets and 40 bags of cochineal dye each 22 Use as pigment Edit Prior to the Spanish invasion Aztecs also used cochineal pigments in their manuscripts The 16th century Florentine Codex contains a variety of illustrations with multiple variations of the red pigments Specifically in the case of achiotl light red technical analysis of the paint reveals multiple layers of the pigment although the layers of the pigment is not visible to the naked eye Therefore it proves that the process of applying multiple layers is more significant in comparison to the actual color itself Furthermore the process of layering the various hues of the same pigment on top of each other enabled the Aztec artists to create variations in the intensity of the subject matter A bolder application of pigment draws the viewer s eye to the subject matter which commands attention and suggests a power of the viewer A weaker application of pigment commands less attention and has less power This would suggest that the Aztec associated the intensity of pigments with the idea of power and life 28 Pigments are insoluble finely ground particles which are mixed with a liquid to make a paint 29 To be useful as a pigment a substance should be insoluble in the vehicle with which it is mixed in contrast to a dye which is soluble 30 The activity of carmines can vary widely depending on their preparation and composition they tend to be unstable and can vary in solubility depending on pH 31 32 Recipes for artists use of crimson appear in many early painting and alchemical handbooks throughout the Middle Ages Red lake pigments were known to be particularly unstable as early as the 1400s 33 34 When cochineal lakes were introduced in Europe artists soon found that they were not light fast The paint turns brown and fades in sunlight although it is somewhat more permanent if mixed with oil rather than water color 35 As a result carmine s use as a pigment was discouraged its primary use was as a dye rather than in paints 33 34 Beautiful and rich as are the colours prepared from cochineal not one of them should ever find a place upon the palette of the artist They all become brownish and ultimately almost disappear after a short exposure to sunlight or the more prolonged attack of strong diffused daylight Arthur Herbert Church 33 36 Comparable colors Edit In Europe there was no comparable red dye or pigment The closest color was Kermes technically crimson one of the oldest organic pigments Its key ingredient kermesic acid was also extracted from an insect Kermes vermilio which lives on Quercus coccifera oaks native to the Near East and the European side of the Mediterranean Basin Kermes was used as a dye and a laked pigment in ancient Egypt Greece Armenia and the Near East 37 Colonial export Edit The Spanish conquest of the Aztec Empire in the 16th century introduced new colors to peoples on both sides of the Atlantic The Spanish were quick to exploit the vibrant intense color of cochineal for new trade opportunities Carmine attained great status and value in Europe 38 39 During the colonial period with the introduction of sheep to Latin America the use of cochineal increased It provided the most intense color and it set more firmly on woolen garments compared to clothes made of materials of pre Hispanic origin such as cotton or agave and yucca fibers In general cochineal is more successful on protein based animal fibres including silk than plant based material 39 Once the European market discovered the qualities of this product grana fina the demand for it increased dramatically 39 38 Carmine became the region s second most valuable export next to silver 40 The dyestuff was used throughout Europe and was so highly prized its price was regularly quoted on the London and Amsterdam Commodity Exchanges with the latter one beginning to record it in 1589 38 By the 17th century cochineal was a commodity traded as far away as India 39 The production and the use of luxury colors and textiles were regulated in countries such as Spain and Italy 24 45 46 Dyestuffs produced from the cochineal insect were used for dyeing the clothes of kings nobles and the clergy 39 In 1454 Pope Paul II officially changed the color of the robes worn by Catholic cardinals from Cardinal