fbpx
Wikipedia

Neglected tropical diseases

Neglected tropical diseases (NTDs) are a diverse group of tropical infections that are common in low-income populations in developing regions of Africa, Asia, and the Americas.[2] They are caused by a variety of pathogens, such as viruses, bacteria, protozoa, and parasitic worms (helminths). These diseases are contrasted with the "big three" infectious diseases (HIV/AIDS, tuberculosis, and malaria), which generally receive greater treatment and research funding.[3] In sub-Saharan Africa, the effect of neglected tropical diseases as a group is comparable to that of malaria and tuberculosis.[4] NTD co-infection can also make HIV/AIDS and tuberculosis more deadly.[5]

Neglected tropical diseases
Number of people requiring interventions against neglected tropical diseases in 2015[1]
SpecialtyInfectious disease

Some treatments for NTDs are relatively inexpensive. For example, the treatment for schistosomiasis is US$0.20 per child per year.[6] Nevertheless, in 2010 it was estimated that control of neglected diseases would require funding of between US$2 billion and $3 billion over the subsequent five to seven years.[7] Some pharmaceutical companies have committed to donating all the drug therapies required, and mass drug administration efforts (for example, mass deworming) have been successful in several countries.[8] While preventive measures are often more accessible in the developed world, they are not universally available in poorer areas.[9]

Within developed countries, neglected tropical diseases affect the very poorest in society. In the United States, there are up to 1.46 million families, including 2.8 million children, living on less than two dollars a day.[10] In developed countries, the burdens of neglected tropical diseases are often overshadowed by other public health issues. However, many of the same issues put populations at risk in developed as well as developing nations. For example, other problems stemming from poverty, such as lack of adequate housing, can expose individuals to the vectors of these diseases.[11]

Twenty neglected tropical diseases are prioritized by the World Health Organization (WHO), though other organizations define NTDs differently. Chromoblastomycosis and other deep mycoses, scabies and other ectoparasites, and snakebite envenomation were added to the list in 2017.[12] These diseases are common in 149 countries, affecting more than 1.4 billion people (including more than 500 million children)[13] and costing developing economies billions of dollars every year.[14] They resulted in 142,000 deaths in 2013—down from 204,000 deaths in 1990.[15]

Reasons for neglect

The importance of neglected tropical diseases has been underestimated since many are asymptomatic and have long incubation periods. The connection between death and a neglected tropical disease that has been latent for a long period is not often realized.[16] Areas of high endemicity are often in geographically isolated areas, making treatment and prevention much more difficult.[17]

These diseases have been overlooked because they mainly affect the poorest countries of the developing world and because of the recent emphasis on decreasing the prevalence of HIV/AIDS, tuberculosis, and malaria.[18] Far more resources are given to the "big three" diseases (HIV/AIDS, tuberculosis, and malaria) because of their higher mortality and public awareness rates. Neglected tropical diseases do not have a prominent cultural figure to champion the cause.[17][19]

Stigma

Neglected tropical diseases are often associated with social stigma, making their treatment more complex. Public health research has only recently begun to focus on stigma as a component of the issue. From the 1960s onward, approximately one citation a year related to social stigma. In 2006, there were 458.[20] Disease control is greatly affected by this stigma, as it decreases help-seeking and treatment adherence.[21] Disease control programs, starting as early as the 1980s, have begun to integrate stigma mitigation into their offerings. In India, the leprosy program prioritized the message that "leprosy is curable, not hereditary" in order to inspire optimism in highly affected communities. The goal was to make leprosy a disease "like any other", so as to reduce stigma. At the same time, medical resources available in the area were optimized to fulfill the curable promise made.[20]

Economic incentives

Neglected tropical diseases are not commercial, and consequently, patents and profit play no role in stimulating innovation. Like all non-commercial areas, these diseases are the responsibility of governments and philanthropy (including industry philanthropy).[22] Currently, the pharmaceutical industry views research and development as highly risky. For this reason, resources are not often put into the field of NTDs (as diseases of the poor) and new chemical products are often expensive. A review of public and private initiatives found that of the 1,393 new chemical products that were marketed between 1975 and 1999, only 16 were related to tropical diseases and tuberculosis. The same review additionally found that there was a 13-fold greater chance of a drug entering the market being for central nervous system disorders or cancer than an NTD.[23]

Due to a lack of economic incentives for the pharmaceutical industry, successful NTD treatment programs have often relied on donations. The Mectizan Donation Program has donated over 1.8 billion tablets of ivermectin.[24] While developed countries will often rely on government-run and private partnerships to fund such projects, developing nations frequently have significantly lower per-person spending on these diseases.[23]

A 2006 report found that the Gates Foundation funded most extra activities to counter these diseases.[25][26]

Developed nations

Since 2008, the concept of "neglected diseases of poverty" has been developed and explored.[27] This group of diseases overlaps with the neglected tropical diseases, which also pose a threat to human health in developed nations. In the United States alone, there are at least 12 million people with these neglected parasitic infections.[27] They make up a hidden disease burden among the poorest of wealthy societies.[9] In developed nations, lack of knowledge in the healthcare industry and lack of conclusive diagnostic tests perpetuate the neglect of this group of diseases.[28]

In the United States, high rates of parasitic infection can be distributed along geographic, racial, and socio-economic lines. Within the African-American community, there may be up to 2.8 million cases of toxocariasis. Rates of toxocariasis, trichomoniasis, and other neglected infections occur in the United States at the same rate as in Nigeria. Within the Hispanic community, neglected infections are concentrated near the US–Mexico border. Vector-borne illnesses are especially high, with some rates approaching those of Latin America. Chagas disease was found in the US as early as the 1970s.[29] However, in the developed world, diseases that are associated with poverty are often not addressed comprehensively. This may be due to a lack of economic incentives and public policy failings. Here, a lack of awareness prevents effective policy generation and leaves healthcare services unequipped to address the issue. Additionally, there is little effort put into taking and maintaining large data sets on neglected diseases in the United States and other developed nations. The first summit on the issue was held by the Adler Institute on Social Exclusion in the United States in 2009.[9]

In Europe, a similar trend is seen. Neglected tropical diseases are concentrated in eastern and southern Europe, where poverty levels are the highest. The most prevalent diseases in this region are ascariasis, trichuriasis, zoonotic helminth infections, and visceral leishmaniasis. Migration paths to Europe, most notably to Spain, have brought diseases to Europe as well. As many as 6,000 cases of Chagas disease have been introduced via this method. In response to a growing awareness of the burden on these populations, the European Centre for Disease Prevention and Control has laid out ten public health guidelines. They cover a variety of topics, from health education and promotion to community partnerships and the development of a minority healthcare workforce.[9]

List of diseases

There is some debate among the WHO, CDC, and infectious disease experts over which diseases are classified as neglected tropical diseases. Feasey, a researcher in neglected tropical diseases, notes 13 neglected tropical diseases: ascariasis, Buruli ulcer, Chagas disease, dracunculiasis, hookworm infection, human African trypanosomiasis, leishmaniasis, leprosy, lymphatic filariasis, onchocerciasis, schistosomiasis, trachoma, and trichuriasis.[18] Fenwick recognizes 12 "core" neglected tropical diseases: the same as above, excluding hookworm.[16]

These diseases result from four different classes of causative pathogens: (i) protozoa (for Chagas disease, human African trypanosomiasis, and leishmaniases); (ii) bacteria (for Buruli ulcer, leprosy, trachoma, and yaws), (iii) helminths or metazoan worms (for cysticercosis/taeniasis, dracunculiasis, echinococcosis, foodborne trematodiases, lymphatic filariasis, onchocerciasis, schistosomiasis, and soil-transmitted helminthiasis); and (iv) viruses (dengue and chikungunya, rabies).[citation needed]

The World Health Organization recognizes the twenty diseases below as neglected tropical diseases.[30]

WHO[31]/CDC[32] PLOS
Major NTDs[33]
Buruli ulcer
Chagas disease
Dengue & Chikungunya*
Dracunculiasis
Echinococcosis
Yaws
Fascioliasis
African trypanosomiasis
Leishmaniasis
Leprosy
Lymphatic filariasis
Onchocerciasis
Rabies
Schistosomiasis
Soil-transmitted helminthiasis
Cysticercosis
Trachoma
Scabies and other ectoparasites
Snakebite envenoming
Mycetoma and deep mycoses
Protozoan infections:

Helminth infections:

Viral infections:

Bacterial infections:

Fungal infections:

Ectoparasites:

Non-infectious diseases caused by toxin exposure:

* Only WHO

The World Health Organization's 2010 report dedicated to neglected tropical diseases offers an expanded list including dengue, rabies, yaws, cysticercosis, echinococcosis, and foodborne trematode infections.[34]

Neglected Tropical Diseases Worldwide Burden[35][36]
Disease DALYs (million) Deaths/Yr Global Prevalence (million) Population at Risk (million)
Schistosomiasis 4.5 280,000 207 780
Hookworm 22.1 65,000 576 3200
Ascariasis 10.5 60,000 807 4200
Leishmaniasis 2.1 51,000 12 350
Trypanosomiasis 1.5 48,000 0.3 60
Chagas disease 0.7 14,000 8 25
Trichuriasis 6.4 10,000 604 3200
Leprosy 0.2 6,000 0.4 Not Determined
Lymphatic filariasis 5.8 0 120 1300
Trachoma 2.3 0 84 590
Onchocerciasis 0.5 0 37 90
Cryptococcosis 12 400,000 1 8

Buruli ulcer

Buruli ulcer is caused by the bacterium Mycobacterium ulcerans.[37] It is related to the family of organisms that cause tuberculosis and leprosy, but Mycobacterium ulcerans produces a toxin, mycolactone, that destroys tissue.[37] The prevalence of Buruli ulcer is unknown.[18] The risk of mortality is low, although secondary infections can be lethal.[38] Morbidity takes the form of deformity, disability, and skin lesions, which can be prevented through early treatment and treated with antibiotics and surgery.[38] It is found in Africa, Asia, and Latin America.[39]

Chagas disease

 
A young boy from Panama with Chagas disease. It has manifested as an acute infection with swelling of one eye (chagoma).

Chagas disease is also known as American trypanosomiasis. There are approximately 15 million people infected with Chagas disease.[18] Morbidity rates are higher for immuno-compromised individuals, children, and the elderly, but can be very low if treated early.[40] Chagas disease does not kill victims rapidly, instead causing years of debilitating chronic symptoms. It is caused by a vector-borne[41] protozoa[40] and spread by contact with Trypanosoma cruzi-infected feces of the triatomine (assassin) bug. The protozoan can enter the body via the bug's bite, skin breaks, or mucous membranes. Infection can result from eating infected food and coming into contact with contaminated bodily fluids.[40] There are two phases of Chagas disease. The acute phase is usually asymptomatic. The first symptoms are usually skin chancres, unilateral purplish orbital oedema, local lymphadenopathies, and fever accompanied by a variety of other symptoms depending on the infection site.[40] The chronic phase occurs in 30 percent of total infections[18] and can take three forms, which are asymptomatic (most prevalent), cardiac, and digestive lesions.[40]

Chagas disease can be prevented by avoiding insect bites through insecticide spraying, home improvement, bed nets, hygienic food, medical care, laboratory practices, and testing.[40] It can be treated with medication, although these may have severe side effects.[40] It can be diagnosed through a serological test, although the test is not very accurate.[18]

Dengue and chikungunya

There are 50–100 million dengue virus infections annually.[42] Dengue fever is usually not fatal, but infection with one of four serotypes can increase later susceptibility to other serotypes, resulting in a potentially fatal disease called severe dengue.[42] Dengue fever is caused by a flavivirus, and is spread mostly by the bite of the Aedes aegypti mosquito.[42] No treatment for either dengue or severe dengue exists beyond palliative care.[42] The symptoms are high fever and flu-like symptoms.[42] It is found in Asia, Latin America, and Northern Australia.[42]

Chikungunya is an arboviral disease transmitted by A. albopictus and A. aegypti mosquitoes. The virus was first isolated from an outbreak in Tanzania in 1952.[43] Chikungunya virus is a member of the genus Alphavirus and family Togaviridae.[43] The word "chikungunya" is from the Makonde language and means "that which bends up", referring to the effect of the debilitating joint pain on the patient.[43] Symptoms, generally appearing 5–7 days after exposure, can be confused with dengue and include fever, rash, headache, joint pain, and swelling.[44] The disease mainly occurs in Africa and Asia.[45]

Dracunculiasis

 
Dracunculus medinensis larvae

Dracunculiasis is also known as Guinea-worm disease. In 2019, 53 cases were reported across four countries,[46] a substantial decrease from 3,500,000 cases in 1986.[47] It is not fatal, but can cause months of inactivity.[48] It is caused by drinking water contaminated by water fleas infected with guinea-worm larvae.[48] Approximately one year after infection, a painful blister forms and one or more worms emerge. Worms can be up to 1 metre long.[48]

It is usually treated by World Health Organization volunteers who clean and bandage wounds caused by worms and return daily to pull the worm out a few more inches.[48] Dracunculiasis is preventable by water filtration, immediate case identification to prevent the spread of disease, health education, and treating ponds with larvicide. An eradication program has been able to reduce prevalence.[48] As of 2014, the four endemic countries are Chad, Ethiopia, Mali, and South Sudan.[48]

Echinococcosis

 
Lifecycle of Echinococcus

The rate of echinococcosis is higher in rural areas, and there are more than one million people infected currently.[49] Untreated alveolar echinococcosis is fatal.[50] It is caused by ingesting parasites in animal feces.[51] There are two versions of the disease: cystic and alveolar. Both versions involve an asymptomatic incubation period of several years. In the cystic version, liver cysts cause abdominal pain, nausea, and vomiting while cysts in the lungs cause chronic cough, chest pain, and shortness of breath. In alveolar echinococcosis, a primary cyst develops, usually in the liver, in addition to weight loss, abdominal pain, general feeling of ill health, and signs of liver failure.[50]

Surgery and drugs can both be used to treat echinococcosis.[50] It can be prevented by deworming dogs, sanitation, proper disposal of animal feces, health education, and livestock vaccination.[52] Cystic echinococcosis is found in the eastern portion of the Mediterranean region, northern Africa, southern and eastern Europe, the southern portion of South America, and Central Asia. Alveolar echinococcosis is found in western and northern China, Russia, Europe, and northern North America.[51] It can be diagnosed through imaging techniques and serological tests.[52]

Yaws

 
A child with yaws

There are limited data available on the prevalence of yaws, although it primarily affects children.[53] The mortality risk is very low, but the disease causes disfigurement and disability if untreated.[53] The most common symptom is skin lesions.[53] It is a chronic bacterial infection, transmitted by skin contact, and caused by the spirochete bacterium Treponema pallidum pertenue.[53] It is treated with antibiotics and can be prevented through improved hygiene and sanitation.[53] Yaws is most prevalent in the warm, moist, tropical regions of the Americas, Africa, Asia, and the Pacific.[53]

Foodborne trematodiases

The foodborne trematode infections include clonorchiasis, opisthorchiasis, fascioliasis, and paragonimiasis. These infections are all zoonotic, primarily affecting domestic or wild animals, but can also be transmitted to humans. They are acquired by eating food, such as raw fish, contaminated with the larval stages of the parasites. At least 40 million people are thought to be infected.[54]

 
Fasciola hepatica

Human African trypanosomiasis

African trypanosomiasis (African sleeping sickness) is a somewhat rare protozoal disease as there are fewer than 10,000 cases currently.[55] Human African trypanosomiasis is vector-borne and spreads through the bite of the tsetse fly.[41] The most common symptoms are fever, headache, lymphadenopathy, nocturnal sleeping pattern, personality changes, cognitive decline, and coma. The disease is always fatal if untreated. The current forms of treatment are highly toxic and ineffective as resistance is spreading. It is diagnosed through an inexpensive serological test.[medical citation needed]

 
Lifecycle of African Trypanosomiasis

Leishmaniasis

 
Lifecycle of Leishmaniasis

The three forms of leishmaniasis, a protozoal disease, are visceral (Kala-azar), cutaneous, and mucocutaneous.[56] There are an estimated 12 million people infected.[18] It is fatal if untreated, and 20,000 deaths from visceral leishmaniasis occur annually.[57] It is a vector-borne disease that is caused by the bite of sandflies.[41] At least 90 percent of visceral leishmaniasis occurs in Bangladesh, Brazil, Ethiopia, India, South Sudan, and Sudan. Cutaneous leishmaniasis occurs in Afghanistan, Algeria, Brazil, Colombia, Iran, Pakistan, Peru, Saudi Arabia, and Syria. Around 90 percent of mucocutaneous leishmaniasis occurs in Bolivia, Brazil, and Peru.[56]

The only method of prevention is a vaccine that is under development and prevention of sandfly bites. Diagnosis can be made by identifying clinical signs, serological tests, or parasitological tests.[58] Leishmaniasis can be treated with expensive medications.[59]

Leprosy

According to recent figures from the WHO, 208,619 new cases of leprosy were reported in 2018 from 127 countries.[60] It is most prevalent in India (69% of cases), Brazil, Indonesia, Nigeria, the Democratic Republic of the Congo, Madagascar, and East Africa, from Mozambique to Ethiopia, with the highest relative incidence in India, Brazil, and Nepal.[61] There are one to two million individuals currently disabled or disfigured due to past or present leprosy.[62] It is caused by bacteria and transmitted through droplets from the mouth and nose of infected individuals.[63]

Leprosy causes disfigurement and physical disabilities if untreated. It is curable if treated early.[62] Treatment requires multidrug therapy.[61] The BCG vaccine has some preventative effect against leprosy. Leprosy has a 5–20 year incubation period, and the symptoms are damage to the skin, nerves, eyes, and limbs.[63]

 
Hands deformed by leprosy

Lymphatic filariasis

 
Elephantiasis

Lymphatic filariasis is also known as elephantiasis. There are approximately 120 million individuals infected[64] and 40 million with deformities.[16] Approximately two-thirds of cases are in Southwest Asia and one-third in Africa.[64] Lymphatic filariasis is rarely fatal.[65] Lymphatic filariasis has lifelong implications, such as lymphoedema of the limbs, genital disease, and painful recurrent attacks. Most people are asymptomatic, but have lymphatic damage. Up to 40 percent of infected individuals have kidney damage.[66] It is a vector-borne disease, caused by nematode worms that are transmitted by mosquitoes.[41][66]

It can be treated with cost-effective antihelminthic treatments,[67] and washing skin can slow or even reverse damage.[68] It is diagnosed with a finger-prick blood test.[65]

Onchocerciasis

 
Onchocerca volvulus emerging from a black fly

Onchocerciasis is also known as "river blindness". There are 20.9 million people infected[69] and prevalence is higher in rural areas.[70] Over 99 percent of cases are in sub-Saharan Africa.[70] It causes blindness, skin rashes, lesions, intense itching, and skin depigmentation.[71] It is a vector-borne disease, caused by filarial worm infected blackflies.[41][71]

It can be treated with ivermectin.[71] It can be prevented by insecticide spraying or preventative dosing with ivermectin.[70] The symptoms are generally itching and skin lesions.[70]

Rabies

 
Rabies virus

There are two forms of rabies: furious and paralytic. There are 60,000 deaths from rabies annually.[72] It is mostly found in Asia and Africa.[72] There is a higher prevalence in rural areas and it disproportionately affects children.[73] Rabies is fatal after symptoms develop.[74] It is caused by a lyssavirus transmitted through wounds or bites from infected animals.[73] The first symptoms are fever and pain near the infection site, which occur after a one- to three-month incubation period. Furious rabies (the more common type) causes hyperactivity, hydrophobia, and aerophobia; death by cardio-respiratory arrest occurs within days. Paralytic rabies causes a slow progression from paralysis to coma to death.[73]

It can be prevented in dogs by vaccination[73] and cleaning and disinfecting bite wounds (post-exposure prophylaxis).[74] Rabies is undiagnosable before symptoms develop. It can be detected through tissue testing after symptoms develop.[73]

Schistosomiasis

 
11-year-old Filipino boy with ascites due to schistosomiasis

There are over 200 million cases of schistosomiasis.[16] Approximately 85 percent of cases are in sub-Saharan Africa.[16] The disease can be fatal by causing bladder cancer and hematemesis.[16] Schistosoma species have a complex life cycle that alternates between humans and freshwater snails. Infection occurs when the skin comes into contact with contaminated fresh water in which the snails that carry the parasite are living. Symptoms for schistosomiasis are not caused by the worms but by the body's reaction to the eggs. The eggs that do not pass out of the body can become lodged in the intestine or bladder, causing inflammation or scarring. Children who are repeatedly infected can develop anemia, malnutrition, and learning difficulties.[75] The symptoms are usually haematuria, bladder obstruction, renal failure, bladder cancer, periportal fibrosis, bladder fibrosis, liver fibrosis, portal hypertension, cervical lesions, ascites, and esophageal varices.[18][16]

Inexpensive praziquantel can be used to treat individuals with schistosomiasis, but it cannot prevent reinfection. The cost of prevention is US$0.32 per child per year.[16] Mass deworming treatment with praziquantel, better access to safe water, sanitation, and health education can all be used to prevent schistosomiasis.[18] Vaccines are under development. It can be diagnosed through a serological test, but it often produces false negatives.[16]

Soil-transmitted helminthiasis

 
Adult ascaris worms being removed from the bile duct of a patient in South Africa

Soil-transmitted helminthiasis is the most prevalent neglected tropical disease.[76] The three major worm species responsible for soil-transmitted helminthiasis are Ascaris (roundworms), Trichuris (whipworm), the hookworms Necator americanus and Ancylostoma duodenale, and Strongyloides stercoralis.[77] There are 1.5 billion people currently infected.[77] Soil-transmitted heminthiasis occurs in sub-Saharan Africa, the Americas, China, and East Asia.[77] The mortality risk is very low.[18] The most common symptoms are anemia, stunted growth, intestinal problems, lack of energy, and compromised physical and cognitive development.[18][77] Infected children often fall behind in schooling.[18] The severity of symptoms depends on the number of worms in the body.[77]

Parasitic worms are generally transmitted via exposure to infected human feces and soil that are spread in the environment, for example, due to open defecation.[77] The most common treatment is medicine.[77] It can be prevented through hygienically prepared food and clean water, improved sanitation, periodic deworming, and health education.[77] The World Health Organization recommends mass deworming without prior diagnosis.[77]

Taeniasis/cysticercosis

Cysticercosis is a tapeworm larvae infection, while taeniasis is infection with adult tapeworms.[78] Both are found in Asia, Africa, and Latin America, particularly on farms in which pigs are exposed to human excrement.[79]

Cysticercosis is the most common preventable cause of epilepsy in the developing world.[79] Cysticercosis occurs after ingestion of contaminated food, water, or soil.[78] Cysts and lesions can cause headaches, blindness, seizures, hydrocephalus, meningitis, and dementia.[80] Neurocysticercosis, or the parasitic infection of the nervous system, can be fatal. Taeniasis is not fatal.[79][80] It is usually contracted after eating undercooked contaminated pork. Taeniasis has mild symptoms, including abdominal pain, nausea, diarrhea, or constipation.[citation needed]

