fbpx
Wikipedia

Pharmacokinetics of estradiol

The pharmacology of estradiol, an estrogen medication and naturally occurring steroid hormone, concerns its pharmacodynamics, pharmacokinetics, and various routes of administration.[10][11][12]

Pharmacokinetics of estradiol
Clinical data
Routes of
administration
By mouth (tablet)
Sublingual (tablet)
Intranasal (nasal spray)
Transdermal (patch, gel, cream, emulsion, spray)
Vaginal (tablet, cream, suppository, insert, ring)
IM injection (oil solution)
SC injection (aq. soln.)
Subcutaneous implant
Drug classEstrogen; Antigonadotropin
Pharmacokinetic data
BioavailabilityOral: 5% (0.1–12%)[1][2]
SL: 10% (in marmosets)[3]
IM: 100%[4]
Protein binding~98%:[1][5]
Albumin: 60%
SHBG: 38%
• Free: 2%
MetabolismLiver (via hydroxylation, sulfation, glucuronidation)
MetabolitesMajor (90%):[1]
Estrone
Estrone sulfate
Estrone glucuronide
Estradiol glucuronide
Elimination half-lifeOral: 13–20 hours[1]
Sublingual: 8–18 hours[6]
Transdermal (gel): 37 hours[7]
IM (as EV): 4–5 days[4]
IM (as EC): 8–10 days[8]
IV (as E2): 0.5–2 hours[4][9]
ExcretionUrine: 54%[1]
Feces: 6%[1]

Estradiol is a naturally occurring and bioidentical estrogen, or an agonist of the estrogen receptor, the biological target of estrogens like endogenous estradiol.[10] Due to its estrogenic activity, estradiol has antigonadotropic effects and can inhibit fertility and suppress sex hormone production in both women and men.[13][14] Estradiol differs from non-bioidentical estrogens like conjugated estrogens and ethinylestradiol in various ways, with implications for tolerability and safety.[10]

Estradiol can be taken by mouth, held under the tongue, as a gel or patch that is applied to the skin, in through the vagina, by injection into muscle or fat, or through the use of an implant that is placed into fat, among other routes.[10]

Routes of administration edit

Estradiol can be taken by a variety of different routes of administration.[10] These include oral, buccal, sublingual, intranasal, transdermal (gels, creams, patches), vaginal (tablets, creams, rings, suppositories), rectal, by intramuscular or subcutaneous injection (in oil or aqueous), and as a subcutaneous implant.[10] The pharmacokinetics of estradiol, including its bioavailability, metabolism, biological half-life, and other parameters, differ by route of administration.[10] Likewise, the potency of estradiol, and its local effects in certain tissues, most importantly the liver, differ by route of administration as well.[10] In particular, the oral route is subject to a high first-pass effect, which results in high levels of estradiol and consequent estrogenic effects in the liver and low potency due to first-pass hepatic and intestinal metabolism into metabolites like estrone and estrogen conjugates.[10] Conversely, this is not the case for parenteral (non-oral) routes, which bypass the intestines and liver.[10]

Different estradiol routes and dosages can achieve widely varying circulating estradiol levels (see the table below).[10] For purposes of comparison with normal physiological circumstances, menstrual cycle circulating levels of estradiol in premenopausal women are 40 pg/mL in the early follicular phase, 250 pg/mL at the middle of the cycle, and 100 pg/mL during the mid-luteal phase.[15] Mean integrated levels of circulating estradiol in premenopausal women across the whole menstrual cycle are in the range of 80 to 150 pg/mL, according to some sources.[16][17][18] In postmenopausal women, circulating levels of estradiol are below 15 pg/mL.[10][15] During normal human pregnancy, estrogen production increases progressively and extremely high estrogen levels are attained.[19] Estradiol levels range from 1,000 to 40,000 pg/mL across pregnancy,[20] are on average 25,000 pg/mL at term, and reach levels as high as 75,000 pg/mL in some women.[21]

Available forms of estradiol[a]
Route Ingredient Form Dose[b] Brand names[c]
Oral Estradiol Tablet 0.1, 0.2, 0.5, 1, 2, 4 mg Estrace, Ovocyclin
Estradiol valerate Tablet 0.5, 1, 2, 4 mg Progynova
Transdermal Estradiol Patch 14, 25, 37.5, 50, 60, 75, 100 µg/d Climara, Vivelle
Gel pump 0.06% (0.52, 0.75 mg/pump) Elestrin, EstroGel
Gel packet 0.1% (0.25, 0.5, 1.0 mg/pk.) DiviGel, Sandrena
Emulsion 0.25% (25 µg/pouch) Estrasorb
Spray 1.53 mg/spray Evamist, Lenzetto
Vaginal Estradiol Tablet 10, 25 µg Vagifem
Cream 0.01% (0.1 mg/gram) Estrace
Insert 4, 10 µg Imvexxy
Ring 2 mg/ring (7.5 µg/d, 3 mon.) Estring
Estradiol acetate Ring 50, 100 µg/d, 3 months Femring
Injection[d] Estradiol Microspheres 1 mg/mL Juvenum E
Estradiol benzoate Oil solution 0.167, 0.2, 0.333, 1, 1.67, 2, 5, 10, 20, 25 mg/mL Progynon-B
Estradiol cypionate Oil solution 1, 3, 5 mg/mL Depo-Estradiol
Estradiol valerate Oil solution 5, 10, 20, 40 mg/mL Progynon Depot
Implant Estradiol Pellet 20, 25, 50, 100 mg, 6 mon. Estradiol Implants
Notes and sources:
  1. ^ This table includes primarily products available as a single-ingredient estradiol preparation—thus excluding compounds with progestogens or other ingredients included. The table furthermore does not include compounded drugs—only commercially produced products. Availability of each product varies by country.
  2. ^ Doses are given per unit (ex: per tablet, per mL).
  3. ^ Other brand names may be manufactured or previously manufactured.
  4. ^ By intramuscular or subcutaneous injection.
Sources: [22][23][24][25][26][27][28][29][30][31][32][33][34][35]
Estrogen levels after a single dose of estradiol by different routes
Route Dose
(mg)
Time
measured
ΔE2 levels
(pg/mL)
ΔE1 levels
(pg/mL)
E2:E1
ratio
Oral
 
 
1
2
4
12 h
3 h
6 h
+25
+40
+50
+150
+250
+500
0.15
0.16
0.10
Sublingual
 
 
 
1
0.5
0.5
0.5
1 h
1 h
1 h
1 h
+450
+250
+750
+75
+160
+85
+250
+24
3
3
3
3
Intranasal 1 1 h +110 +110 1.0
Topical (gel)
 
 
3
3/d
3/2 d
 
5 h
12–20 h
12 h
36 h
+70
+45–279
+300–1310
+20–179
+50
+31–230
+24–110
+120–500
0.4
1
1
1
Vaginal (cream) 0.5
1.0
3 h
3 h
+830
+800
+150
+150
5.0
5.0
Rectal 1 3 h +620 +120 5.0
Intramuscular
inj.
(oil soln.)
EB: 5
EV: 5
EC: 5
EU: 100
PEP: 320
1.8, 2.4 da
2.2, 2.7 da
3.9, 5.1 da
1 d
16, 25 da
940b
667b
338b
500b
270b
343b
324b
145b
ND
1000b
2.7
2.1
2.3
ND
0.27
Intravenous inj. 0.3 5 min 8321b 960b 8.7
Footnotes: a = Tmax for E2, E1 levels. b = Actual levels (not change). Sources: See template.

Oral administration edit

Absorption and bioavailability edit

The oral bioavailability of estradiol is very low.[2][36][37] This is due to the fact that estradiol is poorly soluble in water, which limits its dissolution and absorption, and is additionally subject to extensive metabolism during the first pass through the intestines and liver.[3][38] Estradiol is micronized and/or conjugated with an ester, as in estradiol valerate or estradiol acetate, to improve its oral bioavailability and potency.[2][36][37] Micronization decreases the particle size of estradiol crystals and hence increases the surface area for absorption, thereby improving the rate and extent of absorption.[39][3][40] In addition, there is an improvement in metabolic stability.[3][40] Oral micronized estradiol consists of more than 80% of estradiol particles micronized to a size smaller than 20 μm in diameter, or to about 1 to 3 μm on average.[41][42][40][43] All oral formulations of estradiol available today are micronized,[36] and oral estradiol valerate tablets also seem to be micronized.[44]

Oral non-micronized estradiol and oral micronized estradiol do not appear to have ever been directly compared in a study.[45][42][46][47] Both have been assessed independently however, and have been found to produce significant estrogenic effects.[45][42][46][48] Micronization of other poorly water-soluble steroids such as spironolactone and norethisterone acetate has been found to increase their potency by several-fold.[49][50][51][52][53] In accordance, studies of the amount of oral estradiol necessary for endometrial proliferation in women have reported a total dose of 60 mg for micronized estradiol[54] relative to 120 to 300 mg or more for non-micronized estradiol.[55][56][57] As such, micronization has been said to substantially improve the potency of oral estradiol.[40]

 
Estradiol levels with a single 2 mg dose of oral estradiol micronized to different particle sizes in postmenopausal women.[38]

A study compared different particle sizes of oral micronized estradiol.[38][58][59] A preparation with the smallest particles (mainly <0.6 μm) was found to have the most rapid absorption and the highest bioavailability.[38][59] However, a sharp peak in estradiol levels, without an accompanying rise in estrone levels, was observed during the first 2 hours with this particle size.[38][59] It was suggested that the smallest estradiol particles may have been absorbed by the lymphatic system, partially bypassing first-pass metabolism and resulting in very high initial estradiol levels.[38] The preparations with the larger particle sizes (mainly <3.5 μm and <20 μm) were found to be absorbed more slowly, without a pronounced initial peak in estradiol levels.[38][59] Levels of estradiol were more even and similar to physiological levels with these particle sizes.[38][59] Differences in area-under-the-curve estradiol levels with the different particle sizes were relatively small.[38] As such, micronization may improve absorption but does not necessarily improve therapeutic effect.[59]

Micronized estradiol is rapidly and completely absorbed with oral administration.[3][12] This is true for oral doses of 2 mg and 4 mg, but absorption was found to be incomplete for an oral dose of 8 mg.[3][60] This dose showed 76% of the expected bioavailability based on dose proportionality and area-under-the-curve levels, indicating a small deviation from linearity.[3][60] The absolute bioavailability of oral micronized estradiol is approximately 5%, with a possible range of 0.1% to 12%.[1][2][59] As such, the bioavailability of oral estradiol is very low even with micronization.[59] There is high interindividual variability in the levels of estradiol achieved with oral estradiol, which is likely related to the high first-pass effect.[12] This variation has been reported to be in the range of 28 to 127%, or about 4.6-fold maximal difference in levels between individuals, in terms of mean area-under-the-curve levels of estradiol.[12]

In postmenopausal women, a dosage of 1 mg/day oral micronized estradiol has been found to produce circulating concentrations of 30 to 50 pg/mL estradiol and 150 to 300 pg/mL estrone, while a dosage of 2 mg/day has been found to result in circulating levels of 50 to 180 pg/mL estradiol and 300 to 850 pg/mL estrone.[15] A study of oral micronized estradiol in transgender women found that mean estradiol levels across a dosage range of 1 to 8 mg/day were about 50 pg/mL at 1 mg/day, 100 pg/mL at 4 mg/day, and 150 pg/mL at 8 mg/day, with a wide degree of variation.[61] In another study, mean estradiol levels at steady state with 4 mg/day and 6 mg/day oral micronized estradiol were approximately 180 pg/mL and 265 pg/mL, respectively.[62] A study that used high to very high-dose oral micronized estradiol in postmenopausal women found that steady-state estradiol levels with 6 mg/day were about 300 pg/mL and with 30 mg/day were about 2,400 pg/mL.[63]

Estradiol valerate is rapidly hydrolyzed into estradiol in the intestines.[10][64][65] For this reason, oral estradiol and oral estradiol valerate have very similar pharmacokinetics.[10][64][65] Due to the presence of its valeric acid ester and differences in molecular weight, estradiol valerate contains about 76% of the same amount of estradiol by weight.[66][67][68][69] As a result, 2 mg oral estradiol valerate produces equivalent estradiol levels to about 1.5 mg oral estradiol.[66][67][68][69]

Potencies of oral estrogens[data sources 1]
Compound Dosage for specific uses (mg usually)[a]
ETD[b] EPD[b] MSD[b] MSD[c] OID[c] TSD[c]
Estradiol (non-micronized) 30 ≥120–300 120 6 - -
Estradiol (micronized) 6–12 60–80 14–42 1–2 >5 >8
Estradiol valerate 6–12 60–80 14–42 1–2 - >8
Estradiol benzoate - 60–140 - - - -
Estriol ≥20 120–150[d] 28–126 1–6 >5 -
Estriol succinate - 140–150[d] 28–126 2–6 - -
Estrone sulfate 12 60 42 2 - -
Conjugated estrogens 5–12 60–80 8.4–25 0.625–1.25 >3.75 7.5
Ethinylestradiol 200 μg 1–2 280 μg 20–40 μg 100 μg 100 μg
Mestranol 300 μg 1.5–3.0 300–600 μg 25–30 μg >80 μg -
Quinestrol 300 μg 2–4 500 μg 25–50 μg - -
Methylestradiol - 2 - - - -
Diethylstilbestrol 2.5 20–30 11 0.5–2.0 >5 3
DES dipropionate - 15–30 - - - -
Dienestrol 5 30–40 42 0.5–4.0 - -
Dienestrol diacetate 3–5 30–60 - - - -
Hexestrol - 70–110 - - - -
Chlorotrianisene - >100 - - >48 -
Methallenestril - 400 - - - -
Sources and footnotes:
  1. ^ Dosages are given in milligrams unless otherwise noted.
  2. ^ a b c Dosed every 2 to 3 weeks
  3. ^ a b c Dosed daily
  4. ^ a b In divided doses, 3x/day; irregular and atypical proliferation.
Relative oral potencies of estrogens
Estrogen HF VE UCa FSH LH HDL-C SHBG CBG AGT Liver
Estradiol 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Estrone ? ? ? 0.3 0.3 ? ? ? ? ?
Estriol 0.3 0.3 0.1 0.3 0.3 0.2 ? ? ? 0.67
Estrone sulfate ? 0.9 0.9 0.8–0.9 0.9 0.5 0.9 0.5–0.7 1.4–1.5 0.56–1.7
Conjugated estrogens 1.2 1.5 2.0 1.1–1.3 1.0 1.5 3.0–3.2 1.3–1.5 5.0 1.3–4.5
Equilin sulfate ? ? 1.0 ? ? 6.0 7.5 6.0 7.5 ?
Ethinylestradiol 120 150 400 60–150 100 400 500–600 500–600 350 2.9–5.0
Diethylstilbestrol ? ? ? 2.9–3.4 ? ? 26–28 25–37 20 5.7–7.5
Sources and footnotes
Notes: Values are ratios, with estradiol as standard (i.e., 1.0). Abbreviations: HF = Clinical relief of hot flashes. VE = Increased proliferation of vaginal epithelium. UCa = Decrease in UCa. FSH = Suppression of FSH levels. LH = Suppression of LH levels. HDL-C, SHBG, CBG, and AGT = Increase in the serum levels of these liver proteins. Liver = Ratio of liver estrogenic effects to general/systemic estrogenic effects (hot flashes/gonadotropins). Sources: See template.

