fbpx
Wikipedia

Mycobacterium bovis

Mycobacterium bovis is a slow-growing (16- to 20-hour generation time) aerobic bacterium and the causative agent of tuberculosis in cattle (known as bovine TB). It is related to Mycobacterium tuberculosis, the bacterium which causes tuberculosis in humans. M. bovis can jump the species barrier and cause tuberculosis-like infection in humans and other mammals.[2]

Mycobacterium bovis
Attenuated strain of M. bovis used in the Bacillus Calmette-Guérin vaccine
Scientific classification
Domain: Bacteria
Phylum: Actinomycetota
Class: Actinomycetia
Order: Mycobacteriales
Family: Mycobacteriaceae
Genus: Mycobacterium
Species:
M. bovis
Binomial name
Mycobacterium bovis
Karlson & Lessel 1970,[1] ATCC 19210

Bacterium morphology and staining edit

The bacteria are curved or straight rods. They sometimes form filaments, which fragment into bacilli or cocci once disturbed. In tissues they form slender rods, straight or curved, or club-shaped. Short, relatively plump bacilli (rods) in tissue smears, large slender beaded rods in culture. They have no flagella or fimbria, and no capsule.[citation needed]

Mycobacterium tuberculosis group bacteria are 1.0-4.0 µm long by 0.2-0.3 µm wide in tissues. In culture, they may appear as cocci, or as bacilli up to 6-8 µm long.[citation needed]

The bacteria stain Gram-positive, acid-fast. The cell wall contains as high as 60% lipid, giving the mycobacteria their hydrophobic characteristics, slow growth, and resistance to desiccation, disinfectants, acids and antibodies. (Mycobacterium family). They are not easy to stain with aniline dyes; although they are Gram positive, confirming this may be difficult. Ziehl–Neelsen staining results in stain pink with hot carbol fuscin and then resist decolourisation with 3% hydrochloric acid in 95% alcohol (i.e. they are acid-alcohol fast); following washing, the slide is counterstained with e.g. methylene blue.[citation needed]

They are nonspore-forming.

Culture and biochemical features edit

Growth requirements edit

M. bovis is a facultative intracellular parasite. For in vitro growth, special culture media are required; for example, Dorset's egg medium incorporates egg yolk, phosphate buffer, magnesium salts, and sodium pyruvate; amino acids may be added, but glycerol is not included, as it is inhibitory. It is inhibited by glycerine. Culture generally requires several weeks at 37 °C to reach colonies visible to the unaided human eye. It is strictly aerobic, and grows at 37, but not at 25 °C. Optimal growth occurs at 37-38 °C. The species does not reduce nitrate or niacin, and is resistant to pyrazinamide. It is sensitive to thiophene-2-carboxylic acid hydrazide.[citation needed]

Appearance of colonies edit

Initially (after 3–4 weeks), its minute, dull flakes, begin to thicken to form dry, irregular masses standing high above the culture medium surface. Eventually, confluent growth is seen over the whole culture surface, forming a rough, waxy blanket, becoming thick and wrinkled and reaching up the sides of the container. Colonies are yellow when first visible, darkening to deep yellow and eventually brick red, if exposed to light. In fluid media, growth is on the surface only, unless a wetting agent (e.g. Tween 80) is added to the medium.[citation needed]

Cell structure and metabolism edit

M. bovis is similar in structure and metabolism to M. tuberculosis. M. bovis is a Gram-positive, acid-fast, rod-shaped, aerobic bacterium. Unlike M. tuberculosis, M. bovis lacks pyruvate kinase activity, due to pykA containing a point mutation that affects binding of Mg2+ cofactor.[3] Pyruvate kinase catalyses the final step of glycolysis, the dephosphorylation of phosphorenolpyruvate to pyruvate. Therefore, in M. bovis, glycolytic intermediates are unable to enter into oxidative metabolism. Although no specific studies have been performed, M. bovis seemingly must rely on amino acids or fatty acids as an alternative carbon source for energy metabolism.[citation needed]

Pathogenesis edit

 
Lesions consistent with bovine tuberculosis on the lower jaw and lung of a wild boar

During the first half of the 20th century, M. bovis is estimated to have been responsible for more losses among farm animals than all other infectious diseases combined. Infection occurs if the bacterium is ingested or inhaled.[4]

M. bovis is usually transmitted to humans by consuming raw milk from infected cows, although it can also spread via aerosol droplets. Actual infections in humans are nowadays rare in developed countries, mainly because pasteurisation kills M. bovis bacteria in infected milk. In the UK, cattle are tested for the disease as part of an eradication program and culled if they test positive. Such cattle can still enter the human food chain, but only after a meat inspector or a government veterinary surgeon has inspected the carcass and certified that it is fit for human consumption. However, in areas of the developing world where pasteurisation is not routine, M. bovis is a relatively common cause of human tuberculosis.[5]

Bovine tuberculosis is a chronic infectious disease which affects a broad range of mammalian hosts, including humans, cattle, deer, llamas, pigs, domestic cats, wild carnivores (foxes, coyotes) and omnivores (common brushtail possum, mustelids and rodents); it rarely affects equids or sheep.[6][7] The disease can be transmitted in several ways; for example, it can be spread in exhaled air, sputum, urine, faeces, and pus, so the disease can be transmitted by direct contact, contact with the excreta of an infected animal, or inhalation of aerosols, depending on the species involved.[8]

Application to biotechnology edit

M. bovis is the ancestor of the most widely used vaccine against tuberculosis, M. bovis bacillus Calmette-Guérin (BCG) which was isolated after subculturing on glycerine potato medium 239 times during 13 years starting from an initial virulent strain .[citation needed]

Epidemiology and control edit

Testing edit

Skin testing is possible in cattle. Casal et al. 2012 tried both recombinant protein and overlapping peptide provocation, finding the peptide test to be less sensitive.[9]

New Zealand edit

In New Zealand, the introduced common brushtail possum is a vector for the spread of M. bovis. The Biosecurity Act 1993, which established a national pest-management strategy, is the legislation behind control of the disease in New Zealand. The Animal Health Board operates a nationwide programme of cattle testing and possum control, with the goal of eradicating M. bovis from wild vector species across 2.5 million hectares – or one-quarter – of New Zealand's at-risk areas, by 2026, and eventually eradicating the disease entirely.[10]

The TB-free New Zealand programme is regarded as "world-leading".[11] It has successfully reduced cattle- and deer-herd infection rates from more than 1700 in 1994 to fewer than 100 herds in July 2011. Much of this success can be attributed to sustained cattle controls reducing cross-infection and breaking the disease cycle. For example, at Hohotaka, in New Zealand's central North Island, control work from 1988 to 1994 achieved a sustained mean reduction of 87.5% in the density of TB‐infected possums. As expected, annual TB incidence in local cattle herds consequently declined by a similar amount (83.4%).[12]

Possums are controlled through a combination of trapping, ground-baiting, and where other methods are impractical, aerial treatment with 1080 poison.[13]

From 1979 to 1984, possum control was stopped due to lack of funding. From that point until 1994, TB rates in herds steadily increased.[14] The area of New Zealand harbouring TB-infected wild animals expanded from about 10% of the country to 40%.[citation needed]

The fact that possums are such effective transmitters of TB appears to be facilitated by their behaviour once they get the disease.[15]