Drugs are used to treat both diseases.[80] Infection can be prevented through stricter meat-inspection standards, livestock confinement, improved hygiene and sanitation, health education, safe meat preparation, and identifying and treating human and pig carriers.[81]

Trachoma

There are 21.4 million people infected with trachoma, of whom 2.2 million are partially blind and 1.2 million are blind. It is found in Africa, Asia, Central and South America, the Middle East, and Australia.[82] The disease disproportionately affects women and children.[82] The mortality risk is very low, although multiple re-infections eventually lead to blindness.[18][82] The symptoms are internally scarred eyelids, followed by eyelids turning inward.[82] Trachoma is caused by a micro-organism that spreads through eye discharges (on hands, cloth, etc.) and by "eye-seeking flies".[82]

It is treated with antibiotics. The only known prevention method is interpersonal hygiene.[citation needed]

Chromoblastomycosis and other deep mycoses

Scabies

 
Magnified view of a burrowing trail of the scabies mite. The scaly patch on the left was caused by scratching and marks the mite's entry point into the skin. The mite has burrowed to the top-right, where it can be seen as a dark spot at the end.
Scabies (/ˈskbz, ˈskbiz/;[83] also sometimes known as the seven-year itch[84]) is a contagious skin infestation by the mite Sarcoptes scabiei.[84][85] The most common symptoms are severe itchiness and a pimple-like rash.[86] Occasionally, tiny burrows may appear on the skin.[86] In a first-ever infection, the infected person usually develops symptoms within two to six weeks.[86] During a second infection, symptoms may begin within 24 hours.[86] These symptoms can be present across most of the body or just certain areas such as the wrists, between fingers, or along the waistline.[86] The head may be affected, but this is typically only in young children.[86] The itch is often worse at night.[86] Scratching may cause skin breakdown and an additional bacterial infection in the skin.[86]

Snakebite envenoming

Snakebite was added to the list in 2017, after years of criticism of the WHO by activists for not making it a priority.[87] The greatest burden of snakebite morbidity is in India and Southeast Asia. Globally, there are an estimated 421,000 envenomings each year (about 1 in 4 snakebites) and 20,000 deaths, but snakebites often go unreported.[88]

 
A rattlesnake bite on the foot of a 9-year-old girl in Venezuela
A snakebite is an injury caused by the bite of a snake, especially a venomous snake.[89] A common sign of a bite from a venomous snake is the presence of two puncture wounds from the animal's fangs.[90] Sometimes venom injection from the bite may occur.[91] This may result in redness, swelling, and severe pain at the area, which may take up to an hour to appear.[90][92] Vomiting, blurred vision, tingling of the limbs, and sweating may result.[90][92] Most bites are on the hands, arms, or legs.[92][93] Fear following a bite is common with symptoms of a racing heart and feeling faint.[92] The venom may cause bleeding, kidney failure, a severe allergic reaction, tissue death around the bite, or breathing problems.[90][91] Bites may result in the loss of a limb or other chronic problems or even death.[94][91]

Effects for patients

Social effects

Social stigma

Several NTDs, such as leprosy, cause severe deformities that result in social stigma. Stigma is considered to be the "hidden burden" of neglected tropical diseases and is not accounted for in measures such as disability-adjusted life years (DALYs). Other NTDs that carry heavy social stigma include onchocerciasis, lymphatic filariasis, plague, Buruli ulcer, leishmaniasis, and Chagas disease.[20] Lymphatic filariasis, for example, causes severe deformities that can result in denial of marriage and inability to work.[16] Studies in Ghana and Sri Lanka have demonstrated that support groups for patients with lymphatic filariasis can increase participants' self-esteem, quality of life, and social relations through social support and providing practical advice on how to manage their illness. The social effects of neglected tropical diseases have been shown to affect men and women in different ways. Men are socially stigmatized in a way that detrimentally affects their economic prospects. Women are more likely to be affected in the areas of marriage and family.[20]

Mental health

A 2012 review found that infection with a neglected tropical disease predisposes individuals to poor mental health. This is partially due to the social stigma that surrounds NTDs, but is also likely caused by the subsequent lack of access to health and social services. Overall, being a member of the infected community was found to cut individuals off from multiple aspects of society via civic rights, educational opportunities, and employment.[95] A high prevalence of post-traumatic stress disorder (PTSD) and depression was found in those affected with snakebite survivors.[96] There is a need for more research be directed to understanding the psychological aspects of neglected tropical diseases in order to fully untangle their co-effects[95] and on how they can be dealt with better in health systems in countries where mental health professionals are scarce.[96]

Gender

NTDs disproportionately affect women and children.[97] There is also the added risk of hookworm infection during pregnancy and the potential to transfer diseases such as Chagas during pregnancy. A study in Uganda found that women were more easily able to obtain treatment because they had fewer occupational responsibilities than men and were more trusting of treatment, but ignorance of the effects of medicines on pregnant women prevented adequate care. The paper concludes that gender should be considered when designing treatment programs in Uganda.[98] Additionally, women often bear a heavier social stigma in relation to the pressure to marry.[16][dubious ][failed verification]

Economic effects

The cost of treatment of some of these diseases, such as Buruli ulcer, can amount to over twice the yearly income of an average household in the lowest income quartile, while for the highest income quartile, the burden is slightly less than the average household income. These enormous financial costs often cause deferral of treatment and financial ruin, but there is inequality between the wealthy and poor in terms of economic burden. These diseases also cost the government in terms of healthcare and lost worker productivity through morbidity and shortened life spans. In Kenya, for example, deworming is estimated to increase average adult income by 40 percent, which is a benefit-to-cost ratio of 100. Each untreated case of trachoma is estimated to cost US$118 in lost productivity. Each case of schistosomiasis causes a loss of 45.4 days of work per year. Most of the diseases cost the economies of various developing countries millions of dollars. Large-scale prevention campaigns are predicted to increase agricultural output and education levels.[99]

The low cost of treatment for NTDs can be attributed to the large scale of the programs, free provision of drugs by pharmaceutical companies, delivery modes of drugs, and the unpaid volunteers who distribute the drugs. The economic burden of NTDs is undervalued and therefore the corresponding economic effect and cost-effectiveness of a decreased prevalence of NTDs is underestimated.[99] The investment return on measures to control neglected tropical diseases is estimated to be between 14 and 30 percent, depending on the disease and region.[100]

Health effects

Coinfection

Coinfection is a major concern with neglected tropical diseases, making NTDs more damaging than their mortality rates might portray. Because the factors that support neglected tropical diseases (poverty, inadequate healthcare, inadequate sanitation practices, etc.) support all NTDs, they are often found in overlapping distributions. Helminth infections, as the most common infection of humans, are often found to be in multi-infection systems. For example, in Brazil, low socioeconomic status contributes to overcrowded housing. In these same areas, coinfection by Necator americanus and Schistosoma mansoni is common. The effect of each worm weakens the immune system of those infected, making infection from the other easier and more severe. For this reason, coinfection carries a higher risk of mortality. NTDs may also play a role in infection with other diseases, such as malaria, HIV/AIDS, and tuberculosis. The ability of helminths to manipulate the immune system may create a physiological environment that could exacerbate the progression of HIV/AIDS.[101] Some evidence from Senegal, Malawi, and Thailand has shown that helminth infections raise the risk of malarial infection.[102]

Prevention, treatment and eradication

 
Eliminating NTDs in Côte d'Ivoire through education and distribution of anti-parasitic drugs

Prevention and eradication are important because "of the appalling stigma, disfigurement, blindness and disabilities caused by NTDs."[16] The possibility of eliminating or eradicating dracunculiasis, leprosy, lymphatic filariasis, onchocerciasis, trachoma, sleeping sickness, visceral leishmaniasis, and canine rabies within the next ten years was the principal aim of the London Declaration on Neglected Tropical Diseases, which is a collaborative effort involving the WHO, the World Bank, the Bill & Melinda Gates Foundation, the world's 13 leading pharmaceutical companies, and government representatives from the US, UK, United Arab Emirates, Bangladesh, Brazil, Mozambique, and Tanzania. It was launched in January 2012.[3]

While the current era has had a noticeable uptick in biological research into neglected tropical diseases, prevention may be supplemented by social and development outreach. Spiegal and his coauthors advocated for this to take the form of "social offset". Social offset entails the delegation of some of the funding for biotechnological research to social programs. The attempts to alleviate some of the surrounding factors (such as poverty, poor sanitation, overcrowding, poor healthcare, etc.) that greatly exacerbate the conditions brought on by neglected tropical diseases. Projects such as these also strengthen the goal of sustained eliminations rather than quickly addressing symptoms.[103]

Policy initiatives

There are many prevention and eradication campaigns funded, for example, by the World Health Organization, US Agency for International Development, Bill & Melinda Gates Foundation, and UK Department for International Development.[16]

Sustainable Development Goal 3 has this target to eradicate NTDs: "By 2030, end the epidemics of AIDS, tuberculosis, malaria and neglected tropical diseases and combat hepatitis, water-borne diseases and other communicable diseases."[104]

WHO Roadmap of 2012

In 2012, WHO published an NTD "roadmap", which contained milestones for 2015 and 2020 and specified targets for eradication, elimination, and intensified control of the different NTDs.[105] For example:

  • NTDs planned to be eradicated: dracunculiasis (by the year 2015), endemic treponematoses (yaws) (by 2020)
  • NTDs planned to be eliminated globally by 2020: blinding trachoma, leprosy, human African trypanosomiasis, and lymphatic filariasis
  • NTDs planned to be eliminated in certain regions: rabies (by 2015 in Latin America, by 2020 in Southeast Asia and the western Pacific), Chagas disease (transmission through blood transfusion by 2015, intra-domiciliary transmission by 2020 in the Americas), visceral leishmaniasis (by 2020 in the Indian subcontinent), onchocerciasis (by 2015 in Latin America), and schistosomiasis (by 2015 in the eastern Mediterranean region, the Caribbean, Indonesia, and the Mekong River basin, by 2020 in the Americas and western Pacific)
  • NTDs planned to be eliminated in certain countries: human African trypanosomiasis (by 2015 in 80 percent of areas in which it occurs), onchocerciasis (by 2015 in Yemen, by 2020 in selected countries in Africa), and schistosomiasis (by 2020 in selected countries in Africa)
  • Intensified control with specific targets for 2015 and 2020 are provided for these NTDs: dengue, Buruli ulcer, cutaneous leishmaniasis, taeniasis/cysticercosis and echinococcosis/hydatidosis, foodborne trematode infections, and soil-transmitted helminthiases

Others

The U.S. Food and Drug Administration priority review voucher is an incentive for companies to invest in new drugs and vaccines for tropical diseases. A provision of the Food and Drug Administration Amendments Act (HR 3580) awards a transferable "priority review voucher" to any company that obtains approval for a treatment for one of the listed diseases. The voucher can later be used to accelerate the review of an unrelated drug. This program is for all tropical diseases and includes medicines for malaria and tuberculosis. The first voucher given was for Coartem, a malaria treatment.[106] It does not use or define the term "neglected", though most of the diseases listed are often included on lists of neglected diseases.[citation needed]

The prize was proposed by Duke University faculty Henry Grabowski, Jeffrey Moe, and David Ridley in their 2006 Health Affairs paper "Developing Drugs for Developing Countries".[107] In 2007, United States Senators Sam Brownback (R-KS) and Sherrod Brown (D-OH) sponsored an amendment to the Food and Drug Administration Amendments Act of 2007. President George W. Bush signed the bill in September 2007.[citation needed]

Deworming treatment

Deworming treatments in infected children may have some nutritional benefit, as worms are often partially responsible for malnutrition.[16][108] However, in areas where these infections are common, there is strong evidence that mass deworming campaigns do not have a positive effect on children's average nutritional status, levels of blood haemoglobin, cognitive abilities, performance at school, or survival.[108] To achieve health gains in the longer term, improvements in sanitation and hygiene behaviours are also required, together with deworming treatments.[citation needed]

The effect of mass deworming on school attendance is disputed. It has been argued that mass deworming has a positive effect on school attendance.[16] The long-term benefits of deworming include a decrease in school absenteeism by 25 percent and an increase in adult earnings by 20 percent.[109] A systematic review, however, found that there is little or no difference in attendance in children who receive mass deworming compared to children who did not.[110] One study found that boys were enrolled in primary school for more years than boys who were in schools that did not offer such programs. Girls in the same study were about a quarter more likely to attend secondary school if they received treatment. Both groups went on to participate in more skilled sectors of the labor market. The economic growth generated from school programs such as this may balance out the actual expenses of the program.[111] However, the results of this study are disputed (i.a. due to a high risk of bias in the study), and the positive long-term outcomes of mass deworming remain unclear.[110]

Integration of treatment

 
School nurse checks student's health in Kenya

Inclusion of NTDs into initiatives for malaria, HIV/AIDS, and tuberculosis, as well as integration of NTD treatment programs, may have advantages given the strong link between these diseases and NTDs.[3][102][112] Some neglected tropical diseases share common vectors (sandflies, black flies, and mosquitos).[102] Both medicinal and vector control efforts may be combined.[113]

A four-drug rapid-impact package has been proposed for widespread proliferation. Administration may be made more efficient by targeting multiple diseases at once, rather than separating treatment and adding work to community workers. This package is estimated to cost US$0.40 per patient. When compared to stand-alone treatment, the savings are estimated to be 26–47%. While more research must be done in order to understand how NTDs and other diseases interact in both the vector and the human stages, safety assessments have so far produced positive results.[102]

Many neglected tropical diseases and other prevalent diseases share common vectors, creating another opportunity for treatment and control integration. One such example of this is malaria and lymphatic filariasis. Both diseases are transmitted by the same or related mosquito vectors. Vector control, through the distribution of insecticide-treated nets, reduces human contact with a wide variety of disease vectors. Integrated vector control may also alleviate pressure on mass drug administration, especially with respect to rapidly evolving drug resistance. Combining vector control and mass drug administration deemphasizes both, making each less susceptible to resistance evolution.[113]

Integration with WASH programs

Water, sanitation, and hygiene (WASH) interventions are essential in preventing many NTDs, such as soil-transmitted helminthiasis.[114] Mass drug administrations alone will not protect people from re-infection. A more holistic and integrated approach to NTDs and WASH efforts will benefit both sectors along with the communities they are aiming to serve. This is especially true in areas that are endemic with more than one NTD.[114]

In August 2015, the World Health Organization unveiled a global strategy and action plan to integrate WASH with other public health interventions in order to accelerate the elimination of NTDs.[115] The plan aims to intensify control or eliminate certain NTDs in specific regions by 2020 and refers to the NTD "roadmap" milestones from 2012 that include, for example, eradication of dracunculiasis by 2015 and of yaws by 2020, elimination of trachoma and lymphatic filariasis as public health problems by 2020, and intensified control of dengue, schistosomiasis, and soil-transmitted helminthiases.[28]

Closer collaboration between WASH and NTD programmes can lead to synergies. They can be achieved through collaborative planning, delivery, and evaluation of programmes, strengthening and sharing of evidence, and using monitoring tools to improve the equity of health services.[116]

Reasons why WASH plays an important role in NTD prevention and patient care include:[28]

  • NTDs affect more than one billion people in 149 countries. They occur mainly in regions with a lack of basic sanitation. About 2.4 billion people worldwide do not have adequate sanitation facilities. 663 million do not have access to improved drinking water sources.[117]
  • One leading cause of preventable blindness is trachoma. The bacterial infection is transmitted through contact with eye-seeking flies, fingers, and fomites. Prevention components are facial cleanliness, which requires water for face washing, and environmental improvement, which includes safe disposal of excreta to reduce fly populations.[118]
  • Improved sanitation prevents soil-transmitted helminthiases. It impedes fecal pathogens such as intestinal worm eggs from contaminating the environment and infecting people through contaminated food, water, dirty hands, and direct skin contact with the soil.[119]
  • Improved sanitation and water management can contribute to reducing the proliferation of mosquitoes that transmit diseases, such as lymphatic filariasis, dengue, and chikungunya. Breeding of the Culex mosquito which transmits filarial parasites is facilitated through poorly constructed latrines. Breeding of the Aedes aegypti and Aedes albopictus mosquitoes which transmit dengue and chikungunya can be prevented through safe storage of water.[120]
  • Feces and urine that contain worm eggs can contaminate surface water and lead to transmission of schistosomiasis. This can be prevented through improved sanitation. Not only human but also animal (cow, buffalo) urine or feces can transmit some schistosome species. Therefore, it is important to protect freshwater from animals and animal waste.[121]
  • Treatment of many NTDs require clean water and hygienic conditions for healthcare facilities and households. For guinea worm, Buruli ulcer, or cutaneous leishmaniasis, wound management is needed to speed up healing and reduce disability. Lymphatic filariasis causes chronic disabilities. People who have this disease need to maintain rigorous personal hygiene with water and soap to prevent secondary infections.[122]
  • NTDs that lead to permanent disabilities make tasks such as carrying water long distances or accessing toilets difficult. However, people affected by these diseases often face stigma and can be excluded from accessing water and sanitation facilities. This increases their risk of poverty and severe illness. Clean water and soap are essential for these groups to maintain personal hygiene and dignity. Therefore, additional efforts to reduce stigma and exclusion are needed. In this manner, WASH can improve the quality of life of people affected by NTDs.[123]
  • In a meta-analysis, safe water was associated with significantly reduced odds of Schistosoma infection, and adequate sanitation was associated with significantly lower odds of infection with both S. mansoni and S. haematobium.[124]
  • A systematic review and meta-analysis showed that better hygiene in children is associated with lower odds of trachoma. Access to sanitation was associated with 15 percent lower odds of active trachoma and 33 percent lower odds of C. trachomatis infection of the eyes.[125]
  • Another systematic review and meta-analysis found a correlation between WASH access and practices and lower odds of soil-transmitted helminthiasis infections by 33 to 77 percent. Persons who washed their hands after defecating were less than half as likely to be infected as those who did not.[126] Traditionally, preventive chemotherapy is used as a measure of control, although this measure does not stop the transmission cycle and cannot prevent reinfection. In contrast, improved sanitation can.[127]

Pharmaceutical market

Biotechnology companies in the developing world have targeted neglected tropical diseases due to a need to improve global health.[128]

Mass drug administration is considered a possible method for eradication, especially for lymphatic filariasis, onchocerciasis, and trachoma, although drug resistance is a potential problem.[129] According to Fenwick, Pfizer donated 70 million doses of drugs in 2011 to eliminate trachoma through the International Trachoma Initiative.[16] Merck has helped The African Programme for the Control of Onchocerciasis (APOC) and Oncho Elimination Programme for the Americas to greatly diminish the effect of onchocerciasis by donating ivermectin.[16] Merck KGaA pledged to give 200 million tablets of praziquantel, the only cure for schistosomiasis, over 10 years.[130] GlaxoSmithKline has donated two billion tablets of medicine for lymphatic filariasis and pledged 400 million deworming tablets per year for five years in 2010. Johnson & Johnson has pledged 200 million deworming tablets per year.[16] Novartis has pledged leprosy treatment, and EISAI pledged two billion tablets to help treat lymphatic filariasis.[16]

NGO initiatives

Non-governmental organizations that focus exclusively on NTDs include the Schistosomiasis Control Initiative, Deworm the World, and the END Fund.[131] Despite under-funding, many neglected diseases are cost-effective to treat and prevent. The cost of treating a child for infection of soil-transmitted helminths and schistosomes (some of the main causes of neglected diseases) is less than US$0.50 per year when administered as part of school-based mass deworming by Deworm the World. This programme is recommended by Giving What We Can and the Copenhagen Consensus Centre as one of the most efficient and cost-effective solutions. The efforts of the Schistosomiasis Control Initiative to combat neglected diseases include the use of rapid-impact packages: supplying schools with packages including four or five drugs, and training teachers in how to administer them.[citation needed]

Health Action International based in Amsterdam worked with the WHO to get snakebite envenoming on the list of neglected tropical diseases.[87]

Public-private initiatives

An alternative to the profit-driven drug development model emerged in 2000 to address the needs of these neglected patients. Product development partnerships (PDPs) aim at implementing and accelerating the research and development (R&D) of safe and effective health tools (diagnostics, vaccines, drugs) to combat neglected diseases.[132] Drugs for Neglected Disease initiative (DNDi) is one of these PDPs that has already developed new treatments for NTDs.[133]

The Sabin Vaccine Institute, founded in 1993, works to address the issues of vaccine-preventable diseases as well as NTDs. They run three main programs: Sabin Vaccine Development, Global Network for Neglected Tropical Diseases, and Vaccine Advocacy and Education.[134] Their product development partnership affiliates them with the Texas Children's Hospital as well as the Baylor College of Medicine. Their major campaign, End7, aims to end seven of the most common NTDs (elephantiasis, river blindness, snail fever, trachoma, roundworm, whipworm, and hookworm) by 2020. Through End7, college campuses undertake fundraising and educational initiatives for the broader goals of the campaign.[135]

WIPO Re:Search was established in 2011 by the World Intellectual Property Organization in collaboration with BIO Ventures for Global Health (BVGH) and with the active participation of leading pharmaceutical companies and other private and public sector research organizations. It allows organizations to share their intellectual property, compounds, expertise, facilities, and know-how royalty-free with qualified researchers worldwide working on new solutions for NTDs, malaria, and tuberculosis.[136][137]

In 2013, the Government of Japan, five Japanese pharmaceutical companies, the Bill and Melinda Gates Foundation, and the UNDP established a new public–private partnership, the Global Health Innovative Technology Fund. They pledged over US$100 million to the fund over five years, to be awarded as grants to R&D partnerships across sectors in Japan and elsewhere, working to develop new drugs and vaccines for 17 neglected diseases, in addition to HIV, malaria, and tuberculosis.[138][139][140] Affordability of the resulting drugs and vaccines is one of the key criteria for grant awards.[138]

London Declaration on Neglected Tropical Diseases

The London Declaration on Neglected Tropical Diseases, initiated by the Bill and Melinda Gates Foundation launched on 30 January 2012 in London. Inspired by the WHO roadmap to eradicate or prevent transmission for neglected tropical diseases, it aimed to eradicate or reduce NTDs by the year 2020.[141] It was endorsed by governments and organisations around the world, as well as major pharmaceutical companies including Abbott, AstraZeneca, Bayer HealthCare Pharmaceuticals, Becton Dickinson, Bristol-Myers Squibb, Eisai, Gilead Sciences, GlaxoSmithKline, Johnson & Johnson, Merck KGaA, Merck Sharp & Dohme, MSD, Novartis, Pfizer, and Sanofi.[142] It was not a complete success, but millions of lives were saved, the burden of the infections was reduced, and 42 countries eliminated at least one disease.[143] To commemorate the programme, WHO adopted 30 January as the World NTD Day.[144]

Kigali Declaration on Neglected Tropical Diseases

The Kigali Declaration on Neglected Tropical Diseases was launched at the Kigali Summit on Malaria and Neglected Tropical Diseases (NTDs) hosted by the Government of Rwanda at its capital city Kigali on 23 June 2022.[145] It was signed as a support for the World Health Organization's 2021–30 road map for NTDs and the target of Sustainable Development Goal 3 to end NTD epidemics; and as a follow-up project of the London Declaration .[146] Supported by WHO, governments of the Commonwealth of Nations pledged the endorsement, along with commitments from GSK plc, Novartis, and Pfizer.[147]

Others

An open-access journal dedicated to neglected tropical diseases called PLoS Neglected Tropical Diseases first began publication in 2007.