Metabolism and elimination edit

When taken orally, about 95% of a dose of estradiol is metabolized in the intestines and liver into estrone and estrogen conjugates such as estrone sulfate, estrone glucuronide, and estradiol sulfate, among others, prior to entering the circulation.[3][88][89][90] As a result, circulating estrone and estrogen conjugate levels are markedly elevated, in a highly unphysiological manner, with oral estradiol.[88][91] Whereas the ratio of circulating estradiol to estrone is about 1:1 in premenopausal women and with transdermal estradiol, oral estradiol produces a ratio of about 1:5 on average and as high as 1:20 in some women.[1][10][92][60] In addition, whereas levels of estradiol with menopausal replacement dosages of oral estradiol are in the range of the follicular phase of the normal menstrual cycle, levels of estrone resemble those during the first trimester of pregnancy.[93][94] Moreover, whereas normal physiological estrone sulfate levels are 10 to 25 times higher than those of estradiol and estrone in premenopausal women,[95] levels of estrone sulfate with oral estradiol are an additional 8 to 20 times higher than normal premenopausal or postmenopausal estrone sulfate levels.[91][96][97] One study found that estrone sulfate levels were 200-fold higher than estradiol levels with 2 mg/day oral micronized estradiol or oral estradiol valerate, and estrone sulfate levels can reach up to nearly 1,000-fold higher concentrations than estradiol in some cases.[10][12] In contrast to oral estradiol, due to the lack of the first pass, an excess in estrone and estrogen conjugate levels does not occur with transdermal estradiol or other parenteral estradiol routes.[88][91]

The transformation of estradiol into estrone and estrogen conjugates is reversible.[10] As such, these metabolites can be converted back into estradiol.[10] About 15% of orally administered estradiol is transformed into estrone and 65% into estrone sulfate.[12] About 5% of estrone and 1.4% of estrone sulfate is converted back into estradiol.[12] An additional 21% of estrone sulfate is converted into estrone, whereas transformation of estrone into estrone sulfate is approximately 54%.[12] The interconversion between estradiol and estrone is mediated by 17β-hydroxysteroid dehydrogenases (17β-HSDs),[12] whereas the conversion of estrone into estrone sulfate is mediated by estrogen sulfotransferases (ESTs) and the transformation of estrone sulfate into estrone by steroid sulfatase (STS).[98][99] The metabolic clearance rates and hence blood half-lives of estrogen conjugates like estrone sulfate are much longer than those of estradiol and estrone.[10][12][91] Estrogen conjugates, primarily estrone sulfate, serve as a large circulating reservoir for estradiol, and because of this, they function to greatly extend the biological half-life of oral estradiol.[10][12] As such, the biological half-life of oral estradiol is a composite parameter that is dependent on interconversion between estradiol and estrogen conjugates, as well as on enterohepatic recirculation.[12] Whereas the biological half-life of estradiol given by intravenous injection is about 0.5 to 2 hours, the biological half-life of oral estradiol has a range of 13 to 20 hours due to the large and long-lasting pool of estrogen conjugates that is formed during first-pass metabolism and that serves to continuously replenish circulating estradiol levels.[12][10][9]

First-pass effect and differences from other routes edit

The first-pass effect that occurs with oral estradiol results in unusually high levels of estrone and estrogen conjugates in the circulation as well as of estradiol in the liver.[10] These unique properties of oral estradiol result in a number of pharmacological differences relative to the other routes of administration of estradiol.[10]

The high levels of estrone and estrogen conjugates that occur with oral estradiol raise the question of the pharmacodynamic significance of these metabolites.[10] In contrast to estradiol however, estrone has very low activity as an estrogen.[10][100][101] The affinities of estrone for the human ERs and its estrogenic activity have been reported to be approximately 3 to 4% of those of estradiol.[10] In addition, unlike estradiol and estriol, estrone is not accumulated in target tissues.[10] Because estrone can be transformed into estradiol, most of its activity in vivo is actually due to conversion into estradiol.[10] In accordance, doses of oral and transdermal estradiol that achieve similar levels of estradiol have been found, in spite of markedly elevated levels of estrone with oral estradiol but not with transdermal estradiol, to possess equivalent and non-significantly different potency in terms of clinical measures including suppression of LH and FSH levels, inhibition of bone resorption, and relief of menopausal symptoms such as hot flashes.[10][88][102][103][96][104] In addition, estradiol levels were found to correlate with these effects, while estrone levels did not.[88][102] These findings suggest that estrone contributes very little or not at all to the estrogenic potency of estradiol, while also not antagonizing the estrogenic activity of estradiol.[10][88][102][103] This contradicts some cell-free in-vitro research suggesting that high concentrations of estrone might be able to partially antagonize the actions of estradiol.[105][106][107]

 
Distribution of 17β-HSD activities for formation of estradiol (E2) versus formation of estrone (E1) in human tissues.[108][109]
 
Distribution of STS and EST activities for interconversion of estrone (E1) and estrone sulfate (E1S) in adult human tissues.[110]
Relative activation and inactivation rates of estradiol to and from estrone and estrone sulfate in tissues throughout the body.

On the other hand, it has been suggested by some authors that the high levels of estrone and/or estrone conjugates with oral estradiol may result in excessive estradiol levels in certain tissues such as the breasts and endometrium, due to high expression in these tissues of the requisite enzymes (17β-HSDs and STS) necessary to transform these metabolites back into estradiol.[94][91][111][112] In accordance, circulating levels of estrone sulfate have been found to be positively associated with breast density in postmenopausal women treated with oral estradiol, with 1.3% higher breast density observed for every 1 ng/mL greater level of estrone sulfate.[113][114] Similarly, levels of estradiol, estrone, and estrone sulfate are all strongly associated with the risk of breast cancer in women.[113] Preclinical studies have shown that estrone sulfate, via local transformation into estradiol, stimulates the growth of mammary cancer cells.[115][116]

Due to the first pass through the liver, disproportionate and supraphysiological levels of estrogens occur locally in the liver with oral estradiol.[117][12] These levels are approximately 4- to 5-fold higher than in the circulation, based on differences in hepatic estrogenic potency for oral estradiol relative to transdermal estradiol.[117][10] As a result, there is abnormally high estrogenic signaling in the liver with oral estradiol, and a variety of unphysiological effects on liver protein synthesis result.[10][12] Through modulation of liver protein synthesis, conjugated oral estrogen increases the risk of blood clots,[118] increases circulating levels of a variety of binding proteins including thyroid binding globulin (TBG), cortisol binding globulin (CBG), sex hormone binding globulin (SHBG), growth hormone binding protein (GHBP),[119] insulin-like growth factor-binding proteins (IGFBPs),[120] and copper binding protein (CBP),[89][121] suppresses growth hormone (GH)-mediated insulin-like growth factor 1 (IGF-1) production,[122][123] and produces positive blood lipid changes, among a variety of other effects.[90][124][12] In contrast to oral estradiol, transdermal estradiol has relatively minimal impact on liver protein synthesis.[10] As an example, a study found that 1 mg/day oral estradiol significantly increased SHBG levels by 45%, while 50 µg/day transdermal estradiol increased SHBG levels non-significantly by only 12%.[125][126][127]

In the circulation, approximately 38% of estradiol is reversibly bound to SHBG and 60% is reversibly bound to albumin in women under normal physiological circumstances, with 2 to 3% of total estradiol circulating free or unbound at any given time.[3][2][1] Only estradiol that is free or unbound is able to be enter target cells and hence is biologically active.[1][12]: 249 [17] The increase in SHBG levels with oral estradiol (e.g., +50%) can result in a clinically meaningful increase in the fractions of sex hormones like estradiol and testosterone that are bound to SHBG, whereas this is not the case with typical clinical dosages of transdermal estradiol.[128][17] The increase in the fraction of estradiol bound to SHBG results in a significant decrease in the percentage of free or unbound and hence bioactive estradiol.[1][17] As a result, the bioavailability and potency of oral estradiol may be diminished relative to parenteral estradiol routes by some amount.[17][1] However, a study found that the free fraction of estradiol was similar with doses of oral and topical estradiol that resulted in equivalent total estradiol levels.[129]

Experimental oral formulations edit

Estradiol decanoate, estradiol cyclooctyl acetate, estradiol 3-saccharinylmethyl ether, and EC508 (estradiol 17β-(1-(4-(aminosulfonyl)benzoyl)-L-proline)) are estradiol esters and novel oral forms of estradiol that have been developed with improved properties, such as greater bioavailability and reduced first-pass effect.[130][131][132][133][134][135][136][137][138][139][140][141] Estradiol decanoate and estradiol cyclooctyl acetate were studied for potential use in menopausal hormone therapy and birth control pills but were never marketed.[130][131][132][133][134][135][136][137] EC508 is currently under active development for use in menopausal hormone therapy.[140][141]

Graphs edit

Buccal administration edit

 
Estradiol levels on the first day after single dose of 0.25 mg buccal estradiol or at steady state after the last dose with 0.25 mg buccal estradiol twice daily once every 12 hours (0.5 mg/day total) in 6 postmenopausal women.[142]

Estradiol has been studied for use by buccal administration.[10][72][142][143][144][145][146][147] Preclinical studies of buccal estradiol have also been conducted.[148][149][150][151] Buccal and sublingual administration of estradiol have similar characteristics.[10]

Administration of a troche (lozenge) containing 0.25 mg estradiol via the buccal route resulted in peak estradiol levels of about 450 pg/mL at 1 hour post-dose in postmenopausal women.[10][142] Following this, estradiol levels decreased to about 60 pg/mL at 4 hours post-dose and to about 15 pg/mL at 12 hours post-dose.[10][142] With continuous twice daily administration of 0.25 mg estradiol (0.5 mg/day total) via the buccal route once every 12 hours, peak estradiol levels at steady state after the last dose were about 500 pg/mL.[10][142]

Sublingual administration edit

Estradiol tablets can be taken sublingually instead of orally.[10][152][153] Non-micronized estradiol tablets in doses of 0.125, 0.25, and 1 mg were previously marketed for use by sublingual administration under brand names such as Diogynets, Estradiol Membrettes, and Dimenformon in the 1950s.[154][155][156][157][158] Non-micronized estradiol has poor water solubility, but micronized estradiol is rapidly absorbed by the sublingual route.[152] All oral estradiol tablets are micronized, as this improves the efficiency of estradiol absorption in the gastrointestinal tract.[36] Likewise, all oral estradiol valerate tablets seem to be micronized.[44] The sublingual route is, in actuality, probably a combination of sublingual and oral delivery of estradiol due to incidental swallowing of some of the estradiol.[95]

The absorption of sublingual estradiol can be attributed to the rich vascularization under the tongue.[152] With administration of an oral estradiol tablet sublingually, complete dissolution of the tablet occurs within a few minutes and circulating levels of estradiol begin to rise within 5 minutes.[152] Maximal levels of estradiol occur after 30 to 60 minutes of administration.[152] After this, estradiol levels drop steeply within 4 hours, and this is followed by a more gradual decline in levels of estradiol and a return to baseline concentrations by 24 hours.[152] The rapid rise and steep fall of estradiol levels with sublingual administration of estradiol is analogous to the case of intravenous injection and intranasal administration of the hormone.[10][12][4]

Sublingual administration of medications that are subject to a high first-pass effect with oral administration can result in improved bioavailability because the first pass through the intestines and liver is bypassed.[152] As a result, sublingual estradiol has been found to result in estradiol levels and a ratio of estradiol to estrone that are substantially higher than oral estradiol.[10][152][159] Maximal circulating levels of estradiol are as much as 10-fold higher with sublingual administration than with oral administration, and the absolute bioavailability of estradiol is approximately 5-fold higher.[10][152] On the other hand, levels of estradiol fall rapidly with sublingual administration, whereas they remain elevated for a prolonged period of time with oral administration.[10][12] This is due to the large circulating pool of hormonally inert estrogen conjugates with long half-lives that is reversibly generated with oral estradiol during first-pass metabolism, which serves as a metabolism-resistant and long-lasting reservoir for continuous reconversion back into estradiol.[10][12] It is also responsible for the differences in ratios between sublingual estradiol and oral estradiol in terms of maximal estradiol levels (10:1) achieved and absolute bioavailability (5:1).[10][12] A study in marmoset monkeys found that the bioavailability of sublingual estradiol was 10% of that of estradiol administered by intramuscular injection.[3]

After a dose of sublingual estradiol, levels of estrone start to slowly but progressively rise within 10 minutes.[152] Estrone levels surpass estradiol levels at around 2 hours post-dose and reach a maximum at about 4 hours.[152] It has been speculated that the high delayed levels of estrone with sublingual estradiol may be due to the rich lymphatic drainage in the neck region, which may result in estradiol being taken up by the reticuloendothelial system and then metabolized into estrone.[152]

Sublingual administration of a single 0.25 mg tablet of micronized estradiol has been found to produce peak levels of 300 pg/mL estradiol and 60 pg/mL estrone within 1 hour.[10] A higher dose of 1 mg estradiol was found to result in maximum levels of 450 pg/mL estradiol and 165 pg/mL estrone, which was followed by a rapid decline in estradiol levels to 85 pg/mL within 3 hours.[10] Conversely, the decline in estrone levels was much slower and reached a level of 80 pg/mL after 18 hours.[10] A single administration of 4 mg micronized estradiol (two 2-mg Estrace tablets) under the tongue, considered a very high dose of sublingual estradiol, has been found to result in maximal levels of estradiol of 1759 ± 704 pg/mL, with a range of 634 to 2840 pg/mL, after 1 hour in a mixed group of normotensive and hypertensive postmenopausal women.[160] A replication of this study using the same dosage and protocols measured estradiol levels of 2227 ± 1180 pg/mL for the whole group of women but found that estradiol levels between the normotensive and hypertensive groups were significantly different at 1790 ± 869 pg/mL and 2664 ± 1490 pg/mL, respectively.[161][162]

Although sublingual administration of estradiol has a relatively short duration, the medication can be administered multiple times per day in divided doses to compensate for this.[10][163][164] Studies that used high doses of sublingual estradiol in the treatment of severe postpartum depression have administered a dose of 1 mg 3 to 8 times per day.[165][166][163][164] In one study, which administered a mean total dosage of sublingual estradiol of 4.8 mg/day, estradiol levels remained elevated at about 130 pg/mL on average in the morning before the first dose of the day.[165]

Oral micronized estradiol valerate tablets can be taken sublingually as well.[167][168] The administration of 2 mg oral micronized estradiol valerate tablets (Progynova, Schering) sublingually 3 or 4 times per day resulted in circulating estradiol levels of about 290 pg/mL to 460 pg/mL in premenopausal women (time of measurements not given).[167][168] Steady-state levels of estradiol were achieved within about 5 or 6 days.[167][168] Levels of progesterone, luteinizing hormone, and follicle-stimulating hormone were all considerably suppressed, and ovulation, as well as the associated mid-cycle hormonal surges, were prevented.[167][168] Sublingual estradiol valerate is used for cycle control in egg donation and surrogacy in cisgender women and is used in hormone therapy for transgender women.[167][168][169]

Cyclodextrin-containing formulations of sublingual estradiol with improved water solubility and absorption have been developed and studied.[170][171][172][173][174]

Clinical effects edit

The total endometrial proliferation dose of sublingual estradiol in women is 60 to 140 mg per cycle or 14 days and of sublingual estradiol benzoate in women is 60 to 180 mg per cycle or 14 days.[75]: 310  Both sublingual estradiol and sublingual estradiol benzoate have a persistence of estrogenic effect after a dose of only one day.[75]: 310  The effects of sublingual estradiol on gonadotropin levels have also been studied in postmenopausal women.[152][175][153][176] After a dose of sublingual estradiol, levels of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) decrease precipitously within 4 hours.[152] Following this, LH and FSH levels gradually increase, and return to near-baseline levels by 24 hours.[152] One study found no difference between oral and sublingual estradiol in suppression of LH levels.[152] However, FSH levels were suppressed to a greater extent with sublingual estradiol than with oral estradiol in the study.[152]