United Kingdom edit

In the 1930s, 40% of cattle in the UK were infected with M. bovis and 50,000 new cases of human M. bovis infection were reported every year.[16] According to DEFRA and the Health Protection Agency, the risk to people contracting TB from cattle in Great Britain would be low.[citation needed]

Badgers (Meles meles) were first identified as carriers of M. bovis in 1971, but the report of an independent review committee in 1997 (the Krebs Report) concluded: "strong circumstantial evidence [exists] to suggest that badgers represent a significant source of M. bovis infection in cattle... [h]owever, the causal link... has not been proven".[17] In essence, the contribution of badgers 'to the TB problem in British cattle' was at this point a hypothesis that needed to be tested, according to the report. The subsequent Randomised Badger Culling Trial [18] (designed, overseen and analysed by the Independent Scientific Group on Cattle TB, or ISG [19]) examined this hypothesis by conducting a large field trial of widescale (proactive) culling and localised reactive culling (in comparison with areas which received no badger culling). In their final report,[20] the ISG concluded: "First, while badgers are clearly a source of cattle TB, careful evaluation of our own and others’ data indicates that badger culling can make no meaningful contribution to cattle TB control in Britain. Indeed, some policies under consideration are likely to make matters worse rather than better. Second, weaknesses in cattle-testing regimens mean that cattle themselves contribute significantly to the persistence and spread of disease in all areas where TB occurs, and in some parts of Britain are likely to be the main source of infection. Scientific findings indicate that the rising incidence of disease can be reversed, and geographical spread contained, by the rigid application of cattle-based control measures alone." On 26 July 2007, the Minister of State, Department for Environment, Food and Rural Affairs (Lord Rooker) said, "My Lords, we welcome the Independent Scientific Group’s final report, which further improves the evidence base. We are carefully considering the issues that the report raises, and will continue to work with industry, government advisers, and scientific experts in reaching policy decisions on these issues."[21]

In the UK, many other mammals have been found to be infected with M. bovis, although the frequency of isolation is generally much less than cattle and badgers. In some areas of south-west England, deer, especially fallow deer due to their gregarious behaviour, have been implicated as possible maintenance hosts for transmission of bovine TB[22][23]

In some localised areas, the risk of transmission to cattle from fallow deer has been argued to be greater than it is from badgers.[22][23]

One of the reasons that the Department for Environment, Food, and Rural Affairs requires infected or suspected cattle to be culled is to meet EU regulations for the export of meat and dairy products to other member states. Meat and dairy products can still be sold in the UK into the human food chain, providing the relevant carcass inspections and milk pasteurisation have been applied.[24][25]

Spread of the disease to humans by domestic pets became evident in March 2014 when Public Health England announced two people in England developed bTB infections after contact with a domestic cat. The two human cases were linked to 9 cases of bTB infection in cats in Berkshire and Hampshire during 2013. These are the first documented cases of cat-to-human transmission.[26]

In a 2010 opinion piece in Trends in Microbiology, Paul and David Torgerson argued that bovine tuberculosis is a negligible public-health problem in the UK, providing milk is pasteurized. Bovine TB is very rarely spread by aerosol from cattle to humans. Therefore, the bovine tuberculosis control programme in the UK in its present form is a misallocation of resources and provides no benefit to society. Indeed, very little evidence exists of a positive cost benefit to the livestock industry, as few studies have been undertaken on the direct costs of bovine TB to animal production. Milk pasteurisation was the single public health intervention that prevented the transmission of bovine TB to humans, and no justification for the present test and cull policy in the UK is seen.[27]

In July 2010, the second issue of the discussion document Bovine TB, Time for a Rethink [28] was published by Rethink Bovine TB, an independent research group. The paper considers current policy in England and Wales. It proposes an alternative solution that is both practical and cost effective. In the paper, evidence is drawn from DEFRA and the work by Professors Paul and David Torgerson.[27]

In March 2012, think tank the Bow Group published a target paper urging the government to reconsider its plans to cull thousands of badgers to control bovine TB, stating that the findings of Labour's major badger-culling trials several years prior were that culling does not work. The paper was authored by Graham Godwin-Pearson with a foreword by singer Brian May and contributions by leading tuberculosis scientists, including Lord Krebs.[29][30][31]

In 2017, Rachel Tanner and Helen McShane, of the Jenner Institute, Oxford, published research on replacing, reducing, and refining the use of animals in tuberculosis vaccine research.[32]

United States edit

 
As of the end of 2013, the USDA has accredited cattle herds in all US states except for Michigan and California as being free from bovine TB.[33]

According to Barbara Gutmann Rosenkrantz, the late 19th-century discovery of the relationship between bovine and human tuberculosis led to state and federal attempts to stamp out bovine tuberculosis. The campaigns for clean milk and meat frightened city people into supporting controls, although at the time, little evidence showed that tuberculosis was spread to humans through infected meat or milk. The campaigns against impure meat and milk led to tension between the developing veterinarian profession and the medical profession, each claiming that area as part of their own expertise.[34]

By 1917, 5% of American cattle were infected with M. bovis (bovine tuberculosis or bTB), including 10% dairy animals and 1–2% of beef cattle. The rates were going up. Around 1900, 15,000 Americans, mostly children, died each year from bTB, and many more suffered pain and disfigurement.[35][36]

Threatened by a sales cutoff ordered by urban public health officials, Vermont state government officials launched an innovative eradication campaign against bTB on farms, 1877 to 1936. They made use of the latest German research, and thereby kept the New York City and Boston markets.[37] Vermont was exceptional, for across the country many farmers strenuously resisted bovine tuberculosis eradication as an expensive violation of their libertarian right to farm.[38]

In recent decades, M. bovis infections in cattle herds in the United States are not common. M. bovis is endemic in white-tailed deer (Odocoileus virginianus) in the northeastern portion of Michigan and northern Minnesota, and sporadically imported from Mexico. Only the white-tailed deer has been confirmed as a maintenance host in the Michigan outbreak of bTB, although other mammals such as raccoons (Procyon lotor), opossums (Didelphis virginiana), and coyotes (Canis latrans) can serve as spill-over and dead-end hosts.[39] The fact that white-tailed deer are a maintenance host for M. bovis remains a significant barrier to the US nationwide eradication of the disease in livestock. In 2008, 733,998 licensed deer hunters harvested around 489,922 white-tailed deer in attempts to control the disease spread. These hunters purchased more than 1.5 million deer-harvest tags. The economic value of deer hunting to Michigan's economy in the drive to eradicate TB is substantial. For example, in 2006, hunters spent US$507 million hunting white-tailed deer in Michigan.[40]

Global edit

The disease is found in cattle throughout the globe, but some countries have been able to reduce or limit the incidence of the disease through a process of "test and cull" of the cattle stock. Most of Europe and several Caribbean countries (including Cuba) are virtually free of M. bovis. Australia is officially free of the disease since the successful BTEC program, but residual infections might exist in feral water buffalo in isolated parts of the Northern Territory. In Canada, affected wild elk and white-tailed deer are found in and around Riding Mountain National Park in Manitoba. To improve control and eliminate bTB, the Canadian Food Inspection Agency has split Manitoba into two management areas: The Riding Mountain TB eradication area, where the disease has been found, and the Manitoba TB Eradication Area, the rest of the province outside RMEA where the disease has not been found.[41] The disease has also been found in African buffalo in South Africa.[citation needed]

M. bovis can be transmitted from human to human; an outbreak occurred in Birmingham, England, in 2004,[42] and from human to cattle,[43][44] but such occurrences are rare.