One of the first large-scale initiatives to address NTDs came from a collaboration between Kenneth Warren and the Rockefeller Foundation. Ken Warren is regarded as a pioneer in neglected tropical disease research. The Great Neglected Tropical Diseases Network was a consortium of scientists from all over the world, hand-picked by Warren, working to expand the research base in neglected diseases. Many of the scientists that he recruited had not been involved in NTD research before. The network ran from 1978 to 1988. Warren's vision was to establish units within biological labs across the world, dedicated to R&D. By forming a critical mass of scientists in NTD research, he hoped to attract new students into the field. The interdisciplinary group met annually to update the community on research progress. Much of the work done by this group focused on understanding the mechanisms behind infection. At these informally structured meetings, research partnerships were formed. Warren himself encouraged these partnerships, especially if they bridged the divide between developed and developing nations. Through the Great Neglected Tropical Disease Network, a great number of scientists were brought into the field of parasitology.[148]

Epidemiology

 
Global overlap of six of the common NTDs, specifically guinea worm disease, lymphatic filariasis, onchocerciasis, schistosomiasis, soil-transmitted helminths, and trachoma, in 2011

The distribution of neglected tropical disease disproportionally affects about one billion of the world's poorest populations,[149] causing mortality, disability, and morbidity.[150] Lack of funding, resources, and attention can result in treatable and preventable diseases causing death.[151] Factors like political dynamics, poverty, and geographical conditions can make the delivery of NTD control programs difficult.[149] Intersectional collaboration of poverty reduction policies and neglected tropical diseases creates cross-sector approaches to simultaneously address these issues.[149]

The six most common NTDs include soil-transmitted helminths (STHs)—specifically roundworms (Ascaris lumbricoides), whipworm (Trichuris trichiura), and hookworms (Necator americanus and Ancylostoma duodenale)—schistosomiasis, trachoma, and lymphatic filariasis (LF).[114] These diseases affect one-sixth of the world's population, with 90 percent of the disease burden occurring in sub-Saharan Africa.[114]

Information on the frequency of neglected tropical diseases is of low quality. It is currently difficult to summarize all of the information on this family of diseases. One effort to do so is the Global Burden of Disease framework. It aims to create a standardized method of measurement. The principle components of the approach involve 1) the measuring of premature mortality as well as disability, 2) the standardized usage of DALYs (disability-adjusted life years), and 3) widespread inclusion of diseases and injury causes with the estimation of missing data.[152] However, the DALY has been criticized as a "systematic undervaluation" of disease burden. King[153] asserts that DALY emphasizes the individual too much while ignoring the effects of the ecology of the disease. In order for the measure to become more valid, it may have to take the context of poverty more into account. King also emphasizes that DALYs may not capture the non-linear effects of poverty on the cost-utility analysis of disease control. The Socio-Demographic Index (SDI) and Healthy Life Expectancy (HALE) are other summary measures that can be used to take into account other factors.[154] HALE is a metric that weights years lived and health loss before death to provide a summary of population health.[154] SDI is a measurement that includes lag-distributed income per capita, average education, and fertility rate.[150] Socioeconomic factors greatly influence the distribution of neglected tropical diseases, and not addressing these factors in models and measurements can lead to ineffective public health policy.[151]

Research and development

 
The structure of two of the ivermectins, an important class of drug in the control of Onchocerciasis.

NTD interventions include programs to address environmental and social determinants of health (e.g., vector control, water quality, sanitation) as well as programs offering mass drug administration for disease prevention and treatment. Drug treatments exist[155] to confront many of the NTDs and represent some of the world's essential medicines.[156][157] Despite significant health and economic improvements using available medicines,[158][159][160][161] the low number of new compounds being researched and developed for NTDs is an ongoing and significant challenge.[156][162][163] The dearth of candidates in pharmaceutical company drug pipelines is primarily attributed to the high costs of drug development and the fact that NTDs are concentrated among the world's poor.[162][164] Other disincentives to investment include weak existing infrastructure for distribution and sales as well as concerns regarding intellectual property protection.[161] However, the major stakeholders in NTD drug development—governments, foundations, pharmaceutical companies, academia, and NGOs—are involved in activities to help address the research and development shortfall and meet the many challenges presented by neglected tropical diseases.[165] Initiatives include public-private partnerships, global R&D capacity building, priority vouchers to speed drug approval processes, open source scientific collaborations, and harmonization of global governance structures concerning NTDs.[citation needed]

The diseases considered neglected tropical diseases vary. Some researchers no longer consider malaria, HIV, and tuberculosis to be neglected due to the amount of public attention and increased funding they have received. Outside "The Big Three", the seven most prevalent neglected tropical diseases in order of their global prevalence are ascariasis, trichuriasis, hookworm infection, schistosomiasis, lymphatic filariasis, and trachoma.[36] These seven are among a larger list of thirteen major NTDs: onchocerciasis, leishmaniasis, Chagas disease, leprosy, human African trypanosomiasis (sleeping sickness), dracunculiasis, and Buruli ulcer.[36]

Deficient market

In their 2002 review of the U.S. Food and Drug Administration (FDA) databases and the European Agency for the Evaluation of Medicinal Products, Troullier et al found that 16 out of 1393 new chemical entities were approved for NTDs between 1975 and 1999 (~1%).[156] Cohen et al revisited the data and using the same methodology found 32 new chemical entities during the time period.[157] In a second analysis using an expanded list of NTDs based on the G-FINDER survey,[166] the number was slightly higher, with 46 new drugs and vaccines approved (~3% of the total including HIV drugs).[157] Between 2000 and 2009, there has been some increase with an additional 26 newly approved drugs and vaccines for NTDs.[157]

A number of factors are recognized as contributing to the low number. The barrier most reported is the high cost of drug development. Estimates are that pharmaceutical companies' development costs to approval fall between $500 million and $2 billion.[167] DiMasi, Hansen, and Grabowski calculated an average of $802 million in year 2000 dollars.[168] Furthermore, the time that drugs are approved for use averages seven years out of the twenty years on patent, meaning a tendency for the market to focus on diseases of developed nations where high prices can be used to recoup research and development costs, and subsidize failed R&D efforts. In short, NTD research and development is considered a high investment risk, given that NTDs predominantly affect the poor in low- and middle-income countries.[162][164] Additional barriers include drug safety regulatory requirements, intellectual property protection problems, and poor infrastructure for distribution and sales.[161][162]

Although drug companies have not invested heavily in NTDs, in several cases, rather than focus on profits, some have decided to donate key drugs to address NTDs. For example, Merck has had a program since the mid-1980s to donate ivermectin (Mectizan) indefinitely to support the global fight against onchocerciasis. GlaxoSmithKline and several other large pharmaceutical companies have donation programs as well. Drug donation, however, does not ameliorate the deficiency of new chemical entities being researched and developed. This is especially of concern with reports of emerging resistance among existing drugs.[169][170]

Policy initiatives

Public–private partnerships

 
Melinda and Bill Gates speak during press conference at the World Economic Forum in Davos, Switzerland, January 30, 2009.

Governments, foundations, the non-profit sector, and the private sector have found new connections to help address market deficiencies by providing funding support and spreading both the costs and risks of NTD research and development. The proliferation of public–private partnerships (PPPs) has been recognized as a key innovation in the past decade, helping to unlock existing and new resources.[citation needed]

Major PPPs for NTDs include: the Sabin Vaccine Institute, Norvartis Vaccines Institute for Global Health, MSD Wellcome Trust Hilleman Laboratories, Infectious Diseases Research Institute, Institut Pasteur and INSERM, WIPO Re:Search, and the International Vaccine Institute.[164] Likewise, a number of new academic drug development centers have been created in recent years drawing in industry partners. Support for these centers is frequently traced to the Bill & Melinda Gates Foundation, the Sandler Foundation, and the Wellcome Trust.[171]

R&D capacity building in middle-income countries

Growing NTD research and development capacity in middle-income countries is an area of policy interest. A 2009 study of biotechnology companies in India, China, Brazil, and South Africa revealed 62 NTD products in development and on the market out of approximately 500 products offered (~14%). When products to fight HIV, malaria, and TB were included in the analysis, the number increased to 123 products, approximately 25% of the total products offered.[citation needed]

Researchers have argued that, unlike most multinationals, small and mid-sized "Global South" companies see significant business opportunities in the development of NTD-related diagnostics, biologics, pharmaceuticals, and services.[172] Potential actions to improve and expand this R&D capacity have been recommended, including expansion of human capital, increased private investment, knowledge and patent sharing, infrastructure building for business incubation, and innovation support.[citation needed]

Innovation prizes and grants

Competitive innovation prizes have been used to spur development in a range of fields such as aerospace engineering, clean technology, and genomics. The X-Prize Foundation is launching a competition for high-speed, point-of-care diagnostics for tuberculosis.[citation needed] A more widely defined annual "Global Health EnterPrize" for neglected tropical diseases has been proposed to reward health innovators, particularly those based in countries where NTDs represent a serious health burden.[citation needed]

The Bill & Melinda Gates Foundation offers the Grand Challenges Explorations Opportunities on a rolling basis. This grant program allows individuals from any organization or background to apply to address priority global health issues. Each project award is $100,000 and is drawn from a Foundation funding pool of $100 million. Awardees have tended to offer research projects on topics that are highly speculative but offer potentially game-changing breakthroughs in global health.[citation needed]

FDA priority review vouchers (PRV)

In 2006, Ridley et al recommended the development of a priority review voucher (PRV) in the journal Health Affairs. It gained interest from Senator Sam Brownback of Kansas, who championed its introduction in the FDA Amendments Act of 2007. Under the enacted law, FDA approval of a non-NTD drug can be accelerated through the drug review process if paired with a drug that addresses an NTD. The potential economic benefit to a pharmaceutical company is estimated to be potentially as high as $300 million per drug. Three drugs have earned NTD PRVs to date (December 2014): Coartem (by Novartis, for malaria); bedaquiline (by Janssen, for TB); and miltefosine (by Knight, for leishmaniasis). However, the success of the PRV system is now under much scrutiny, given that Knight benefitted by $125 million from the sale of a PRV earned from a drug (miltefosine) that was largely researched and developed by the WHO. Médecins Sans Frontières are now pressuring Knight to guarantee to supply miltefosine at cost price, thus far without success.[citation needed]

The PRV isn't limited to the pairing of drugs within a single company as it can be transferred between companies. Companies with NTD drug candidates in their pipelines but without a blockbuster drug are able to sell their vouchers, producing financial returns. In the EU, similar priority review incentives are now under consideration to increase the speed of regulatory pricing and reimbursement decisions.[citation needed]

However, PRVs have been criticized as being open to manipulation and possibly encouraging errors through too rapid regulatory decision-making.[173]

Open source collaboration initiatives

 
The Drugs for Neglected Diseases Initiative, a web-focused not-for-profit drug R&D organization dedicated to creating new NTD treatments.

Several companies and scientific organizations are participating in open-source initiatives to share drug data and patent information over the web, and facilitate virtual collaboration on NTD research.

One rich area to explore is the wealth of genomic data resulting from the sequencing of parasite genomes. These data offer opportunities for the exploration of new therapeutic products using computational and open-source collaboration methods for drug discovery.[174][175] The Tropical Disease Initiative, for example, has used large amounts of computing power to generate the protein structures for ten parasite genomes. An open-source drug bank was matched algorithmically to determine compounds with protein interaction activity, and two candidates were identified. In general, such methods may hold important opportunities for off-label use of existing approved drugs.

History

In 1977, Kenneth S. Warren, an American researcher, invented the concept of what is now "neglected tropical diseases".[176]