s purple to vibrant red By 1558 their red robes would have been created with American cochineal 24 45 By the 1600s cochineal also gave the English Redcoats their distinctive officers uniforms 24 28 29 Carmine became strong competition for other colorants such as madder root kermes Polish cochineal Armenian cochineal brazilwood and Tyrian purple 41 It became the most important insect dye used in the production of hand woven oriental rugs almost completely displacing lac 39 It was also used for handicrafts and tapestries 42 Moctezuma dead in the waters of the grand canal Spanish influence also changed the way in which Aztecs used pigments particularly in their manuscripts The use of cochineal in manuscripts was replaced by Spanish dyes like minium and alizarin crimson 28 The image of Moctezuma s death seen to the right uses both indigenous and Spanish pigments and is therefore representative of the transition and influence between cultures citation needed During the colonial period in Latin America many indigenous communities produced cochineal under a type of contract known as Repartimiento de Mercancias This was a type of contract forwarding agreement in which a trader lent money to producers in advance with a call option to buy the product once it was harvested Communities with a history of cochineal production and export have been found to have lower poverty rates and higher female literacy but also smaller indigenous populations 43 Production elsewhere Edit In 1777 French botanist Nicolas Joseph Thiery de Menonville presenting himself as a botanizing physician smuggled the insects and pads of the Opuntia cactus to Saint Domingue This particular collection failed to thrive and ultimately died out leaving the Mexican monopoly intact 44 After the Mexican War of Independence in 1810 1821 the Mexican monopoly on cochineal came to an end Large scale production of cochineal emerged especially in Guatemala and the Canary Islands it was also cultivated in Spain and North Africa 39 Competition from artificial dyes Edit The demand for cochineal fell sharply in the middle of the 19th century with the appearance of artificial dyes such as alizarin crimson This caused a significant financial shock in Spain as a major industry almost ceased to exist 40 The delicate manual labour required for the breeding of the insect could not compete with the modern methods of the new industry and even less so with the lowering of production costs The tuna blood dye from the Mexican name for the Opuntia fruit stopped being used and trade in cochineal almost totally disappeared in the course of the 20th century For a time the breeding of cochineal was done mainly for the purposes of maintaining the tradition rather than to satisfy any sort of demand 42 However the product has become commercially valuable again 19 One reason for the increasing interest in natural dyes is consumer concern over the possibility that some commercial synthetic red dyes and food colorings may be carcinogenic 45 Being natural is not a guarantee of safety 46 but studies show that cochineal is neither carcinogenic nor toxic Cochineal does however have a slight potential to trigger an allergic reaction 47 48 Modern uses Edit Cochineal use in histology Carmine staining of a monogenean parasitic worm Cochineal continues to be used as a fabric dye a cosmetics dye and as a food coloring 4 It is also used in histology as a preparatory stain for the examination of tissues and carbohydrates 49 As of 2005 needs update Peru produced 200 tons of cochineal dye per year and the Canary Islands produced 20 tons per year 19 13 Chile and Mexico also export cochineal 3 France is believed to be the world s largest importer and Japan and Italy also import the insect Much of these imports are processed and re exported to other developed economies 13 As of 2005 needs update the market price of cochineal was between US 50 and 80 per kilogram needs update 10 while synthetic raw food dyes are available at prices as low as 10 20 per kilogram 50 Natural carmine dye used in food and cosmetics can render the product unacceptable to vegetarian or vegan consumers Many Muslims consider carmine containing food forbidden haraam because the dye is extracted from insects and all insects