In Mexico, the disease is prevalent and rising among humans.[45]

Zoonotic tuberculosis edit

The infection of humans with M. bovis is referred to as zoonotic tuberculosis.[46] In 2017, the World Health Organization (WHO), World Organization for Animal Health (OIE), Food and Agriculture Organization (FAO), and The International Union Against Tuberculosis and Lung Disease (The Union), published the first Roadmap for Zoonotic Tuberculosis, recognizing zoonotic tuberculosis as a prominent global health problem.[47] The main route of transmission is through the consumption of unpasteurized milk or other dairy products, although transmission via inhalation and via consumption of poorly cooked meat has also been reported.[47] In 2018, based on the most recent Global Tuberculosis Report, an estimated 142,000 new cases of zoonotic tuberculosis, and 12,500 deaths due to the disease occurred.[48] Cases of zoonotic tuberculosis have been reported in Africa, the Americas, Europe, the Eastern Mediterranean, and the Western Pacific.[49] Human zoonotic tuberculosis cases are linked to the presence of bovine tuberculosis in cattle, and regions without adequate disease control measures and/or disease surveillance are at higher risk.[49] It is difficult to clinically distinguish zoonotic tuberculosis from tuberculosis caused by Mycobacterium tuberculosis in people, and the current most commonly used diagnostics cannot effectively distinguish between M. bovis and M. tuberculosis, which contributes to an underestimation of total cases worldwide.[50] Controlling this disease requires animal health, food safety, and human health sectors to work together under a One Health approach (multi-disciplinary collaborations to improve the health of animals, people, and the environment).[51]

The 2017 Roadmap identified ten priority areas for addressing zoonotic tuberculosis, which include collecting more accurate data, improving diagnostics, closing research gaps, improving food safety, reducing M. bovis in animal populations, identifying risk factors for transmission, increasing awareness, developing policies, implementing interventions, and increasing investments.[47] To align with goals outlined in the Stop TB Partnership Global Plan to End TB 2016-2020,[52] The Roadmap outlines specific milestones and goals to be met within this time frame.[47]

Treatment edit

M. bovis is innately resistant to pyrazinamide, so the standard human treatment is isoniazid and rifampicin for 9 months.[53] Most cattle that test positive are killed.[54]