See also

References

  1. ^ Ritchie, Roser, Mispy, Ortiz-Ospina. "Measuring progress towards the Sustainable Development Goals." SDG-Tracker.org, website (2018).
  2. ^ Hotez PJ, Aksoy S, Brindley PJ, Kamhawi S (January 2020). "What constitutes a neglected tropical disease?". PLOS Neglected Tropical Diseases. 14 (1): e0008001. doi:10.1371/journal.pntd.0008001. PMC 6991948. PMID 31999732.
  3. ^ a b c Hotez PJ (November 2013). "NTDs V.2.0: "blue marble health"--neglected tropical disease control and elimination in a shifting health policy landscape". PLOS Neglected Tropical Diseases. 7 (11): e2570. doi:10.1371/journal.pntd.0002570. PMC 3836998. PMID 24278496.  
  4. ^ Hotez PJ, Kamath A (August 2009). Cappello M (ed.). "Neglected tropical diseases in sub-Saharan Africa: review of their prevalence, distribution, and disease burden". PLOS Neglected Tropical Diseases. 3 (8): e412. doi:10.1371/journal.pntd.0000412. PMC 2727001. PMID 19707588.  
  5. ^ Mike Shanahan (31 January 2006). "Beat neglected diseases to fight HIV, TB and malaria". SciDev.Net. from the original on 19 May 2006.
  6. ^ "Making the Case to Fight Schistosomiasis". NPR.org. National Public Radio. from the original on 10 October 2008. Retrieved 1 December 2008.
  7. ^ Hotez PJ (January 2010). "A plan to defeat neglected tropical diseases". Scientific American. 302 (1): 90–4, 96. Bibcode:2010SciAm.302a..90H. doi:10.1038/scientificamerican0110-90. PMID 20063641. from the original on 6 August 2014.
  8. ^ Reddy M, Gill SS, Kalkar SR, Wu W, Anderson PJ, Rochon PA (October 2007). "Oral drug therapy for multiple neglected tropical diseases: a systematic review". JAMA. 298 (16): 1911–24. doi:10.1001/jama.298.16.1911. PMID 17954542.
  9. ^ a b c d Hotez P (1 November 2009). "Neglected diseases amid wealth in the United States and Europe". Health Affairs. 28 (6): 1720–5. doi:10.1377/hlthaff.28.6.1720. PMID 19887412.
  10. ^ "Research Publications | Poverty Solutions at The University of Michigan". www.npc.umich.edu. from the original on 23 July 2017. Retrieved 16 January 2018.
  11. ^ Hotez PJ (September 2012). (PDF). BMJ. 345: e6112. doi:10.1136/bmj.e6112. PMID 22977143. S2CID 22530671. Archived from the original (PDF) on 10 May 2017.
  12. ^ "World Health Organization". World Health Organization. from the original on 22 February 2014. Retrieved 18 June 2017.
  13. ^ "DNDi – Best Science for the Most Neglected". www.dndi.org. from the original on 13 March 2018. Retrieved 5 May 2018.
  14. ^ . World Health Organization. Archived from the original on 20 October 2017. Retrieved 5 May 2018.
  15. ^ GBD 2013 Mortality Causes of Death Collaborators (January 2015). "Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990–2013: a systematic analysis for the Global Burden of Disease Study 2013". Lancet. 385 (9963): 117–71. doi:10.1016/S0140-6736(14)61682-2. PMC 4340604. PMID 25530442. {{cite journal}}: |author1= has generic name (help)
  16. ^ a b c d e f g h i j k l m n o p q r s Fenwick A (March 2012). "The global burden of neglected tropical diseases". Public Health. 126 (3): 233–236. doi:10.1016/j.puhe.2011.11.015. PMID 22325616.
  17. ^ a b Hotez P, Ottesen E, Fenwick A, Molyneux D (1 January 2006). "The neglected tropical diseases: the ancient afflictions of stigma and poverty and the prospects for their control and elimination". Advances in Experimental Medicine and Biology. 582: 23–33. doi:10.1007/0-387-33026-7_3. ISBN 978-0-387-31783-0. PMID 16802616.
  18. ^ a b c d e f g h i j k l m Feasey N, Wansbrough-Jones M, Mabey DC, Solomon AW (2010). "Neglected tropical diseases". British Medical Bulletin. 93 (1): 179–200. doi:10.1093/bmb/ldp046. PMID 20007668.
  19. ^ Payne L, Fitchett JR (September 2010). "Bringing neglected tropical diseases into the spotlight". Trends in Parasitology. 26 (9): 421–3. doi:10.1016/j.pt.2010.06.002. PMID 20591739.
  20. ^ a b c d Weiss MG (May 2008). "Stigma and the social burden of neglected tropical diseases". PLOS Neglected Tropical Diseases. 2 (5): e237. doi:10.1371/journal.pntd.0000237. PMC 2359851. PMID 18478049.  
  21. ^ Weiss MG (May 2008). "Stigma and the social burden of neglected tropical diseases". PLOS Neglected Tropical Diseases. 2 (5): e237. doi:10.1371/journal.pntd.0000237. PMC 2359851. PMID 18478049.
  22. ^ Moran, Mary (28 October 2014). "Neglected diseases fall outside the market". Financial Times. Archived from the original on 11 December 2022. Retrieved 5 May 2018.
  23. ^ a b Trouiller P, Olliaro P, Torreele E, Orbinski J, Laing R, Ford N (June 2002). "Drug development for neglected diseases: a deficient market and a public-health policy failure". Lancet. 359 (9324): 2188–94. doi:10.1016/S0140-6736(02)09096-7. hdl:10144/28441. PMID 12090998. S2CID 1616485.
  24. ^ Colatrella B (September 2008). "The Mectizan Donation Program: 20 years of successful collaboration – a retrospective". Annals of Tropical Medicine and Parasitology. 102 Suppl 1: 7–11. doi:10.1179/136485908X337418. PMID 18718147. S2CID 32987420.
  25. ^ Gillis J (25 April 2006). "Cure for Neglected Diseases: Funding". Washington Post.
  26. ^ Disease control priorities in developing countries (2nd ed.). Oxford University Press. 2006. ISBN 978-0-8213-6179-5.
  27. ^ a b Hotez PJ (September 2014). "Neglected parasitic infections and poverty in the United States". PLOS Neglected Tropical Diseases. 8 (9): e3012. doi:10.1371/journal.pntd.0003012. PMC 4154650. PMID 25188455.
  28. ^ a b c World Health Organization (WHO) (2015): Water Sanitation and Hygiene for accelerating and sustaining progress on Neglected Tropical Diseases. A global strategy 2015–2020 25 September 2015 at the Wayback Machine. Geneva, Switzerland, p. 26
  29. ^ Kirchhoff LV (August 1993). "American trypanosomiasis (Chagas' disease)--a tropical disease now in the United States". The New England Journal of Medicine. 329 (9): 639–44. doi:10.1056/NEJM199308263290909. PMID 8341339.
  30. ^ "Neglected tropical diseases". World Health Organization. from the original on 22 February 2014. Retrieved 24 November 2015.
  31. ^ "World Health Organization". World Health Organization. from the original on 22 February 2014. Retrieved 30 October 2016.
  32. ^ "CDC – Neglected Tropical Diseases – Diseases". www.cdc.gov. from the original on 4 December 2014. Retrieved 30 October 2016.
  33. ^ "PLoS Neglected Tropical Diseases: A Peer-Reviewed Open-Access Journal". journals.plos.org. from the original on 14 November 2020. Retrieved 19 November 2020.
  34. ^ World Health Organization. Working to overcome the global impact of neglected tropical diseases: first WHO report on neglected tropical diseases. 2010.
  35. ^ Hotez PJ, Molyneux DH, Fenwick A, Ottesen E, Ehrlich Sachs S, Sachs JD. Incorporating a rapid-impact package for neglected tropical diseases with programs for HIV/AIDS, tuberculosis, and malaria. PLoS Med 2006 Jan;3(5):e102.
  36. ^ a b c Hotez PJ, Molyneux DH, Fenwick A, Kumaresan J, Sachs SE, Sachs JD, et al. Control of neglected tropical diseases. N Engl J Med 2007 Sep 6;357(10):1018-1027.
  37. ^ a b "Buruli Ulcer". World Health Organization. from the original on 11 May 2016. Retrieved 2 May 2016.
  38. ^ a b "Buruli Ulcer". from the original on 13 April 2014. Retrieved 12 March 2014.
  39. ^ . Archived from the original on 12 March 2014. Retrieved 12 March 2014.
  40. ^ a b c d e f g . Archived from the original on 13 March 2014. Retrieved 12 March 2014.
  41. ^ a b c d e "World Health Day 2014: small bite, big threat". from the original on 27 February 2014. Retrieved 12 March 2014.
  42. ^ a b c d e f "Dengue Control". from the original on 12 March 2014. Retrieved 12 March 2014.
  43. ^ a b c Pialoux G, Gaüzère BA, Jauréguiberry S, Strobel M (May 2007). "Chikungunya, an epidemic arbovirosis". The Lancet. Infectious Diseases. 7 (5): 319–27. doi:10.1016/S1473-3099(07)70107-X. PMID 17448935.
  44. ^ "Symptoms, Diagnosis, & Treatment | Chikungunya virus | CDC". www.cdc.gov. 17 December 2018. Retrieved 17 March 2020.
  45. ^ , WHO, archived from the original on 20 January 2016, retrieved 21 January 2016
  46. ^ "View Latest Worldwide Guinea Worm Case Totals". www.cartercenter.org. Retrieved 28 February 2020.
  47. ^ "Dracunculiasis eradication – global surveillance summary, 2009" (PDF). Relevé Épidémiologique Hebdomadaire. 85 (19): 166–76. May 2010. PMID 20449943. (PDF) from the original on 3 March 2016.
  48. ^ a b c d e f "Dracunculiasis". from the original on 5 April 2014. Retrieved 13 March 2014.
  49. ^ "Echinococcosis". from the original on 16 March 2014. Retrieved 16 March 2014.
  50. ^ a b c . Archived from the original on 24 May 2015. Retrieved 16 March 2014.
  51. ^ a b . Archived from the original on 5 June 2015. Retrieved 16 March 2014.
  52. ^ a b . Archived from the original on 16 March 2014. Retrieved 16 March 2014.
  53. ^ a b c d e f "Yaws". from the original on 15 March 2014. Retrieved 16 March 2014.
  54. ^ . World Health Organization. Archived from the original on 25 November 2015. Retrieved 24 November 2015.
  55. ^ . World Health Organization. Archived from the original on 25 October 2013.
  56. ^ a b . Archived from the original on 16 March 2014. Retrieved 16 March 2014.
  57. ^ "Leishmaniasis". from the original on 15 March 2014. Retrieved 16 March 2014.
  58. ^ . Archived from the original on 16 March 2014. Retrieved 16 March 2014.
  59. ^ . Archived from the original on 16 March 2014. Retrieved 16 March 2014.
  60. ^ . WHO. 9 September 2019. Archived from the original on 22 October 2019.
  61. ^ a b "Leprosy Today". from the original on 14 March 2014. Retrieved 16 March 2014.
  62. ^ a b . Archived from the original on 16 March 2014. Retrieved 16 March 2014.
  63. ^ a b "Leprosy". 10 September 2019. from the original on 31 January 2021.
  64. ^ a b . Archived from the original on 16 March 2014. Retrieved 16 March 2014.
  65. ^ a b . Archived from the original on 16 March 2014. Retrieved 16 March 2014.
  66. ^ a b "Lymphatic filariasis". from the original on 30 March 2014. Retrieved 16 March 2014.
  67. ^ Mohammed KA, Haji HJ, Gabrielli AF, Mubila L, Biswas G, Chitsulo L, et al. (January 2008). Utzinger J (ed.). "Triple co-administration of ivermectin, albendazole and praziquantel in Zanzibar: a safety study". PLOS Neglected Tropical Diseases. 2 (1): e171. doi:10.1371/journal.pntd.0000171. PMC 2217668. PMID 18235853.  
  68. ^ . Archived from the original on 16 March 2014. Retrieved 16 March 2014.
  69. ^ "Onchocerciasis". World Health Organization. 14 June 2019.
  70. ^ a b c d "Onchocerciasis". from the original on 16 March 2014. Retrieved 16 March 2014.
  71. ^ a b c "Onchocerciasis". from the original on 9 April 2014. Retrieved 16 March 2014.
  72. ^ a b "Rabies". from the original on 24 February 2014. Retrieved 16 March 2014.
  73. ^ a b c d e "About rabies". from the original on 30 January 2014. Retrieved 16 March 2014.
  74. ^ a b "Rabies". from the original on 1 April 2014. Retrieved 16 March 2014.
  75. ^ "Schistosomiasis-Disease". CDC, Division of Parasitic Diseases. from the original on 2 December 2016. Retrieved 17 October 2016.
  76. ^ Lo, Nathan C.; Heft-Neal, Sam; Coulibaly, Jean T.; Leonard, Leslie; Bendavid, Eran; Addiss, David G. (1 November 2019). "State of deworming coverage and equity in low-income and middle-income countries using household health surveys: a spatiotemporal cross-sectional study". The Lancet Global Health. 7 (11): e1511–e1520. doi:10.1016/S2214-109X(19)30413-9. ISSN 2214-109X. PMC 7024997. PMID 31558383.
  77. ^ a b c d e f g h i "Soil-transmitted helminth infections". from the original on 21 February 2014. Retrieved 16 March 2014.
  78. ^ a b . Archived from the original on 14 March 2014. Retrieved 13 March 2014.
  79. ^ a b c . Archived from the original on 14 March 2014. Retrieved 13 March 2014.
  80. ^ a b c . Archived from the original on 14 March 2014. Retrieved 13 March 2014.
  81. ^ . Archived from the original on 14 March 2014. Retrieved 13 March 2014.
  82. ^ a b c d e . Archived from the original on 26 July 2014. Retrieved 16 March 2014.
  83. ^ Wells, John C. (2008). Longman Pronunciation Dictionary (3rd ed.). Longman. ISBN 978-1-4058-8118-0.
  84. ^ a b Gates RH (2003). Infectious disease secrets (2nd ed.). Philadelphia: Elsevier, Hanley Belfus. p. 355. ISBN 978-1-56053-543-0.
  85. ^ "Epidemiology & Risk Factors". Centers for Disease Control and Prevention. 2 November 2010. from the original on 29 April 2015. Retrieved 18 May 2015.
  86. ^ a b c d e f g h "Parasites – Scabies Disease". Center for Disease Control and Prevention. 2 November 2010. from the original on 2 May 2015. Retrieved 18 May 2015.
  87. ^ a b "Snakebite finally makes a WHO list of top global health priorities". STAT. 12 June 2017. from the original on 13 June 2017. Retrieved 18 June 2017.
  88. ^ Kasturiratne A, Wickremasinghe AR, de Silva N, Gunawardena NK, Pathmeswaran A, Premaratna R, et al. (November 2008). "The global burden of snakebite: a literature analysis and modelling based on regional estimates of envenoming and deaths". PLOS Medicine. 5 (11): e218. doi:10.1371/journal.pmed.0050218. PMC 2577696. PMID 18986210.
  89. ^ "Definition of Snakebite". www.merriam-webster.com. Retrieved 17 June 2019.
  90. ^ a b c d "Venomous Snakes". U.S. National Institute for Occupational Safety and Health. 24 February 2012. from the original on 29 April 2015. Retrieved 19 May 2015.
  91. ^ a b c "Animal bites: Fact sheet N°373". World Health Organization. February 2015. from the original on 4 May 2015. Retrieved 19 May 2015.
  92. ^ a b c d Gold BS, Dart RC, Barish RA (August 2002). "Bites of venomous snakes". The New England Journal of Medicine. 347 (5): 347–356. doi:10.1056/NEJMra013477. PMID 12151473.
  93. ^ Daley BJ, Torres J (June 2014). "Venomous snakebites". Journal of Emergency Medical Services. 39 (6): 58–62. PMID 25109149.
  94. ^ Eske, Jamie; Biggers, MD, MPH, Alana (14 December 2018). "How to identify and treat snake bites". Medical News Today. Healthline Media UK Ltd. Retrieved 4 May 2022.{{cite web}}: CS1 maint: multiple names: authors list (link)
  95. ^ a b Litt E, Baker MC, Molyneux D (May 2012). "Neglected tropical diseases and mental health: a perspective on comorbidity". Trends in Parasitology. 28 (5): 195–201. doi:10.1016/j.pt.2012.03.001. PMID 22475459.
  96. ^ a b Bhaumik, Soumyadeep; Kallakuri, Sudha; Kaur, Amanpreet; Devarapalli, Siddhardha; Daniel, Mercian (1 November 2020). "Mental health conditions after snakebite: a scoping review". BMJ Global Health. 5 (11): e004131. doi:10.1136/bmjgh-2020-004131. ISSN 2059-7908. PMC 7705584. PMID 33257419.
  97. ^ Kealey A, Smith? R (February 2010). "Neglected tropical diseases: infection, modeling, and control". Journal of Health Care for the Poor and Underserved. 21 (1): 53–69. doi:10.1353/hpu.0.0270. PMID 20173255. S2CID 27293058.
  98. ^ Rilkoff H, Tukahebwa EM, Fleming FM, Leslie J, Cole DC (2013). "Exploring gender dimensions of treatment programmes for neglected tropical diseases in Uganda". PLOS Neglected Tropical Diseases. 7 (7): e2312. doi:10.1371/journal.pntd.0002312. PMC 3708858. PMID 23875047.  
  99. ^ a b Conteh L, Engels T, Molyneux DH (January 2010). "Socioeconomic aspects of neglected tropical diseases". Lancet. 375 (9710): 239–47. doi:10.1016/S0140-6736(09)61422-7. PMID 20109925. S2CID 20630557.
  100. ^ Molyneux DH (2004). ""Neglected" diseases but unrecognised successes--challenges and opportunities for infectious disease control". Lancet. 364 (9431): 380–3. doi:10.1016/S0140-6736(04)16728-7. PMID 15276399. S2CID 42273787.
  101. ^ Lindoso JA, Lima AC, Cunha MA, Gomes CM (23 August 2015). "Diagnosing Neglected Tropical Diseases in HIV Coinfection". Human Parasitic Diseases. 2015 (7): 11–18. doi:10.4137/HPD.S19569. from the original on 17 November 2016.
  102. ^ a b c d Singer M, Bulled N (November 2012). "Interlocked Infections: The Health Burdens of Syndemics of Neglected Tropical Diseases". Annals of Anthropological Practice. 36 (2): 328–345. doi:10.1111/napa.12007.
  103. ^ Spiegel JM, Dharamsi S, Wasan KM, Yassi A, Singer B, Hotez PJ, et al. (May 2010). "Which new approaches to tackling neglected tropical diseases show promise?". PLOS Medicine. 7 (5): e1000255. doi:10.1371/journal.pmed.1000255. PMC 2872649. PMID 20502599.
  104. ^ United Nations (2017) Resolution adopted by the General Assembly on 6 July 2017, Work of the Statistical Commission pertaining to the 2030 Agenda for Sustainable Development (A/RES/71/313)
  105. ^ World Health Organization (WHO) (2012). Accelerating work to overcome the global impact of Neglected Tropical Diseases. A roadmap for implementation 6 June 2015 at the Wayback Machine. Geneva, Switzerland.
  106. ^ "FDA Approves Coartem Tablets to Treat Malaria". USFDA. from the original on 2 June 2009. Retrieved 11 December 2009.
  107. ^ Ridley DB, Grabowski HG, Moe JL (2006). "Developing drugs for developing countries". Health Affairs. 25 (2): 313–24. doi:10.1377/hlthaff.25.2.313. PMID 16522573.
  108. ^ a b Taylor-Robinson, David C.; Maayan, Nicola; Donegan, Sarah; Chaplin, Marty; Garner, Paul (11 September 2019). "Public health deworming programmes for soil-transmitted helminths in children living in endemic areas". The Cochrane Database of Systematic Reviews. 9 (11): CD000371. doi:10.1002/14651858.CD000371.pub7. ISSN 1469-493X. PMC 6737502. PMID 31508807.
  109. ^ "Deworm the World: the evidence for school-based deworming". from the original on 14 January 2013.
  110. ^ a b Welch VA, Ghogomu E, Hossain A, et al. (2016). "Deworming and Adjuvant Interventions for Improving the Developmental Health and Well-being of Children in Low- and Middle-income Countries: A Systematic Review and Network Meta-analysis" (PDF). Campbell Systematic Reviews. 12: 1–383. doi:10.4073/csr.2016.7. (PDF) from the original on 26 March 2017.
  111. ^ "Worms at Work: Long-Run Impacts of a Child Health investment". from the original on 28 October 2016. Retrieved 28 October 2016.
  112. ^ Brady MA, Hooper PJ, Ottesen EA (July 2006). "Projected benefits from integrating NTD programs in sub-Saharan Africa". Trends in Parasitology. 22 (7): 285–91. doi:10.1016/j.pt.2006.05.007. PMID 16730230.
  113. ^ a b van den Berg H, Kelly-Hope LA, Lindsay SW (January 2013). "Malaria and lymphatic filariasis: the case for integrated vector management". The Lancet. Infectious Diseases. 13 (1): 89–94. doi:10.1016/S1473-3099(12)70148-2. PMID 23084831.
  114. ^ a b c d Johnston EA, Teague J, Graham JP (June 2015). "Challenges and opportunities associated with neglected tropical disease and water, sanitation and hygiene intersectoral integration programs". BMC Public Health. 15 (1): 547. doi:10.1186/s12889-015-1838-7. PMC 4464235. PMID 26062691.
  115. ^ . World Health Organization (WHO). 27 August 2015. Archived from the original on 12 September 2015. Retrieved 14 September 2015.
  116. ^ . World Health Organization (WHO). Archived from the original on 4 March 2016. Retrieved 14 September 2015.
  117. ^ . World Health Organization (WHO). Archived from the original on 30 August 2015. Retrieved 14 September 2015.
  118. ^ . World Health Organization (WHO). Archived from the original on 2 April 2016. Retrieved 14 September 2015.
  119. ^ . World Health Organization (WHO). Archived from the original on 2 April 2016. Retrieved 14 September 2015.
  120. ^ . World Health Organization (WHO). Archived from the original on 16 June 2016. Retrieved 14 September 2015.
  121. ^ . World Health Organization (WHO). Archived from the original on 4 March 2016. Retrieved 14 September 2015.
  122. ^ . World Health Organization (WHO). Archived from the original on 4 March 2016. Retrieved 14 September 2015.
  123. ^ . World Health Organization (WHO). Archived from the original on 2 April 2016. Retrieved 14 September 2015.
  124. ^ Grimes JE, Croll D, Harrison WE, Utzinger J, Freeman MC, Templeton MR (December 2014). "The relationship between water, sanitation and schistosomiasis: a systematic review and meta-analysis". PLOS Neglected Tropical Diseases. 8 (12): e3296. doi:10.1371/journal.pntd.0003296. PMC 4256273. PMID 25474705.
  125. ^ Stocks ME, Ogden S, Haddad D, Addiss DG, McGuire C, Freeman MC (February 2014). "Effect of water, sanitation, and hygiene on the prevention of trachoma: a systematic review and meta-analysis". PLOS Medicine. 11 (2): e1001605. doi:10.1371/journal.pmed.1001605. PMC 3934994. PMID 24586120.
  126. ^ Strunz EC, Addiss DG, Stocks ME, Ogden S, Utzinger J, Freeman MC (March 2014). "Water, sanitation, hygiene, and soil-transmitted helminth infection: a systematic review and meta-analysis". PLOS Medicine. 11 (3): e1001620. doi:10.1371/journal.pmed.1001620. PMC 3965411. PMID 24667810.
  127. ^ Campbell SJ, Savage GB, Gray DJ, Atkinson JA, Soares Magalhães RJ, Nery SV, et al. (April 2014). "Water, Sanitation, and Hygiene (WASH): a critical component for sustainable soil-transmitted helminth and schistosomiasis control". PLOS Neglected Tropical Diseases. 8 (4): e2651. doi:10.1371/journal.pntd.0002651. PMC 3983087. PMID 24722335.
  128. ^ Frew SE, Liu VY, Singer PA (2009). "A business plan to help the 'global South' in its fight against neglected diseases" (PDF). Health Affairs. 28 (6): 1760–73. doi:10.1377/hlthaff.28.6.1760. PMID 19887417. (PDF) from the original on 20 October 2012.
  129. ^ Keenan JD, Hotez PJ, Amza A, Stoller NE, Gaynor BD, Porco TC, Lietman TM (2013). "Elimination and eradication of neglected tropical diseases with mass drug administrations: a survey of experts". PLOS Neglected Tropical Diseases. 7 (12): e2562. doi:10.1371/journal.pntd.0002562. PMC 3855072. PMID 24340111.  
  130. ^ Burns M (3 October 2010). "Lifesaving Drug Praziquantel Too Expensive for Africa". Pacific Standard. The Miller-McCune Center for Research, Media and Public Policy. from the original on 3 February 2018. Retrieved 8 December 2015.
  131. ^ Croft SL (October 2005). "Public-private partnership: from there to here". Transactions of the Royal Society of Tropical Medicine and Hygiene. 99 Suppl 1: S9-14. doi:10.1016/j.trstmh.2005.06.008. PMID 16087204.
  132. ^ "An Innovative Approach to R&D for Neglected Patients: Ten Years of Experience and Lessons Learned by DNDi". DNDi. January 2014
  133. ^ "About Us | Sabin". www.sabin.org. from the original on 30 October 2016. Retrieved 28 October 2016.
  134. ^ "Why NTDs? | End7". www.end7.org. from the original on 29 October 2016. Retrieved 28 October 2016.
  135. ^ Ramamoorthi R, Graef KM, Dent J (December 2014). "WIPO Re:Search: Accelerating anthelmintic development through cross-sector partnerships". International Journal for Parasitology: Drugs and Drug Resistance. 4 (3): 220–5. doi:10.1016/j.ijpddr.2014.09.002. PMC 4266808. PMID 25516832.
  136. ^ "WIPO Re:Search". from the original on 28 March 2015. Retrieved 16 March 2015.
  137. ^ a b "Japan in pioneering partnership to fund global health research", by Andrew Jack, Financial Times, 30 May 2013
  138. ^ "An Audience with … Tachi Yamada", by Asher Mullard, Nature magazine, September 2013, Volume 12, p.658
  139. ^ "Joining the Fight Against Neglected Diseases", Science magazine, 7 June 2013, Volume 340, p.1148
  140. ^ WHO (3 February 2012). . who.int. World Health Organization, Geneva. Archived from the original on 7 April 2014. Retrieved 29 May 2013.
  141. ^ Uniting to Combat NTDs (2012). . unitingtocombatntds.org. Uniting to Combat Neglected Tropical Diseases. Archived from the original on 25 May 2013. Retrieved 30 May 2013.
  142. ^ The Lancet (29 January 2022). "Neglected tropical diseases: ending the neglect of populations". Lancet. 399 (10323): 411. doi:10.1016/S0140-6736(22)00161-1. PMID 35093213. S2CID 246403390.
  143. ^ Elphick-Pooley, Thoko; Engels, Dirk; Uniting to Combat NTDs (28 January 2022). "World NTD Day 2022 and a new Kigali Declaration to galvanise commitment to end neglected tropical diseases". Infectious Diseases of Poverty. 11 (1): 2. doi:10.1186/s40249-021-00932-2. PMC 8794616. PMID 35086566.
  144. ^ Mutapi, Francisca (29 August 2022). "A new roadmap for neglected tropical diseases". Nature. doi:10.1038/d44148-022-00125-5 (inactive 4 January 2023).{{cite journal}}: CS1 maint: DOI inactive as of January 2023 (link)
  145. ^ Burki, Talha (2 July 2022). "New declaration on neglected tropical diseases endorsed". Lancet. 400 (10345): 15. doi:10.1016/S0140-6736(22)01237-5. PMID 35780782. S2CID 250150750.
  146. ^ "Commonwealth leaders recommit to ending malaria and neglected tropical diseases". www.who.int. 23 June 2022. Retrieved 29 December 2022.
  147. ^ Keating C (December 2014). "Ken Warren and the Rockefeller Foundation's great neglected diseases network, 1978–1988: the transformation of tropical and global medicine". Molecular Medicine. 20 Suppl 1 (Suppl 1): S24-30. doi:10.2119/molmed.2014.00221. PMC 4374516. PMID 25549230.
  148. ^ a b c Standley C, Boyce MR, Klineberg A, Essix G, Katz R (November 2018). Remais JV (ed.). "Organization of oversight for integrated control of neglected tropical diseases within Ministries of Health". PLOS Neglected Tropical Diseases. 12 (11): e0006929. doi:10.1371/journal.pntd.0006929. PMC 6281257. PMID 30462639.
  149. ^ a b Martins-Melo FR, Carneiro M, Ramos AN, Heukelbach J, Ribeiro AL, Werneck GL (June 2018). Angheben A (ed.). "The burden of Neglected Tropical Diseases in Brazil, 1990–2016: A subnational analysis from the Global Burden of Disease Study 2016". PLOS Neglected Tropical Diseases. 12 (6): e0006559. doi:10.1371/journal.pntd.0006559. PMC 6013251. PMID 29864133.
  150. ^ a b DebRoy S, Prosper O, Mishoe A, Mubayi A (December 2017). "Challenges in modeling complexity of neglected tropical diseases: a review of dynamics of visceral leishmaniasis in resource limited settings". Emerging Themes in Epidemiology. 14 (1): 10. doi:10.1186/s12982-017-0065-3. PMC 5604165. PMID 28936226.
  151. ^ Mathers CD, Ezzati M, Lopez AD (November 2007). "Measuring the burden of neglected tropical diseases: the global burden of disease framework". PLOS Neglected Tropical Diseases. 1 (2): e114. doi:10.1371/journal.pntd.0000114. PMC 2100367. PMID 18060077.
  152. ^ King CH, Bertino AM (March 2008). "Asymmetries of poverty: why global burden of disease valuations underestimate the burden of neglected tropical diseases". PLOS Neglected Tropical Diseases. 2 (3): e209. doi:10.1371/journal.pntd.0000209. PMC 2267491. PMID 18365036.
  153. ^ a b Forget P (14 October 2016). "Faculty of 1000 evaluation for Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015". Faculty Opinions. doi:10.3410/f.726827339.793524296.
  154. ^ Reddy M, Gill SS, Kalkar SR, Wu W, Anderson PJ, Rochon PA. Oral drug therapy for multiple neglected tropical diseases: a systematic review. JAMA 2007 Oct 24;298(16):1911-1924.
  155. ^ a b c Trouiller P, Olliaro P, Torreele E, Orbinski J, Laing R, Ford N. Drug development for neglected diseases: a deficient market and a public-health policy failure. Lancet 2002 Jun 22;359(9324):2188-2194.
  156. ^ a b c d Cohen J, Dibner MS, Wilson A. Development of and access to products for neglected diseases. PLoS One 2010 May 12;5(5):e10610.
  157. ^ Conteh L, Engels T, Molyneux DH. Socioeconomic aspects of neglected tropical diseases. Lancet 2010 Jan 16;375(9710):239-247.
  158. ^ Chu BK, Hooper PJ, Bradley MH, McFarland DA, Ottesen EA. The economic benefits resulting from the first 8 years of the Global Programme to Eliminate Lymphatic Filariasis (2000–2007). PLoS Negl Trop Dis. 2010 Jun 1;4(6):e708.
  159. ^ Merck Mectizan Drug Donation Program http://www.mectizan.org/
  160. ^ a b c Villa S, Compagni A, Reich MR. Orphan drug legislation: lessons for neglected tropical diseases. Int J Health Plann Manage 2009 Jan-Mar;24(1):27-42.
  161. ^ a b c d Trouiller P, Torreele E, Olliaro P, White N, Foster S, Wirth D, et al. Drugs for neglected diseases: a failure of the market and a public health failure? Trop Med Int Health 2001 Nov;6(11):945-951.
  162. ^ Chirac P, Torreele E. Global framework on essential health R&D. Lancet. 2006 May 13;367(9522):1560-1.
  163. ^ a b c Bethony JM, Cole RN, Guo X, Kamhawi S, Lightowlers MW, Loukas A, et al. Vaccines to combat the neglected tropical diseases. Immunol Rev 2011 Jan;239(1):237-270.
  164. ^ Liese B, Rosenberg M, Schratz A. Programmes, partnerships, and governance for elimination and control of neglected tropical diseases. Lancet 2010 Jan 2;375(9708):67-76.
  165. ^ G-FINDER Database http://www.georgeinstitute.org/about-us/media-centre/g-finder-database-open-public
  166. ^ Adams CP, Brantner VV. Estimating the cost of new drug development: is it really 802 million dollars? Health Aff (Millwood). 2006 Mar-Apr;25(2):420-8.
  167. ^ DiMasi JA, Hansen RW, Grabowski HG. The price of innovation: new estimates of drug development costs. J Health Econ. 2003 Mar;22(2):151-85.
  168. ^ Tchuem Tchuente LA. Control of soil-transmitted helminths in sub-Saharan Africa: Diagnosis, drug efficacy concerns and challenges. Acta Trop 2010 Jul 21.
  169. ^ Smits HL. Prospects for the control of neglected tropical diseases by mass drug administration. Expert Rev Anti Infect Ther 2009 Feb;7(1):37-56.
  170. ^ Renslo AR, McKerrow JH. Drug discovery and development for neglected parasitic diseases. Nat Chem Biol 2006 Dec;2(12):701-710.
  171. ^ Frew SE, Liu VY, Singer PA. A business plan to help the 'global South' in its fight against neglected diseases. Health Aff (Millwood) 2009 Nov-Dec;28(6):1760-1773.
  172. ^ Kesselheim AS. Drug development for neglected diseases – the trouble with FDA review vouchers. N Engl J Med 2008 Nov 6;359(19):1981-1983.
  173. ^ Kar S. Opinion: Open innovation: an answer for neglected diseases. Future Med Chem 2010 Sep;2(9):1411-5.
  174. ^ Ortí L, Carbajo RJ, Pieper U, Eswar N, Maurer SM, Rai AK, Taylor G, Todd MH, Pineda-Lucena A, Sali A, Marti-Renom MA. A kernel for open source drug discovery in tropical diseases. PLoS Negl Trop Dis 2009;3(4):e418.
  175. ^ Keating C (December 2014). "Ken Warren and the Rockefeller Foundation's great neglected diseases network, 1978–1988: the transformation of tropical and global medicine". Molecular Medicine. 20 (Suppl 1): S24-30. doi:10.2119/molmed.2014.00221. PMC 4374516. PMID 25549230.