It is notable that the magnitude of the genomic effects of estradiol (i.e., signaling through the nuclear ERs) may, at least in some cases, be dependent on the total estrogenic exposure as opposed to the duration of exposure.[10] For instance, in normal human epithelial breast cells and ER-positive breast cancer cells, the rate of breast cell proliferation has been found not to differ with estradiol incubation of 1 nM for 24 hours and incubation of 24 nM for 1 hour.[10] In other words, short-term high concentrations and long-term low concentrations of estradiol appear to have the same degree of effect in terms of genomic estrogenic signaling, at least in terms of breast cell proliferation over a 24-hour period.[10] On the other hand, non-genomic actions of estradiol, such as signaling through membrane estrogen receptors like the GPER, may be reduced with short-term high concentrations of estradiol relative to more sustained levels.[10] For instance, although daily intranasal administration of estradiol is associated with comparable clinical effectiveness (e.g., for hot flashes) relative to longer acting routes of estradiol administration in postmenopausal women, it is also associated with significantly lower rates of breast tension (tenderness and enlargement) relative to longer acting estradiol routes, and this is thought to reflect comparatively diminished non-genomic signaling.[10]

Graphs edit

Intranasal administration edit

 
Estrogen levels after a single 300 μg dose of estradiol delivered by a cyclodextrin-containing nasal spray (brand name Aerodiol) in postmenopausal women.[177][10]

Estradiol has been studied and used by intranasal administration.[72][10] It was available as a cyclodextrin-containing nasal spray under the brand name Aerodiol in some countries,[178][179][180][181] although this specific product was discontinued in 2007.[182][183] The product was administered once per day as one 150-μg spray in each nostril (300 μg/day total).[184] Intranasal estradiol has pharmacokinetics similar to those of sublingual and intravenous administration of estradiol, including a sharp peak and then rapid decline in estradiol levels.[10] Despite the relatively short duration of intranasal estradiol, it has similar effectiveness to other, longer-lasting routes of administration in terms of relief of menopausal symptoms like hot flashes.[10]

Transdermal administration edit

Transdermal estradiol is available in the forms of patches, gels, emulsions, and sprays.[185][186][10][17][187] In the case of gels, emulsions, and sprays, the route is sometimes referred to as topical rather than as transdermal.[186][188][5] Topical administration can also refer to vaginal administration of gels and creams however.[citation needed]

Estradiol has moderate skin permeability, which is based on the lipophilicity and hydrophilicity of a compound.[10][189] In general, the more polar groups, such as hydroxyl groups, that are present in a steroid, and hence the more hydrophilic and less lipophilic it is, the lower its skin permeability.[10][189] For this reason, estrone and progesterone have higher skin permeability, while estriol and cortisol have lower skin permeability.[10] The transdermal bioavailability of estradiol in an alcohol solution is approximately 10%.[190][189] Transdermal estradiol reservoir patches have been reported to have a bioavailability of 3 to 5%.[191] Estradiol is a highly potent compound and circulates at picomolar concentrations (pg/mL), which makes it ideal for transdermal application as only small amounts of substance need to be delivered across the skin.[96] Conversely, progesterone, which circulates at levels in the nanomolar range and requires a far higher quantity of substance for biological effect, is not well-suited for transdermal delivery.[96] Fatty acid esters of estradiol, such as estradiol benzoate, estradiol valerate, and estradiol cypionate, have been found to have similar estrogenic potency to estradiol but a comparatively longer duration with transdermal administration in animal studies.[192][193]

Regardless of administration form, such as patch or gel, transdermal estradiol is transported into the skin, including through the stratum corneum, epidermis, and dermis, by a passive diffusion process.[10][194] Following this, estradiol is then taken up by local capillary blood vessels and delivered into the circulation.[10] There is a depot effect in the skin with transdermal estradiol, which results in continuous delivery of transdermal estradiol into the circulation.[17][194] This is because the skin functions as a semipermeable membrane and there is a concentration gradient between the application site of transdermal estradiol and capillary blood, with the rate of diffusion of estradiol across the stratum corneum being the specific rate-limiting factor in absorption.[10][194] As a result, peaks and troughs in circulating estradiol levels are limited, and the skin and subcutaneous fat act as a reservoir of estradiol that maintains circulating estradiol levels between doses.[17] For these reasons, transdermal estradiol can provide near-constant circulating levels of estradiol, similarly to oral estradiol.[17][10] Enzymes that metabolize estradiol are minimally expressed in the skin, and for this reason, the metabolism of estradiol in the skin is low.[10]

The site of application of transdermal estradiol can influence its bioavailability.[96] A study found comparable absorption of transdermal estradiol patches (within ±25% of reference) for a number of skin sites including the abdomen, upper arm, upper thigh, lower back, and side.[195][196] However, absorption was 15% lower for the upper thigh compared to the abdomen and the difference was significant.[197][196] Another study found that transdermal estradiol patches had 20 to 25% higher bioavailability when applied to the buttocks than when applied to the abdomen.[96] Studies of topical steroids have found that the scrotum is especially permeable among skin sites.[198] Studies of transdermal testosterone cream, gel, and patches applied to the scrotum in men have observed 5- to 8-fold higher levels of testosterone than with application to conventional skin sites.[199][200] In a study of topical application of hydrocortisone solution in men, skin permeability (defined as total radiolabeled urinary excretion) relative to the forearm (1.0) was 42.0 for the scrotum, 13.0 for the jaw angle, 6.0 for the forehead, 3.6 for the underarm, 3.5 for the scalp, 1.7 for the back, 0.8 for the palm of the hand, 0.4 for the ankle, and 0.1 for the sole of the foot.[198][201][202][203] In accordance with findings with other topical steroids, a study in men with prostate cancer treated with transdermal estradiol patches applied to the scrotum observed about 5-fold higher estradiol levels relative to application to conventional skin sites such as the forearm.[204][205] Penile skin may have similarly enhanced absorption characteristics relative to scrotal skin.[206]

Transdermal estradiol bypasses the intestines and liver and hence the first-pass metabolism that is associated with oral administration.[10][96] In addition, unlike oral estradiol, transdermal estradiol is not associated with supraphysiological concentrations of estrone or estrogen conjugates like estradiol sulfate, and transdermal estradiol does not have disproportionate effects on liver protein synthesis.[10][96] In accordance, estradiol, at typical menopausal replacement dosages, has been found not to increase the risk of blood clots or insulin resistance,[118][12] nor to affect hepatic SHBG, IGF-1, GHBP,[119] IGFBP,[120] and other protein production and by extension circulating hepatic protein levels.[122][123][121][96] However, at higher doses, transdermal estradiol has been associated with a significantly higher incidence of stroke in postmenopausal women, probably due to blood clots.[207][208] Another larger study did not find a significantly higher risk of blood clots with similar doses of transdermal estradiol however.[209]

Transdermal patches edit

 
Vivelle-Dot, an estradiol patch.

Estradiol patches have an extended duration and are available for twice-weekly (3–4-day) and once-weekly (7-day) application, while gels, emulsions, and sprays are administered daily.[186][15][10][210] There are two types of estradiol patches: reservoir patches, which have been described as first-generation patches, and matrix patches, which are considered to be improved second-generation patches.[10][12][186] Reservoir patches were designed for twice-weekly application, while matrix patches have been produced for both twice-weekly and once-weekly application.[12] Reservoir patches of estradiol (e.g., Estraderm) are mostly no longer used, with most estradiol patches available today being matrix patches (e.g., Alora, Climara, Esclim, Estradot, FemPatch, Menostar, Oesclim, Vivelle, and Vivelle-Dot).[186]

Available transdermal estradiol patches in the United States[211][212][a]
Brand name Dose
(µg/day)
DOA (d) Size[b][c]
(cm2)
Levels
(pg/mL)
Intro.
Alora 25, 50, 75, 100 3–4 9, 18, 27, 36 43–144 1996
Climara[d] 25, 37.5, 50,
60, 75, 100
7 6.5, 9.375, 12.5,
15, 18.75, 25
17–174 1994
Climara Pro[e] E2 (45)
LNG (15)
7 22 27–54 2003
CombiPatch[e] E2 (50)
NETA (14, 25)
3–4 9, 16 27–71 1998
Menostar 14 7 3.25 13–21 2004
Minivelle 25, 37.5, 50,
75, 100
3–4 1.65, 2.48, 3.3,
4.95, 6.6
30–117 2012
Vivelle 50, 100 3–4 14.5, 29 30–145 2000
Vivelle-Dot[d] 25, 37.5, 50,
75, 100
3–4 2.5, 3.75, 5,
7.5, 10
30–145 1996
  1. ^ Specific links for each patch's FDA approval and label are not given.
  2. ^ For comparison, a United States quarter is about 4.6 cm2 (0.72 in2).
  3. ^ Sizes are respective to the dosages in the dose column.
  4. ^ a b Generic version available.
  5. ^ a b Combined with a progestin.

A dosage of 1 mg/day oral estradiol is considered to be roughly equivalent to 25 or 50 µg/day transdermal estradiol and a dosage of 2 mg/day oral estradiol is considered to be equivalent to 50 or 100 µg/day transdermal estradiol depending on the source.[213][97][12][10] Estradiol patches delivering a daily dosage of 0.05 mg (50 µg) achieve mean estradiol and estrone levels of 30 to 65 pg/mL and 40 to 45 pg/mL, respectively, while a daily dosage of 0.1 mg (100 µg) attains respective mean levels of 50 to 90 pg/mL and 30 to 65 pg/mL of estradiol and estrone.[15] In general, Climara-type estradiol transdermal patches have an approximate 1:1 ratio of estradiol delivered in μg/day relative to circulating estradiol concentration in pg/mL.[205] In other words, a 100 μg/day Climara estradiol patch may be expected to produce circulating estradiol levels of around 100 pg/mL.[205] Transdermal estradiol patches produce an estradiol to estrone ratio of about 1:1.[10][12] Following removal of an estradiol patch, circulating estradiol levels decrease to baseline within 24 hours.[10]

Typical dosages of estradiol patches are intended to provide the minimum amount of estrogen replacement necessary for the effective alleviation of menopausal symptoms, and for this reason, they achieve relatively low levels of estradiol.[10] A dosage of two to six 100 µg/day transdermal estradiol patches can achieve mean levels of estradiol in the area of 200 to 400 pg/mL and can be used as a form of high-dose estrogen therapy, for instance to suppress testosterone levels in the treatment of prostate cancer in men and in feminizing hormone therapy for transgender women.[14][214][215] High-dose transdermal estradiol patches have also been studied in the treatment of postpartum depression and postpartum psychosis; in one such study, 200, 400, and 800 μg/day estradiol in the form of transdermal patches resulted in estradiol levels of 286 pg/mL, 675 pg/mL, and 1032 pg/mL, respectively.[216] In another study, estradiol levels with 800 μg/day estradiol in the form of transdermal patches (Estraderm TTS) resulted in estradiol levels of 690 to 815 pg/mL.[217] However, there is erratic absorption and considerable variation in estradiol levels using high-dose estradiol patches both between and within individuals, with one study finding that estradiol levels ranged from 70 pg/mL to 1,045 pg/mL (mean 460.7 pg/mL) with six 100 μg/day estradiol patches.[218][219]

The Prostate Adenocarcinoma: TransCutaneous Hormones (PATCH) study is a randomized controlled trial of high-dose transdermal estradiol patches versus gonadotropin-releasing hormone agonist monotherapy in the treatment of prostate cancer in approximately 2,200 men.[220][221][222] It is specifically comparing three to four 100 μg/day estradiol patches (FemSeven) against goserelin implants.[220] The study was started in March 2006 and is estimated for completion in August 2021.[220] Its objectives include comparison of survival, cardiovascular mortality and morbidity, pharmacological activity (e.g., suppression of testosterone levels), other side effects and toxicities, and quality of life.[220] In addition to the PATCH trial, the Systemic Therapy in Advancing or Metastatic Prostate Cancer: Evaluation of Drug Efficacy (STAMPEDE) study added a high-dose estradiol patches arm (~2,000 men) in July 2017.[223][221][222]

Estradiol patches are associated with local skin reactions and such as irritation in 14.2% of individuals (with reservoir patches), mild-to-moderate erythema (redness) in 50 to 60% of individuals, and allergic reactions due to cutaneous sensitization.[10][12] Up to 5% of people using reservoir patches may discontinue therapy due to skin reactions.[12] Visible adhesive residues are also often left by estradiol patches following their removal.[10] Transdermal estradiol gel can serve as an alternative to transdermal estradiol patches for individuals who experience intolerable skin reactions with them.[224] Estradiol patches should not be applied to the breast as this may result in high local levels of estradiol in the breasts and hence an increased likelihood of breast tenderness.[225]

Transdermal gel edit

Estradiol is available as a transdermal gel in the form of gel dispensers and gel packets. Major estradiol gel dispenser products include EstroGel and Elestrin while major estradiol gel packet products include DiviGel and Sandrena. Estradiol gels are administered daily.[186][15][10][212] When estradiol is administered as a hydroalcoholic gel, it dries within 2 to 5 minutes following application to the skin.[194] A single application of a transdermal estradiol gel results in a sustained increase in estradiol levels for at least 24 hours.[17][194] The apparent elimination half-life of estradiol with transdermal estradiol gel is 36 hours.[194]

Once daily application of 1.25 g topical gel containing 0.75 mg estradiol (brand name EstroGel) for 2 weeks was found to produce mean peak estradiol and estrone levels of 46.4 pg/mL and 64.2 pg/mL, respectively.[194] The time-averaged levels of circulating estradiol and estrone with this formulation over the 24-hour dose interval were 28.3 pg/mL and 48.6 pg/mL, respectively.[194] Levels of estradiol and estrone are stable and change relatively little over the course of the 24 hours following an application, indicating a long duration of action of this route.[194] Steady-state levels of estradiol are achieved after 3 days of application.[194] A higher dosage of estradiol gel containing 1.5 mg estradiol per daily application has been found to produce mean estradiol levels of 40 to 100 pg/mL and estrone levels of 90 pg/mL, while 3 mg per day has been found to result in respective mean estradiol and estrone levels of 60 to 140 pg/mL and 45 to 155 pg/mL.[15] Topical estradiol gel at a dosage of 3 mg/day has been reported to be equipotent with 2 mg oral estradiol in terms of therapeutic effects and FSH suppression, as well as to produce similar estradiol levels.[129] Transdermal estradiol gel produces an estradiol to estrone ratio of about 1:1.[10][12]

Transdermal estradiol gel can be used as a form of high-dose estrogen in transgender women.[224] However, the doses needed require application to a large surface of skin that amounts to the combined area of both legs for proper absorption.[224] As a result, high-dose transdermal estradiol gel is not a primary choice of estrogen therapy for most transgender individuals.[224] Similarly to transdermal estradiol patches, high-dose transdermal estradiol gel has been studied in the treatment of prostate cancer as well.[235][236][237][238][239][240][241] In these studies, levels of estradiol with estradiol gel or ointment were 84 pg/mL with 3 mg/day, 185 pg/mL with 6 mg/day, 107 pg/mL with 10 mg/day, and 473 pg/mL with 20 mg/day.[236][237][238][239][240][241] In women, high doses of estradiol gel, including 3 mg/day, 4 mg/day, and 8 mg/day, have been reported to produce estradiol levels of 99 pg/mL, 117 pg/mL, and 204 pg/mL, respectively.[242][70]