See also edit

References edit

  1. ^ Karlson, A. G.; Lessel, E. F. (1970). "Mycobacterium bovis nom. nov". International Journal of Systematic Bacteriology. 20 (3): 273–282. doi:10.1099/00207713-20-3-273.
  2. ^ Grange, John M.; Yates, Malcolm D.; de Kantor, Isabel N. (1996). "Guidelines for speciation within the Mycobacterium tuberculosis complex. Second edition" (PDF). World Health Organization. Retrieved 2007-08-02.
  3. ^ Garnier, Thierry; Eiglmeier, Karin; Camus, Jean-Christophe; Medina, Nadine; Mansoor, Huma; Pryor, Melinda; Duthoy, Stephanie; Grondin, Sophie; Lacroix, Celine; Monsempe, Christel; Simon, Sylvie (2003-06-24). "The complete genome sequence of Mycobacterium bovis". Proceedings of the National Academy of Sciences of the United States of America. 100 (13): 7877–7882. Bibcode:2003PNAS..100.7877G. doi:10.1073/pnas.1130426100. ISSN 0027-8424. PMC 164681. PMID 12788972.
  4. ^ "Bovine tuberculosis". WOAH - World Organisation for Animal Health. Retrieved 2022-11-18.
  5. ^ O'Reilly LM, Daborn CJ. (August 1995). "The epidemiology of Mycobacterium bovis infections in animals and man: a review". Tuber Lung Dis. 76 (Suppl 1): 1–46. doi:10.1016/0962-8479(95)90591-X. PMID 7579326.
  6. ^ Delahay, R.J.; De Leeuw, A.N.S.; Barlow, A.M.; Clifton-Hadley, R.S.; Cheeseman, C.L. (2002). "The status of Mycobacterium bovis infection in UK wild mammals: A review". The Veterinary Journal. 164 (2): 90–105. doi:10.1053/tvjl.2001.0667. PMID 12359464.
  7. ^ Phillips, C.J.C.; Foster, C.R.W.; Morris, P.A.; Teverson, R. (2001). "The transmission of Mycobacterium bovis infection to cattle". Research in Veterinary Science. 74 (1): 1–15. doi:10.1016/S0034-5288(02)00145-5. PMID 12507561.
  8. ^ "What is Bovine Tuberculosis (TB)? | Department of Agriculture, Environment and Rural Affairs". DAERA. 2015-05-05. Retrieved 2022-11-18.
  9. ^ Vordermeier, H. Martin; Jones, Gareth J.; Buddle, Bryce M.; Hewinson, R. Glyn; Villarreal-Ramos, Bernardo (2016-02-15). "Bovine Tuberculosis in Cattle: Vaccines, DIVA Tests, and Host Biomarker Discovery". Annual Review of Animal Biosciences. Annual Reviews. 4 (1): 87–109. doi:10.1146/annurev-animal-021815-111311. ISSN 2165-8102. PMID 26884103.
  10. ^ . Archived from the original on 2011-01-30. Retrieved 2011-07-22.
  11. ^ "Bovine TB control: What are other countries doing?". 21 July 2011.
  12. ^ Kean, J.M.; Barlow, N. D.; Hickling, G.J. (1999). "Evaluating potential sources of bovine tuberculosis infection in a New Zealand cattle herd". New Zealand Journal of Agricultural Research. 42 (1): 101–106. Bibcode:1999NZJAR..42..101K. doi:10.1080/00288233.1999.9513358.
  13. ^ . 2011. Archived from the original on 2012-12-19. Retrieved 2011-08-09.
  14. ^ . 2011. Archived from the original on 2012-03-30.
  15. ^ . Gisborne Herald. 26 May 2011. Archived from the original on September 27, 2011.
  16. ^ Reynolds D (2006). "A review of tuberculosis science and policy in Great Britain". Vet Microbiol. 112 (2–4): 119–126. doi:10.1016/j.vetmic.2005.11.042. PMID 16343818.
  17. ^ Krebs JR, Anderson T, Clutton-Brock WT (1997). Bovine tuberculosis in cattle and badgers: an independent scientific review. London: Ministry of Agriculture, Fisheries and Food.
  18. ^ defra. . Archived from the original on 2007-08-07. Retrieved 2007-07-30.
  19. ^ defra. . Archived from the original on 2007-08-11. Retrieved 2007-07-30.
  20. ^ Independent Scientific Group on Cattle TB. (PDF). Archived from the original (PDF) on 2007-08-05. Retrieved 2007-07-30.
  21. ^ Daily Hansard. "Daily Hansard, House of Lords; Thursday, 26 July 2007". Retrieved 2007-07-30.
  22. ^ a b Delahay, R. J.; Smith, G. C.; Barlow, A. M.; Walker, N.; Harris, A.; Clifton-Hadley, R. S.; Cheeseman, C. L. (2007). "Bovine tuberculosis infection in wild mammals in the South-West region of England: A survey of prevalence and a semi-quantitative assessment of the relative risks to cattle". The Veterinary Journal. 173 (2): 287–301. doi:10.1016/j.tvjl.2005.11.011. PMID 16434219.
  23. ^ a b Ward, A. I.; Smith, G. C.; Etherington, T. R.; Delahay, R. J. (2009). "Estimating the risk of cattle exposure to tuberculosis posed by wild deer relative to badgers in England and Wales". Journal of Wildlife Diseases. 45 (4): 1104–1120. doi:10.7589/0090-3558-45.4.1104. PMID 19901384. S2CID 7102058.
  24. ^ Bain, John (4 April 2017). (PDF). defra.gov.uk. Archived from the original (PDF) on 15 April 2017. Retrieved 4 April 2017.
  25. ^ Agency, Food Standards. . www.food.gov.uk. Archived from the original on 2017-04-15. Retrieved 2017-04-14.
  26. ^ "Pet cats infect two people with TB". BBC. 27 March 2014. Retrieved 28 March 2014.
  27. ^ a b Torgerson, PR; Torgerson, DJ (2010). "Public health and bovine tuberculosis: what's all the fuss about?" (PDF). Trends in Microbiology. 18 (2): 67–72. doi:10.1016/j.tim.2009.11.002. PMID 19944609.
  28. ^ 'Bovine TB, Time for a Rethink www.rethinkbtb.org/a_better-way.html'
  29. ^ . Bow Publishing. 25 Mar 2012. Archived from the original on 2012-04-28. Retrieved 2012-04-28.
  30. ^ Barkham, Patrick (26 Mar 2012). "Badger Cull divides Tories". The Guardian. Retrieved 2012-04-28.
  31. ^ "Now even Tories are calling for the badger cull to be scrapped". Western Morning News. 3 Apr 2012. Retrieved 2012-04-28.
  32. ^ Tanner, Rachel; McShane, Helen (2017-02-01). "Replacing, reducing and refining the use of animals in tuberculosis vaccine research". ALTEX. 34 (1): 157–166. doi:10.14573/altex.1607281. ISSN 1868-8551. PMID 27667476.
  33. ^ Status of Current Eradication Programs (PDF) (Report). United States Department of Agriculture. 3 Dec 2013. Retrieved 7 July 2014.
  34. ^ Barbara Gutmann Rosenkrantz, "The trouble with bovine tuberculosis." Bulletin of the History of Medicine 59.2 (1985): 155-175 online.
  35. ^ Alan L. Olmstead and Paul W. Rhode, "Not on my farm! Resistance to bovine tuberculosis eradication in the United States." Journal of Economic History 67.3 (2007): 768-809. online
  36. ^ Alan L. Olmstead and Paul W. Rhode. "An impossible undertaking: the eradication of bovine tuberculosis in the United States." Journal of Economic History 64.3 (2004): 734-772
  37. ^ Basil P. Tangredi, "Routing Mr. Bovine Bacillus: Eradication of Bovine Tuberculosis on Vermont Farms" Vermont History (2017) 85#2 pp 113-127.
  38. ^ Olmstead and Rhode. "An impossible undertaking: the eradication of bovine tuberculosis in the United States."
  39. ^ Witmer, G.; Fine, A. E.; Gionfriddo, J.; Pipas, M.; Shively, K.; Piccolo, K.; Burke, P. (2010). "Epizootiological survey of Mycobasterium bovis in wildlife and farm environments in Northern Michigan". Journal of Wildlife Diseases. 46 (2): 368–378. doi:10.7589/0090-3558-46.2.368. PMID 20688630. S2CID 6456169.
  40. ^ O’Brien, D. J.; Schmitt, S. M.; Fitzgerald, S. D.; Berry, D. E. (2011). "Management of bovine tuberculosis in Michigan wildlife: Current status and near term prospects". Veterinary Microbiology. 151 (1–2): 179–187. doi:10.1016/j.vetmic.2011.02.042. PMID 21414734.
  41. ^ " Bovine Tuberculosis (TB) Management - In the Riding Mountain Area, Manitoba Conservation
  42. ^ "Nightclub linked to TB outbreak". Metro. 2006-10-12.
  43. ^ Griffith AS and Munro WT (1944). "Human pulmonary tuberculosis of bovine origin in Great Britain". J Hyg. 43 (4): 229–40. doi:10.1017/S0022172400012894. PMC 2234683. PMID 20475680.
  44. ^ Tice FJ (1944). "Man, a source of bovine tuberculosis in cattle". Cornell Vet. 34: 363–5.
  45. ^ Valle, Miriam Bobadilla-del; Torres-González, Pedro; Cervera-Hernández, Miguel Enrique; Martínez-Gamboa, Areli; Crabtree-Ramirez, Brenda; Chávez-Mazari, Bárbara; Ortiz-Conchi, Narciso; Rodríguez-Cruz, Luis; Cervantes-Sánchez, Axel; Gudiño-Enríquez, Tomasa; Cinta-Severo, Carmen; Sifuentes-Osornio, José; León, Alfredo Ponce de (30 September 2015). "Trends of Mycobacterium bovis Isolation and First-Line Anti-tuberculosis Drug Susceptibility Profile: A Fifteen-Year Laboratory-Based Surveillance". PLOS Neglected Tropical Diseases. 9 (9): e0004124. doi:10.1371/journal.pntd.0004124. PMC 4589280. PMID 26421930.
  46. ^ Olea-Popelka, Francisco; Muwonge, Adrian; Perera, Alejandro; Dean, Anna S; Mumford, Elizabeth; Erlacher-Vindel, Elisabeth; Forcella, Simona; Silk, Benjamin J; Ditiu, Lucica; El Idrissi, Ahmed; Raviglione, Mario (2017-01-01). "Zoonotic tuberculosis in human beings caused by Mycobacterium bovis—a call for action" (PDF). The Lancet Infectious Diseases. 17 (1): e21–e25. doi:10.1016/S1473-3099(16)30139-6. hdl:20.500.11820/18997533-9955-480f-8ce7-4681d5518ed1. ISSN 1473-3099. PMID 27697390. S2CID 4856942.
  47. ^ a b c d . WHO. Archived from the original on October 17, 2017. Retrieved 2019-10-04.
  48. ^ "WHO | Global tuberculosis report 2018". WHO. Retrieved 2019-10-04.
  49. ^ a b Müller, Borna; Dürr, Salome; Alonso, Silvia; Hattendorf, Jan; Laisse, Cláudio J.M.; Parsons, Sven D.C.; van Helden, Paul D.; Zinsstag, Jakob (June 2013). "Zoonotic Mycobacterium bovis–induced Tuberculosis in Humans". Emerging Infectious Diseases. 19 (6): 899–908. doi:10.3201/eid1906.120543. ISSN 1080-6040. PMC 4816377. PMID 23735540.
  50. ^ Chambers, Mark; Gordon, Stephen; Olea-Popelka, Francisco; Barrow, Paul (2018-04-13). Bovine Tuberculosis. CABI. pp. 16–17. ISBN 9781786391520.
  51. ^ Thoen, Charles O.; Kaplan, Bruce; Thoen, Tyler C.; Gilsdorf, Michael J.; Shere, Jack A. (2016). "Zoonotic tuberculosis. A comprehensive ONE HEALTH approach". Medicina. 76 (3): 159–165. ISSN 0025-7680. PMID 27295705.
  52. ^ "Stop TB Partnership | The Global Plan to End TB | The Global Plan to Stop TB 2016 - 2020". www.stoptb.org. Retrieved 2019-10-04.
  53. ^ Lan, Zhiyi; Bastos, Mayara; Menzies, Dick (2016-08-18). "Treatment of human disease due to Mycobacterium bovis: a systematic review". European Respiratory Journal. 48 (5): ERJ–00629–2016. doi:10.1183/13993003.00629-2016. ISSN 0903-1936. PMID 27540021.
  54. ^ "Bovine TB - Cattle, spread, symptoms, treatment". tbfacts.org. Retrieved 2019-10-04.