External links

  • WHO – Control of neglected tropical disease
  • PLOS Neglected Tropical Diseases
  • United Nations World Health Organization
  • U.S. Food and Drug Administration
  • India’s neglected tropical diseases
  • Neglected tropical disease targets must include morbidity
  • Global health policy and neglected tropical diseases: Then, now, and in the years to come

neglected, tropical, diseases, this, article, require, copy, editing, grammar, style, cohesion, tone, spelling, assist, editing, june, 2022, learn, when, remove, this, template, message, ntds, diverse, group, tropical, infections, that, common, income, populat. This article may require copy editing for grammar style cohesion tone or spelling You can assist by editing it June 2022 Learn how and when to remove this template message Neglected tropical diseases NTDs are a diverse group of tropical infections that are common in low income populations in developing regions of Africa Asia and the Americas 2 They are caused by a variety of pathogens such as viruses bacteria protozoa and parasitic worms helminths These diseases are contrasted with the big three infectious diseases HIV AIDS tuberculosis and malaria which generally receive greater treatment and research funding 3 In sub Saharan Africa the effect of neglected tropical diseases as a group is comparable to that of malaria and tuberculosis 4 NTD co infection can also make HIV AIDS and tuberculosis more deadly 5 Neglected tropical diseasesNumber of people requiring interventions against neglected tropical diseases in 2015 1 SpecialtyInfectious diseaseSome treatments for NTDs are relatively inexpensive For example the treatment for schistosomiasis is US 0 20 per child per year 6 Nevertheless in 2010 it was estimated that control of neglected diseases would require funding of between US 2 billion and 3 billion over the subsequent five to seven years 7 Some pharmaceutical companies have committed to donating all the drug therapies required and mass drug administration efforts for example mass deworming have been successful in several countries 8 While preventive measures are often more accessible in the developed world they are not universally available in poorer areas 9 Within developed countries neglected tropical diseases affect the very poorest in society In the United States there are up to 1 46 million families including 2 8 million children living on less than two dollars a day 10 In developed countries the burdens of neglected tropical diseases are often overshadowed by other public health issues However many of the same issues put populations at risk in developed as well as developing nations For example other problems stemming from poverty such as lack of adequate housing can expose individuals to the vectors of these diseases 11 Twenty neglected tropical diseases are prioritized by the World Health Organization WHO though other organizations define NTDs differently Chromoblastomycosis and other deep mycoses scabies and other ectoparasites and snakebite envenomation were added to the list in 2017 12 These diseases are common in 149 countries affecting more than 1 4 billion people including more than 500 million children 13 and costing developing economies billions of dollars every year 14 They resulted in 142 000 deaths in 2013 down from 204 000 deaths in 1990 15 Contents 1 Reasons for neglect 1 1 Stigma 1 2 Economic incentives 1 3 Developed nations 2 List of diseases 2 1 Buruli ulcer 2 2 Chagas disease 2 3 Dengue and chikungunya 2 4 Dracunculiasis 2 5 Echinococcosis 2 6 Yaws 2 7 Foodborne trematodiases 2 8 Human African trypanosomiasis 2 9 Leishmaniasis 2 10 Leprosy 2 11 Lymphatic filariasis 2 12 Onchocerciasis 2 13 Rabies 2 14 Schistosomiasis 2 15 Soil transmitted helminthiasis 2 16 Taeniasis cysticercosis 2 17 Trachoma 2 18 Chromoblastomycosis and other deep mycoses 2 19 Scabies 2 20 Snakebite envenoming 3 Effects for patients 3 1 Social effects 3 1 1 Social stigma 3 1 2 Mental health 3 1 3 Gender 3 2 Economic effects 3 3 Health effects 3 3 1 Coinfection 4 Prevention treatment and eradication 4 1 Policy initiatives 4 1 1 WHO Roadmap of 2012 4 1 2 Others 4 2 Deworming treatment 4 3 Integration of treatment 4 4 Integration with WASH programs 4 5 Pharmaceutical market 4 6 NGO initiatives 4 7 Public private initiatives 4 7 1 London Declaration on Neglected Tropical Diseases 4 7 2 Kigali Declaration on Neglected Tropical Diseases 4 8 Others 5 Epidemiology 6 Research and development 6 1 Deficient market 6 2 Policy initiatives 6 2 1 Public private partnerships 6 2 2 R amp D capacity building in middle income countries 6 2 3 Innovation prizes and grants 6 2 4 FDA priority review vouchers PRV 6 2 5 Open source collaboration initiatives 7 History 8 See also 9 References 10 External linksReasons for neglect EditThe importance of neglected tropical diseases has been underestimated since many are asymptomatic and have long incubation periods The connection between death and a neglected tropical disease that has been latent for a long period is not often realized 16 Areas of high endemicity are often in geographically isolated areas making treatment and prevention much more difficult 17 These diseases have been overlooked because they mainly affect the poorest countries of the developing world and because of the recent emphasis on decreasing the prevalence of HIV AIDS tuberculosis and malaria 18 Far more resources are given to the big three diseases HIV AIDS tuberculosis and malaria because of their higher mortality and public awareness rates Neglected tropical diseases do not have a prominent cultural figure to champion the cause 17 19 Stigma Edit Neglected tropical diseases are often associated with social stigma making their treatment more complex Public health research has only recently begun to focus on stigma as a component of the issue From the 1960s onward approximately one citation a year related to social stigma In 2006 there were 458 20 Disease control is greatly affected by this stigma as it decreases help seeking and treatment adherence 21 Disease control programs starting as early as the 1980s have begun to integrate stigma mitigation into their offerings In India the leprosy program prioritized the message that leprosy is curable not hereditary in order to inspire optimism in highly affected communities The goal was to make leprosy a disease like any other so as to reduce stigma At the same time medical resources available in the area were optimized to fulfill the curable promise made 20 Economic incentives Edit Neglected tropical diseases are not commercial and consequently patents and profit play no role in stimulating innovation Like all non commercial areas these diseases are the responsibility of governments and philanthropy including industry philanthropy 22 Currently the pharmaceutical industry views research and development as highly risky For this reason resources are not often put into the field of NTDs as diseases of the poor and new chemical products are often expensive A review of public and private initiatives found that of the 1 393 new chemical products that were marketed between 1975 and 1999 only 16 were related to tropical diseases and tuberculosis The same review additionally found that there was a 13 fold greater chance of a drug entering the market being for central nervous system disorders or cancer than an NTD 23 Due to a lack of economic incentives for the pharmaceutical industry successful NTD treatment programs have often relied on donations The Mectizan Donation Program has donated over 1 8 billion tablets of ivermectin 24 While developed countries will often rely on government run and private partnerships to fund such projects developing nations frequently have significantly lower per person spending on these diseases 23 A 2006 report found that the Gates Foundation funded most extra activities to counter these diseases 25 26 Developed nations Edit Since 2008 the concept of neglected diseases of poverty has been developed and explored 27 This group of diseases overlaps with the neglected tropical diseases which also pose a threat to human health in developed nations In the United States alone there are at least 12 million people with these neglected parasitic infections 27 They make up a hidden disease burden among the poorest of wealthy societies 9 In developed nations lack of knowledge in the healthcare industry and lack of conclusive diagnostic tests perpetuate the neglect of this group of diseases 28 In the United States high rates of parasitic infection can be distributed along geographic racial and socio economic lines Within the African American community there may be up to 2 8 million cases of toxocariasis Rates of toxocariasis trichomoniasis and other neglected infections occur in the United States at the same rate as in Nigeria Within the Hispanic community neglected infections are concentrated near the US Mexico border Vector borne illnesses are especially high with some rates approaching those of Latin America Chagas disease was found in the US as early as the 1970s 29 However in the developed world diseases that are associated with poverty are often not addressed comprehensively This may be due to a lack of economic incentives and public policy failings Here a lack of awareness prevents effective policy generation and leaves healthcare services unequipped to address the issue Additionally there is little effort put into taking and maintaining large data sets on neglected diseases in the United States and other developed nations The first summit on the issue was held by the Adler Institute on Social Exclusion in the United States in 2009 9 In Europe a similar trend is seen Neglected tropical diseases are concentrated in eastern and southern Europe where poverty levels are the highest The most prevalent diseases in this region are ascariasis trichuriasis zoonotic helminth infections and visceral leishmaniasis Migration paths to Europe most notably to Spain have brought diseases to Europe as well As many as 6 000 cases of Chagas disease have been introduced via this method In response to a growing awareness of the burden on these populations the European Centre for Disease Prevention and Control has laid out ten public health guidelines They cover a variety of topics from health education and promotion to community partnerships and the development of a minority healthcare workforce 9 List of diseases EditThere is some debate among the WHO CDC and infectious disease experts over which diseases are classified as neglected tropical diseases Feasey a researcher in neglected tropical diseases notes 13 neglected tropical diseases ascariasis Buruli ulcer Chagas disease dracunculiasis hookworm infection human African trypanosomiasis leishmaniasis leprosy lymphatic filariasis onchocerciasis schistosomiasis trachoma and trichuriasis 18 Fenwick recognizes 12 core neglected tropical diseases the same as above excluding hookworm 16 These diseases result from four different classes of causative pathogens i protozoa for Chagas disease human African trypanosomiasis and leishmaniases ii bacteria for Buruli ulcer leprosy trachoma and yaws iii helminths or metazoan worms for cysticercosis taeniasis dracunculiasis echinococcosis foodborne trematodiases lymphatic filariasis onchocerciasis schistosomiasis and soil transmitted helminthiasis and iv viruses dengue and chikungunya rabies citation needed The World Health Organization recognizes the twenty diseases below as neglected tropical diseases 30 WHO 31 CDC 32 PLOSMajor NTDs 33 Buruli ulcerChagas diseaseDengue amp Chikungunya DracunculiasisEchinococcosisYawsFascioliasisAfrican trypanosomiasisLeishmaniasisLeprosyLymphatic filariasisOnchocerciasisRabiesSchistosomiasisSoil transmitted helminthiasisCysticercosisTrachomaScabies and other ectoparasitesSnakebite envenomingMycetoma and deep mycoses Protozoan infections Entamoeba histolytica and Naegleria fowleri both pathogenic amoeba BabesiosisBalantidiasisChagas diseaseGiardiasisHuman African TrypanosomiasisLeishmaniasisPlasmodium vivax and other non P falciparum malariasHelminth infections DracunculiasisEchinococcosisFood borne TrematodiasesLoiasisLymphatic FilariasisOnchocerciasisOther food borne helminthiases Trichinosis Anisakiasis Gnathostomiasis SchistosomiasisSoil transmitted helminthiases Ascariasis Hookworm Diseases Trichuriasis Strongyloidiasis Taeniasis CysticercosisToxocara and Baylisascaris Visceral larva migrans Viral infections Arboviral infections Dengue Chikungunya Zika Japanese encephalitis Jungle yellow fever and others Enterovirus 71 and related virusesHTLV 1 HTLV 2 and other non HIV retrovirus infectionsRabiesRift Valley feverViral hemorrhagic feversBacterial infections Bartonella spp Atypical mycobacteria including Mycobacterium bovis and Buruli Ulcer Cholera and other enteric bacteria Shigella Salmonella E coli LeprosyLeptospirosisMelioidosisNomaRelapsing feverTrachomaYaws and other nonvenereal treponematoses Bejel and Pinta Q feverFungal infections Mycetoma chromoblastomycosis and other deep tissue mycosesParacoccidioidomycosisEctoparasites ScabiesMyiasisNon infectious diseases caused by toxin exposure PodoconiosisSnakebite envenoming Only WHOThe World Health Organization s 2010 report dedicated to neglected tropical diseases offers an expanded list including dengue rabies yaws cysticercosis echinococcosis and foodborne trematode infections 34 Neglected Tropical Diseases Worldwide Burden 35 36 Disease DALYs million Deaths Yr Global Prevalence million Population at Risk million Schistosomiasis 4 5 280 000 207 780Hookworm 22 1 65 000 576 3200Ascariasis 10 5 60 000 807 4200Leishmaniasis 2 1 51 000 12 350Trypanosomiasis 1 5 48 000 0 3 60Chagas disease 0 7 14 000 8 25Trichuriasis 6 4 10 000 604 3200Leprosy 0 2 6 000 0 4 Not DeterminedLymphatic filariasis 5 8 0 120 1300Trachoma 2 3 0 84 590Onchocerciasis 0 5 0 37 90Cryptococcosis 12 400 000 1 8Buruli ulcer Edit Main article Buruli ulcer Buruli ulcer is caused by the bacterium Mycobacterium ulcerans 37 It is related to the family of organisms that cause tuberculosis and leprosy but Mycobacterium ulcerans produces a toxin mycolactone that destroys tissue 37 The prevalence of Buruli ulcer is unknown 18 The risk of mortality is low although secondary infections can be lethal 38 Morbidity takes the form of deformity disability and skin lesions which can be prevented through early treatment and treated with antibiotics and surgery 38 It is found in Africa Asia and Latin America 39 Chagas disease Edit Main article Chagas disease A young boy from Panama with Chagas disease It has manifested as an acute infection with swelling of one eye chagoma Chagas disease is also known as American trypanosomiasis There are approximately 15 million people infected with Chagas disease 18 Morbidity rates are higher for immuno compromised individuals children and the elderly but can be very low if treated early 40 Chagas disease does not kill victims rapidly instead causing years of debilitating chronic symptoms It is caused by a vector borne 41 protozoa 40 and spread by contact with Trypanosoma cruzi infected feces of the triatomine assassin bug The protozoan can enter the body via the bug s bite skin breaks or mucous membranes Infection can result from eating infected food and coming into contact with contaminated bodily fluids 40 There are two phases of Chagas disease The acute phase is usually asymptomatic The first symptoms are usually skin chancres unilateral purplish orbital oedema local lymphadenopathies and fever accompanied by a variety of other symptoms depending on the infection site 40 The chronic phase occurs in 30 percent of total infections 18 and can take three forms which are asymptomatic most prevalent cardiac and digestive lesions 40 Chagas disease can be prevented by avoiding insect bites through insecticide spraying home improvement bed nets hygienic food medical care laboratory practices and testing 40 It can be treated with medication although these may have severe side effects 40 It can be diagnosed through a serological test although the test is not very accurate 18 Dengue and chikungunya Edit Main article Dengue fever There are 50 100 million dengue virus infections annually 42 Dengue fever is usually not fatal but infection with one of four serotypes can increase later susceptibility to other serotypes resulting in a potentially fatal disease called severe dengue 42 Dengue fever is caused by a flavivirus and is spread mostly by the bite of the Aedes aegypti mosquito 42 No treatment for either dengue or severe dengue exists beyond palliative care 42 The symptoms are high fever and flu like symptoms 42 It is found in Asia Latin America and Northern Australia 42 Chikungunya is an arboviral disease transmitted by A albopictus and A aegypti mosquitoes The virus was first isolated from an outbreak in Tanzania in 1952 43 Chikungunya virus is a member of the genus Alphavirus and family Togaviridae 43 The word chikungunya is from the Makonde language and means that which bends up referring to the effect of the debilitating joint pain on the patient 43 Symptoms generally appearing 5 7 days after exposure can be confused with dengue and include fever rash headache joint pain and swelling 44 The disease mainly occurs in Africa and Asia 45 Dracunculiasis Edit Main article Dracunculiasis Dracunculus medinensis larvae Dracunculiasis is also known as Guinea worm disease In 2019 53 cases were reported across four countries 46 a substantial decrease from 3 500 000 cases in 1986 47 It is not fatal but can cause months of inactivity 48 It is caused by drinking water contaminated by water fleas infected with guinea worm larvae 48 Approximately one year after infection a painful blister forms and one or more worms emerge Worms can be up to 1 metre long 48 It is usually treated by World Health Organization volunteers who clean and bandage wounds caused by worms and return daily to pull the worm out a few more inches 48 Dracunculiasis is preventable by water filtration immediate case identification to prevent the spread of disease health education and treating ponds with larvicide An eradication program has been able to reduce prevalence 48 As of 2014 update the four endemic countries are Chad Ethiopia Mali and South Sudan 48 Echinococcosis Edit Main article Echinococcosis Lifecycle of Echinococcus The rate of echinococcosis is higher in rural areas and there are more than one million people infected currently 49 Untreated alveolar echinococcosis is fatal 50 It is caused by ingesting parasites in animal feces 51 There are two versions of the disease cystic and alveolar Both versions involve an asymptomatic incubation period of several years In the cystic version liver cysts cause abdominal pain nausea and vomiting while cysts in the lungs cause chronic cough chest pain and shortness of breath In alveolar echinococcosis a primary cyst develops usually in the liver in addition to weight loss abdominal pain general feeling of ill health and signs of liver failure 50 Surgery and drugs can both be used to treat echinococcosis 50 It can be prevented by deworming dogs sanitation proper disposal of animal feces health education and livestock vaccination 52 Cystic echinococcosis is found in the eastern portion of the Mediterranean region northern Africa southern and eastern Europe the southern portion of South America and Central Asia Alveolar echinococcosis is found in western and northern China Russia Europe and northern North America 51 It can be diagnosed through imaging techniques and serological tests 52 Yaws Edit Main article Yaws A child with yaws There are limited data available on the prevalence of yaws although it primarily affects children 53 The mortality risk is very low but the disease causes disfigurement and disability if untreated 53 The most common symptom is skin lesions 53 It is a chronic bacterial infection transmitted by skin contact and caused by the spirochete bacterium Treponema pallidum pertenue 53 It is treated with antibiotics and can be prevented through improved hygiene and sanitation 53 Yaws is most prevalent in the warm moist tropical regions of the Americas Africa Asia and the Pacific 53 Foodborne trematodiases Edit The foodborne trematode infections include clonorchiasis opisthorchiasis fascioliasis and paragonimiasis These infections are all zoonotic primarily affecting domestic or wild animals but can also be transmitted to humans They are acquired by eating food such as raw fish contaminated with the larval stages of the parasites At least 40 million people are thought to be infected 54 Fasciola hepatica Human African trypanosomiasis Edit Main article African trypanosomiasis African trypanosomiasis African sleeping sickness is a somewhat rare protozoal disease as there are fewer than 10 000 cases currently 55 Human African trypanosomiasis is vector borne and spreads through the bite of the tsetse fly 41 The most common symptoms are fever headache lymphadenopathy nocturnal sleeping pattern personality changes cognitive decline and coma The disease is always fatal if untreated The current forms of treatment are highly toxic and ineffective as resistance is spreading It is diagnosed through an inexpensive serological test medical citation needed Lifecycle of African Trypanosomiasis Leishmaniasis Edit Main article Leishmaniasis Lifecycle of Leishmaniasis The three forms of leishmaniasis a protozoal disease are visceral Kala azar cutaneous and mucocutaneous 56 There are an estimated 12 million people infected 18 It is fatal if untreated and 20 000 deaths from visceral leishmaniasis occur annually 57 It is a vector borne disease that is caused by the bite of sandflies 41 At least 90 percent of visceral leishmaniasis occurs in Bangladesh Brazil Ethiopia India South Sudan and Sudan Cutaneous leishmaniasis occurs in Afghanistan Algeria Brazil Colombia Iran Pakistan Peru Saudi Arabia and Syria Around 90 percent of mucocutaneous leishmaniasis occurs in Bolivia Brazil and Peru 56 The only method of prevention is a vaccine that is under development and prevention of sandfly bites Diagnosis can be made by identifying clinical signs serological tests or parasitological tests 58 Leishmaniasis can be treated with expensive medications 59 Leprosy Edit Main article Leprosy According to recent figures from the WHO 208 619 new cases of leprosy were reported in 2018 from 127 countries 60 It is most prevalent in India 69 of cases Brazil Indonesia Nigeria the Democratic Republic of the Congo Madagascar and East Africa from Mozambique to Ethiopia with the highest relative incidence in India Brazil and Nepal 61 There are one to two million individuals currently disabled or disfigured due to past or present leprosy 62 It is caused by bacteria and transmitted through droplets from the mouth and nose of infected individuals 63 Leprosy causes disfigurement and physical disabilities if untreated It is curable if treated early 62 Treatment requires multidrug therapy 61 The BCG vaccine has some preventative effect against leprosy Leprosy has a 5 20 year incubation period and the symptoms are damage to the skin nerves eyes and limbs 63 Hands deformed by leprosy Lymphatic filariasis Edit Main article Lymphatic filariasis Elephantiasis Lymphatic filariasis is also known as elephantiasis There are approximately 120 million individuals infected 64 and 40 million with deformities 16 Approximately two thirds of cases are in Southwest Asia and one third in Africa 64 Lymphatic filariasis is rarely fatal 65 Lymphatic filariasis has lifelong implications such as lymphoedema of the limbs genital disease and painful recurrent attacks Most people are asymptomatic but have lymphatic damage Up to 40 percent of infected individuals have kidney damage 66 It is a vector borne disease caused by nematode worms that are transmitted by mosquitoes 41 66 It can be treated with cost effective antihelminthic treatments 67 and washing skin can slow or even reverse damage 68 It is diagnosed with a finger prick blood test 65 Onchocerciasis Edit Main article Onchocerciasis Onchocerca volvulus emerging from a black fly Onchocerciasis is also known as river blindness There are 20 9 million people infected 69 and prevalence is higher in rural areas 70 Over 99 percent of cases are in sub Saharan Africa 70 It causes blindness skin rashes lesions intense itching and skin depigmentation 71 It is a vector borne disease caused by filarial worm infected blackflies 41 71 It can be treated with ivermectin 71 It can be prevented by insecticide spraying or preventative dosing with ivermectin 70 The symptoms are generally itching and skin lesions 70 Rabies Edit Main article Rabies Rabies virusThere are two forms of rabies furious and paralytic There are 60 000 deaths from rabies annually 72 It is mostly found in Asia and Africa 72 There is a higher prevalence in rural areas and it disproportionately affects children 73 Rabies is fatal after symptoms develop 74 It is caused by a lyssavirus transmitted through wounds or bites from infected animals 73 The first symptoms are fever and pain near the infection site which occur after a one to three month incubation period Furious rabies the more common type causes hyperactivity hydrophobia and aerophobia death by cardio respiratory arrest occurs within days Paralytic rabies causes a slow progression from paralysis to coma to death 73 It can