except the locust are haram in Islam 51 Jews also avoid food containing this additive though it is not treif and some authorities allow its use because the insect is dried and reduced to powder 52 Cochineal is one of the few water soluble colorants to resist degradation with time It is one of the most light and heat stable and oxidation resistant of all the natural organic colorants and is even more stable than many synthetic food colors 53 The water soluble form is used in alcoholic drinks with calcium carmine the insoluble form is used in a wide variety of products Together with ammonium carmine they can be found in meat sausages processed poultry products meat products cannot be colored in the United States unless they are labeled as such surimi marinades alcoholic drinks bakery products and toppings cookies desserts icings pie fillings jams preserves gelatin desserts juice beverages varieties of cheddar cheese and other dairy products sauces and sweets 53 Carmine is considered safe enough for cosmetic use in the eye area 54 A significant proportion of the insoluble carmine pigment produced is used in the cosmetics industry for hair and skin care products lipsticks face powders rouges and blushes 53 A bright red dye and the stain carmine used in microbiology is often made from the carmine extract too 8 The pharmaceutical industry uses cochineal to color pills and ointments 13 Cochineal colored wool and cotton continue to be important materials for Mexican folk art and crafts 55 24 Some towns in the Mexican state of Oaxaca continue to follow traditional practices of producing and using cochineal when making handmade textiles 56 In Guatemala Heifer International has partnered with local women who wished to reintroduce traditional artisanal practices of cochineal production and use 57 Because it has a complicated structure involving multiple chemical groups it is very difficult to create a synthetic molecule for cochineal In 1991 carminic acid was first synthesized in the laboratory by organic chemists 58 In 2018 researchers genetically engineered the microbe Aspergillus nidulans to produce carminic acid 4 59 Risks and labeling Edit Main article Carmine Allergy In spite of the widespread use of carmine based dyes in food and cosmetic products a small number of people have been found to experience occupational asthma food allergy and cosmetic allergies such as allergic rhinitis and cheilitis IgE mediated respiratory hypersensitivity and in rare cases anaphylactic shock 60 61 62 In 2009 the FDA ruled that labels of cosmetics and food that include cochineal extract must include that information on their labels under the name cochineal extract or carmine 63 64 In 2006 the FDA stated it found no evidence of a significant hazard to the general population 65 In the EU authorities list carmine as additive E 120 in the list of EU approved food additives 66 An artificial non allergenic cochineal dye is labeled E 124 60 Explanatory notes Edit The primary biological distinctions between species are minor differences in host plant preferences along with very different geographic distributions References Edit Wells John C 2008 Longman Pronunciation Dictionary 3rd ed Longman ISBN 978 1 4058 8118 0 Nahuatl Community Cultivation of cacti for the production of the red dye cochineal Codex Osuna Seven documents presented as evidence against the Viceroy Luis de Velasco during the 1563 1566 inquiry by Jeronimo de Valderrama Folio 500v Biblioteca Nacional Madrid 1565 p 258 a b c d e Liberato Portillo Martinez Ana Lilia Vigueras Guzman 1998 04 15 Natural Enemies of Cochineal Dactylopius coccus Costa Importance in Mexico Journal of the Professional Association for Cactus Development 3 Retrieved 28 March 2022 permanent dead link a b c d e Miller Brittney J 25 March 2022 Cochineal a red dye from bugs moves to the lab Knowable Magazine doi 10 1146 knowable 032522 1 Archived from the original on 21 April 2022 Retrieved 28 March 2022 Cochineal Online Etymology Dictionary Archived from the original on 2015 06 01 Retrieved 2015 05 06 Eisner T 2003 For Love of Insects Cambridge Massachusetts Belknap Press of Harvard University Press ISBN 0 674 01827 3 a b Olson C Cochineal Urban Integrated Pest Management Archived from the