External links edit

  • TB free New Zealand 2011-08-30 at the Wayback Machine - TB control programme in New Zealand
  • - The use of 1080 for pest control in New Zealand - Possums as reservoirs of bovine tuberculosis
  • - Facts about how 1080 poison is used to control bovine TB in New Zealand
  • Background on immunology and testing for Bovine TB - The background on immunology and testing for Bovine Tuberculosis.
  • Mycobacterium bovis in African wildlife Mycobacterium bovis in African wildlife
  • - Health Protection Agency

mycobacterium, bovis, slow, growing, hour, generation, time, aerobic, bacterium, causative, agent, tuberculosis, cattle, known, bovine, related, mycobacterium, tuberculosis, bacterium, which, causes, tuberculosis, humans, bovis, jump, species, barrier, cause, . Mycobacterium bovis is a slow growing 16 to 20 hour generation time aerobic bacterium and the causative agent of tuberculosis in cattle known as bovine TB It is related to Mycobacterium tuberculosis the bacterium which causes tuberculosis in humans M bovis can jump the species barrier and cause tuberculosis like infection in humans and other mammals 2 Mycobacterium bovisAttenuated strain of M bovis used in the Bacillus Calmette Guerin vaccineScientific classificationDomain BacteriaPhylum ActinomycetotaClass ActinomycetiaOrder MycobacterialesFamily MycobacteriaceaeGenus MycobacteriumSpecies M bovisBinomial nameMycobacterium bovisKarlson amp Lessel 1970 1 ATCC 19210 Contents 1 Bacterium morphology and staining 2 Culture and biochemical features 2 1 Growth requirements 2 2 Appearance of colonies 3 Cell structure and metabolism 4 Pathogenesis 5 Application to biotechnology 6 Epidemiology and control 6 1 Testing 6 2 New Zealand 6 3 United Kingdom 6 4 United States 6 5 Global 7 Zoonotic tuberculosis 8 Treatment 9 See also 10 References 11 External linksBacterium morphology and staining editThe bacteria are curved or straight rods They sometimes form filaments which fragment into bacilli or cocci once disturbed In tissues they form slender rods straight or curved or club shaped Short relatively plump bacilli rods in tissue smears large slender beaded rods in culture They have no flagella or fimbria and no capsule citation needed Mycobacterium tuberculosis group bacteria are 1 0 4 0 µm long by 0 2 0 3 µm wide in tissues In culture they may appear as cocci or as bacilli up to 6 8 µm long citation needed The bacteria stain Gram positive acid fast The cell wall contains as high as 60 lipid giving the mycobacteria their hydrophobic characteristics slow growth and resistance to desiccation disinfectants acids and antibodies Mycobacterium family They are not easy to stain with aniline dyes although they are Gram positive confirming this may be difficult Ziehl Neelsen staining results in stain pink with hot carbol fuscin and then resist decolourisation with 3 hydrochloric acid in 95 alcohol i e they are acid alcohol fast following washing the slide is counterstained with e g methylene blue citation needed They are nonspore forming Culture and biochemical features editGrowth requirements edit M bovis is a facultative intracellular parasite For in vitro growth special culture media are required for example Dorset s egg medium incorporates egg yolk phosphate buffer magnesium salts and sodium pyruvate amino acids may be added but glycerol is not included as it is inhibitory It is inhibited by glycerine Culture generally requires several weeks at 37 C to reach colonies visible to the unaided human eye It is strictly aerobic and grows at 37 but not at 25 C Optimal growth occurs at 37 38 C The species does not reduce nitrate or niacin and is resistant to pyrazinamide It is sensitive to thiophene 2 carboxylic acid hydrazide citation needed Appearance of colonies edit Initially after 3 4 weeks its minute dull flakes begin to thicken to form dry irregular masses standing high above the culture medium surface Eventually confluent growth is seen over the whole culture surface forming a rough waxy blanket becoming thick and wrinkled and reaching up the sides of the container Colonies are yellow when first visible darkening to deep yellow and eventually brick red if exposed to light In fluid media growth is on the surface only unless a wetting agent e g Tween 80 is added to the medium citation needed Cell structure and metabolism editM bovis is similar in structure and metabolism to M tuberculosis M bovis is a Gram positive acid fast rod shaped aerobic bacterium Unlike M tuberculosis M bovis lacks pyruvate kinase activity due to pykAcontaining a point mutation that affects binding of Mg2 cofactor 3 Pyruvate kinase catalyses the final step of glycolysis the dephosphorylation of phosphorenolpyruvate to pyruvate Therefore in M bovis glycolytic intermediates are unable to enter into oxidative metabolism Although no specific studies have been performed M bovis seemingly must rely on amino acids or fatty acids as an alternative carbon source for energy metabolism citation needed Pathogenesis edit nbsp Lesions consistent with bovine tuberculosis on the lower jaw and lung of a wild boarDuring the first half of the 20th century M bovis is estimated to have been responsible for more losses among farm animals than all other infectious diseases combined Infection occurs if the bacterium is ingested or inhaled 4 M bovis is usually transmitted to humans by consuming raw milk from infected cows although it can also spread via aerosol droplets Actual infections in humans are nowadays rare in developed countries mainly because pasteurisation kills M bovis bacteria in infected milk In the UK cattle are tested for the disease as part of an eradication program and culled if they test positive Such cattle can still enter the human food chain but only after a meat inspector or a government veterinary surgeon has inspected the carcass and certified that it is fit for human consumption However in areas of the developing world where pasteurisation is not routine M bovis is a relatively common cause of human tuberculosis 5 Bovine tuberculosis is a chronic infectious disease which affects a broad range of mammalian hosts including humans cattle deer llamas pigs domestic cats wild carnivores foxes coyotes and omnivores common brushtail possum mustelids and rodents it rarely affects equids or sheep 6 7 The disease can be transmitted in several ways for example it can be spread in exhaled air sputum urine faeces and pus so the disease can be transmitted by direct contact contact with the excreta of an infected animal or inhalation of aerosols depending on the species involved 8 Application to biotechnology editM bovis is the ancestor of the most widely used vaccine against tuberculosis M bovis bacillus Calmette Guerin BCG which was isolated after subculturing on glycerine potato medium 239 times during 13 years starting from an initial virulent strain citation needed Epidemiology and control editTesting edit Skin testing is possible in cattle Casal et al 2012 tried both recombinant protein and overlapping peptide provocation finding the peptide test to be less sensitive 9 New Zealand edit In New Zealand the introduced common brushtail possum is a vector for the spread of M bovis The Biosecurity Act 1993 which established a national pest management strategy is the legislation behind control of the disease in New Zealand The Animal Health Board operates a nationwide programme of cattle testing and possum control with the goal of eradicating M bovis from wild vector species across 2 5 million hectares or one quarter of New Zealand s at risk areas by 2026 and eventually eradicating the disease entirely 10 The TB free New Zealand programme is