be prevented in dogs by vaccination 73 and cleaning and disinfecting bite wounds post exposure prophylaxis 74 Rabies is undiagnosable before symptoms develop It can be detected through tissue testing after symptoms develop 73 Schistosomiasis Edit Main article Schistosomiasis 11 year old Filipino boy with ascites due to schistosomiasisThere are over 200 million cases of schistosomiasis 16 Approximately 85 percent of cases are in sub Saharan Africa 16 The disease can be fatal by causing bladder cancer and hematemesis 16 Schistosoma species have a complex life cycle that alternates between humans and freshwater snails Infection occurs when the skin comes into contact with contaminated fresh water in which the snails that carry the parasite are living Symptoms for schistosomiasis are not caused by the worms but by the body s reaction to the eggs The eggs that do not pass out of the body can become lodged in the intestine or bladder causing inflammation or scarring Children who are repeatedly infected can develop anemia malnutrition and learning difficulties 75 The symptoms are usually haematuria bladder obstruction renal failure bladder cancer periportal fibrosis bladder fibrosis liver fibrosis portal hypertension cervical lesions ascites and esophageal varices 18 16 Inexpensive praziquantel can be used to treat individuals with schistosomiasis but it cannot prevent reinfection The cost of prevention is US 0 32 per child per year 16 Mass deworming treatment with praziquantel better access to safe water sanitation and health education can all be used to prevent schistosomiasis 18 Vaccines are under development It can be diagnosed through a serological test but it often produces false negatives 16 Soil transmitted helminthiasis Edit Main article Soil transmitted helminthiasis Adult ascaris worms being removed from the bile duct of a patient in South Africa Soil transmitted helminthiasis is the most prevalent neglected tropical disease 76 The three major worm species responsible for soil transmitted helminthiasis are Ascaris roundworms Trichuris whipworm the hookworms Necator americanus and Ancylostoma duodenale and Strongyloides stercoralis 77 There are 1 5 billion people currently infected 77 Soil transmitted heminthiasis occurs in sub Saharan Africa the Americas China and East Asia 77 The mortality risk is very low 18 The most common symptoms are anemia stunted growth intestinal problems lack of energy and compromised physical and cognitive development 18 77 Infected children often fall behind in schooling 18 The severity of symptoms depends on the number of worms in the body 77 Parasitic worms are generally transmitted via exposure to infected human feces and soil that are spread in the environment for example due to open defecation 77 The most common treatment is medicine 77 It can be prevented through hygienically prepared food and clean water improved sanitation periodic deworming and health education 77 The World Health Organization recommends mass deworming without prior diagnosis 77 Taeniasis cysticercosis Edit Main article Cysticercosis Cysticercosis is a tapeworm larvae infection while taeniasis is infection with adult tapeworms 78 Both are found in Asia Africa and Latin America particularly on farms in which pigs are exposed to human excrement 79 Cysticercosis is the most common preventable cause of epilepsy in the developing world 79 Cysticercosis occurs after ingestion of contaminated food water or soil 78 Cysts and lesions can cause headaches blindness seizures hydrocephalus meningitis and dementia 80 Neurocysticercosis or the parasitic infection of the nervous system can be fatal Taeniasis is not fatal 79 80 It is usually contracted after eating undercooked contaminated pork Taeniasis has mild symptoms including abdominal pain nausea diarrhea or constipation citation needed Drugs are used to treat both diseases 80 Infection can be prevented through stricter meat inspection standards livestock confinement improved hygiene and sanitation health education safe meat preparation and identifying and treating human and pig carriers 81 Trachoma Edit Main article Trachoma There are 21 4 million people infected with trachoma of whom 2 2 million are partially blind and 1 2 million are blind It is found in Africa Asia Central and South America the Middle East and Australia 82 The disease disproportionately affects women and children 82 The mortality risk is very low although multiple re infections eventually lead to blindness 18 82 The symptoms are internally scarred eyelids followed by eyelids turning inward 82 Trachoma is caused by a micro organism that spreads through eye discharges on hands cloth etc and by eye seeking flies 82 It is treated with antibiotics The only known prevention method is interpersonal hygiene citation needed Chromoblastomycosis and other deep mycoses Edit Main article Chromoblastomycosis Scabies Edit This section is an excerpt from Scabies edit Magnified view of a burrowing trail of the scabies mite The scaly patch on the left was caused by scratching and marks the mite s entry point into the skin The mite has burrowed to the top right where it can be seen as a dark spot at the end Scabies ˈ s k eɪ b iː z ˈ s k eɪ b i iː z 83 also sometimes known as the seven year itch 84 is a contagious skin infestation by the mite Sarcoptes scabiei 84 85 The most common symptoms are severe itchiness and a pimple like rash 86 Occasionally tiny burrows may appear on the skin 86 In a first ever infection the infected person usually develops symptoms within two to six weeks 86 During a second infection symptoms may begin within 24 hours 86 These symptoms can be present across most of the body or just certain areas such as the wrists between fingers or along the waistline 86 The head may be affected but this is typically only in young children 86 The itch is often worse at night 86 Scratching may cause skin breakdown and an additional bacterial infection in the skin 86 Snakebite envenoming Edit Main article Snakebite Snakebite was added to the list in 2017 after years of criticism of the WHO by activists for not making it a priority 87 The greatest burden of snakebite morbidity is in India and Southeast Asia Globally there are an estimated 421 000 envenomings each year about 1 in 4 snakebites and 20 000 deaths but snakebites often go unreported 88 This section is an excerpt from Snakebite edit A rattlesnake bite on the foot of a 9 year old girl in Venezuela A snakebite is an injury caused by the bite of a snake especially a venomous snake 89 A common sign of a bite from a venomous snake is the presence of two puncture wounds from the animal s fangs 90 Sometimes venom injection from the bite may occur 91 This may result in redness swelling and severe pain at the area which may take up to an hour to appear 90 92 Vomiting blurred vision tingling of the limbs and sweating may result 90 92 Most bites are on the hands arms or legs 92 93 Fear following a bite is common with symptoms of a racing heart and feeling faint 92 The venom may cause bleeding kidney failure a severe allergic reaction tissue death around the bite or breathing problems 90 91 Bites may result in the loss of a limb or other chronic problems or even death 94 91 Effects for patients EditSocial effects Edit Social stigma Edit Several NTDs such as leprosy cause severe deformities that result in social stigma Stigma is considered to be the hidden burden of neglected tropical diseases and is not accounted for in measures such as disability adjusted life years DALYs Other NTDs that carry heavy social stigma include onchocerciasis lymphatic filariasis plague Buruli ulcer leishmaniasis and Chagas disease 20 Lymphatic filariasis for example causes severe deformities that can result in denial of marriage and inability to work 16 Studies in Ghana and Sri Lanka have demonstrated that support groups for patients with lymphatic filariasis can increase participants self esteem quality of life and social relations through social support and providing practical advice on how to manage their illness The social effects of neglected tropical diseases have been shown to affect men and women in different ways Men are socially stigmatized in a way that detrimentally affects their economic prospects Women are more likely to be affected in the areas of marriage and family 20 Mental health Edit A 2012 review found that infection with a neglected tropical disease predisposes individuals to poor mental health This is partially due to the social stigma that surrounds NTDs but is also likely caused by the subsequent lack of access to health and social services Overall being a member of the infected community was found to cut individuals off from multiple aspects of society via civic rights educational opportunities and employment 95 A high prevalence of post traumatic stress disorder PTSD and depression was found in those affected with snakebite survivors 96 There is a need for more research be directed to understanding the psychological aspects of neglected tropical diseases in order to fully untangle their co effects 95 and on how they can be dealt with better in health systems in countries where mental health professionals are scarce 96 Gender Edit NTDs disproportionately affect women and children 97 There is also the added risk of hookworm infection during pregnancy and the potential to transfer diseases such as Chagas during pregnancy A study in Uganda found that women were more easily able to obtain treatment because they had fewer occupational responsibilities than men and were more trusting of treatment but ignorance of the effects of medicines on pregnant women prevented adequate care The paper concludes that gender should be considered when designing treatment programs in Uganda 98 Additionally women often bear a heavier social stigma in relation to the pressure to marry 16 dubious discuss failed verification Economic effects Edit The cost of treatment of some of these diseases such as Buruli ulcer can amount to over twice the yearly income of an average household in the lowest income quartile while for the highest income quartile the burden is slightly less than the average household income These enormous financial costs often cause deferral of treatment and financial ruin but there is inequality between the wealthy and poor in terms of economic burden These diseases also cost the government in terms of healthcare and lost worker productivity through morbidity and shortened life spans In Kenya for example deworming is estimated to increase average adult income by 40 percent which is a benefit to cost ratio of 100 Each untreated case of trachoma is estimated to cost US 118 in lost productivity Each case of schistosomiasis causes a loss of 45 4 days of work per year Most of the diseases cost the economies of various developing countries millions of dollars Large scale prevention campaigns are predicted to increase agricultural output and education levels 99 The low cost of treatment for NTDs can be attributed to the large scale of the programs free provision of drugs by pharmaceutical companies delivery modes of drugs and the unpaid volunteers who distribute the drugs The economic burden of NTDs is undervalued and therefore the corresponding economic effect and cost effectiveness of a decreased prevalence of NTDs is underestimated 99 The investment return on measures to control neglected tropical diseases is estimated to be between 14 and 30 percent depending on the disease and region 100 Health effects Edit Coinfection Edit Coinfection is a major concern with neglected tropical diseases making NTDs more damaging than their mortality rates might portray Because the factors that support neglected tropical diseases poverty inadequate healthcare inadequate sanitation practices etc support all NTDs they are often found in overlapping distributions Helminth infections as the most common infection of humans are often found to be in multi infection systems For example in Brazil low socioeconomic status contributes to overcrowded housing In these same areas coinfection by Necator americanus and Schistosoma mansoni is common The effect of each worm weakens the immune system of those infected making infection from the other easier and more severe For this reason coinfection carries a higher risk of mortality NTDs may also play a role in infection with other diseases such as malaria HIV AIDS and tuberculosis The ability of helminths to manipulate the immune system may create a physiological environment that could exacerbate the progression of HIV AIDS 101 Some evidence from Senegal Malawi and Thailand has shown that helminth infections raise the risk of malarial infection 102 Prevention treatment and eradication Edit Eliminating NTDs in Cote d Ivoire through education and distribution of anti parasitic drugs Prevention and eradication are important because of the appalling stigma disfigurement blindness and disabilities caused by NTDs 16 The possibility of eliminating or eradicating dracunculiasis leprosy lymphatic filariasis onchocerciasis trachoma sleeping sickness visceral leishmaniasis and canine rabies within the next ten years was the principal aim of the London Declaration on Neglected Tropical Diseases which is a collaborative effort involving the WHO the World Bank the Bill amp Melinda Gates Foundation the world s 13 leading pharmaceutical companies and government representatives from the US UK United Arab Emirates Bangladesh Brazil Mozambique and Tanzania It was launched in January 2012 3 While the current era has had a noticeable uptick in biological research into neglected tropical diseases prevention may be supplemented by social and development outreach Spiegal and his coauthors advocated for this to take the form of social offset Social offset entails the delegation of some of the funding for biotechnological research to social programs The attempts to alleviate some of the surrounding factors such as poverty poor sanitation overcrowding poor healthcare etc that greatly exacerbate the conditions brought on by neglected tropical diseases Projects such as these also strengthen the goal of sustained eliminations rather than quickly addressing symptoms 103 Policy initiatives Edit There are many prevention and eradication campaigns funded for example by the World Health Organization US Agency for International Development Bill amp Melinda Gates Foundation and UK Department for International Development 16 Sustainable Development Goal 3 has this target to eradicate NTDs By 2030 end the epidemics of AIDS tuberculosis malaria and neglected tropical diseases and combat hepatitis water borne diseases and other communicable diseases 104 WHO Roadmap of 2012 Edit In 2012 WHO published an NTD roadmap which contained milestones for 2015 and 2020 and specified targets for eradication elimination and intensified control of the different NTDs 105 For example NTDs planned to be eradicated dracunculiasis by the year 2015 endemic treponematoses yaws by 2020 NTDs planned to be eliminated globally by 2020 blinding trachoma leprosy human African trypanosomiasis and lymphatic filariasis NTDs planned to be eliminated in certain regions rabies by 2015 in Latin America by 2020 in Southeast Asia and the western Pacific Chagas disease transmission through blood transfusion by 2015 intra domiciliary transmission by 2020 in the Americas visceral leishmaniasis by 2020 in the Indian subcontinent onchocerciasis by 2015 in Latin America and schistosomiasis by 2015 in the eastern Mediterranean region the Caribbean Indonesia and the Mekong River basin by 2020 in the Americas and western Pacific NTDs planned to be eliminated in certain countries human African trypanosomiasis by 2015 in 80 percent of areas in which it occurs onchocerciasis by 2015 in Yemen by 2020 in selected countries in Africa and schistosomiasis by 2020 in selected countries in Africa Intensified control with specific targets for 2015 and 2020 are provided for these NTDs dengue Buruli ulcer cutaneous leishmaniasis taeniasis cysticercosis and echinococcosis hydatidosis foodborne trematode infections and soil transmitted helminthiasesOthers Edit The U S Food and Drug Administration priority review voucher is an incentive for companies to invest in new drugs and vaccines for tropical diseases A provision of the Food and Drug Administration Amendments Act HR 3580 awards a transferable priority review voucher to any company that obtains approval for a treatment for one of the listed diseases The voucher can later be used to accelerate the review of an unrelated drug This program is for all tropical diseases and includes medicines for malaria and tuberculosis The first voucher given was for Coartem a malaria treatment 106 It does not use or define the term neglected though most of the diseases listed are often included on lists of neglected diseases citation needed The prize was proposed by Duke University faculty Henry Grabowski Jeffrey Moe and David Ridley in their 2006 Health Affairs paper Developing Drugs for Developing Countries 107 In 2007 United States Senators Sam Brownback R KS and Sherrod Brown D OH sponsored an amendment to the Food and Drug Administration Amendments Act of 2007 President George W Bush signed the bill in September 2007 citation needed Deworming treatment Edit Further information Mass deworming Deworming treatments in infected children may have some nutritional benefit as worms are often partially responsible for malnutrition 16 108 However in areas where these infections are common there is strong evidence that mass deworming campaigns do not have a positive effect on children s average nutritional status levels of blood haemoglobin cognitive abilities performance at school or survival 108 To achieve health gains in the longer term improvements in sanitation and hygiene behaviours are also required together with deworming treatments citation needed The effect of mass deworming on school attendance is disputed It has been argued that mass deworming has a positive effect on school attendance 16 The long term benefits of deworming include a decrease in school absenteeism by 25 percent and an increase in adult earnings by 20 percent 109 A systematic review however found that there is little or no difference in attendance in children who receive mass deworming compared to children who did not 110 One study found that boys were enrolled in primary school for more years than boys who were in schools that did not offer such programs Girls in the same study were about a quarter more likely to attend secondary school if they received treatment Both groups went on to participate in more skilled sectors of the labor market The economic growth generated from school programs such as this may balance out the actual expenses of the program 111 However the results of this study are disputed i a due to a high risk of bias in the study and the positive long term outcomes of mass deworming remain unclear 110 Integration of treatment Edit School nurse checks student s health in Kenya Inclusion of NTDs into initiatives for malaria HIV AIDS and tuberculosis as well as integration of NTD treatment programs may have advantages given the strong link between these diseases and NTDs 3 102 112 Some neglected tropical diseases share common vectors sandflies black flies and mosquitos 102 Both medicinal and vector control efforts may be combined 113 A four drug rapid impact package has been proposed for widespread proliferation Administration may be made more efficient by targeting multiple diseases at once rather than separating treatment and adding work to community workers This package is estimated to cost US 0 40 per patient When compared to stand alone treatment the savings are estimated to be 26 47 While more research must be done in order to understand how NTDs and other diseases interact in both the vector and the human stages safety assessments have so far produced positive results 102 Many neglected tropical diseases and other prevalent diseases share common vectors creating another opportunity for treatment and control integration One such example of this is malaria and lymphatic filariasis Both diseases are transmitted by the same or related mosquito vectors Vector control through the distribution of insecticide treated nets reduces human contact with a wide variety of disease vectors Integrated vector control may also alleviate pressure on mass drug administration especially with respect to rapidly evolving drug resistance Combining vector control and mass drug administration deemphasizes both making each less susceptible to resistance evolution 113 Integration with WASH programs Edit Further information WASH Health aspects Water sanitation and hygiene WASH interventions are essential in preventing many NTDs such as soil transmitted helminthiasis 114 Mass drug administrations alone will not protect people from re infection A more holistic and integrated approach to NTDs and WASH efforts will benefit both sectors along with the communities they are aiming to serve This is especially true in areas that are endemic with more than one NTD 114 In August 2015 the World Health Organization unveiled a global strategy and action plan to integrate WASH with other public health interventions in order to accelerate the elimination of NTDs 115 The plan aims to intensify control or eliminate certain NTDs in specific regions by 2020 and refers to the NTD roadmap milestones from 2012 that include for example eradication of dracunculiasis by 2015 and of yaws by 2020 elimination of trachoma and lymphatic filariasis as public health problems by 2020 and intensified control of dengue schistosomiasis and soil transmitted helminthiases 28 Closer collaboration between WASH and NTD programmes can lead to synergies They can be achieved through collaborative planning delivery and evaluation of programmes strengthening and sharing of evidence and using monitoring tools to improve the equity of health services 116 Reasons why WASH plays an important role in NTD prevention and patient care include 28 NTDs affect more than one billion people in 149 countries They occur mainly in regions with a lack of basic sanitation About 2 4 billion people worldwide do not have adequate sanitation facilities 663 million do not have access to improved drinking water sources 117 One leading cause of preventable blindness is trachoma The bacterial infection is transmitted through contact with eye seeking flies fingers and fomites Prevention components are facial cleanliness which requires water for face washing and environmental improvement which includes safe disposal of excreta to reduce fly populations 118 Improved sanitation prevents soil transmitted helminthiases It impedes fecal pathogens such as intestinal worm eggs from contaminating the environment and infecting people through contaminated food water dirty hands and direct skin contact with the soil 119 Improved sanitation and water management can contribute to reducing the proliferation of mosquitoes that transmit diseases such as lymphatic filariasis dengue and chikungunya Breeding of the Culex mosquito which transmits filarial parasites is facilitated through poorly constructed latrines Breeding of the Aedes aegypti and Aedes albopictus mosquitoes which transmit dengue and chikungunya can be prevented through safe storage of water 120 Feces and urine that contain worm eggs can contaminate surface water and lead to transmission of schistosomiasis This can be prevented through improved sanitation Not only human but also animal cow buffalo urine or feces can transmit some schistosome species Therefore it is important to protect freshwater from animals and animal waste 121 Treatment of many NTDs require clean water and hygienic conditions for healthcare facilities and households For guinea worm Buruli ulcer or cutaneous leishmaniasis wound management is needed to speed up healing and reduce disability Lymphatic filariasis causes chronic disabilities People who have this disease need to maintain rigorous personal hygiene with water and soap to prevent secondary infections 122 NTDs that lead to permanent disabilities make tasks such as carrying water long distances or accessing toilets difficult However people affected by these diseases often face stigma and can be excluded from accessing water and sanitation facilities This increases their risk of poverty and severe illness Clean water and soap are essential for these groups to maintain personal hygiene and dignity Therefore additional efforts to reduce stigma and exclusion are needed In this manner WASH can improve the quality of life of people affected by NTDs 123 In a meta analysis safe water was associated with significantly reduced odds of Schistosoma infection and adequate sanitation was associated with significantly lower odds of infection with both S mansoni and S haematobium 124 A systematic review and meta analysis showed that better hygiene in children is associated with lower odds of trachoma Access to sanitation was associated with 15 percent lower odds of active trachoma and 33 percent lower odds of C trachomatis infection of the eyes 125 Another systematic review and meta analysis found a correlation between WASH access and practices and lower odds of soil transmitted helminthiasis infections by 33 to 77 percent Persons who washed their hands after defecating were less than