Studies have found that topical application of estradiol to the breasts increases local levels of estradiol in breast tissue.[243][244][245][246]

The total endometrial proliferation dose of transdermal estradiol gel in women has been reported to be 150 mg per cycle or 14 days.[247][75]: 310  However, it has also been found that 6 mg/day estradiol gel is effective for endometrial proliferation in women.[248]

Other transdermal formulations edit

 
Estradiol levels with different doses of an estradiol transdermal spray (brand name Lenzetto) in postmenopausal women.[251]
 
Estradiol levels with different doses of an estradiol transdermal emulsion (brand name Estrasorb) in postmenopausal women.[252][253]

Estradiol is available in the form of transdermal emulsions (e.g., Estrasorb) and sprays (e.g., Lenzetto, Evamist).[187] Estradiol emulsions and sprays are administered daily.[186][15][10][212] The pharmacokinetics of these preparations have been studied.[251][252][253]

Variability in pharmacokinetics edit

Transdermal estradiol patches are described as delivering a fixed amount of estradiol such as 50 µg/day or 100 µg/day.[10] However, there is large interindividual variability and intraindividual variability in the pharmacokinetic parameters of transdermal estradiol, and fluctuations in circulating estradiol levels with estradiol patches are almost as great as with oral estradiol.[10][96][12][17] As such, the actual delivery rate of estradiol and mean levels of estradiol achieved with transdermal estradiol patches may be different from what is described and from the mean levels observed in clinical studies, respectively.[10]

A wide range of estradiol levels are measured in women using the same estradiol patch or gel and dosage, with an up to about 10-fold difference in levels.[10][96][17] In a study of estradiol gel and patches, the maximal difference in peak levels between individuals was 11-fold for the gel and 7-fold for the patch, and the maximal difference in area-under-the-curve levels (total exposure) was 6-fold for the gel and 8-fold for the patch.[96] It has likewise been reported that the interindividual variability in bioavailability with Estraderm reservoir patches ranges from 25 to 225%.[17] In as many as 30% of women treated with a 50 µg/day estradiol patch, estradiol levels are low.[10] There are also significant short-term intraindividual differences in estradiol levels with estradiol patches; estradiol levels can fluctuate considerably from hour to hour.[10][188] In addition, estradiol levels with estradiol patches are higher in the evening than in the morning, which may be due to circadian variations in skin blood flow that may influence absorption.[10] In terms of area-under-the-curve levels of estradiol, the interindividual variability of transdermal estradiol has been found to be 20 to 44% using different transdermal formulations, and the intraindividual variability with transdermal estradiol has been found to be 20%.[12]

Factors which may contribute to inter- and intraindividual variability with transdermal estradiol include skin location and thickness; hair follicle density; solvent (alcohol) evaporation; skin dehydration, ambient temperature, and humidity; and reservoir size.[17]

Vaginal administration edit

Vaginal estradiol is available in the forms of tablets, creams, inserts or suppositories, and rings.[186][10][185] Vaginal estradiol tablets, creams, and inserts are usually administered once daily to twice weekly, whereas vaginal estradiol rings have a sustained action and are replaced once every 90 days.[186][10] Vaginal estradiol can be used both as a systemic form of estradiol therapy, and at very low doses to selectively achieve a local vaginal effect without systemic effects, for instance in the treatment of menopausal symptoms such as vaginal atrophy and dryness.[10][254]

Vaginal estradiol is rapidly and almost completely absorbed.[72] The absorption of vaginal estradiol is slightly greater in women with vaginal atrophy.[72] Vaginal estradiol has high bioavailability and greatly increased potency compared to oral estradiol, with about 10- to 20-fold the comparative potency of oral estradiol.[10] The greater potency of vaginal estradiol relative to oral estradiol is due to the lack of the first pass associated with oral estradiol and due to low local metabolism of estradiol in the vagina.[10] Because of the high estradiol levels achieved, LH and FSH are more strongly suppressed with vaginal estradiol than with other routes.[72]

A daily dosage of 0.5 mg vaginal micronized estradiol has been found to result in estradiol and estrone levels of 250 pg/mL and 130 pg/mL, respectively.[15] Vaginal estradiol has a much higher estradiol-to-estrone ratio in comparison to oral estradiol.[10] The average ratio of estradiol to estrone with vaginal estradiol is 5:1, compared to 1:5 in the case of oral estradiol, a 10-fold difference.[10]

As vaginal estradiol is not subject to a first pass and bypasses the intestines and liver, it does not affect liver protein synthesis at menopausal replacement dosages, similarly to transdermal estradiol.[255] On the other hand, a first pass effect in the uterus may occur with vaginal administration of estradiol and this may have implications for uterine safety.[256]

Rectal administration edit

 
Estradiol levels with rectal administration of estradiol in women after a single 1 mg dose 3 hours post-dose, with 0.5 mg/day 6 hours after the last dose, and with 1 mg/day 6 hours after the last dose.[261][72][242][70]

Estradiol has been assessed for use by rectal administration in a number of studies.[242][70][261][262][263] Uses of estradiol by this route have included treatment of menopausal symptoms in postmenopausal women.[242][70][261][262] Rectal administration of estradiol is described as qualitatively and quantitatively similar to vaginal administration of estradiol.[261][262][264] The use of estradiol by the rectal route considerably bypasses the liver and hence the first-pass metabolism that occurs with oral estradiol, similarly to other parenteral routes of estradiol such as vaginal and transdermal administration.[242][265] Irritation of the intestines does not usually occur with rectal estradiol.[261] The use of estradiol by the rectal route is not well-accepted by all individuals,[261] and due to its inconvenience, it has been said that rectal administration of estradiol has gained no practical clinical importance.[265]

Lauritzen (1986) reported that 3 hours after a single rectal dose of 1 mg micronized estradiol, estradiol levels increased by 620 pg/mL and estrone levels increased by 120 pg/mL.[261][72] Subsequently, Lauritzen (1987, 1990) reported that 0.5 mg/day and 1 mg/day rectal estradiol resulted in respective estradiol levels of 363 pg/mL and 515 pg/mL 6 hours following the last dose.[242][70] These estradiol levels are fairly similar to those achieved by vaginal estradiol.[261][70][72] The estradiol-to-estrone ratio of rectal estradiol is about 5:1, which likewise is the same as that of vaginal estradiol.[242][261][72] Absorption of rectal estradiol occurs rapidly within 30 to 60 minutes, maximal estradiol levels occur at 3 hours post-dose, and circulating estradiol levels are reportedly maintained for 4 to 10 hours.[261][262][72] The duration of rectal estradiol is said to necessitate repeated administration 1 to 2 times per day.[261][262]

Rectal administration of estriol, which has similar properties to estradiol, has also been studied.[266] Administration of a rectal suppository containing 100 mg estriol resulted in estriol levels in pregnant women at term increasing by about 53%.[266] Estriol levels at term are normally between 5,000 and 20,000 pg/mL, which suggests that estriol levels may have increased following the suppository by about 5,000 to 10,000 pg/mL (precise levels were not provided).[267][268][269]

Intramuscular injection edit

Intramuscular injections are injections into muscle, for instance the gluteal or deltoid muscle. Estradiol and estradiol esters can be administered in a variety of forms by intramuscular injection.[270][10][271] Aqueous solutions of estradiol and estradiol esters by intramuscular injection have a rapid onset and duration analogously to but slightly more delayed than intravenous injection.[citation needed] However, intramuscular injections of oil solutions, crystalline aqueous suspensions, and emulsions of estradiol and estradiol esters, as well as solutions and suspensions of estradiol polymers and estradiol microspheres, act as long-lasting depot injections.[citation needed]

Estradiol esters, including but not limited to estradiol benzoate, estradiol valerate, estradiol cypionate, estradiol enanthate, and estradiol undecylate, are inactive prodrugs of estradiol that are converted into estradiol in the body.[10][272] The aforementioned estradiol esters are fatty acid esters and are more lipophilic (fat-soluble) than estradiol.[citation needed] More lipophilic compounds are absorbed more slowly from the injection site when given by depot intramuscular injection (as oil solutions, aqueous suspensions, and emulsions), and hence more lipophilic estradiol esters have longer durations than free estradiol or less lipophilic estradiol esters via this route.[citation needed] Polyestradiol phosphate is a polymer of the hydrophilic (water-soluble) estradiol ester estradiol phosphate which circulates in the blood but is metabolized into estradiol very slowly.[citation needed]

The bioavailability of estradiol and estradiol esters given by intramuscular injection is said to be essentially complete.[4] For comparison, the bioavailability of oral estradiol is around 5%.[10] The estradiol levels that result with typical clinical doses of estradiol and estradiol esters by intramuscular injection tend to be high compared to the typical estradiol levels that occur with other clinically used routes and forms of estradiol.[10][16][273][274][13]

Potencies and durations of natural estrogens by intramuscular injection
Estrogen Form Dose (mg) Duration by dose (mg)
EPD CICD
Estradiol Aq. soln. ? <1 d
Oil soln. 40–60 1–2 ≈ 1–2 d
Aq. susp. ? 3.5 0.5–2 ≈ 2–7 d; 3.5 ≈ >5 d
Microsph. ? 1 ≈ 30 d
Estradiol benzoate Oil soln. 25–35 1.66 ≈ 2–3 d; 5 ≈ 3–6 d
Aq. susp. 20 10 ≈ 16–21 d
Emulsion ? 10 ≈ 14–21 d
Estradiol dipropionate Oil soln. 25–30 5 ≈ 5–8 d
Estradiol valerate Oil soln. 20–30 5 5 ≈ 7–8 d; 10 ≈ 10–14 d;
40 ≈ 14–21 d; 100 ≈ 21–28 d
Estradiol benz. butyrate Oil soln. ? 10 10 ≈ 21 d
Estradiol cypionate Oil soln. 20–30 5 ≈ 11–14 d
Aq. susp. ? 5 5 ≈ 14–24 d
Estradiol enanthate Oil soln. ? 5–10 10 ≈ 20–30 d
Estradiol dienanthate Oil soln. ? 7.5 ≈ >40 d
Estradiol undecylate Oil soln. ? 10–20 ≈ 40–60 d;
25–50 ≈ 60–120 d
Polyestradiol phosphate Aq. soln. 40–60 40 ≈ 30 d; 80 ≈ 60 d;
160 ≈ 120 d
Estrone Oil soln. ? 1–2 ≈ 2–3 d
Aq. susp. ? 0.1–2 ≈ 2–7 d
Estriol Oil soln. ? 1–2 ≈ 1–4 d
Polyestriol phosphate Aq. soln. ? 50 ≈ 30 d; 80 ≈ 60 d
Notes and sources
Notes: All aqueous suspensions are of microcrystalline particle size. Estradiol production during the menstrual cycle is 30–640 µg/d (6.4–8.6 mg total per month or cycle). The vaginal epithelium maturation dosage of estradiol benzoate or estradiol valerate has been reported as 5 to 7 mg/week. An effective ovulation-inhibiting dose of estradiol undecylate is 20–30 mg/month. Sources: See template.

Aqueous solutions edit

Aqueous solutions are solutions of a compound with water.[citation needed] In contrast to other formulations, such as oil solutions, aqueous suspensions, and emulsions, aqueous solutions of estradiol and estradiol esters by intramuscular injection are not depot injections.[citation needed] Instead, they are rapidly absorbed and eliminated, analogously to intravenous injections of estradiol and estradiol esters.[citation needed] The durations of aqueous solutions of estradiol and estradiol esters by intramuscular injection are measured in hours.[citation needed]

Oil solutions edit

Oil solutions are solutions of a compound with oil, for instance sesame oil or castor oil.[citation needed] When free steroids like estradiol are administered in oil solution by intramuscular injection, they are rapidly absorbed and the duration is relatively short.[270][275] A single 1 to 2 mg dose of estradiol in oil solution by intramuscular injection has a duration of about 1 or 2 days.[265][276][277] Little prolongation of duration is achieved with the use of larger doses.[270][278][279] Nonetheless, the duration of estradiol in oil solution by intramuscular injection is significantly longer than an intravenous injection of estradiol or estradiol valerate, which show a duration of only a few hours.[10][12][4][60][280][281]

Conversely, intramuscular injections of estradiol esters in oil solution have durations of days to months, depending on the ester administered.[265] Following a single 4 or 5 mg intramuscular injection in oil solution, peak estradiol levels are about 950 pg/mL with estradiol benzoate after 2 days, 400 to 650 pg/mL with estradiol valerate after 2 days, and 250 to 350 pg/mL with estradiol cypionate after 4 days.[274][16][273] The durations with a 5 mg dose are 4 or 5 days with estradiol benzoate, 7 or 8 days with estradiol valerate, and 11 to 14 days with estradiol cypionate.[274][16][273] The differences in estradiol levels and the different durations with estradiol levels are due to their different rates of release from the oily depot at the injection site.[274] The longer and hence more lipophilic the fatty acid ester, the slower the release from the depot, the lower the peak estradiol levels, and the longer the duration.[274][10][265]

The duration of estradiol esters in oil solution by intramuscular injection is dose-dependent.[282] With estradiol valerate, it is reported that a dose of 5 mg has a duration of 7 to 8 days,[274] 10 mg a duration of 10 to 14 days,[265][282] 40 mg a duration of 2 to 3 weeks, and 100 mg a duration of 3 to 4 weeks.[282] High doses of estradiol valerate, such as 40 mg per week, can achieve pregnancy levels of estradiol.[283] A study of pseudopregnancy with intramuscular injections of 40 mg/week estradiol valerate and 250 mg/week hydroxyprogesterone caproate observed estradiol levels of about 2,500 to 3,000 pg/mL.[283]

Pharmacokinetics of three estradiol esters by intramuscular injection
Estrogen Dose Cmax Tmax Duration
Estradiol benzoate 5 mg E2: 940 pg/mL
E1: 343 pg/mL
E2: 1.8 days
E1: 2.4 days
4–5 days
Estradiol valerate 5 mg E2: 667 pg/mL
E1: 324 pg/mL
E2: 2.2 days
E1: 2.7 days
7–8 days
Estradiol cypionate 5 mg E2: 338 pg/mL
E1: 145 pg/mL
E2: 3.9 days
E1: 5.1 days
11 days
Notes: All via i.m. injection of oil solution. Determinations via radioimmunoassay with chromatographic separation. Sources: See template.