regarded as world leading 11 It has successfully reduced cattle and deer herd infection rates from more than 1700 in 1994 to fewer than 100 herds in July 2011 Much of this success can be attributed to sustained cattle controls reducing cross infection and breaking the disease cycle For example at Hohotaka in New Zealand s central North Island control work from 1988 to 1994 achieved a sustained mean reduction of 87 5 in the density of TB infected possums As expected annual TB incidence in local cattle herds consequently declined by a similar amount 83 4 12 Possums are controlled through a combination of trapping ground baiting and where other methods are impractical aerial treatment with 1080 poison 13 From 1979 to 1984 possum control was stopped due to lack of funding From that point until 1994 TB rates in herds steadily increased 14 The area of New Zealand harbouring TB infected wild animals expanded from about 10 of the country to 40 citation needed The fact that possums are such effective transmitters of TB appears to be facilitated by their behaviour once they get the disease 15 United Kingdom edit See also Badger culling in the United Kingdom In the 1930s 40 of cattle in the UK were infected with M bovis and 50 000 new cases of human M bovis infection were reported every year 16 According to DEFRA and the Health Protection Agency the risk to people contracting TB from cattle in Great Britain would be low citation needed Badgers Meles meles were first identified as carriers of M bovis in 1971 but the report of an independent review committee in 1997 the Krebs Report concluded strong circumstantial evidence exists to suggest that badgers represent a significant source of M bovis infection in cattle h owever the causal link has not been proven 17 In essence the contribution of badgers to the TB problem in British cattle was at this point a hypothesis that needed to be tested according to the report The subsequent Randomised Badger Culling Trial 18 designed overseen and analysed by the Independent Scientific Group on Cattle TB or ISG 19 examined this hypothesis by conducting a large field trial of widescale proactive culling and localised reactive culling in comparison with areas which received no badger culling In their final report 20 the ISG concluded First while badgers are clearly a source of cattle TB careful evaluation of our own and others data indicates that badger culling can make no meaningful contribution to cattle TB control in Britain Indeed some policies under consideration are likely to make matters worse rather than better Second weaknesses in cattle testing regimens mean that cattle themselves contribute significantly to the persistence and spread of disease in all areas where TB occurs and in some parts of Britain are likely to be the main source of infection Scientific findings indicate that the rising incidence of disease can be reversed and geographical spread contained by the rigid application of cattle based control measures alone On 26 July 2007 the Minister of State Department for Environment Food and Rural Affairs Lord Rooker said My Lords we welcome the Independent Scientific Group s final report which further improves the evidence base We are carefully considering the issues that the report raises and will continue to work with industry government advisers and scientific experts in reaching policy decisions on these issues 21 In the UK many other mammals have been found to be infected with M bovis although the frequency of isolation is generally much less than cattle and badgers In some areas of south west England deer especially fallow deer due to their gregarious behaviour have been implicated as possible maintenance hosts for transmission of bovine TB 22 23 In some localised areas the risk of transmission to cattle from fallow deer has been argued to be greater than it is from badgers 22 23 One of the reasons that the Department for Environment Food and Rural Affairs requires infected or suspected cattle to be culled is to meet EU regulations for the export of meat and dairy products to other member states Meat and dairy products can still be sold in the UK into the human food chain providing the relevant carcass inspections and milk pasteurisation have been applied 24 25 Spread of the disease to humans by domestic pets became evident in March 2014 when Public Health England announced two people in England developed bTB infections after contact with a domestic cat The two human cases were linked to 9 cases of bTB infection in cats in Berkshire and Hampshire during 2013 These are the first documented cases of cat to human transmission 26 In a 2010 opinion piece in Trends in Microbiology Paul and David Torgerson argued that bovine tuberculosis is a negligible public health problem in the UK providing milk is pasteurized Bovine TB is very rarely spread by aerosol from cattle to humans Therefore the bovine tuberculosis control programme in the UK in its present form is a misallocation of resources and provides no benefit to society Indeed very little evidence exists of a positive cost benefit to the livestock industry as few studies have been undertaken on the direct costs of bovine TB to animal production Milk pasteurisation was the single public health intervention that prevented the transmission of bovine TB to humans and no justification for the present test and cull policy in the UK is seen 27 In July 2010 the second issue of the discussion document Bovine TB Time for a Rethink 28 was published by Rethink Bovine TB an independent research group The paper considers current policy in England and Wales It proposes an alternative solution that is both practical and cost effective In the paper evidence is drawn from DEFRA and the work by Professors Paul and David Torgerson 27 In March 2012 think tank the Bow Group published a target paper urging the government to reconsider its plans to cull thousands of badgers to control bovine TB stating that the findings of Labour s major badger culling trials several years prior were that culling does not work The paper was authored by Graham Godwin Pearson with a foreword by singer Brian May and contributions by leading tuberculosis scientists including Lord Krebs 29 30 31 In 2017 Rachel Tanner and Helen McShane of the Jenner Institute Oxford published research on replacing reducing and refining the use of animals in tuberculosis vaccine research 32 United States edit Further information Dairy industry in the United States Bovine tuberculosis eradication nbsp As of the end of 2013 the USDA has accredited cattle herds in all US states except for Michigan and California as being free from bovine TB 33 According to Barbara Gutmann Rosenkrantz the late 19th century discovery of the relationship between bovine and human tuberculosis led to state and federal attempts to stamp out bovine tuberculosis The campaigns for clean milk and meat frightened city people into supporting controls although at the time little evidence showed that tuberculosis was spread to humans through infected meat or milk The campaigns against impure meat and milk led to tension between the developing veterinarian profession and the medical profession each claiming that area as part of their own expertise 34 By 1917 5 of American cattle were infected with M bovis bovine tuberculosis or bTB including 10 dairy animals and 1 2 of beef cattle The rates were going up Around 1900 15 000 Americans mostly children died each year from bTB and many more suffered pain and disfigurement 35 36 Threatened by a sales cutoff ordered by urban public health officials Vermont state government officials launched an innovative eradication campaign