half as likely to be infected as those who did not 126 Traditionally preventive chemotherapy is used as a measure of control although this measure does not stop the transmission cycle and cannot prevent reinfection In contrast improved sanitation can 127 Pharmaceutical market Edit Biotechnology companies in the developing world have targeted neglected tropical diseases due to a need to improve global health 128 Mass drug administration is considered a possible method for eradication especially for lymphatic filariasis onchocerciasis and trachoma although drug resistance is a potential problem 129 According to Fenwick Pfizer donated 70 million doses of drugs in 2011 to eliminate trachoma through the International Trachoma Initiative 16 Merck has helped The African Programme for the Control of Onchocerciasis APOC and Oncho Elimination Programme for the Americas to greatly diminish the effect of onchocerciasis by donating ivermectin 16 Merck KGaA pledged to give 200 million tablets of praziquantel the only cure for schistosomiasis over 10 years 130 GlaxoSmithKline has donated two billion tablets of medicine for lymphatic filariasis and pledged 400 million deworming tablets per year for five years in 2010 Johnson amp Johnson has pledged 200 million deworming tablets per year 16 Novartis has pledged leprosy treatment and EISAI pledged two billion tablets to help treat lymphatic filariasis 16 NGO initiatives Edit Non governmental organizations that focus exclusively on NTDs include the Schistosomiasis Control Initiative Deworm the World and the END Fund 131 Despite under funding many neglected diseases are cost effective to treat and prevent The cost of treating a child for infection of soil transmitted helminths and schistosomes some of the main causes of neglected diseases is less than US 0 50 per year when administered as part of school based mass deworming by Deworm the World This programme is recommended by Giving What We Can and the Copenhagen Consensus Centre as one of the most efficient and cost effective solutions The efforts of the Schistosomiasis Control Initiative to combat neglected diseases include the use of rapid impact packages supplying schools with packages including four or five drugs and training teachers in how to administer them citation needed Health Action International based in Amsterdam worked with the WHO to get snakebite envenoming on the list of neglected tropical diseases 87 Public private initiatives Edit An alternative to the profit driven drug development model emerged in 2000 to address the needs of these neglected patients Product development partnerships PDPs aim at implementing and accelerating the research and development R amp D of safe and effective health tools diagnostics vaccines drugs to combat neglected diseases 132 Drugs for Neglected Disease initiative DNDi is one of these PDPs that has already developed new treatments for NTDs 133 The Sabin Vaccine Institute founded in 1993 works to address the issues of vaccine preventable diseases as well as NTDs They run three main programs Sabin Vaccine Development Global Network for Neglected Tropical Diseases and Vaccine Advocacy and Education 134 Their product development partnership affiliates them with the Texas Children s Hospital as well as the Baylor College of Medicine Their major campaign End7 aims to end seven of the most common NTDs elephantiasis river blindness snail fever trachoma roundworm whipworm and hookworm by 2020 Through End7 college campuses undertake fundraising and educational initiatives for the broader goals of the campaign 135 WIPO Re Search was established in 2011 by the World Intellectual Property Organization in collaboration with BIO Ventures for Global Health BVGH and with the active participation of leading pharmaceutical companies and other private and public sector research organizations It allows organizations to share their intellectual property compounds expertise facilities and know how royalty free with qualified researchers worldwide working on new solutions for NTDs malaria and tuberculosis 136 137 In 2013 the Government of Japan five Japanese pharmaceutical companies the Bill and Melinda Gates Foundation and the UNDP established a new public private partnership the Global Health Innovative Technology Fund They pledged over US 100 million to the fund over five years to be awarded as grants to R amp D partnerships across sectors in Japan and elsewhere working to develop new drugs and vaccines for 17 neglected diseases in addition to HIV malaria and tuberculosis 138 139 140 Affordability of the resulting drugs and vaccines is one of the key criteria for grant awards 138 London Declaration on Neglected Tropical Diseases Edit The London Declaration on Neglected Tropical Diseases initiated by the Bill and Melinda Gates Foundation launched on 30 January 2012 in London Inspired by the WHO roadmap to eradicate or prevent transmission for neglected tropical diseases it aimed to eradicate or reduce NTDs by the year 2020 141 It was endorsed by governments and organisations around the world as well as major pharmaceutical companies including Abbott AstraZeneca Bayer HealthCare Pharmaceuticals Becton Dickinson Bristol Myers Squibb Eisai Gilead Sciences GlaxoSmithKline Johnson amp Johnson Merck KGaA Merck Sharp amp Dohme MSD Novartis Pfizer and Sanofi 142 It was not a complete success but millions of lives were saved the burden of the infections was reduced and 42 countries eliminated at least one disease 143 To commemorate the programme WHO adopted 30 January as the World NTD Day 144 Kigali Declaration on Neglected Tropical Diseases Edit The Kigali Declaration on Neglected Tropical Diseases was launched at the Kigali Summit on Malaria and Neglected Tropical Diseases NTDs hosted by the Government of Rwanda at its capital city Kigali on 23 June 2022 145 It was signed as a support for the World Health Organization s 2021 30 road map for NTDs and the target of Sustainable Development Goal 3 to end NTD epidemics and as a follow up project of the London Declaration 146 Supported by WHO governments of the Commonwealth of Nations pledged the endorsement along with commitments from GSK plc Novartis and Pfizer 147 Others Edit An open access journal dedicated to neglected tropical diseases called PLoS Neglected Tropical Diseases first began publication in 2007 One of the first large scale initiatives to address NTDs came from a collaboration between Kenneth Warren and the Rockefeller Foundation Ken Warren is regarded as a pioneer in neglected tropical disease research The Great Neglected Tropical Diseases Network was a consortium of scientists from all over the world hand picked by Warren working to expand the research base in neglected diseases Many of the scientists that he recruited had not been involved in NTD research before The network ran from 1978 to 1988 Warren s vision was to establish units within biological labs across the world dedicated to R amp D By forming a critical mass of scientists in NTD research he hoped to attract new students into the field The interdisciplinary group met annually to update the community on research progress Much of the work done by this group focused on understanding the mechanisms behind infection At these informally structured meetings research partnerships were formed Warren himself encouraged these partnerships especially if they bridged the divide between developed and developing nations Through the Great Neglected Tropical Disease Network a great number of scientists were brought into the field of parasitology 148 Epidemiology EditSee also Neglected tropical diseases in India Global overlap of six of the common NTDs specifically guinea worm disease lymphatic filariasis onchocerciasis schistosomiasis soil transmitted helminths and trachoma in 2011 The distribution of neglected tropical disease disproportionally affects about one billion of the world s poorest populations 149 causing mortality disability and morbidity 150 Lack of funding resources and attention can result in treatable and preventable diseases causing death 151 Factors like political dynamics poverty and geographical conditions can make the delivery of NTD control programs difficult 149 Intersectional collaboration of poverty reduction policies and neglected tropical diseases creates cross sector approaches to simultaneously address these issues 149 The six most common NTDs include soil transmitted helminths STHs specifically roundworms Ascaris lumbricoides whipworm Trichuris trichiura and hookworms Necator americanus and Ancylostoma duodenale schistosomiasis trachoma and lymphatic filariasis LF 114 These diseases affect one sixth of the world s population with 90 percent of the disease burden occurring in sub Saharan Africa 114 Information on the frequency of neglected tropical diseases is of low quality It is currently difficult to summarize all of the information on this family of diseases One effort to do so is the Global Burden of Disease framework It aims to create a standardized method of measurement The principle components of the approach involve 1 the measuring of premature mortality as well as disability 2 the standardized usage of DALYs disability adjusted life years and 3 widespread inclusion of diseases and injury causes with the estimation of missing data 152 However the DALY has been criticized as a systematic undervaluation of disease burden King 153 asserts that DALY emphasizes the individual too much while ignoring the effects of the ecology of the disease In order for the measure to become more valid it may have to take the context of poverty more into account King also emphasizes that DALYs may not capture the non linear effects of poverty on the cost utility analysis of disease control The Socio Demographic Index SDI and Healthy Life Expectancy HALE are other summary measures that can be used to take into account other factors 154 HALE is a metric that weights years lived and health loss before death to provide a summary of population health 154 SDI is a measurement that includes lag distributed income per capita average education and fertility rate 150 Socioeconomic factors greatly influence the distribution of neglected tropical diseases and not addressing these factors in models and measurements can lead to ineffective public health policy 151 Research and development Edit The structure of two of the ivermectins an important class of drug in the control of Onchocerciasis NTD interventions include programs to address environmental and social determinants of health e g vector control water quality sanitation as well as programs offering mass drug administration for disease prevention and treatment Drug treatments exist 155 to confront many of the NTDs and represent some of the world s essential medicines 156 157 Despite significant health and economic improvements using available medicines 158 159 160 161 the low number of new compounds being researched and developed for NTDs is an ongoing and significant challenge 156 162 163 The dearth of candidates in pharmaceutical company drug pipelines is primarily attributed to the high costs of drug development and the fact that NTDs are concentrated among the world s poor 162 164 Other disincentives to investment include weak existing infrastructure for distribution and sales as well as concerns regarding intellectual property protection 161 However the major stakeholders in NTD drug development governments foundations pharmaceutical companies academia and NGOs are involved in activities to help address the research and development shortfall and meet the many challenges presented by neglected tropical diseases 165 Initiatives include public private partnerships global R amp D capacity building priority vouchers to speed drug approval processes open source scientific collaborations and harmonization of global governance structures concerning NTDs citation needed The diseases considered neglected tropical diseases vary Some researchers no longer consider malaria HIV and tuberculosis to be neglected due to the amount of public attention and increased funding they have received Outside The Big Three the seven most prevalent neglected tropical diseases in order of their global prevalence are ascariasis trichuriasis hookworm infection schistosomiasis lymphatic filariasis and trachoma 36 These seven are among a larger list of thirteen major NTDs onchocerciasis leishmaniasis Chagas disease leprosy human African trypanosomiasis sleeping sickness dracunculiasis and Buruli ulcer 36 Deficient market Edit In their 2002 review of the U S Food and Drug Administration FDA databases and the European Agency for the Evaluation of Medicinal Products Troullier et al found that 16 out of 1393 new chemical entities were approved for NTDs between 1975 and 1999 1 156 Cohen et al revisited the data and using the same methodology found 32 new chemical entities during the time period 157 In a second analysis using an expanded list of NTDs based on the G FINDER survey 166 the number was slightly higher with 46 new drugs and vaccines approved 3 of the total including HIV drugs 157 Between 2000 and 2009 there has been some increase with an additional 26 newly approved drugs and vaccines for NTDs 157 A number of factors are recognized as contributing to the low number The barrier most reported is the high cost of drug development Estimates are that pharmaceutical companies development costs to approval fall between 500 million and 2 billion 167 DiMasi Hansen and Grabowski calculated an average of 802 million in year 2000 dollars 168 Furthermore the time that drugs are approved for use averages seven years out of the twenty years on patent meaning a tendency for the market to focus on diseases of developed nations where high prices can be used to recoup research and development costs and subsidize failed R amp D efforts In short NTD research and development is considered a high investment risk given that NTDs predominantly affect the poor in low and middle income countries 162 164 Additional barriers include drug safety regulatory requirements intellectual property protection problems and poor infrastructure for distribution and sales 161 162 Although drug companies have not invested heavily in NTDs in several cases rather than focus on profits some have decided to donate key drugs to address NTDs For example Merck has had a program since the mid 1980s to donate ivermectin Mectizan indefinitely to support the global fight against onchocerciasis GlaxoSmithKline and several other large pharmaceutical companies have donation programs as well Drug donation however does not ameliorate the deficiency of new chemical entities being researched and developed This is especially of concern with reports of emerging resistance among existing drugs 169 170 Policy initiatives Edit Public private partnerships Edit Melinda and Bill Gates speak during press conference at the World Economic Forum in Davos Switzerland January 30 2009 Governments foundations the non profit sector and the private sector have found new connections to help address market deficiencies by providing funding support and spreading both the costs and risks of NTD research and development The proliferation of public private partnerships PPPs has been recognized as a key innovation in the past decade helping to unlock existing and new resources citation needed Major PPPs for NTDs include the Sabin Vaccine Institute Norvartis Vaccines Institute for Global Health MSD Wellcome Trust Hilleman Laboratories Infectious Diseases Research Institute Institut Pasteur and INSERM WIPO Re Search and the International Vaccine Institute 164 Likewise a number of new academic drug development centers have been created in recent years drawing in industry partners Support for these centers is frequently traced to the Bill amp Melinda Gates Foundation the Sandler Foundation and the Wellcome Trust 171 R amp D capacity building in middle income countries Edit Growing NTD research and development capacity in middle income countries is an area of policy interest A 2009 study of biotechnology companies in India China Brazil and South Africa revealed 62 NTD products in development and on the market out of approximately 500 products offered 14 When products to fight HIV malaria and TB were included in the analysis the number increased to 123 products approximately 25 of the total products offered citation needed Researchers have argued that unlike most multinationals small and mid sized Global South companies see significant business opportunities in the development of NTD related diagnostics biologics pharmaceuticals and services 172 Potential actions to improve and expand this R amp D capacity have been recommended including expansion of human capital increased private investment knowledge and patent sharing infrastructure building for business incubation and innovation support citation needed Innovation prizes and grants Edit Competitive innovation prizes have been used to spur development in a range of fields such as aerospace engineering clean technology and genomics The X Prize Foundation is launching a competition for high speed point of care diagnostics for tuberculosis citation needed A more widely defined annual Global Health EnterPrize for neglected tropical diseases has been proposed to reward health innovators particularly those based in countries where NTDs represent a serious health burden citation needed The Bill amp Melinda Gates Foundation offers the Grand Challenges Explorations Opportunities on a rolling basis This grant program allows individuals from any organization or background to apply to address priority global health issues Each project award is 100 000 and is drawn from a Foundation funding pool of 100 million Awardees have tended to offer research projects on topics that are highly speculative but offer potentially game changing breakthroughs in global health citation needed FDA priority review vouchers PRV Edit In 2006 Ridley et al recommended the development of a priority review voucher PRV in the journal Health Affairs It gained interest from Senator Sam Brownback of Kansas who championed its introduction in the FDA Amendments Act of 2007 Under the enacted law FDA approval of a non NTD drug can be accelerated through the drug review process if paired with a drug that addresses an NTD The potential economic benefit to a pharmaceutical company is estimated to be potentially as high as 300 million per drug Three drugs have earned NTD PRVs to date December 2014 Coartem by Novartis for malaria bedaquiline by Janssen for TB and miltefosine by Knight for leishmaniasis However the success of the PRV system is now under much scrutiny given that Knight benefitted by 125 million from the sale of a PRV earned from a drug miltefosine that was largely researched and developed by the WHO Medecins Sans Frontieres are now pressuring Knight to guarantee to supply miltefosine at cost price thus far without success citation needed The PRV isn t limited to the pairing of drugs within a single company as it can be transferred between companies Companies with NTD drug candidates in their pipelines but without a blockbuster drug are able to sell their vouchers producing financial returns In the EU similar priority review incentives are now under consideration to increase the speed of regulatory pricing and reimbursement decisions citation needed However PRVs have been criticized as being open to manipulation and possibly encouraging errors through too rapid regulatory decision making 173 Open source collaboration initiatives Edit The Drugs for Neglected Diseases Initiative a web focused not for profit drug R amp D organization dedicated to creating new NTD treatments Several companies and scientific organizations are participating in open source initiatives to share drug data and patent information over the web and facilitate virtual collaboration on NTD research One rich area to explore is the wealth of genomic data resulting from the sequencing of parasite genomes These data offer opportunities for the exploration of new therapeutic products using computational and open source collaboration methods for drug discovery 174 175 The Tropical Disease Initiative for example has used large amounts of computing power to generate the protein structures for ten parasite genomes An open source drug bank was matched algorithmically to determine compounds with protein interaction activity and two candidates were identified In general such methods may hold important opportunities for off label use of existing approved drugs History EditIn 1977 Kenneth S Warren an American researcher invented the concept of what is now neglected tropical diseases 176 See also EditContagious disease Fecal oral transmission Neglected Tropical Disease Research and Development Drugs for Neglected Diseases Initiative Eradication of infectious diseases Global Network for Neglected Tropical Diseases Orphan diseasesReferences Edit Ritchie Roser Mispy Ortiz Ospina Measuring progress towards the Sustainable Development Goals SDG Tracker org website 2018 Hotez PJ Aksoy S Brindley PJ Kamhawi S January 2020 What constitutes a neglected tropical disease PLOS Neglected Tropical Diseases 14 1 e0008001 doi 10 1371 journal pntd 0008001 PMC 6991948 PMID 31999732 a b c Hotez PJ November 2013 NTDs V 2 0 blue marble health neglected tropical disease control and elimination in a shifting health policy landscape PLOS Neglected Tropical Diseases 7 11 e2570 doi 10 1371 journal pntd 0002570 PMC 3836998 PMID 24278496 Hotez PJ Kamath A August 2009 Cappello M ed Neglected tropical diseases in sub Saharan Africa review of their prevalence distribution and disease burden PLOS Neglected Tropical Diseases 3 8 e412 doi 10 1371 journal pntd 0000412 PMC 2727001 PMID 19707588 Mike Shanahan 31 January 2006 Beat neglected diseases to fight HIV TB and malaria SciDev Net Archived from the original on 19 May 2006 Making the Case to Fight Schistosomiasis NPR org National Public Radio Archived from the original on 10 October 2008 Retrieved 1 December 2008 Hotez PJ January 2010 A plan to defeat neglected tropical diseases Scientific American 302 1 90 4 96 Bibcode 2010SciAm 302a 90H doi 10 1038 scientificamerican0110 90 PMID 20063641 Archived from the original on 6 August 2014 Reddy M Gill SS Kalkar SR Wu W Anderson PJ Rochon PA October 2007 Oral drug therapy for multiple neglected tropical diseases a systematic review JAMA 298 16 1911 24 doi 10 1001 jama 298 16 1911 PMID 17954542 a b c d Hotez P 1 November 2009 Neglected diseases amid wealth in the United States and Europe Health Affairs 28 6 1720 5 doi 10 1377 hlthaff 28 6 1720 PMID 19887412 Research Publications Poverty Solutions at The University of Michigan www npc umich edu Archived from the original on 23 July 2017 Retrieved 16 January 2018 Hotez PJ September 2012 Fighting neglected tropical diseases in the southern United States PDF BMJ 345 e6112 doi 10 1136 bmj e6112 PMID 22977143 S2CID 22530671 Archived from the original PDF on 10 May 2017 World Health Organization World Health Organization Archived from the original on 22 February 2014 Retrieved 18 June 2017 DNDi Best Science for the Most Neglected www dndi org Archived from the original on 13 March 2018 Retrieved 5 May 2018 World Health Organization World Health Organization Archived from the original on 20 October 2017 Retrieved 5 May 2018 GBD 2013 Mortality Causes of Death Collaborators January 2015 Global regional and national age sex specific all cause and cause specific mortality for 240 causes of death 1990 2013 a systematic analysis for the Global Burden of Disease Study 2013 Lancet 385 9963 117 71 doi 10 1016 S0140 6736 14 61682 2 PMC 4340604 PMID 25530442 a href Template Cite journal html title Template Cite journal cite journal a author1 has generic name help a b c d e f g h i j k l m n o p q r s Fenwick A March 2012 The global burden of neglected tropical diseases Public Health 126 3 233 236 doi 10 1016 j puhe 2011 11 015 PMID 22325616 a b Hotez P Ottesen E Fenwick A Molyneux D 1 January 2006 The neglected tropical diseases the ancient afflictions of stigma and poverty and the prospects for their control and elimination Advances in Experimental Medicine and Biology 582 23 33 doi 10 1007 0 387 33026 7 3 ISBN 978 0 387 31783 0 PMID 16802616 a b c d e f g h i j k l m Feasey N Wansbrough Jones M Mabey DC Solomon AW 2010 Neglected tropical diseases British Medical Bulletin 93 1 179 200 doi 10 1093 bmb ldp046 PMID 20007668 Payne L Fitchett JR September 2010 Bringing neglected tropical diseases into the spotlight Trends in Parasitology 26 9 421 3 doi 10 1016 j pt 2010 06 002 PMID 20591739 a b c d Weiss MG May 2008 Stigma and the social burden of neglected tropical diseases PLOS Neglected Tropical Diseases 2 5 e237 doi 10 1371 journal pntd 0000237 PMC 2359851 PMID 18478049 Weiss MG May 2008 Stigma and the social burden of neglected tropical diseases PLOS Neglected Tropical Diseases 2 5 e237 doi 10 1371 journal pntd 0000237 PMC 2359851 PMID 18478049 Moran Mary 28 October 2014 Neglected diseases fall outside the market Financial Times Archived from the original on 11 December 2022 Retrieved 5 May 2018 a b Trouiller P Olliaro P Torreele E Orbinski J Laing R Ford N June 2002 Drug development for neglected diseases a deficient market and a public health policy failure Lancet 359 9324 2188 94 doi 10 1016 S0140 6736 02 09096 