Aqueous suspensions edit

Aqueous suspensions are suspensions of crystal particles of a compound in water.[citation needed] Estradiol in microcrystalline aqueous suspension for use by intramuscular injection was previously marketed in the 1950s under brand names such as Aquadiol, Diogyn, Progynon Aqueous Suspension, and Progynon Micropellets.[284][285][286][287][288][289][290][291] It was used at a dose of 0.5 to 1.5 mg 2 or 3 times per week.[290] Newman (1950) found that 0.5 to 2 mg once per week was satisfactory.[292] As such, the preparation presumably had a duration in the range of 2 to 7 days.[290][292]

Microcrystalline aqueous suspensions of estradiol esters, for instance of estradiol benzoate (brand names Agofollin Depot alone and Follivirin in combination with testosterone isobutyrate),[293][294] have been found to have longer duration of actions than oil solutions of the same esters when administered via intramuscular injection.[295][296][271][297][298][49][299]: 310  Whereas the duration of a single intramuscular injection of amorphous estradiol benzoate in oil solution is 6 days, the duration of a single intramuscular injection of microcrystalline estradiol benzoate in aqueous suspension is 16 to 21 days.[75][296][300][301]

The duration of crystalline aqueous suspensions is highly dependent on crystal size.[302][303][298][304][305] Steroids and steroid fatty acid esters are lipophilic and have very low water solubility.[306] When they are suspended in the form of crystals in water, these crystals dissolve slowly, releasing steroid from their surfaces in the process.[306][307] The larger the particle sizes of the crystals, the slower the dissolution rate.[306] When a crystalline aqueous suspension of steroid is administered via intramuscular injection, a crystalline depot suspended in fluid is formed locally within the muscle.[306][307] These crystals slowly dissolve and the steroid is gradually absorbed into the body, resulting in the long durations of such preparations.[306][307] Particle sizes of 10 μm or less have no apparent depot effect.[308]

A larger needle size is needed for aqueous suspensions of steroids to allow the steroid crystals to pass through the needle lumen.[309][310] Aqueous suspensions pose a risk of injection site reactions such as local irritation, swelling, and redness, with often severe pain.[303][310] The reactions are worse with larger crystal sizes.[303][311] Particle sizes of more than 300 μm in the case of estradiol benzoate have been found to be too painful for use.[311] The local injection site reactions, which do not occur with oil solutions, have limited the clinical use of aqueous suspensions of estradiol and its esters as well as other steroids.[312][313][314]

Emulsions edit

Emulsions are mixtures of immiscible liquids. Water-in-oil emulsions of estradiol benzoate were evaluated as long-acting preparations for use by intramuscular injection in the 1940s and 1950s.[298][271] Formulations of estradiol benzoate alone under the brand name Menformon-Emulsion and with progesterone under the brand name Di-Pro-Emulsion were previously marketed.[315][316] A 10 mg dose of estradiol benzoate in emulsion by intramuscular injection is said to have a duration of about 2 to 3 weeks.[315] This is similar to the duration of an aqueous suspension of 10 mg estradiol benzoate or an oil solution of 10 mg estradiol valerate.[315] Emulsions of steroids by intramuscular injection have similar properties (e.g., duration) relative to aqueous suspensions.[298][271] Painful injection site reactions have been reported with emulsions similarly to suspensions.[317]

Polymers edit

Polymers are large molecules of repeating subunits. Polyestradiol phosphate (brand name Estradurin) is a water-soluble estradiol ester in the form of a polymer and a very slowly hydrolyzed prodrug of estradiol.[318][319] It is formulated as an aqueous solution and is given by intramuscular injection.[318][319] The medication has an exceptionally long duration of action, with an elimination half-life of about 70 days or 10 weeks following a single injection.[320] Estradiol levels during polyestradiol phosphate therapy are very constant and uniform.[320] Levels of estradiol after 6 months of treatment with polyestradiol phosphate were about 350, 450, and 650 pg/mL with doses of 160, 240, and 320 mg once per month, respectively.[13] Polyestradiol phosphate has mostly been discontinued and remains available only in a few countries.[319][321]

Microspheres edit

Microspheres are microscopic spherical particles which can be used to encapsulate compounds.[citation needed] Estradiol is available in the form of an aqueous suspension of 1.0 mg estradiol in microspheres for use by intramuscular injection once a month under the brand name Juvenum E in Mexico.[322][323] It achieves circulating estradiol levels of 163 pg/mL to 219 pg/mL in the first 3 to 12 hours following injection, which decrease to 42 to 66 pg/mL during the first 4 days post-injection and to 20 to 35 pg/mL after 8 days, with levels remaining in this range thereafter over 30 days.[322] These estradiol levels are similar to the normal levels that occur during the early follicular phase of the menstrual cycle in premenopausal women (24 to 75 pg/mL).[322] The elimination of the formulation follows three phases: a rapid phase in the first 2 days, a second phase during days 2 to 12 days with a biological half-life of 7 to 10 days, and a third phase in which estradiol levels remain elevated above baseline for up to 30 days.[322]

Graphs edit

Subcutaneous injection edit

 
Estradiol levels after subcutaneous (s.c.) or intramuscular (i.m.) injection of 5 mg estradiol cypionate in aqueous suspension.[8]

Estradiol esters like estradiol valerate and estradiol cypionate can be given by subcutaneous injection instead of intramuscular injection.[332] Subcutaneous and intramuscular injection of estradiol cypionate in an aqueous suspension has been found to result in levels of estradiol and other pharmacokinetic parameters (e.g., duration) that were virtually identical.[8] Studies have shown that subcutaneous injection of closely related steroid esters in oil like the androgen esters testosterone cypionate, testosterone enantate, and nandrolone decanoate is effective and has similar pharmacokinetics to intramuscular injection as well.[333][215][334][335][336][337][338][339] In addition, studies have found that many intramuscular injections are really subcutaneous injections, as individuals often do not actually penetrate deep enough to inject into muscle when attempting to perform an intramuscular injection and instead inject into the subcutaneous fat layer above the muscle.[340][341] This is particularly prevalent with injections into the buttocks and in overweight and obese individuals, due to the thicker layer of fat over muscle.[340][341] Subcutaneous injections of estradiol esters may be easier and less painful to perform than intramuscular injections, and hence may result in improved compliance and satisfaction with therapy.[8]

Subcutaneous implantation edit

 
Levels of estradiol after surgical implantation of a subcutaneous pellet of 100 mg estradiol in women.[10][342][64]

Estradiol can be administered in a very long-lasting form via subcutaneous implantation of pure crystalline estradiol compressed into a small solid cylindrical pellet.[10][343] These pellets slowly and completely dissolve and are replaced once every 6 to 12 months, achieving high and very constant circulating levels of estradiol.[10][344][345] They are surgically inserted with the aid of a trocar by a trained physician in a medical office or clinic, and can be placed into locations including the lower abdomen, lower back, buttocks, or hips.[10][344][343] Subcutaneous pellets containing 20 mg estradiol (brand name Meno-Implant) or 25, 50, or 100 mg estradiol (brand name Estradiol Implants; discontinued) for replacement usually once every 6 months (range 4 to 8 months) are or have been available as approved pharmaceutical medications.[345] Up to 800 mg estradiol per implantation has been used.[346] Pharmaceutical estradiol pellet implants have been used almost exclusively in the United Kingdom, but have also been available in Australia and the Netherlands.[347][348] However, estradiol pellets have been discontinued in both the United Kingdom and Australia.[349][350] An estradiol implant has not been approved by the FDA as a pharmaceutical medication in the United States, but hormone pellet implants, including estradiol pellets, are available as custom compounded products in this country.[351][352][353]

Estradiol pellet implants are advantageous in that some women seem to need higher levels of estradiol for adequate relief of menopausal symptoms, and subcutaneous estradiol pellets are easily able to achieve such levels.[345][10] Conversely, this is not necessarily the case with oral or transdermal estradiol.[345][10] Another major advantage of estradiol pellet implants is convenience and guaranteed compliance.[345] They also do not have the issues pertaining to first-pass metabolism and liver protein synthesis of oral estradiol.[345][10] A major disadvantage of estradiol pellet implants is that they cannot be easily removed should this be necessary.[345] There are also concerns about accumulation of estradiol levels with long-term repeated pellet implantation.[345][10] Estradiol levels may remain above baseline for a year or in some cases 3 to 4 years following the last pellet insertion.[345] During this time, progestogen therapy should be continued to avoid the risk of endometrial changes.[345][344] Regular monitoring of estradiol levels and adjustment of dosing is recommended during therapy with estradiol pellet implants.[345]

Tachyphylaxis of relief of vasomotor symptoms, or hot flashes returning even with normal or supraphysiological estradiol levels, may occur in a small subset of cases with estradiol pellet implants.[345][10][347][354][344] The reason for this is unknown, but has been hypothesized to be a paradoxical effect of the high levels of estradiol achieved and/or a result of receptor desensitization caused by the long-term gradually decreasing levels of estradiol.[345][10] Such symptoms have been said to occur once estradiol levels begin to decrease, although there are also reports of such symptoms occurring 3 to 16 weeks (1 to 4 months) after pellet insertion, when estradiol levels should still be constant.[345][10] Hot flashes have notably been reported in pregnant women, who have very high and constantly increasing levels of estradiol.[355] When recurrence of hot flashes occurs with estradiol pellets, treated women often complain that their pellet has "run out".[345] Such symptoms can be temporarily offset with the use of supplemental oral or transdermal estradiol.[345]

Following insertion of an estradiol pellet, levels of estradiol rapidly increase, remain constant for about 4 months, and then gradually decrease.[345] A 25 mg subcutaneous estradiol pellet has been found to result in average estradiol levels of 90 pg/mL for 6 months, while two 25 mg pellets (50 mg total) resulted in estradiol levels of 180 pg/mL after 24 hours and levels of 100 to 120 pg/mL for 6 months.[10] Higher-dose pellets resulted in estradiol levels for 50 mg of 100 pg/mL, for 75 mg of 140 pg/mL, and for 100 mg of 150 pg/mL.[10] Estradiol levels are generally 50% higher than those of estrone, for an estradiol-to-estrone ratio of 1.5:1.[10] Very high levels of estradiol of between 400 and 1,000 pg/mL have been observed in a small subset of women treated with estradiol pellets and notably in those experiencing symptoms of tachyphylaxis.[345][10]

Estradiol pellet implants have been studied in the treatment of prostate cancer in men.[356][357][358][359][360]

Intrauterine administration edit

Intrauterine estradiol has been studied in the treatment of uterine hypoplasia in women.[361][362][297]

Intravenous injection edit

The administration of estradiol by intravenous injection has been studied.[60][280][363][364][9] It achieves extremely high peak levels of estradiol but has a very short duration.[60][280][9] Kuhnz et al. (1993) reported that a single intravenous injection of 0.3 mg estradiol resulted in peak estradiol concentrations of 8,321 pg/mL at 5 minutes post-injection.[60] Estradiol levels decreased to 1,628 pg/mL after 30 minutes, to 778 pg/mL after 1 hour, and to 23 pg/mL after 6 hours.[60] Leyendecker et al. (1975) reported that a single intravenous injection of 20 mg estradiol resulted in estradiol levels of 2,950 pg/mL at 12 hours after the injection (earlier time points were not measured).[280] Following this, estradiol levels decreased to around 400 pg/mL by 24 hours post-injection and reached near-baseline levels of 45 pg/mL after 48 hours.[280] The ratio of estradiol to estrone is very high initially (e.g., around 10:1 at peak) but becomes smaller as estradiol levels decline.[60][280] The distribution half-life of intravenous estradiol is about 6 minutes and the terminal half-life of intravenous estradiol is about 0.5 to 2 hours.[10][12][4][9] The peak estradiol levels are far higher and the duration far shorter when estradiol is given by intravenous injection than when estradiol esters are administered by intramuscular or subcutaneous injection.[280][10]

The administration of estradiol valerate by intravenous injection has been studied as well.[4][365] It has been found to be very rapidly cleaved into estradiol in the blood.[4][365] The metabolism of estradiol valerate does not differ with intravenous versus intramuscular injection.[365]

While estradiol itself has not been used clinically by intravenous injection, certain estrogen preparations such as conjugated estrogens and estramustine phosphate are available in formulations indicated for intravenous injection.[366] Both of these medications act in part as prodrugs of estradiol.[367][368][369] The intravenous formulation of conjugated estrogens is available at a dose of 25 mg per injection and is used in the treatment of abnormal uterine bleeding due to its ability to rapidly and temporarily enhance coagulation.[366] It has also been used off-label to treat severe bleeding after hysteroscopic metroplasty and as an emergency contraceptive.[366][370][368] The formulation is given in a single injection but can be repeated after 6 to 12 hours if necessary.[366][370][368] Intravenous estramustine phosphate has a relatively long duration and, like oral estramustine phosphate, is used in the treatment of prostate cancer.[369][371] Estramustine phosphate was initially introduced as an intravenous formulation and was only later introduced as an oral medication.[371] Following introduction of the more convenient oral formulation, intravenous estramustine phosphate has largely been abandoned.[371]

The administration of large doses of estrogens intravenously has been studied.[372][373][374]

General edit

Absorption edit

Estradiol is well-absorbed regardless of route of administration.[10] However, the bioavailability of estradiol differs substantially with different routes of administration.[10][4] Oral estradiol has an average bioavailability of around 5%, requiring relatively high dosages of estradiol for effects.[10] Estradiol administered in the form of an ester by intramuscular or subcutaneous injection has complete bioavailability.[4][332][8]

Distribution edit

Estradiol is rapidly distributed throughout the body, with a distribution phase of about 6 minutes following intravenous injection.[12] Estradiol is taken up into cells via passive diffusion due to its lipophilicity.[375] Due to binding to the ERs, estradiol is preferentially concentrated in tissues with the highest ER content.[12] In animals, these tissues have included the uterus, vagina, mammary glands, pituitary gland, hypothalamus, other brain regions, adipose tissue, liver, and adrenal glands, among other tissues.[12][376] In contrast to estradiol, due to its low affinities for the ERs, estrone is not accumulated in target tissues.[10] Estradiol has been found to cross the blood–brain barrier in rhesus monkeys.[12] The volume of distribution of estradiol has been found to be 0.85 to 1.17 L/kg.[12] In another study however, its volume of distribution was only 0.082 ± 0.015 L/kg (4.8 L in women of average weight 58.4 kg).[9]

In terms of plasma protein binding, estradiol is bound loosely to albumin and tightly to SHBG, with approximately 97 to 98% of estradiol bound to plasma proteins.[2] In the circulation, approximately 38% of estradiol is bound to SHBG and 60% is bound to albumin, with 2 to 3% free or unbound.[3] However, with oral estradiol, there is an increase in hepatic SHBG production and hence SHBG levels (e.g., +50%), and this results in a relatively reduced fraction of free estradiol.[1][17] As only free estradiol that is not bound to plasma proteins or SHBG is biologically active, this may reduce the potency of oral estradiol by some degree.[12][17] However, a study found that the free fraction of estradiol was similar with doses of oral and topical estradiol that resulted in equivalent total estradiol levels.[129]

Metabolism edit

 
Description: The metabolic pathways involved in the metabolism of estradiol and other natural estrogens (e.g., estrone, estriol) in humans. In addition to the metabolic transformations shown in the diagram, conjugation (e.g., sulfation and glucuronidation) occurs in the case of estradiol and metabolites of estradiol that have one or more available hydroxyl (–OH) groups. Sources: See template page.