against bTB on farms 1877 to 1936 They made use of the latest German research and thereby kept the New York City and Boston markets 37 Vermont was exceptional for across the country many farmers strenuously resisted bovine tuberculosis eradication as an expensive violation of their libertarian right to farm 38 In recent decades M bovis infections in cattle herds in the United States are not common M bovis is endemic in white tailed deer Odocoileus virginianus in the northeastern portion of Michigan and northern Minnesota and sporadically imported from Mexico Only the white tailed deer has been confirmed as a maintenance host in the Michigan outbreak of bTB although other mammals such as raccoons Procyon lotor opossums Didelphis virginiana and coyotes Canis latrans can serve as spill over and dead end hosts 39 The fact that white tailed deer are a maintenance host for M bovis remains a significant barrier to the US nationwide eradication of the disease in livestock In 2008 733 998 licensed deer hunters harvested around 489 922 white tailed deer in attempts to control the disease spread These hunters purchased more than 1 5 million deer harvest tags The economic value of deer hunting to Michigan s economy in the drive to eradicate TB is substantial For example in 2006 hunters spent US 507 million hunting white tailed deer in Michigan 40 Global edit The disease is found in cattle throughout the globe but some countries have been able to reduce or limit the incidence of the disease through a process of test and cull of the cattle stock Most of Europe and several Caribbean countries including Cuba are virtually free of M bovis Australia is officially free of the disease since the successful BTEC program but residual infections might exist in feral water buffalo in isolated parts of the Northern Territory In Canada affected wild elk and white tailed deer are found in and around Riding Mountain National Park in Manitoba To improve control and eliminate bTB the Canadian Food Inspection Agency has split Manitoba into two management areas The Riding Mountain TB eradication area where the disease has been found and the Manitoba TB Eradication Area the rest of the province outside RMEA where the disease has not been found 41 The disease has also been found in African buffalo in South Africa citation needed M bovis can be transmitted from human to human an outbreak occurred in Birmingham England in 2004 42 and from human to cattle 43 44 but such occurrences are rare In Mexico the disease is prevalent and rising among humans 45 Zoonotic tuberculosis editThe infection of humans with M bovis is referred to as zoonotic tuberculosis 46 In 2017 the World Health Organization WHO World Organization for Animal Health OIE Food and Agriculture Organization FAO and The International Union Against Tuberculosis and Lung Disease The Union published the first Roadmap for Zoonotic Tuberculosis recognizing zoonotic tuberculosis as a prominent global health problem 47 The main route of transmission is through the consumption of unpasteurized milk or other dairy products although transmission via inhalation and via consumption of poorly cooked meat has also been reported 47 In 2018 based on the most recent Global Tuberculosis Report an estimated 142 000 new cases of zoonotic tuberculosis and 12 500 deaths due to the disease occurred 48 Cases of zoonotic tuberculosis have been reported in Africa the Americas Europe the Eastern Mediterranean and the Western Pacific 49 Human zoonotic tuberculosis cases are linked to the presence of bovine tuberculosis in cattle and regions without adequate disease control measures and or disease surveillance are at higher risk 49 It is difficult to clinically distinguish zoonotic tuberculosis from tuberculosis caused by Mycobacterium tuberculosis in people and the current most commonly used diagnostics cannot effectively distinguish between M bovis and M tuberculosis which contributes to an underestimation of total cases worldwide 50 Controlling this disease requires animal health food safety and human health sectors to work together under a One Health approach multi disciplinary collaborations to improve the health of animals people and the environment 51 The 2017 Roadmap identified ten priority areas for addressing zoonotic tuberculosis which include collecting more accurate data improving diagnostics closing research gaps improving food safety reducing M bovis in animal populations identifying risk factors for transmission increasing awareness developing policies implementing interventions and increasing investments 47 To align with goals outlined in the Stop TB Partnership Global Plan to End TB 2016 2020 52 The Roadmap outlines specific milestones and goals to be met within this time frame 47 Treatment editM bovis is innately resistant to pyrazinamide so the standard human treatment is isoniazid and rifampicin for 9 months 53 Most cattle that test positive are killed 54 See also editChristopher Morcom Badger culling in the United Kingdom Veterinary medicine Paratuberculosis Mycobacterium avium complexReferences edit Karlson A G Lessel E F 1970 Mycobacterium bovis nom nov International Journal of Systematic Bacteriology 20 3 273 282 doi 10 1099 00207713 20 3 273 Grange John M Yates Malcolm D de Kantor Isabel N 1996 Guidelines for speciation within the Mycobacterium tuberculosis complex Second edition PDF World Health Organization Retrieved 2007 08 02 Garnier Thierry Eiglmeier Karin Camus Jean Christophe Medina Nadine Mansoor Huma Pryor Melinda Duthoy Stephanie Grondin Sophie Lacroix Celine Monsempe Christel Simon Sylvie 2003 06 24 The complete genome sequence of Mycobacterium bovis Proceedings of the National Academy of Sciences of the United States of America 100 13 7877 7882 Bibcode 2003PNAS 100 7877G doi 10 1073 pnas 1130426100 ISSN 0027 8424 PMC 164681 PMID 12788972 Bovine tuberculosis WOAH World Organisation for Animal Health Retrieved 2022 11 18 O Reilly LM Daborn CJ August 1995 The epidemiology of Mycobacterium bovis infections in animals and man a review Tuber Lung Dis 76 Suppl 1 1 46 doi 10 1016 0962 8479 95 90591 X PMID 7579326 Delahay R J De Leeuw A N S Barlow A M Clifton Hadley R S Cheeseman C L 2002 The status of Mycobacterium bovis infection in UK wild mammals A review The Veterinary Journal 164 2 90 105 doi 10 1053 tvjl 2001 0667 PMID 12359464 Phillips C J C Foster C R W Morris P A Teverson R 2001 The transmission of Mycobacterium bovis infection to cattle Research in Veterinary Science 74 1 1 15 doi 10 1016 S0034 5288 02 00145 5 PMID 12507561 What is Bovine Tuberculosis TB Department of Agriculture Environment and Rural Affairs DAERA 2015 05 05 Retrieved 2022 11 18 Vordermeier H Martin Jones Gareth J Buddle Bryce M Hewinson R Glyn Villarreal Ramos Bernardo 2016 02 15 Bovine Tuberculosis in Cattle Vaccines DIVA Tests and Host Biomarker Discovery Annual Review of Animal Biosciences Annual Reviews 4 1 87 109 doi 10 1146 annurev animal 021815 111311 ISSN 2165 8102 PMID 26884103 TBfree New Zealand programme Archived from the original on 2011 01 30 Retrieved 2011 07 22 Bovine TB control What are other countries doing 21 July 2011 Kean J M Barlow N D Hickling G J 1999 Evaluating potential sources of bovine tuberculosis infection in a New Zealand cattle herd New Zealand Journal of Agricultural Research 42 1 101 106 Bibcode 1999NZJAR 42 101K doi 10 1080 00288233 1999 9513358 The use of 1080 for pest control 3 1 Possums as reservoirs of bovine tuberculosis 2011 Archived from the original on 2012 12 19 Retrieved 2011 08 09 Future freedom from bovine TB Graham Nugent Landcare Research 2011 Archived from the original on 2012 03 30 Dr Paul Livingstone letter