7 hdl 10144 28441 PMID 12090998 S2CID 1616485 Colatrella B September 2008 The Mectizan Donation Program 20 years of successful collaboration a retrospective Annals of Tropical Medicine and Parasitology 102 Suppl 1 7 11 doi 10 1179 136485908X337418 PMID 18718147 S2CID 32987420 Gillis J 25 April 2006 Cure for Neglected Diseases Funding Washington Post Disease control priorities in developing countries 2nd ed Oxford University Press 2006 ISBN 978 0 8213 6179 5 a b Hotez PJ September 2014 Neglected parasitic infections and poverty in the United States PLOS Neglected Tropical Diseases 8 9 e3012 doi 10 1371 journal pntd 0003012 PMC 4154650 PMID 25188455 a b c World Health Organization WHO 2015 Water Sanitation and Hygiene for accelerating and sustaining progress on Neglected Tropical Diseases A global strategy 2015 2020 Archived 25 September 2015 at the Wayback Machine Geneva Switzerland p 26 Kirchhoff LV August 1993 American trypanosomiasis Chagas disease a tropical disease now in the United States The New England Journal of Medicine 329 9 639 44 doi 10 1056 NEJM199308263290909 PMID 8341339 Neglected tropical diseases World Health Organization Archived from the original on 22 February 2014 Retrieved 24 November 2015 World Health Organization World Health Organization Archived from the original on 22 February 2014 Retrieved 30 October 2016 CDC Neglected Tropical Diseases Diseases www cdc gov Archived from the original on 4 December 2014 Retrieved 30 October 2016 PLoS Neglected Tropical Diseases A Peer Reviewed Open Access Journal journals plos org Archived from the original on 14 November 2020 Retrieved 19 November 2020 World Health Organization Working to overcome the global impact of neglected tropical diseases first WHO report on neglected tropical diseases 2010 Hotez PJ Molyneux DH Fenwick A Ottesen E Ehrlich Sachs S Sachs JD Incorporating a rapid impact package for neglected tropical diseases with programs for HIV AIDS tuberculosis and malaria PLoS Med 2006 Jan 3 5 e102 a b c Hotez PJ Molyneux DH Fenwick A Kumaresan J Sachs SE Sachs JD et al Control of neglected tropical diseases N Engl J Med 2007 Sep 6 357 10 1018 1027 a b Buruli Ulcer World Health Organization Archived from the original on 11 May 2016 Retrieved 2 May 2016 a b Buruli Ulcer Archived from the original on 13 April 2014 Retrieved 12 March 2014 Buruli Ulcer Endemic Countries Archived from the original on 12 March 2014 Retrieved 12 March 2014 a b c d e f g Chagas disease American trypanosomiasis Archived from the original on 13 March 2014 Retrieved 12 March 2014 a b c d e World Health Day 2014 small bite big threat Archived from the original on 27 February 2014 Retrieved 12 March 2014 a b c d e f Dengue Control Archived from the original on 12 March 2014 Retrieved 12 March 2014 a b c Pialoux G Gauzere BA Jaureguiberry S Strobel M May 2007 Chikungunya an epidemic arbovirosis The Lancet Infectious Diseases 7 5 319 27 doi 10 1016 S1473 3099 07 70107 X PMID 17448935 Symptoms Diagnosis amp Treatment Chikungunya virus CDC www cdc gov 17 December 2018 Retrieved 17 March 2020 Chikungunya WHO archived from the original on 20 January 2016 retrieved 21 January 2016 View Latest Worldwide Guinea Worm Case Totals www cartercenter org Retrieved 28 February 2020 Dracunculiasis eradication global surveillance summary 2009 PDF Releve Epidemiologique Hebdomadaire 85 19 166 76 May 2010 PMID 20449943 Archived PDF from the original on 3 March 2016 a b c d e f Dracunculiasis Archived from the original on 5 April 2014 Retrieved 13 March 2014 Echinococcosis Archived from the original on 16 March 2014 Retrieved 16 March 2014 a b c Signs symptoms and treatment of echinococcosis Archived from the original on 24 May 2015 Retrieved 16 March 2014 a b Transmission of echinococcosis Archived from the original on 5 June 2015 Retrieved 16 March 2014 a b Surveillance prevention and control of echinococcosis Archived from the original on 16 March 2014 Retrieved 16 March 2014 a b c d e f Yaws Archived from the original on 15 March 2014 Retrieved 16 March 2014 Foodborne trematode infections World Health Organization Archived from the original on 25 November 2015 Retrieved 24 November 2015 Human African trypanosomiasis number of new cases drops to historically low level in 50 years World Health Organization Archived from the original on 25 October 2013 a b Burden and Distribution Archived from the original on 16 March 2014 Retrieved 16 March 2014 Leishmaniasis Archived from the original on 15 March 2014 Retrieved 16 March 2014 Diagnosis detection and surveillance Archived from the original on 16 March 2014 Retrieved 16 March 2014 Access to essential antileishmanial medicines and treatment Archived from the original on 16 March 2014 Retrieved 16 March 2014 Leprosy New data show steady decline in new cases WHO 9 September 2019 Archived from the original on 22 October 2019 a b Leprosy Today Archived from the original on 14 March 2014 Retrieved 16 March 2014 a b Leprosy the disease Archived from the original on 16 March 2014 Retrieved 16 March 2014 a b Leprosy 10 September 2019 Archived from the original on 31 January 2021 a b Epidemiology Archived from the original on 16 March 2014 Retrieved 16 March 2014 a b Forms of Lymphatic Filariasis and diagnosis Archived from the original on 16 March 2014 Retrieved 16 March 2014 a b Lymphatic filariasis Archived from the original on 30 March 2014 Retrieved 16 March 2014 Mohammed KA Haji HJ Gabrielli AF Mubila L Biswas G Chitsulo L et al January 2008 Utzinger J ed Triple co administration of ivermectin albendazole and praziquantel in Zanzibar a safety study PLOS Neglected Tropical Diseases 2 1 e171 doi 10 1371 journal pntd 0000171 PMC 2217668 PMID 18235853 Clinical manifestations Archived from the original on 16 March 2014 Retrieved 16 March 2014 Onchocerciasis World Health Organization 14 June 2019 a b c d Onchocerciasis Archived from the original on 16 March 2014 Retrieved 16 March 2014 a b c Onchocerciasis Archived from the original on 9 April 2014 Retrieved 16 March 2014 a b Rabies Archived from the original on 24 February 2014 Retrieved 16 March 2014 a b c d e About rabies Archived from the original on 30 January 2014 Retrieved 16 March 2014 a b Rabies Archived from the original on 1 April 2014 Retrieved 16 March 2014 Schistosomiasis Disease CDC Division of Parasitic Diseases Archived from the original on 2 December 2016 Retrieved 17 October 2016 Lo Nathan C Heft Neal Sam Coulibaly Jean T Leonard Leslie Bendavid Eran Addiss David G 1 November 2019 State of deworming coverage and equity in low income and middle income countries using household health surveys a spatiotemporal cross sectional study The Lancet Global Health 7 11 e1511 e1520 doi 10 1016 S2214 109X 19 30413 9 ISSN 2214 109X PMC 7024997 PMID 31558383 a b c d e f g h i Soil transmitted helminth infections Archived from the original on 21 February 2014 Retrieved 16 March 2014 a b Transmission of taeniasis cysticercosis Archived from the original on 14 March 2014 Retrieved 13 March 2014 a b c About Taeniasis cysticercosis Archived from the original on 14 March 2014 Retrieved 13 March 2014 a b c Signs symptoms and treatment of taeniasis cysticercosis Archived from the original on 14 March 2014 Retrieved 13 March 2014 Surveillance prevention and control of taeniasis cysticercosis Archived from the original on 14 March 2014 Retrieved 13 March 2014 a b c d e Priority eye diseases Archived from the original on 26 July 2014 Retrieved 16 March 2014 Wells John C 2008 Longman Pronunciation Dictionary 3rd ed Longman ISBN 978 1 4058 8118 0 a b Gates RH 2003 Infectious disease secrets 2nd ed Philadelphia Elsevier Hanley Belfus p 355 ISBN 978 1 56053 543 0 Epidemiology amp Risk Factors Centers for Disease Control and Prevention 2 November 2010 Archived from the original on 29 April 2015 Retrieved 18 May 2015 a b c d e f g h Parasites Scabies Disease Center for Disease Control and Prevention 2 November 2010 Archived from the original on 2 May 2015 Retrieved 18 May 2015 a b Snakebite finally makes a WHO list of top global health priorities STAT 12 June 2017 Archived from the original on 13 June 2017 Retrieved 18 June 2017 Kasturiratne A Wickremasinghe AR de Silva N Gunawardena NK Pathmeswaran A Premaratna R et al November 2008 The global burden of snakebite a literature analysis and modelling based on regional estimates of envenoming and deaths PLOS Medicine 5 11 e218 doi 10 1371 journal pmed 0050218 PMC 2577696 PMID 18986210 Definition of Snakebite www merriam webster com Retrieved 17 June 2019 a b c d Venomous Snakes U S National Institute for Occupational Safety and Health 24 February 2012 Archived from the original on 29 April 2015 Retrieved 19 May 2015 a b c Animal bites Fact sheet N 373 World Health Organization February 2015 Archived from the original on 4 May 2015 Retrieved 19 May 2015 a b c d Gold BS Dart RC Barish RA August 2002 Bites of venomous snakes The New England Journal of Medicine 347 5 347 356 doi 10 1056 NEJMra013477 PMID 12151473 Daley BJ Torres J June 2014 Venomous snakebites Journal of Emergency Medical Services 39 6 58 62 PMID 25109149 Eske Jamie Biggers MD MPH Alana 14 December 2018 How to identify and treat snake bites Medical News Today Healthline Media UK Ltd Retrieved 4 May 2022 a href Template Cite web html title Template Cite web cite web a CS1 maint multiple names authors list link a b Litt E Baker MC Molyneux D May 2012 Neglected tropical diseases and mental health a perspective on comorbidity Trends in Parasitology 28 5 195 201 doi 10 1016 j pt 2012 03 001 PMID 22475459 a b Bhaumik Soumyadeep Kallakuri Sudha Kaur Amanpreet Devarapalli Siddhardha Daniel Mercian 1 November 2020 Mental health conditions after snakebite a scoping review BMJ Global Health 5 11 e004131 doi 10 1136 bmjgh 2020 004131 ISSN 2059 7908 PMC 7705584 PMID 33257419 Kealey A Smith R February 2010 Neglected tropical diseases infection modeling and control Journal of Health Care for the Poor and Underserved 21 1 53 69 doi 10 1353 hpu 0 0270 PMID 20173255 S2CID 27293058 Rilkoff H Tukahebwa EM Fleming FM Leslie J Cole DC 2013 Exploring gender dimensions of treatment programmes for neglected tropical diseases in Uganda PLOS Neglected Tropical Diseases 7 7 e2312 doi 10 1371 journal pntd 0002312 PMC 3708858 PMID 23875047 a b Conteh L Engels T Molyneux DH January 2010 Socioeconomic aspects of neglected tropical diseases Lancet 375 9710 239 47 doi 10 1016 S0140 6736 09 61422 7 PMID 20109925 S2CID 20630557 Molyneux DH 2004 Neglected diseases but unrecognised successes challenges and opportunities for infectious disease control Lancet 364 9431 380 3 doi 10 1016 S0140 6736 04 16728 7 PMID 15276399 S2CID 42273787 Lindoso JA Lima AC Cunha MA Gomes CM 23 August 2015 Diagnosing Neglected Tropical Diseases in HIV Coinfection Human Parasitic Diseases 2015 7 11 18 doi 10 4137 HPD S19569 Archived from the original on 17 November 2016 a b c d Singer M Bulled N November 2012 Interlocked Infections The Health Burdens of Syndemics of Neglected Tropical Diseases Annals of Anthropological Practice 36 2 328 345 doi 10 1111 napa 12007 Spiegel JM Dharamsi S Wasan KM Yassi A Singer B Hotez PJ et al May 2010 Which new approaches to tackling neglected tropical diseases show promise PLOS Medicine 7 5 e1000255 doi 10 1371 journal pmed 1000255 PMC 2872649 PMID 20502599 United Nations 2017 Resolution adopted by the General Assembly on 6 July 2017 Work of the Statistical Commission pertaining to the 2030 Agenda for Sustainable Development A RES 71 313 World Health Organization WHO 2012 Accelerating work to overcome the global impact of Neglected Tropical Diseases A roadmap for implementation Archived 6 June 2015 at the Wayback Machine Geneva Switzerland FDA Approves Coartem Tablets to Treat Malaria USFDA Archived from the original on 2 June 2009 Retrieved 11 December 2009 Ridley DB Grabowski HG Moe JL 2006 Developing drugs for developing countries Health Affairs 25 2 313 24 doi 10 1377 hlthaff 25 2 313 PMID 16522573 a b Taylor Robinson David C Maayan Nicola Donegan Sarah Chaplin Marty Garner Paul 11 September 2019 Public health deworming programmes for soil transmitted helminths in children living in endemic areas The Cochrane Database of Systematic Reviews 9 11 CD000371 doi 10 1002 14651858 CD000371 pub7 ISSN 1469 493X PMC 6737502 PMID 31508807 Deworm the World the evidence for school based deworming Archived from the original on 14 January 2013 a b Welch VA Ghogomu E Hossain A et al 2016 Deworming and Adjuvant Interventions for Improving the Developmental Health and Well being of Children in Low and Middle income Countries A Systematic Review and Network Meta analysis PDF Campbell Systematic Reviews 12 1 383 doi 10 4073 csr 2016 7 Archived PDF from the original on 26 March 2017 Worms at Work Long Run Impacts of a Child Health investment Archived from the original on 28 October 2016 Retrieved 28 October 2016 Brady MA Hooper PJ Ottesen EA July 2006 Projected benefits from integrating NTD programs in sub Saharan Africa Trends in Parasitology 22 7 285 91 doi 10 1016 j pt 2006 05 007 PMID 16730230 a b van den Berg H Kelly Hope LA Lindsay SW January 2013 Malaria and lymphatic filariasis the case for integrated vector management The Lancet Infectious Diseases 13 1 89 94 doi 10 1016 S1473 3099 12 70148 2 PMID 23084831 a b c d Johnston EA Teague J Graham JP June 2015 Challenges and opportunities associated with neglected tropical disease and water sanitation and hygiene intersectoral integration programs BMC Public Health 15 1 547 doi 10 1186 s12889 015 1838 7 PMC 4464235 PMID 26062691 WHO strengthens focus on water sanitation and hygiene to accelerate elimination of neglected tropical diseases World Health Organization WHO 27 August 2015 Archived from the original on 12 September 2015 Retrieved 14 September 2015 Collaboration between WASH and NTD World Health Organization WHO Archived from the original on 4 March 2016 Retrieved 14 September 2015 NTDs and access to water and sanitation are major global challenges World Health Organization WHO Archived from the original on 30 August 2015 Retrieved 14 September 2015 Facial cleanliness and environmental improvement are key to eliminating trachoma World Health Organization WHO Archived from the original on 2 April 2016 Retrieved 14 September 2015 Sanitation prevents soil transmitted helminth infections World Health Organization WHO Archived from the original on 2 April 2016 Retrieved 14 September 2015 Breeding sites for mosquitoes are reduced through improved sanitation and water management World Health Organization WHO Archived from the original on 16 June 2016 Retrieved 14 September 2015 Protecting freshwater from contamination reduces schistosomiasis World Health Organization WHO Archived from the original on 4 March 2016 Retrieved 14 September 2015 Safe water is essential to treat and care for NTDs World Health Organization WHO Archived from the original on 4 March 2016 Retrieved 14 September 2015 WASH improves the quality of life for people affected by NTDs World Health Organization WHO Archived from the original on 2 April 2016 Retrieved 14 September 2015 Grimes JE Croll D Harrison WE Utzinger J Freeman MC Templeton MR December 2014 The relationship between water sanitation and schistosomiasis a systematic review and meta analysis PLOS Neglected Tropical Diseases 8 12 e3296 doi 10 1371 journal pntd 0003296 PMC 4256273 PMID 25474705 Stocks ME Ogden S Haddad D Addiss DG McGuire C Freeman MC February 2014 Effect of water sanitation and hygiene on the prevention of trachoma a systematic review and meta analysis PLOS Medicine 11 2 e1001605 doi 10 1371 journal pmed 1001605 PMC 3934994 PMID 24586120 Strunz EC Addiss DG Stocks ME Ogden S Utzinger J Freeman MC March 2014 Water sanitation hygiene and soil transmitted helminth infection a systematic review and meta analysis PLOS Medicine 11 3 e1001620 doi 10 1371 journal pmed 1001620 PMC 3965411 PMID 24667810 Campbell SJ Savage GB Gray DJ Atkinson JA Soares Magalhaes RJ Nery SV et al April 2014 Water Sanitation and Hygiene WASH a critical component for sustainable soil transmitted helminth and schistosomiasis control PLOS Neglected Tropical Diseases 8 4 e2651 doi 10 1371 journal pntd 0002651 PMC 3983087 PMID 24722335 Frew SE Liu VY Singer PA 2009 A business plan to help the global South in its fight against neglected diseases PDF Health Affairs 28 6 1760 73 doi 10 1377 hlthaff 28 6 1760 PMID 19887417 Archived PDF from the original on 20 October 2012 Keenan JD Hotez PJ Amza A Stoller NE Gaynor BD Porco TC Lietman TM 2013 Elimination and eradication of neglected tropical diseases with mass drug administrations a survey of experts PLOS Neglected Tropical Diseases 7 12 e2562 doi 10 1371 journal pntd 0002562 PMC 3855072 PMID 24340111 Burns M 3 October 2010 Lifesaving Drug Praziquantel Too Expensive for Africa Pacific Standard The Miller McCune Center for Research Media and Public Policy Archived from the original on 3 February 2018 Retrieved 8 December 2015 Giving What We Can recommended interventions Archived from the original on 16 March 2014 Croft SL October 2005 Public private partnership from there to here Transactions of the Royal Society of Tropical Medicine and Hygiene 99 Suppl 1 S9 14 doi 10 1016 j trstmh 2005 06 008 PMID 16087204 An Innovative Approach to R amp D for Neglected Patients Ten Years of Experience and Lessons Learned by DNDi DNDi January 2014 About Us Sabin www sabin org Archived from the original on 30 October 2016 Retrieved 28 October 2016 Why NTDs End7 www end7 org Archived from the original on 29 October 2016 Retrieved 28 October 2016 Ramamoorthi R Graef KM Dent J December 2014 WIPO Re Search Accelerating anthelmintic development through cross sector partnerships International Journal for Parasitology Drugs and Drug Resistance 4 3 220 5 doi 10 1016 j ijpddr 2014 09 002 PMC 4266808 PMID 25516832 WIPO Re Search Archived from the original on 28 March 2015 Retrieved 16 March 2015 a b Japan in pioneering partnership to fund global health research by Andrew Jack Financial Times 30 May 2013 An Audience with Tachi Yamada by Asher Mullard Nature magazine September 2013 Volume 12 p 658 Joining the Fight Against Neglected Diseases Science magazine 7 June 2013 Volume 340 p 1148 WHO 3 February 2012 WHO roadmap inspires unprecedented support to defeat neglected tropical diseases who int World Health Organization Geneva Archived from the original on 7 April 2014 Retrieved 29 May 2013 Uniting to Combat NTDs 2012 Endorsements endorsing organizations unitingtocombatntds org Uniting to Combat Neglected Tropical Diseases Archived from the original on 25 May 2013 Retrieved 30 May 2013 The Lancet 29 January 2022 Neglected tropical diseases ending the neglect of populations Lancet 399 10323 411 doi 10 1016 S0140 6736 22 00161 1 PMID 35093213 S2CID 246403390 Elphick Pooley Thoko Engels Dirk Uniting to Combat NTDs 28 January 2022 World NTD Day 2022 and a new Kigali Declaration to galvanise commitment to end neglected tropical diseases Infectious Diseases of Poverty 11 1 2 doi 10 1186 s40249 021 00932 2 PMC 8794616 PMID 35086566 Mutapi Francisca 29 August 2022 A new roadmap for neglected tropical diseases Nature doi 10 1038 d44148 022 00125 5 inactive 4 January 2023 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint DOI inactive as of January 2023 link Burki Talha 2 July 2022 New declaration on neglected tropical diseases endorsed Lancet 400 10345 15 doi 10 1016 S0140 6736 22 01237 5 PMID 35780782 S2CID 250150750 Commonwealth leaders recommit to ending malaria and neglected tropical diseases www who int 23 June 2022 Retrieved 29 December 2022 Keating C December 2014 Ken Warren and the Rockefeller Foundation s great neglected diseases network 1978 1988 the transformation of tropical and global medicine Molecular Medicine 20 Suppl 1 Suppl 1 S24 30 doi 10 2119 molmed 2014 00221 PMC 4374516 PMID 25549230 a b c Standley C Boyce MR Klineberg A Essix G Katz R November 2018 Remais JV ed Organization of oversight for integrated control of neglected tropical diseases within Ministries of Health PLOS Neglected Tropical Diseases 12 11 e0006929 doi 10 1371 journal pntd 0006929 PMC 6281257 PMID 30462639 a b Martins Melo FR Carneiro M Ramos AN Heukelbach J Ribeiro AL Werneck GL June 2018 Angheben A ed The burden of Neglected Tropical Diseases in Brazil 1990 2016 A subnational analysis from the Global Burden of Disease Study 2016 PLOS Neglected Tropical Diseases 12 6 e0006559 doi 10 1371 journal pntd 0006559 PMC 6013251 PMID 29864133 a b DebRoy S Prosper O Mishoe A Mubayi A December 2017 Challenges in modeling complexity of neglected tropical diseases a review of dynamics of visceral leishmaniasis in resource limited settings Emerging Themes in Epidemiology 14 1 10 doi 10 1186 s12982 017 0065 3 PMC 5604165 PMID 28936226 Mathers CD Ezzati M Lopez AD November 2007 Measuring the burden of neglected tropical diseases the global burden of disease framework PLOS Neglected Tropical Diseases 1 2 e114 doi 10 1371 journal pntd 0000114 PMC 2100367 PMID 18060077 King CH Bertino AM March 2008 Asymmetries of poverty why global burden of disease valuations underestimate the burden of neglected tropical diseases PLOS Neglected Tropical Diseases 2 3 e209 doi 10 1371 journal pntd 0000209 PMC 2267491 PMID 18365036 a b Forget P 14 October 2016 Faculty of 1000 evaluation for Global regional and national disability adjusted life years DALYs for 315 diseases and injuries and healthy life expectancy HALE 1990 2015 a systematic analysis for the Global Burden of Disease Study 2015 Faculty Opinions doi 10 3410 f 726827339 793524296 Reddy M Gill SS Kalkar SR Wu W Anderson PJ Rochon PA Oral drug therapy for multiple neglected tropical diseases a systematic review JAMA 2007 Oct 24 298 16 1911 1924 a b c Trouiller P Olliaro P Torreele E Orbinski J Laing R Ford N Drug development for neglected diseases a deficient market and a public health policy failure Lancet 2002 Jun 22 359 9324 2188 2194 a b c d Cohen J Dibner MS Wilson A Development of and access to products for neglected diseases PLoS One 2010 May 12 5 5 e10610 Conteh L Engels T Molyneux DH Socioeconomic aspects of neglected tropical diseases Lancet 2010 Jan 16 375 9710 239 247 Chu BK Hooper PJ Bradley MH McFarland DA Ottesen EA The economic benefits resulting from the first 8 years of the Global Programme to Eliminate Lymphatic Filariasis 2000 2007 PLoS Negl Trop Dis 2010 Jun 1 4 6 e708 Merck Mectizan Drug Donation Program http www mectizan org a b c Villa S Compagni A Reich MR Orphan drug legislation lessons for neglected tropical diseases Int J Health Plann Manage 2009 Jan Mar 24 1 27 42 a b c d Trouiller P Torreele E Olliaro P White N Foster S Wirth D et al Drugs for neglected diseases a failure of the market and a public health failure Trop Med Int Health 2001 Nov 6 11 945 951 Chirac P Torreele E Global framework on essential health R amp D Lancet 2006 May 13 367 9522 1560 1 a b c Bethony JM Cole RN Guo X Kamhawi S Lightowlers MW Loukas A et al Vaccines to combat the neglected tropical diseases Immunol Rev 2011 Jan 239 1 237 270 Liese B Rosenberg M Schratz A Programmes partnerships and governance for elimination and control of neglected tropical diseases Lancet 2010 Jan 2 375 9708 67 76 G FINDER Database http www georgeinstitute org about us media centre g finder database open public Adams CP Brantner VV Estimating the cost of new drug development is it really 802 million dollars Health Aff Millwood 2006 Mar Apr 25 2 420 8 DiMasi JA Hansen RW Grabowski HG The price of innovation new estimates of drug development costs J Health Econ 2003 Mar 22 2 151 85 Tchuem Tchuente LA Control of soil transmitted helminths in sub Saharan Africa Diagnosis drug efficacy concerns and challenges Acta Trop 2010 Jul 21 Smits HL Prospects for the control of neglected tropical diseases by mass drug administration Expert Rev Anti Infect Ther 2009 Feb 7 1 37 56 Renslo AR McKerrow JH Drug discovery and development for neglected parasitic diseases Nat Chem Biol 2006 Dec 2 12 701 710 Frew SE Liu VY Singer PA A business plan to help the global South in its fight against neglected diseases Health Aff Millwood 2009 Nov Dec 28 6 1760 1773 Kesselheim AS Drug development for neglected diseases the trouble with FDA review vouchers N Engl J Med 2008 Nov 6 359 19 1981 1983 Kar S Opinion Open innovation an answer for neglected diseases Future Med Chem 2010 Sep 2 9 1411 5 Orti L Carbajo RJ Pieper U Eswar N Maurer SM Rai AK Taylor G Todd MH Pineda Lucena A Sali A Marti Renom MA A kernel for open source drug discovery in tropical diseases PLoS Negl Trop Dis 2009 3 4 e418 Keating C December 2014 Ken Warren and the Rockefeller Foundation s great neglected diseases network 1978 1988 the transformation of tropical and global medicine Molecular Medicine 20 Suppl 1 S24 30 doi 10 2119 molmed 2014 00221 PMC 4374516 PMID 25549230 External links EditWHO Control of neglected tropical disease PLOS Neglected Tropical Diseases United Nations World Health Organization U S Food and Drug Administration India s neglected tropical diseases Neglected tropical disease targets must include morbidity Global health policy and neglected tropical diseases Then now and in the years to come Wikimedia Commons has media related to Neglected tropical diseases Portal Medicine Retrieved from https en wikipedia org w index php title Neglected tropical diseases amp oldid 1143419999, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.