There are several major pathways of estradiol metabolism, which occur both in the liver and in other tissues:[12][10][1]

The liver is almost entirely responsible for metabolism of estradiol.[377]

Both dehydrogenation of estradiol by 17β-HSD into estrone and conjugation into estrogen conjugates are reversible transformations.[12][10] However, in regards to sulfation and desulfation, transformation of estrone into estrone sulfate is predominant relative to the reverse reaction.[12][110]

Estradiol can also be reversibly converted into long-lived lipoidal estradiol forms like estradiol palmitate and estradiol stearate as a minor route of metabolism.[11]

The elimination half-life of estradiol administered via intravenous injection has been found to be 2 hours in men and 27 to 50 minutes in women.[4][9][378][379] Other routes of administration of estradiol like oral administration or intramuscular injection have far longer elimination half-lives and durations of action due to (1) the formation of a large circulating reservoir of metabolism-resistant estrogen conjugates that can be reconverted back into estradiol and/or (2) the formation of slowly-releasing depots.[12][10]

The metabolic clearance rates of estradiol, estrone, and estrone sulfate are 580 L/day/m2, 1,050 L/day/m2, and 80 L/day/m2, respectively.[10]

Elimination edit

A single dose of oral estradiol valerate is eliminated 54% in urine and 6% in feces.[1] A substantial amount of estradiol is also excreted in bile.[1] The urinary metabolites of estradiol are predominantly present in the form of estrogen conjugates, including glucuronides and, to a lesser extent, sulfates.[1] The main metabolites of estradiol in urine are estrone glucuronide (13–30%), 2-hydroxyestrone (2.6–10.1%), unchanged estradiol (5.2–7.5%), estriol (2.0–5.9%), and 16α-hydroxyestrone (1.0–2.9%).[1] Following an intravenous injection of labeled estradiol in women, almost 90% is excreted in urine and feces within 4 to 5 days.[378][379] Enterohepatic recirculation causes a delay in excretion of estradiol.[378]