original on November 19 2005 Retrieved July 19 2005 a b Armstrong W P Cochineal Saffron amp Woad Photos Economic Plant Photographs Archived from the original on November 24 2010 Retrieved July 14 2005 Nobel P S 2002 Cacti Biology and Uses Berkeley University of California Press p 226 ISBN 0 520 23157 0 a b c Cultivation of Cochineal in Oaxaca Go Oaxaca Newsletter Archived from the original on June 8 2008 Retrieved July 15 2005 Ferris G Floyd 1955 Atlas of the Scale Insects of North America Volume VII Stanford University Press pp 85 90 ISBN 0 8047 1667 6 definition of nopalry from Webster Dictionary Accessed Nov 4 2009 Webster dictionary net Archived from the original on July 16 2011 Retrieved November 13 2009 a b c d e Foodnet Tropical commodities and their markets Archived from the original on July 31 2012 Retrieved July 14 2005 Prickly Pear in Australia Northwestweeds nsw gov au June 26 1987 Archived from the original on October 30 2009 Retrieved November 13 2009 a b Greenfield 2005 p 188 Tesfay Belay Reda 2014 Cactus Pear amp Carmine Cochineal introduction amp use in Ethiopia Lambert Academic Publishing page needed Cochineal insects Dactylopius species PDF Agricultural Research Council arc agric za 2002 ISBN 1 86849 168 4 Cooksey C J 17 February 2019 The red insect dyes carminic kermesic and laccaic acids and their derivatives Biotechnic amp Histochemistry 94 2 100 107 doi 10 1080 10520295 2018 1511065 ISSN 1052 0295 PMID 30354531 S2CID 53023592 Retrieved 28 March 2022 a b c Canary Islands cochineal producers homepage Archived from the original on June 24 2005 Retrieved July 14 2005 Kannangara Rubini Siukstaite Lina Borch Jensen Jonas Madsen Bjorn Kongstad Kenneth T Staerk Dan Bennedsen Mads Okkels Finn T Rasmussen Silas A Larsen Thomas O Frandsen Rasmus J N Moller Birger Lindberg 7 December 2017 Characterization of a membrane bound C glucosyltransferase responsible for carminic acid biosynthesis in Dactylopius coccus Costa Nature Communications 8 1 1987 Bibcode 2017NatCo 8 1987K doi 10 1038 s41467 017 02031 z ISSN 2041 1723 PMC 5719414 PMID 29215010 MacGillivray Alexander Dyer 1921 The Coccidae Tables for the Identification of the Subfamilies and Some of the More Important Genera and Species Together with Discussions of Their Anatomy and Life History Urbana Illinois Scarab Company p 100 Archived from the original on 29 March 2022 Retrieved 29 March 2022 a b Threads In Tyme LTD Time line of fabrics Archived from the original on October 28 2005 Retrieved July 14 2005 Dutton LaVerne M Appendix III Cochineal Recipes PDF Cochineal A Bright Red Animal Dye Master s Thesis Baylor University Archived from the original on January 24 2021 Retrieved March 30 2022 a b c d e f g h Phipps Elena 2010 Cochineal Red The Art History of a Color New York NY Metropolitan Museum of Art ISBN 978 1 58839 361 6 Archived from the original on 28 March 2022 Retrieved 28 March 2022 page needed St Clair Kassia 2016 The Secret Lives of Colour London John Murray p 141 ISBN 9781473630819 OCLC 936144129 Pearlstein Ellen MacKenzie Mark Kaplan Emily Howe Ellen Levinson Judith 2015 Tradition and Innovation Cochineal and Andean keros In Anderson Barbara Padilla Carmella eds A Red Like No Other How Cochineal Colored the World Rizzoli and Museum of International Folk Art Santa Fe New Mexico pp 44 51 Archived from the original on 14 September 2022 Retrieved 29 March 2022 a b Orna Mary Virginia 1 July 2011 Chemistry and Art Ancient textiles and medieval manuscripts examined through chemistry Educacion Quimica in Spanish 22 3 191 197 doi 10 1016 S0187 893X 18 30133 2 ISSN 0187 893X Archived from the original on 29 March 2022 Retrieved 29 March 2022 a b Magaloni Kerpel Diana 2014 The colors of the new world artists materials and the creation of the Florentine codex Los Angeles CA The Getty Research Institute pp 35 40 45 ISBN 978 1 60606 329 3 pigment chemistry Britannica Archived from the original on 30 March 2022 Retrieved 30 March 2022 Cochineal 4 oz vol Natural Pigments Archived from the original on 14 September 2022 Retrieved 30 March 2022 Gabrielli Luca Origgi Davide Zampella Giuseppe Bertini Luca Bonetti Simone Vaccaro Gianfranco Meinardi Francesco Simonutti Roberto Cipolla Laura 2018 Towards hydrophobic carminic acid derivatives and