to the editor Gisborne Herald 26 May 2011 Archived from the original on September 27 2011 Reynolds D 2006 A review of tuberculosis science and policy in Great Britain Vet Microbiol 112 2 4 119 126 doi 10 1016 j vetmic 2005 11 042 PMID 16343818 Krebs JR Anderson T Clutton Brock WT 1997 Bovine tuberculosis in cattle and badgers an independent scientific review London Ministry of Agriculture Fisheries and Food defra Bovine TB Randomised Badger Culling Trial RBCT Archived from the original on 2007 08 07 Retrieved 2007 07 30 defra Bovine TB The Independent Scientific Group on Cattle TB Archived from the original on 2007 08 11 Retrieved 2007 07 30 Independent Scientific Group on Cattle TB Bovine TB The Scientific Evidence Final Report of the Independent Scientific Group on Cattle TB Presented to the Secretary of State for Environment Food and Rural Affairs The Rt Hon David Miliband MP June 2007 PDF Archived from the original PDF on 2007 08 05 Retrieved 2007 07 30 Daily Hansard Daily Hansard House of Lords Thursday 26 July 2007 Retrieved 2007 07 30 a b Delahay R J Smith G C Barlow A M Walker N Harris A Clifton Hadley R S Cheeseman C L 2007 Bovine tuberculosis infection in wild mammals in the South West region of England A survey of prevalence and a semi quantitative assessment of the relative risks to cattle The Veterinary Journal 173 2 287 301 doi 10 1016 j tvjl 2005 11 011 PMID 16434219 a b Ward A I Smith G C Etherington T R Delahay R J 2009 Estimating the risk of cattle exposure to tuberculosis posed by wild deer relative to badgers in England and Wales Journal of Wildlife Diseases 45 4 1104 1120 doi 10 7589 0090 3558 45 4 1104 PMID 19901384 S2CID 7102058 Bain John 4 April 2017 Intra Union Trade in Bovine Animals for Breeding Production PDF defra gov uk Archived from the original PDF on 15 April 2017 Retrieved 4 April 2017 Agency Food Standards Food chain information model document for animals susceptible to bovine tuberculosis Food Standards Agency www food gov uk Archived from the original on 2017 04 15 Retrieved 2017 04 14 Pet cats infect two people with TB BBC 27 March 2014 Retrieved 28 March 2014 a b Torgerson PR Torgerson DJ 2010 Public health and bovine tuberculosis what s all the fuss about PDF Trends in Microbiology 18 2 67 72 doi 10 1016 j tim 2009 11 002 PMID 19944609 Bovine TB Time for a Rethink www rethinkbtb org a better way html Bow Group urges the Government to Scrap Badger Cull plans Bow Publishing 25 Mar 2012 Archived from the original on 2012 04 28 Retrieved 2012 04 28 Barkham Patrick 26 Mar 2012 Badger Cull divides Tories The Guardian Retrieved 2012 04 28 Now even Tories are calling for the badger cull to be scrapped Western Morning News 3 Apr 2012 Retrieved 2012 04 28 Tanner Rachel McShane Helen 2017 02 01 Replacing reducing and refining the use of animals in tuberculosis vaccine research ALTEX 34 1 157 166 doi 10 14573 altex 1607281 ISSN 1868 8551 PMID 27667476 Status of Current Eradication Programs PDF Report United States Department of Agriculture 3 Dec 2013 Retrieved 7 July 2014 Barbara Gutmann Rosenkrantz The trouble with bovine tuberculosis Bulletin of the History of Medicine 59 2 1985 155 175 online Alan L Olmstead and Paul W Rhode Not on my farm Resistance to bovine tuberculosis eradication in the United States Journal of Economic History 67 3 2007 768 809 online Alan L Olmstead and Paul W Rhode An impossible undertaking the eradication of bovine tuberculosis in the United States Journal of Economic History 64 3 2004 734 772 Basil P Tangredi Routing Mr Bovine Bacillus Eradication of Bovine Tuberculosis on Vermont Farms Vermont History 2017 85 2 pp 113 127 Olmstead and Rhode An impossible undertaking the eradication of bovine tuberculosis in the United States Witmer G Fine A E Gionfriddo J Pipas M Shively K Piccolo K Burke P 2010 Epizootiological survey of Mycobasterium bovis in wildlife and farm environments in Northern Michigan Journal of Wildlife Diseases 46 2 368 378 doi 10 7589 0090 3558 46 2 368 PMID 20688630 S2CID 6456169 O Brien D J Schmitt S M Fitzgerald S D Berry D E 2011 Management of bovine tuberculosis in Michigan wildlife Current status and near term prospects Veterinary Microbiology 151 1 2 179 187 doi 10 1016 j vetmic 2011 02 042 PMID 21414734 Bovine Tuberculosis TB Management In the Riding Mountain Area Manitoba Conservation Nightclub linked to TB outbreak Metro 2006 10 12 Griffith AS and Munro WT 1944 Human pulmonary tuberculosis of bovine origin in Great Britain J Hyg 43 4 229 40 doi 10 1017 S0022172400012894 PMC 2234683 PMID 20475680 Tice FJ 1944 Man a source of bovine tuberculosis in cattle Cornell Vet 34 363 5 Valle Miriam Bobadilla del Torres Gonzalez Pedro Cervera Hernandez Miguel Enrique Martinez Gamboa Areli Crabtree Ramirez Brenda Chavez Mazari Barbara Ortiz Conchi Narciso Rodriguez Cruz Luis Cervantes Sanchez Axel Gudino Enriquez Tomasa Cinta Severo Carmen Sifuentes Osornio Jose Leon Alfredo Ponce de 30 September 2015 Trends of Mycobacterium bovis Isolation and First Line Anti tuberculosis Drug Susceptibility Profile A Fifteen Year Laboratory Based Surveillance PLOS Neglected Tropical Diseases 9 9 e0004124 doi 10 1371 journal pntd 0004124 PMC 4589280 PMID 26421930 Olea Popelka Francisco Muwonge Adrian Perera Alejandro Dean Anna S Mumford Elizabeth Erlacher Vindel Elisabeth Forcella Simona Silk Benjamin J Ditiu Lucica El Idrissi Ahmed Raviglione Mario 2017 01 01 Zoonotic tuberculosis in human beings caused by Mycobacterium bovis a call for action PDF The Lancet Infectious Diseases 17 1 e21 e25 doi 10 1016 S1473 3099 16 30139 6 hdl 20 500 11820 18997533 9955 480f 8ce7 4681d5518ed1 ISSN 1473 3099 PMID 27697390 S2CID 4856942 a b c d WHO Roadmap for zoonotic tuberculosis WHO Archived from the original on October 17 2017 Retrieved 2019 10 04 WHO Global tuberculosis report 2018 WHO Retrieved 2019 10 04 a b Muller Borna Durr Salome Alonso Silvia Hattendorf Jan Laisse Claudio J M Parsons Sven D C van Helden Paul D Zinsstag Jakob June 2013 Zoonotic Mycobacterium bovis induced Tuberculosis in Humans Emerging Infectious Diseases 19 6 899 908 doi 10 3201 eid1906 120543 ISSN 1080 6040 PMC 4816377 PMID 23735540 Chambers Mark Gordon Stephen Olea Popelka Francisco Barrow Paul 2018 04 13 Bovine Tuberculosis CABI pp 16 17 ISBN 9781786391520 Thoen Charles O Kaplan Bruce Thoen Tyler C Gilsdorf Michael J Shere Jack A 2016 Zoonotic tuberculosis A comprehensive ONE HEALTH approach Medicina 76 3 159 165 ISSN 0025 7680 PMID 27295705 Stop TB Partnership The Global Plan to End TB The Global Plan to Stop TB 2016 2020 www stoptb org Retrieved 2019 10 04 Lan Zhiyi Bastos Mayara Menzies Dick 2016 08 18 Treatment of human disease due to Mycobacterium bovis a systematic review European Respiratory Journal 48 5 ERJ 00629 2016 doi 10 1183 13993003 00629 2016 ISSN 0903 1936 PMID 27540021 Bovine TB Cattle spread symptoms treatment tbfacts org Retrieved 2019 10 04 External links editTB free New Zealand Archived 2011 08 30 at the Wayback Machine TB control programme in New Zealand Bovine TB information on Department of Conservation website The use of 1080 for pest control in New Zealand Possums as reservoirs of bovine tuberculosis Information about bovine TB on 1080 The Facts website Facts about how 1080 poison is used to control bovine TB in New Zealand Background on immunology and testing for Bovine TB The background on immunology and testing for Bovine Tuberculosis Mycobacterium bovis in African wildlife Mycobacterium bovis in African wildlife Tuberculosis Mycobacterium bovis Health Protection Agency Retrieved from https en wikipedia org w index php title Mycobacterium bovis amp oldid 1197746818, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.