See also edit

References edit

  1. ^ a b c d e f g h i j k l m n o p q r Stanczyk FZ, Archer DF, Bhavnani BR (June 2013). "Ethinyl estradiol and 17β-estradiol in combined oral contraceptives: pharmacokinetics, pharmacodynamics and risk assessment". Contraception. 87 (6): 706–727. doi:10.1016/j.contraception.2012.12.011. PMID 23375353.
  2. ^ a b c d e f O'Connell MB (1995). "Pharmacokinetic and pharmacologic variation between different estrogen products". J Clin Pharmacol. 35 (9 Suppl): 18S–24S. doi:10.1002/j.1552-4604.1995.tb04143.x. PMID 8530713. S2CID 10159196.
  3. ^ a b c d e f g h i j k Kuhnz W, Blode H, Zimmermann H (1993). "Pharmacokinetics of Exogenous Natural and Synthetic Estrogens and Antiestrogens". Estrogens and Antiestrogens II. Handbook of Experimental Pharmacology. Vol. 135 / 2. pp. 261–322. doi:10.1007/978-3-642-60107-1_15. ISBN 978-3-642-64261-6. ISSN 0171-2004.
  4. ^ a b c d e f g h i j k l Düsterberg B, Nishino Y (1982). "Pharmacokinetic and pharmacological features of oestradiol valerate". Maturitas. 4 (4): 315–24. doi:10.1016/0378-5122(82)90064-0. PMID 7169965.
  5. ^ a b Falcone T, Hurd WW (2007). Clinical Reproductive Medicine and Surgery. Elsevier Health Sciences. pp. 22, 362, 388. ISBN 978-0-323-03309-1.
  6. ^ Price TM, Blauer KL, Hansen M, Stanczyk F, Lobo R, Bates GW (March 1997). "Single-dose pharmacokinetics of sublingual versus oral administration of micronized 17 beta-estradiol". Obstetrics and Gynecology. 89 (3): 340–345. doi:10.1016/S0029-7844(96)00513-3. PMID 9052581. S2CID 71641652.
  7. ^ Naunton M, Al Hadithy AF, Brouwers JR, Archer DF (2006). "Estradiol gel: review of the pharmacology, pharmacokinetics, efficacy, and safety in menopausal women". Menopause. 13 (3): 517–527. doi:10.1097/01.gme.0000191881.52175.8c. PMID 16735950. S2CID 42748448.
  8. ^ a b c d e Sierra-Ramírez JA, Lara-Ricalde R, Lujan M, Velázquez-Ramírez N, Godínez-Victoria M, Hernádez-Munguía IA, et al. (December 2011). "Comparative pharmacokinetics and pharmacodynamics after subcutaneous and intramuscular administration of medroxyprogesterone acetate (25 mg) and estradiol cypionate (5 mg)". Contraception. 84 (6): 565–570. doi:10.1016/j.contraception.2011.03.014. PMID 22078184.
  9. ^ a b c d e f g White CM, Ferraro-Borgida MJ, Fossati AT, McGill CC, Ahlberg AW, Feng YJ, et al. (1998). "The pharmacokinetics of intravenous estradiol--a preliminary study". Pharmacotherapy. 18 (6): 1343–1346. doi:10.1002/j.1875-9114.1998.tb03157.x. PMID 9855336. S2CID 9970669.
  10. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv bw bx by bz ca cb cc cd ce cf cg ch ci cj ck cl cm cn co cp cq cr cs ct cu cv cw cx cy cz da db dc dd de df dg dh di dj dk dl dm dn do dp dq dr ds dt du Kuhl H (2005). "Pharmacology of estrogens and progestogens: influence of different routes of administration" (PDF). Climacteric. 8 (Suppl 1): 3–63. doi:10.1080/13697130500148875. PMID 16112947. S2CID 24616324.
  11. ^ a b Oettel M, Schillinger E (6 December 2012). Estrogens and Antiestrogens I: Physiology and Mechanisms of Action of Estrogens and Antiestrogens. Springer Science & Business Media. pp. 121, 226, 235–237. ISBN 978-3-642-58616-3.
  12. ^ a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq Oettel M, Schillinger E (6 December 2012). Estrogens and Antiestrogens II: Pharmacology and Clinical Application of Estrogens and Antiestrogen. Springer Science & Business Media. pp. 163–178, 235–237, 252–253, 261–276, 538–543. ISBN 978-3-642-60107-1.
  13. ^ a b c Stege R, Carlström K, Collste L, Eriksson A, Henriksson P, Pousette A (1988). "Single drug polyestradiol phosphate therapy in prostatic cancer". Am. J. Clin. Oncol. 11 (Suppl 2): S101–3. doi:10.1097/00000421-198801102-00024. PMID 3242384. S2CID 32650111.
  14. ^ a b c Ockrim JL, Lalani EN, Laniado ME, Carter SS, Abel PD (May 2003). "Transdermal estradiol therapy for advanced prostate cancer--forward to the past?". J. Urol. 169 (5): 1735–7. doi:10.1097/01.ju.0000061024.75334.40. PMID 12686820.
  15. ^ a b c d e f g h i Lobo RA (5 June 2007). Treatment of the Postmenopausal Woman: Basic and Clinical Aspects. Academic Press. pp. 177, 217–226, 770–771. ISBN 978-0-08-055309-2.
  16. ^ a b c d Notelovitz M, van Keep PA (6 December 2012). The Climacteric in Perspective: Proceedings of the Fourth International Congress on the Menopause, held at Lake Buena Vista, Florida, October 28 – November 2, 1984. Springer Science & Business Media. pp. 397, 399. ISBN 978-94-009-4145-8. [...] following the menopause, circulating estradiol levels decrease from a premenopausal mean of 120 pg/ml to only 13 pg/ml.
  17. ^ a b c d e f g h i j k l m n o p q r s Christian C, von Schoultz B (15 March 1994). Hormone Replacement Therapy: Standardized or Individually Adapted Doses?. CRC Press. pp. 9–16, 60. ISBN 978-1-85070-545-1. The mean integrated estradiol level during a full 28-day normal cycle is around 80 pg/ml.
  18. ^ Müller EE, MacLeod RM (6 December 2012). Neuroendocrine Perspectives. Springer Science & Business Media. pp. 121–. ISBN 978-1-4612-3554-5. [...] [premenopausal] mean [estradiol] concentration of 150 pg/ml [...]
  19. ^ Becker KL (2001). Principles and Practice of Endocrinology and Metabolism. Lippincott Williams & Wilkins. pp. 889, 1059–1060, 2153. ISBN 978-0-7817-1750-2.
  20. ^ "ARCHITECT Estradiol assay" (PDF). Abbott Laboratories. November 2009.
  21. ^ Troisi R, Potischman N, Roberts JM, Harger G, Markovic N, Cole B, Lykins D, Siiteri P, Hoover RN (2003). "Correlation of serum hormone concentrations in maternal and umbilical cord samples". Cancer Epidemiol. Biomarkers Prev. 12 (5): 452–6. PMID 12750241.
  22. ^ "Drugs@FDA: FDA Approved Drug Products". United States Food and Drug Administration. Retrieved 26 July 2018.
  23. ^ Lobo RA (5 June 2007). Treatment of the Postmenopausal Woman: Basic and Clinical Aspects. Academic Press. pp. 177, 217–226, 770–771. ISBN 978-0-08-055309-2.
  24. ^ Falcone T, Hurd WW (14 June 2017). Clinical Reproductive Medicine and Surgery: A Practical Guide. Springer. pp. 179–. ISBN 978-3-319-52210-4.
  25. ^ Becker KL (2001). Principles and Practice of Endocrinology and Metabolism. Lippincott Williams & Wilkins. pp. 889, 1059–1060, 2153. ISBN 978-0-7817-1750-2.
  26. ^ Kleemann A, Engel J, Kutscher B, Reichert D (14 May 2014). Pharmaceutical Substances, 5th Edition, 2009: Syntheses, Patents and Applications of the most relevant APIs. Thieme. pp. 1167–1174. ISBN 978-3-13-179525-0.
  27. ^ Muller (19 June 1998). European Drug Index: European Drug Registrations, Fourth Edition. CRC Press. pp. 276, 454–455, 566–567. ISBN 978-3-7692-2114-5.
  28. ^ Krishna UR, Sheriar NK (1996). Menopause. Orient Blackswan. pp. 70–. ISBN 978-81-250-0910-8.
  29. ^ "NNR: Products Recently Accepted by the A. M. A. Council on Pharmacy and Chemistry". Journal of the American Pharmaceutical Association (Practical Pharmacy ed.). 10 (11): 692–694. 1949. doi:10.1016/S0095-9561(16)31995-8. ISSN 0095-9561.
  30. ^ "AERODIOL (Oestradiol hemihydrate 150 micrograms/actuation)" (PDF). Servier Laboratories (Aust) Pty Ltd.
  31. ^ "Estradiol". Drugs.com.
  32. ^ Sahin FK, Koken G, Cosar E, Arioz DT, Degirmenci B, Albayrak R, Acar M (2008). "Effect of Aerodiol administration on ocular arteries in postmenopausal women". Gynecol. Endocrinol. 24 (4): 173–7. doi:10.1080/09513590701807431. PMID 18382901. 300 μg 17β-estradiol (Aerodiol®; Servier, Chambrayles-Tours, France) was administered via the nasal route by a gynecologist. This product is unavailable after March 31, 2007 because its manufacturing and marketing are being discontinued.
  33. ^ Plouffe Jr L, Ravnikar VA, Speroff L, Watts NB (6 December 2012). Comprehensive Management of Menopause. Springer Science & Business Media. pp. 271–. ISBN 978-1-4612-4330-4.
  34. ^ University of California (1868-1952) (1952). Hospital Formulary and Compendium of Useful Information. University of California Press. pp. 49–. GGKEY:2UAAZRZ5LN0.{{cite book}}: CS1 maint: numeric names: authors list (link)
  35. ^ Leidenberger FA (17 April 2013). Klinische Endokrinologie für Frauenärzte. Springer-Verlag. pp. 527–. ISBN 978-3-662-08110-5.
  36. ^ a b c d Meikle AW (1 June 1999). Hormone Replacement Therapy. Springer Science & Business Media. pp. 380–. ISBN 978-1-59259-700-0.
  37. ^ a b James VH, Pasqualini JR (22 October 2013). Hormonal Steroids: Proceedings of the Sixth International Congress on Hormonal Steroids. Elsevier Science. pp. 821–. ISBN 978-1-4831-9067-9.
  38. ^ a b c d e f g h i Englund DE, Johansson ED (1981). "Oral versus vaginal absorption in oestradiol in postmenopausal women. Effects of different particles sizes". Upsala Journal of Medical Sciences. 86 (3): 297–307. doi:10.3109/03009738109179241. PMID 7324289.
  39. ^ Dosage Form Design Considerations. Elsevier Science. 28 July 2018. pp. 159–. ISBN 978-0-12-814424-4.
  40. ^ a b c d e Henzl MR (1978). "Natural and Synthetic Female Sex Hormones". In Yen SS, Jaffe RB (eds.). Reproductive Endocrinology: Physiology, Pathophysiology, and Clinical Management. W.B. Saunders Co. pp. 421–468. ISBN 978-0-7216-9625-6.
  41. ^ Stanczyk FZ (1998). "Pharmacological background of estrogen replacement therapy and continuance". In Fraser IS, Jansen RP, Lobo RA, Whitehead MI (eds.). Estrogens and Progestogens in Clinical Practice. Churchill Livingstone. pp. 655–666. ISBN 978-0-443-04706-0.
  42. ^ a b c Yen SS, Martin PL, Burnier AM, Czekala NM, Greaney MO, Callantine MR (March 1975). "Circulating estradiol, estrone and gonadotropin levels following the administration of orally active 17beta-estradiol in postmenopausal women". The Journal of Clinical Endocrinology and Metabolism. 40 (3): 518–521. doi:10.1210/jcem-40-3-518. PMID 1117058.
  43. ^ Hammond CB, Maxson WS (June 1986). "Estrogen replacement therapy". Clin Obstet Gynecol. 29 (2): 407–30. doi:10.1097/00003081-198606000-00022. PMID 3522011. S2CID 31166713. A micronized form of estradiol in which 80% of the particles present are 20 × 106 M or less results in effective oral, sublingual, or vaginal absorption.61
  44. ^ a b Devroey P, Pados G (1998). "Preparation of endometrium for egg donation". Hum. Reprod. Update. 4 (6): 856–61. doi:10.1093/humupd/4.6.856. PMID 10098476. Oestradiol valerate and oestradiol in a micronized form are the most widely used oestrogen per os for steroid substitution therapy. Our regimen, as of most other groups [...] is oestradiol valerate (Progynova; Schering, Berlin, Germany) given in various concentrations throughout the cycle [...]. According to Norfolk's protocol, 2 mg of micronized oestradiol valerate are given on cycle days 1–5. [...] In tablet form, micronized oestradiol valerate is also efficiently absorbed [...]
  45. ^ a b Martin PL, Burnier AM, Greaney MO (May 1972). "Oral menopausal therapy using 17- micronized estradiol. A preliminary study of effectiveness, tolerance and patient preference". Obstetrics and Gynecology. 39 (5): 771–774. PMID 5023261.
  46. ^ a b Herr F, Revesz C, Manson AJ, Jewell JB (1970). "Biological Properties of Estrogen Sulfates". Chemical and Biological Aspects of Steroid Conjugation. pp. 368–408. doi:10.1007/978-3-642-49793-3_8. ISBN 978-3-642-49506-9.
  47. ^ Martinez-Manautou J, Rudel HW (1966). "Antiovulatory Activity of Several Synthetic and Natural Estrogens". In Greenblatt RB (ed.). Ovulation: Stimulation, Suppression, and Detection. Lippincott. pp. 243–253. ISBN 9780397590100.
  48. ^ a b Martinez-Manautou J, Rudel HW (1966). "Antiovulatory Activity of Several Synthetic and Natural Estrogens". In Robert Benjamin Greenblatt (ed.). Ovulation: Stimulation, Suppression, and Detection. Lippincott. pp. 243–253.
  49. ^ a b Dorfman RI (5 December 2016). Steroidal Activity in Experimental Animals and Man. Elsevier Science. pp. 40, 392. ISBN 978-1-4832-7299-3. Ferin (1952) also studied duration of action in women with estrogen deficiency by recording the days of freedom from hot flushes. He rates estradiol-3-benzoate, estradiol-3-furoate, estradiol dipropionate, estradiol-17-caprylate, estradiol-3-benzoate-17-caprylate in oil, and finally estradiol-3-benzoate in emulsion or as microcrystals in that order of duration of action. After 10 mg. of each of the above preparations, a woman would typically remain free of symptoms for 10 days. This could, however, be as much as 50 days.
  50. ^ Horsky J, Presl J (6 December 2012). Ovarian Function and its Disorders: Diagnosis and Therapy. Springer Science & Business Media. pp. 313–. ISBN 978-94-009-8195-9.
  51. ^ Brotherton J (1976). Sex Hormone Pharmacology. Academic Press. p. 34. ISBN 978-0-12-137250-7.
  52. ^ Gibian H, Kopp R, Kramer M, Neumann F, Richter H (1968). "Effect of particle size on biological activity of norethisterone acetate". Acta Physiologica Latino Americana. 18 (4): 323–326. PMID 5753386.
  53. ^ He CH, Shi YE, Liao DL, Zhu YH, Xu JQ, Matlin SA, et al. (May 1990). "Comparative cross-over pharmacokinetic study on two types of postcoital contraceptive tablets containing levonorgestrel". Contraception. 41 (5): 557–567. doi:10.1016/0010-7824(90)90064-3. PMID 2112080.
  54. ^ Göretzlehner G, Lauritzen C, Römer T, Rossmanith W (30 November 2011). Praktische Hormontherapie in der Gynäkologie. Walter de Gruyter. pp. 44–. ISBN 978-3-11-024568-4.
  55. ^ Ryden AB (1950). "Natural and synthetic oestrogenic substances; their relative effectiveness when administered orally". Acta Endocrinologica. 4 (2): 121–139. doi:10.1530/acta.0.0040121. PMID 15432047.
  56. ^ Ryden A (1947). "Natural and synthetic estrogenic substances; a comparison of the effect upon the endometrium in castrated women". Acta Pathologica et Microbiologica Scandinavica. 24 (3–4): 213–241. doi:10.1111/j.1699-0463.1947.tb00592.x. PMID 18900891.
  57. ^ Kottmeier HL (1947). "Ueber blutungen in der menopause: Speziell der klinischen bedeutung eines endometriums mit zeichen hormonaler beeinflussung: Part I". Acta Obstetricia et Gynecologica Scandinavica. 27 (s6): 1–121. doi:10.3109/00016344709154486. ISSN 0001-6349. S2CID 81371648. There is no doubt that the conversion of the endometrium with injections of both synthetic and native estrogenic hormone preparations succeeds, but the opinion whether native, orally administered preparations can produce a proliferation mucosa changes with different authors. PEDERSEN-BJERGAARD (1939) was able to show that 90% of the folliculin taken up in the blood of the vena portae is inactivated in the liver. Neither KAUFMANN (1933, 1935), RAUSCHER (1939, 1942) nor HERRNBERGER (1941) succeeded in bringing a castration endometrium into proliferation using large doses of orally administered preparations of estrone or estradiol. Other results are reported by NEUSTAEDTER (1939), LAUTERWEIN (1940) and FERIN (1941); they succeeded in converting an atrophic castration endometrium into an unambiguous proliferation mucosa with 120–300 mg oestradiol or with 380 mg oestrone.
  58. ^ Kvorning I, Christensen MS (1981). "Bioavailability of Four Oestradiol Suspensions with Different Particle-Sizes - In Vivo/In Vitro Correlation". Drug Development and Industrial Pharmacy. Informa UK Limited. 7 (3): 289–303. doi:10.3109/03639048109051946. ISSN 0363-9045.
  59. ^ a b c d e f g h Fotherby K (August 1996). "Bioavailability of orally administered sex steroids used in oral contraception and hormone replacement therapy". Contraception. 54 (2): 59–69. doi:10.1016/0010-7824(96)00136-9. PMID 8842581.
  60. ^ a b c d e f g h i j k Kuhnz W, Gansau C, Mahler M (September 1993). "Pharmacokinetics of estradiol, free and total estrone, in young women following single intravenous and oral administration of 17β-estradiol". Arzneimittelforschung. 43 (9): 966–73. ISSN 0004-4172. PMID 8240460.
  61. ^ Leinung MC, Feustel PJ, Joseph J (2018). "Hormonal Treatment of Transgender Women with Oral Estradiol". Transgend Health. 3 (1): 74–81. doi:10.1089/trgh.2017.0035. PMC 5944393. PMID 29756046.
  62. ^ Lewin A, Pisov G, Turgeman R, Fatum M, Shufaro Y, Simon A, Laufer N, Revel A, Reubinoff B, Safran A (April 2002). "Simplified artificial endometrial preparation, using oral estradiol and novel vaginal progesterone tablets: a prospective randomized study". Gynecol. Endocrinol. 16 (2): 131–6. doi:10.1080/gye.16.2.131.136. PMID 12012623. S2CID 40295755.
  63. ^ Ellis MJ, Gao F, Dehdashti F, Jeffe DB, Marcom PK, Carey LA, Dickler MN, Silverman P, Fleming GF, Kommareddy A, Jamalabadi-Majidi S, Crowder R, Siegel BA (August 2009). "Lower-dose vs high-dose oral estradiol therapy of hormone receptor-positive, aromatase inhibitor-resistant advanced breast cancer: a phase 2 randomized study". JAMA. 302 (7): 774–80. doi:10.1001/jama.2009.1204. PMC 3460383. PMID 19690310.
  64. ^ a b c Kuhl H (September 1990). "Pharmacokinetics of oestrogens and progestogens". Maturitas. 12 (3): 171–197. doi:10.1016/0378-5122(90)90003-o. PMID 2170822.
  65. ^ a b Fotherby K (1976). "Pharmacology of Natural and Synthetic Estrogens". In Campbell S (ed.). The Management of the Menopause & Post-Menopausal Years: The Proceedings of the International Symposium held in London 24–26 November 1975 Arranged by the Institute of Obstetrics and Gynaecology, The University of London. pp. 87–95. doi:10.1007/978-94-011-6165-7_7. ISBN 978-94-011-6165-7.
  66. ^ a b Fruzzetti F, Bitzer J (January 2010). "Review of clinical experience with estradiol in combined oral contraceptives". Contraception. 81 (1): 8–15. doi:10.1016/j.contraception.2009.08.010. PMID 20004267.
  67. ^ a b Vree TB, Timmer CJ (August 1998). "Enterohepatic cycling and pharmacokinetics of oestradiol in postmenopausal women". The Journal of Pharmacy and Pharmacology. 50 (8): 857–864. doi:10.1111/j.2042-7158.1998.tb04000.x. PMID 9751449. S2CID 23550553.
  68. ^ a b Timmer CJ, Geurts TB (1999). "Bioequivalence assessment of three different estradiol formulations in postmenopausal women in an open, randomized, single-dose, 3-way cross-over study". European Journal of Drug Metabolism and Pharmacokinetics. 24 (1): 47–53. doi:10.1007/BF03190010. PMID 10412891. S2CID 20513936.
  69. ^ a b Wiegratz I, Fink T, Rohr UD, Lang E, Leukel P, Kuhl H (September 2001). "[Cross-over comparison of the pharmacokinetics of estradiol during hormone replacement therapy with estradiol valerate or micronized estradiol]" [Cross-over comparison of the pharmacokinetics of estradiol during hormone replacement therapy with estradiol valerate or micronized estradiol]. Zentralblatt für Gynäkologie (in German). 123 (9): 505–512. doi:10.1055/s-2001-18223. PMID 11709743. S2CID 260353858.
  70. ^ a b c d e f g Lauritzen C (September 1990). "Clinical use of oestrogens and progestogens". Maturitas. 12 (3): 199–214. doi:10.1016/0378-5122(90)90004-P. PMID 2215269.
  71. ^ Lauritzen C (June 1977). "[Estrogen thearpy in practice. 3. Estrogen preparations and combination preparations]" [Estrogen therapy in practice. 3. Estrogen preparations and combination preparations]. Fortschritte Der Medizin (in German). 95 (21): 1388–92. PMID 559617.
  72. ^ a b c d e