their incorporation in polyacrylates Royal Society Open Science 5 7 172399 Bibcode 2018RSOS 572399G doi 10 1098 rsos 172399 PMC 6083691 PMID 30109060 Archived from the original on 14 September 2022 Retrieved 30 March 2022 Dapson RW 1 January 2005 Dye tissue interactions mechanisms quantification and bonding parameters for dyes used in biological staining Biotechnic amp Histochemistry 80 2 49 72 doi 10 1080 10520290500219982 ISSN 1052 0295 PMID 16195171 S2CID 21822356 Archived from the original on 30 March 2022 Retrieved 30 March 2022 a b c Berrie Barbara H Strumfels Yoonjoo 26 July 2017 Change is permanent thoughts on the fading of cochineal based watercolor pigments Heritage Science 5 1 30 doi 10 1186 s40494 017 0143 4 ISSN 2050 7445 S2CID 9900634 Archived from the original on 15 June 2022 Retrieved 29 March 2022 a b Whitney Alyson V Van Duyne Richard P Casadio Francesca 2006 An innovative surface enhanced Raman spectroscopy SERS method for the identification of six historical red lakes and dyestuffs Journal of Raman Spectroscopy 37 10 993 1002 Bibcode 2006JRSp 37 993W doi 10 1002 jrs 1576 Carmine lake Pigments through the Ages Archived from the original on 6 August 2020 Retrieved 30 March 2022 Church A H 1890 The chemistry of paints and painting London Seeley and Co Ltd p 208 Barber E J W 1991 Prehistoric Textiles Princeton University Press page needed a b c Dr Aguilar Moreno 2006 Handbook to Life in the Aztec World Los Angeles California State University pp 344 ISBN 0 8160 5673 0 a b c d e f g Eiland amp Eiland 1998 p 55 a b Behan J The bug that changed history Archived from the original on June 21 2006 Retrieved June 26 2006 Meyer L Dyeing Red West Kingdom SCA Arts and Sciences Tourney July 2004 Archived from the original on February 2 2006 Retrieved July 19 2005 a b Hernandez O Cochineal Mexico Desconocido Online Archived from the original on October 16 2007 Retrieved July 15 2005 Diaz Cayeros Alberto Jha Saumitra 2012 Contracts and Poverty Alleviation in Indigenous Communities Cochineal in Mexico PDF Global Trade Archived PDF from the original on 2015 01 30 Retrieved 2015 01 30 Schiebinger 2004 p 44 Okafor Sunday N Obonga Wilfred Ezeokonkwo Mercy A Nurudeen Jamiu Orovwigho Ufoma Ahiabuike Joshua 2016 Assessment of the Health implications of Synthetic and Natural Food Colourants A Critical Review UK Journal of Pharmaceutical and Biosciences 4 4 1 11 Archived from the original on 14 September 2022 Retrieved 30 March 2022 Natural Doesn t Necessarily Mean Safer or Better NCCIH in Spanish Archived from the original on 28 March 2022 Retrieved 30 March 2022 Silva Maria Manuela Reboredo Fernando Henrique Lidon Fernando Cebola January 2022 Food Colour Additives A Synoptical Overview on Their Chemical Properties Applications in Food Products and Health Side Effects Foods 11 3 379 doi 10 3390 foods11030379 ISSN 2304 8158 PMC 8834239 PMID 35159529 Mori H Iwata H Tanaka T Morishita Y Mori Y Kojima T Okumura A January 1991 Carcinogenicity study of cochineal in B6C3F1 mice Food and Chemical Toxicology 29 9 585 588 doi 10 1016 0278 6915 91 90138 w PMID 1937288 Athens G A Dazzling Color in the Land of the Inca A Centuries old Dye Still Important in Histology Today PDF Histologic XLVI 2 Archived from the original PDF on 2015 07 16 Price Quote Archived from the original on December 8 2008 Retrieved July 15 2005 E Numbers List Cochineal Carminic Acid Muslim Consumer Group Archived from the original on June 2 2015 Retrieved June 16 2015 Pischei Teshuvah Yoreh Deah 87 20 a b c Wild Flavors Inc E120 Cochineal The wild world of solutions Archived from the original on October 22 2010 Retrieved July 19 2005 U S Food and Drug Administration June 9 2015 Summary of Color Additives for Use in United States in Foods Drugs Cosmetics and Medical Devices Silver Spring Maryland U S Department of Health and Human Services Archived from the original on April 22 2019 Retrieved July 10 2015 Wood W W 2008 Made in Mexico Zapotec weavers and the global ethnic art market Indiana University Press page needed Demetrio Bautista Lazo Master Weaver Teotitlan del Valle Oaxaca Mexico Archived from the original on 25 May 2021 Retrieved 28 March 2022 Indigenous Guatemalan Women Earn Income from Carmine a Traditional Red Dye Made from Bugs Heifer International Archived from the original on 22 October 2021 Retrieved 29 March 2022 Allevi P et al 1991 The First Total Synthesis of Carminic Acid Journal of the Chemical Society Chemical Communications 18 18 1319 1320 doi 10 1039 C39910001319 Seo Seung Oh Jin Yong Su 25 March 2022 Next Generation Genetic and Fermentation Technologies for Safe and Sustainable Production of Food Ingredients Colors and Flavorings Annual Review of Food Science and Technology 13 1 463 488 doi 10 1146 annurev food 052720 012228 ISSN 1941 1413 PMID 34990222 S2CID 245809673 Retrieved 30 March 2022 a b Voltolini S Pellegrini S Contatore M Bignardi D Minale P 2014 New risks from ancient food dyes cochineal red allergy PDF European Annals of Allergy and Clinical Immunology 46 6 232 3 PMID 25398168 Archived PDF from the original on 2015 07 16 Retrieved 2015 07 16 D Mello J P Felix 2003 Food Safety Contaminants and Toxins Wallingford Oxon CABI Pub p 256 ISBN 0 85199 607 8 DiCello Michael C Myc Andrzej Baker James R Baldwin James L 1999 Anaphylaxis After Ingestion of Carmine Colored Foods Two Case Reports and a Review of the Literature Allergy and Asthma Proceedings 20 6 377 82 doi 10 2500 108854199778251816 PMID 10624494 FDA Guidance for Industry Cochineal Extract and Carmine Declaration by Name on the Label of All Foods and Cosmetic Products That Contain These Color Additives Small Entity Compliance Guide Archived 2022 03 29 at the Wayback Machine Silver Spring MD U S Food amp Drug Administration updated June 7 2011 accessed July 16 2015 Listing of Color Additives Exempt From Certification Food Drug and Cosmetic Labeling Cochineal Extract and Carmine Declaration Federal Register January 5 2009 Archived from the original on 11 February 2022 Retrieved 29 March 2022 FDA You re eating crushed bug juice Archived from the original on February 10 2006 Food Standards Agency Current EU approved additives and their E Numbers Food gov uk March 14 2012 Archived from the original on October 7 2010 Retrieved October 4 2013 Further reading EditBaskes Jeremy 2000 Indians Merchants and Markets A Reinterpretation of the Repartimiento and Spanish Indian Economic Relations in Colonial Oaxaca 1750 1821 Stanford Stanford University Press ISBN 0 8047 3512 3 Donkin R A 1977 Spanish Red An Ethnogeographical Study of Cochineal and the Opuntia Cactus Transactions of the American Philosophical Society 67 5 1 84 doi 10 2307 1006195 JSTOR 1006195 Eiland Murray L Jr amp Eiland Murray L III 1998 Oriental Carpets Boston Little Brown and Company ISBN 0 8212 2548 0 Greenfield Amy Butler 2005 A Perfect Red Empire Espionage and the Quest for the Color of Desire New York Harper Collins Press ISBN 0 06 052276 3 Hamnett Brian 1971 Politics and Trade in Southern Mexico 1750 1821 Cambridge Cambridge University Press ISBN 0 521 07860 1 McCreery David 1996 Rural Guatemala 1760 1940 Stanford Stanford University Press ISBN 0 8047 2792 9 Schiebinger L L 2004 Plants and Empire Colonial Bioprospecting in the Atlantic World Cambridge Massachusetts Harvard University Press ISBN 0 674 01487 1 See also EditRed pigmentsExternal links Edit Wikimedia Commons has media related to Cochineal Look up cochineal in Wiktionary the free dictionary Wikispecies has information related to Dactylopius coccus Felter Harvey Wickes Lloyd John Uri 1898 Coccus U S P Cochineal King s American Dispensatory Eighteenth ed Cincinnati Ohio Valley Co Retrieved July 14 2005 Direction of the Council of the Pharmaceutical Society of Great Britain 1911 Coccus B P The British Pharmaceutical Codex London The Pharmaceutical Press Retrieved July 14 2005 Sayre Lucius E 1917 Coccus Cochineal A Manual of Organic Materia Medica and Pharmacognosy Philadelphia P Blakiston s Son amp Co Retrieved July 14 2005 Zhang Jane January 27 2006 Is There a Bug in Your Juice New Food Labels Might Say The Wall Street Journal Archived from the original on January 12 2009 Greig J B Cochineal extract carmine and carminic acid WHO food additive series 46 Retrieved June 2 2007 Dutton LaVerne M Cochineal A Bright Red Animal Dye Master s Thesis for Baylor University Retrieved November 13 2010 Retrieved from https en wikipedia org w index php title Cochineal amp oldid 1127946057, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.