pharmacokinetics, estradiol, pharmacology, estradiol, estrogen, medication, naturally, occurring, steroid, hormone, concerns, pharmacodynamics, pharmacokinetics, various, routes, administration, clinical, dataroutes, ofadministration, mouth, tablet, sublingual. The pharmacology of estradiol an estrogen medication and naturally occurring steroid hormone concerns its pharmacodynamics pharmacokinetics and various routes of administration 10 11 12 Pharmacokinetics of estradiolClinical dataRoutes ofadministration By mouth tablet Sublingual tablet Intranasal nasal spray Transdermal patch gel cream emulsion spray Vaginal tablet cream suppository insert ring IM injection oil solution SC injection aq soln Subcutaneous implantDrug classEstrogen AntigonadotropinPharmacokinetic dataBioavailabilityOral 5 0 1 12 1 2 SL 10 in marmosets 3 IM 100 4 Protein binding 98 1 5 Albumin 60 SHBG 38 Free 2 MetabolismLiver via hydroxylation sulfation glucuronidation MetabolitesMajor 90 1 Estrone Estrone sulfate Estrone glucuronide Estradiol glucuronideElimination half lifeOral 13 20 hours 1 Sublingual 8 18 hours 6 Transdermal gel 37 hours 7 IM as EV 4 5 days 4 IM as EC 8 10 days 8 IV as E2 0 5 2 hours 4 9 ExcretionUrine 54 1 Feces 6 1 Estradiol is a naturally occurring and bioidentical estrogen or an agonist of the estrogen receptor the biological target of estrogens like endogenous estradiol 10 Due to its estrogenic activity estradiol has antigonadotropic effects and can inhibit fertility and suppress sex hormone production in both women and men 13 14 Estradiol differs from non bioidentical estrogens like conjugated estrogens and ethinylestradiol in various ways with implications for tolerability and safety 10 Estradiol can be taken by mouth held under the tongue as a gel or patch that is applied to the skin in through the vagina by injection into muscle or fat or through the use of an implant that is placed into fat among other routes 10 Contents 1 Routes of administration 1 1 Oral administration 1 1 1 Absorption and bioavailability 1 1 2 Metabolism and elimination 1 1 3 First pass effect and differences from other routes 1 1 4 Experimental oral formulations 1 1 5 Graphs 1 2 Buccal administration 1 3 Sublingual administration 1 3 1 Clinical effects 1 3 2 Graphs 1 4 Intranasal administration 1 5 Transdermal administration 1 5 1 Transdermal patches 1 5 2 Transdermal gel 1 5 3 Other transdermal formulations 1 5 4 Variability in pharmacokinetics 1 6 Vaginal administration 1 7 Rectal administration 1 8 Intramuscular injection 1 8 1 Aqueous solutions 1 8 2 Oil solutions 1 8 3 Aqueous suspensions 1 8 4 Emulsions 1 8 5 Polymers 1 8 6 Microspheres 1 8 7 Graphs 1 9 Subcutaneous injection 1 10 Subcutaneous implantation 1 11 Intrauterine administration 1 12 Intravenous injection 2 General 2 1 Absorption 2 2 Distribution 2 3 Metabolism 2 4 Elimination 3 See also 4 References 5 Further readingRoutes of administration editSee also Estradiol medication Available forms Estradiol can be taken by a variety of different routes of administration 10 These include oral buccal sublingual intranasal transdermal gels creams patches vaginal tablets creams rings suppositories rectal by intramuscular or subcutaneous injection in oil or aqueous and as a subcutaneous implant 10 The pharmacokinetics of estradiol including its bioavailability metabolism biological half life and other parameters differ by route of administration 10 Likewise the potency of estradiol and its local effects in certain tissues most importantly the liver differ by route of administration as well 10 In particular the oral route is subject to a high first pass effect which results in high levels of estradiol and consequent estrogenic effects in the liver and low potency due to first pass hepatic and intestinal metabolism into metabolites like estrone and estrogen conjugates 10 Conversely this is not the case for parenteral non oral routes which bypass the intestines and liver 10 Different estradiol routes and dosages can achieve widely varying circulating estradiol levels see the table below 10 For purposes of comparison with normal physiological circumstances menstrual cycle circulating levels of estradiol in premenopausal women are 40 pg mL in the early follicular phase 250 pg mL at the middle of the cycle and 100 pg mL during the mid luteal phase 15 Mean integrated levels of circulating estradiol in premenopausal women across the whole menstrual cycle are in the range of 80 to 150 pg mL according to some sources 16 17 18 In postmenopausal women circulating levels of estradiol are below 15 pg mL 10 15 During normal human pregnancy estrogen production increases progressively and extremely high estrogen levels are attained 19 Estradiol levels range from 1 000 to 40 000 pg mL across pregnancy 20 are on average 25 000 pg mL at term and reach levels as high as 75 000 pg mL in some women 21 vte Available forms of estradiol a Route Ingredient Form Dose b Brand names c Oral Estradiol Tablet 0 1 0 2 0 5 1 2 4 mg Estrace OvocyclinEstradiol valerate Tablet 0 5 1 2 4 mg ProgynovaTransdermal Estradiol Patch 14 25 37 5 50 60 75 100 µg d Climara VivelleGel pump 0 06 0 52 0 75 mg pump Elestrin EstroGelGel packet 0 1 0 25 0 5 1 0 mg pk DiviGel SandrenaEmulsion 0 25 25 µg pouch EstrasorbSpray 1 53 mg spray Evamist LenzettoVaginal Estradiol Tablet 10 25 µg VagifemCream 0 01 0 1 mg gram EstraceInsert 4 10 µg ImvexxyRing 2 mg ring 7 5 µg d 3 mon EstringEstradiol acetate Ring 50 100 µg d 3 months FemringInjection d Estradiol Microspheres 1 mg mL Juvenum EEstradiol benzoate Oil solution 0 167 0 2 0 333 1 1 67 2 5 10 20 25 mg mL Progynon BEstradiol cypionate Oil solution 1 3 5 mg mL Depo EstradiolEstradiol valerate Oil solution 5 10 20 40 mg mL Progynon DepotImplant Estradiol Pellet 20 25 50 100 mg 6 mon Estradiol ImplantsNotes and sources This table includes primarily products available as a single ingredient estradiol preparation thus excluding compounds with progestogens or other ingredients included The table furthermore does not include compounded drugs only commercially produced products Availability of each product varies by country Doses are given per unit ex per tablet per mL Other brand names may be manufactured or previously manufactured By intramuscular or subcutaneous injection Sources 22 23 24 25 26 27 28 29 30 31 32 33 34 35 vte Estrogen levels after a single dose of estradiol by different routes Route Dose mg Timemeasured DE2 levels pg mL DE1 levels pg mL E2 E1ratioOral 124 12 h3 h6 h 25 40 50 150 250 500 0 150 160 10Sublingual 10 50 50 5 1 h1 h1 h1 h 450 250 750 75 160 85 250 24 3333Intranasal 1 1 h 110 110 1 0Topical gel 33 d3 2 d 5 h12 20 h12 h36 h 70 45 279 300 1310 20 179 50 31 230 24 110 120 500 0 4111Vaginal cream 0 51 0 3 h3 h 830 800 150 150 5 05 0Rectal 1 3 h 620 120 5 0Intramuscularinj oil soln EB 5EV 5EC 5EU 100PEP 320 1 8 2 4 da2 2 2 7 da3 9 5 1 da1 d16 25 da 940b667b338b500b270b 343b324b145bND1000b 2 72 12 3ND0 27Intravenous inj 0 3 5 min 8321b 960b 8 7Footnotes a Tmax for E2 E1 levels b Actual levels not change Sources See template Oral administration edit Absorption and bioavailability edit The oral bioavailability of estradiol is very low 2 36 37 This is due to the fact that estradiol is poorly soluble in water which limits its dissolution and absorption and is additionally subject to extensive metabolism during the first pass through the intestines and liver 3 38 Estradiol is micronized and or conjugated with an ester as in estradiol valerate or estradiol acetate to improve its oral bioavailability and potency 2 36 37 Micronization decreases the particle size of estradiol crystals and hence increases the surface area for absorption thereby improving the rate and extent of absorption 39 3 40 In addition there is an improvement in metabolic stability 3 40 Oral micronized estradiol consists of more than 80 of estradiol particles micronized to a size smaller than 20 mm in diameter or to about 1 to 3 mm on average 41 42 40 43 All oral formulations of estradiol available today are micronized 36 and oral estradiol valerate tablets also seem to be micronized 44 Oral non micronized estradiol and oral micronized estradiol do not appear to have ever been directly compared in a study 45 42 46 47 Both have been assessed independently however and have been found to produce significant estrogenic effects 45 42 46 48 Micronization of other poorly water soluble steroids such as spironolactone and norethisterone acetate has been found to increase their potency by several fold 49 50 51 52 53 In accordance studies of the amount of oral estradiol necessary for endometrial proliferation in women have reported a total dose of 60 mg for micronized estradiol 54 relative to 120 to 300 mg or more for non micronized estradiol 55 56 57 As such micronization has been said to substantially improve the potency of oral estradiol 40 nbsp Estradiol levels with a single 2 mg dose of oral estradiol micronized to different particle sizes in postmenopausal women 38 A study compared different particle sizes of oral micronized estradiol 38 58 59 A preparation with the smallest particles mainly lt 0 6 mm was found to have the most rapid absorption and the highest bioavailability 38 59 However a sharp peak in estradiol levels without an accompanying rise in estrone levels was observed during the first 2 hours with this particle size 38 59 It was suggested that the smallest estradiol particles may have been absorbed by the lymphatic system partially bypassing first pass metabolism and resulting in very high initial estradiol levels 38 The preparations with the larger particle sizes mainly lt 3 5 mm and lt 20 mm were found to be absorbed more slowly without a pronounced initial peak in estradiol levels 38 59 Levels of estradiol were more even and similar to physiological levels with these particle sizes 38 59 Differences in area under the curve estradiol levels with the different particle sizes were relatively small 38 As such micronization may improve absorption but does not necessarily improve therapeutic effect 59 Micronized estradiol is rapidly and completely absorbed with oral administration 3 12 This is true for oral doses of 2 mg and 4 mg but absorption was found to be incomplete for an oral dose of 8 mg 3 60 This dose showed 76 of the expected bioavailability based on dose proportionality and area under the curve levels indicating a small deviation from linearity 3 60 The absolute bioavailability of oral micronized estradiol is approximately 5 with a possible range of 0 1 to 12 1 2 59 As such the bioavailability of oral estradiol is very low even with micronization 59 There is high interindividual variability in the levels of estradiol achieved with oral estradiol which is likely related to the high first pass effect 12 This variation has been reported to be in the range of 28 to 127 or about 4 6 fold maximal difference in levels between individuals in terms of mean area under the curve levels of estradiol 12 In postmenopausal women a dosage of 1 mg day oral micronized estradiol has been found to produce circulating concentrations of 30 to 50 pg mL estradiol and 150 to 300 pg mL estrone while a dosage of 2 mg day has been found to result in circulating levels of 50 to 180 pg mL estradiol and 300 to 850 pg mL estrone 15 A study of oral micronized estradiol in transgender women found that mean estradiol levels across a dosage range of 1 to 8 mg day were about 50 pg mL at 1 mg day 100 pg mL at 4 mg day and 150 pg mL at 8 mg day with a wide degree of variation 61 In another study mean estradiol levels at steady state with 4 mg day and 6 mg day oral micronized estradiol were approximately 180 pg mL and 265 pg mL respectively 62 A study that used high to very high dose oral micronized estradiol in postmenopausal women found that steady state estradiol levels with 6 mg day were about 300 pg mL and with 30 mg day were about 2 400 pg mL 63 Estradiol valerate is rapidly hydrolyzed into estradiol in the intestines 10 64 65 For this reason oral estradiol and oral estradiol valerate have very similar pharmacokinetics 10 64 65 Due to the presence of its valeric acid ester and differences in molecular weight estradiol valerate contains about 76 of the same amount of estradiol by weight 66 67 68 69 As a result 2 mg oral estradiol valerate produces equivalent estradiol levels to about 1 5 mg oral estradiol 66 67 68 69 vte Potencies of oral estrogens data sources 1 Compound Dosage for specific uses mg usually a ETD b EPD b MSD b MSD c OID c TSD c Estradiol non micronized 30 120 300 120 6 Estradiol micronized 6 12 60 80 14 42 1 2 gt 5 gt 8Estradiol valerate 6 12 60 80 14 42 1 2 gt 8Estradiol benzoate 60 140 Estriol 20 120 150 d 28 126 1 6 gt 5 Estriol succinate 140 150 d 28 126 2 6 Estrone sulfate 12 60 42 2 Conjugated estrogens 5 12 60 80 8 4 25 0 625 1 25 gt 3 75 7 5Ethinylestradiol 200 mg 1 2 280 mg 20 40 mg 100 mg 100 mgMestranol 300 mg 1 5 3 0 300 600 mg 25 30 mg gt 80 mg Quinestrol 300 mg 2 4 500 mg 25 50 mg Methylestradiol 2 Diethylstilbestrol 2 5 20 30 11 0 5 2 0 gt 5 3DES dipropionate 15 30 Dienestrol 5 30 40 42 0 5 4 0 Dienestrol diacetate 3 5 30 60 Hexestrol 70 110 Chlorotrianisene gt 100 gt 48 Methallenestril 400 Sources and footnotes 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 48 86 87 Dosages are given in milligrams unless otherwise noted a b c Dosed every 2 to 3 weeks a b c Dosed daily a b In divided doses 3x day irregular and atypical proliferation vte Relative oral potencies of estrogens Estrogen HF VE UCa FSH LH HDL C SHBG CBG AGT LiverEstradiol 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0Estrone 0 3 0 3 Estriol 0 3 0 3 0 1 0 3 0 3 0 2 0 67Estrone sulfate 0 9 0 9 0 8 0 9 0 9 0 5 0 9 0 5 0 7 1 4 1 5 0 56 1 7Conjugated estrogens 1 2 1 5 2 0 1 1 1 3 1 0 1 5 3 0 3 2 1 3 1 5 5 0 1 3 4 5Equilin sulfate 1 0 6 0 7 5 6 0 7 5 Ethinylestradiol 120 150 400 60 150 100 400 500 600 500 600 350 2 9 5 0Diethylstilbestrol 2 9 3 4 26 28 25 37 20 5 7 7 5Sources and footnotesNotes Values are ratios with estradiol as standard i e 1 0 Abbreviations HF Clinical relief of hot flashes VE Increased proliferation of vaginal epithelium UCa Decrease in UCa FSH Suppression of FSH levels LH Suppression of LH levels HDL C SHBG CBG and AGT Increase in the serum levels of these liver proteins Liver Ratio of liver estrogenic effects to general systemic estrogenic effects hot flashes gonadotropins Sources See template Metabolism and elimination edit When taken orally about 95 of a dose of estradiol is metabolized in the intestines and liver into estrone and estrogen conjugates such as estrone sulfate estrone glucuronide and estradiol sulfate among others prior to entering the circulation 3 88 89 90 As a result circulating estrone and estrogen conjugate levels are markedly elevated in a highly unphysiological manner with oral estradiol 88 91 Whereas the ratio of circulating estradiol to estrone is about 1 1 in premenopausal women and with transdermal estradiol oral estradiol produces a ratio of about 1 5 on average and as high as 1 20 in some women 1 10 92 60 In addition whereas levels of estradiol with menopausal replacement dosages of oral estradiol are in the range of the follicular phase of the normal menstrual cycle levels of estrone resemble those during the first trimester of pregnancy 93 94 Moreover whereas normal physiological estrone sulfate levels are 10 to 25 times higher than those of estradiol and estrone in premenopausal women 95 levels of estrone sulfate with oral estradiol are an additional 8 to 20 times higher than normal premenopausal or postmenopausal estrone sulfate levels 91 96 97 One study found that estrone sulfate levels were 200 fold higher than estradiol levels with 2 mg day oral micronized estradiol or oral estradiol valerate and estrone sulfate levels can reach up to nearly 1 000 fold higher concentrations than estradiol in some cases 10 12 In contrast to oral estradiol due to the lack of the first pass an excess in estrone and estrogen conjugate levels does not occur with transdermal estradiol or other parenteral estradiol routes 88 91 The transformation of estradiol into estrone and estrogen conjugates is reversible 10 As such these metabolites can be converted back into estradiol 10 About 15 of orally administered estradiol is transformed into estrone and 65 into estrone sulfate 12 About 5 of estrone and 1 4 of estrone sulfate is converted back into estradiol 12 An additional 21 of estrone sulfate is converted into estrone whereas transformation of estrone into estrone sulfate is approximately 54 12 The interconversion between estradiol and estrone is mediated by 17b hydroxysteroid dehydrogenases 17b HSDs 12 whereas the conversion of estrone into estrone sulfate is mediated by estrogen sulfotransferases ESTs and the transformation of estrone sulfate into estrone by steroid sulfatase STS 98 99 The metabolic clearance rates and hence blood half lives of estrogen conjugates like estrone sulfate are much longer than those of estradiol and estrone 10 12 91 Estrogen conjugates primarily estrone sulfate serve as a large circulating reservoir for estradiol and because of this they function to greatly extend the biological half life of oral estradiol 10 12 As such the biological half life of oral estradiol is a composite parameter that is dependent on interconversion between estradiol and estrogen conjugates as well as on enterohepatic recirculation 12 Whereas the biological half life of estradiol given by intravenous injection is about 0 5 to 2 hours the biological half life of oral estradiol has a range of 13 to 20 hours due to the large and long lasting pool of estrogen conjugates that is formed during first pass metabolism and that serves to continuously replenish circulating estradiol levels 12 10 9 First pass effect and differences from other routes edit The first pass effect that occurs with oral estradiol results in unusually high levels of estrone and estrogen conjugates in the circulation as well as of estradiol in the liver 10 These unique properties of oral estradiol result in a number of pharmacological differences relative to the other routes of administration of estradiol 10 The high levels of estrone and estrogen conjugates that occur with oral estradiol raise the question of the pharmacodynamic significance of these metabolites 10 In contrast to estradiol however estrone has very low activity as an estrogen 10 100 101 The affinities of estrone for the human ERs and its estrogenic activity have been reported to be approximately 3 to 4 of those of estradiol 10 In addition unlike estradiol and estriol estrone is not accumulated in target tissues 10 Because estrone can be transformed into estradiol most of its activity in vivo is actually due to conversion into estradiol 10 In accordance doses of oral and transdermal estradiol that achieve similar levels of estradiol have been found in spite of markedly elevated levels of estrone with oral estradiol but not with transdermal estradiol to possess equivalent and non significantly different potency in terms of clinical measures including suppression of LH and FSH levels inhibition of bone resorption and relief of menopausal symptoms such as hot flashes 10 88 102 103 96 104 In addition estradiol levels were found to correlate with these effects while estrone levels did not 88 102 These findings suggest that estrone contributes very little or not at all to the estrogenic potency of estradiol while also not antagonizing the estrogenic activity of estradiol 10 88 102 103 This contradicts some cell free in vitro research suggesting that high concentrations of estrone might be able to partially antagonize the actions of estradiol 105 106 107 nbsp Distribution of 17b HSD activities for formation of estradiol E2 versus formation of estrone E1 in human tissues 108 109 nbsp Distribution of STS and EST activities for interconversion of estrone E1 and estrone sulfate E1S in adult human tissues 110 vte Relative activation and inactivation rates of estradiol to and from estrone and estrone sulfate in tissues throughout the body On the other hand it has been suggested by some authors that the high levels of estrone and or estrone conjugates with oral estradiol may result in excessive estradiol levels in certain tissues such as the breasts and endometrium due to high expression in these tissues of the requisite enzymes 17b HSDs and STS necessary to transform these metabolites back into estradiol 94 91 111 112 In accordance circulating levels of estrone sulfate have been found to be positively associated with breast density in postmenopausal women treated with oral estradiol with 1 3 higher breast density observed for every 1 ng mL greater level of estrone sulfate 113 114 Similarly levels of estradiol estrone and estrone sulfate are all strongly associated with the risk of breast cancer in women 113 Preclinical studies have shown that estrone sulfate via local transformation into estradiol stimulates the growth of mammary cancer cells 115 116 Due to the first pass through the liver disproportionate and supraphysiological levels of estrogens occur locally in the liver with oral estradiol 117 12 These levels are approximately 4 to 5 fold higher than in the circulation based on differences in hepatic estrogenic potency for oral estradiol relative to transdermal estradiol 117 10 As a result there is abnormally high estrogenic signaling in the liver with oral estradiol and a variety of unphysiological effects on liver protein synthesis result 10 12 Through modulation of liver protein synthesis conjugated oral estrogen increases the risk of blood clots 118 increases circulating levels of a variety of binding proteins including thyroid binding globulin TBG cortisol binding globulin CBG sex hormone binding globulin SHBG growth hormone binding protein GHBP 119 insulin like growth factor binding proteins IGFBPs 120 and copper binding protein CBP 89 121 suppresses growth hormone GH mediated insulin like growth factor 1 IGF 1 production 122 123 and produces positive blood lipid changes among a variety of other effects 90 124 12 In contrast to oral estradiol transdermal estradiol has relatively minimal impact on liver protein synthesis 10 As an example a study found that 1 mg day oral estradiol significantly increased SHBG levels by 45 while 50 µg day transdermal estradiol increased SHBG levels non significantly by only 12 125 126 127 In the circulation approximately 38 of estradiol is reversibly bound to SHBG and 60 is reversibly bound to albumin in women under normal physiological circumstances with 2 to 3 of total estradiol circulating free or unbound at any given time 3 2 1 Only estradiol that is free or unbound is able to be enter target cells and hence is biologically active 1 12 249 17 The increase in SHBG levels with oral estradiol e g 50 can result in a clinically meaningful increase in the fractions of sex hormones like estradiol and testosterone that are bound to SHBG whereas this is not the case with typical clinical dosages of transdermal estradiol 128 17 The increase in the fraction of estradiol bound to SHBG results in a significant decrease in the percentage of free or unbound and hence bioactive estradiol 1 17 As a result the bioavailability and potency of oral estradiol may be diminished relative to parenteral estradiol routes by some amount 17 1 However a study found that the free fraction of estradiol was similar with doses of oral and topical estradiol that resulted in equivalent total estradiol levels 129 Experimental oral formulations edit Estradiol decanoate estradiol cyclooctyl acetate estradiol 3 saccharinylmethyl ether and EC508 estradiol 17b 1 4 aminosulfonyl benzoyl L proline are estradiol esters and novel oral forms of estradiol that have been developed with improved properties such as greater bioavailability and reduced first pass effect 130 131 132 133 134 135 136 137 138 139 140 141 Estradiol decanoate and estradiol cyclooctyl acetate were studied for potential use in menopausal hormone therapy and birth control pills but were never marketed 130 131 132 133 134 135 136 137 EC508 is currently under active development for use in menopausal hormone therapy 140 141 Graphs edit vte Hormone levels with oral estradiol nbsp Estradiol levels after a single oral dose of 2 4 or 8 mg estradiol in premenopausal women nbsp Estradiol and estrone levels following a single 2 mg dose of oral estradiol in postmenopausal women nbsp Mean estradiol levels during 1 to 8 mg day oral estradiol therapy alone or in combination with 100 to 200 mg day spironolactone in transgender women nbsp Percent change in estradiol E2 estrone E1 LH and FSH levels over a 24 hour period following a single dose of 2 mg oral estradiol in women nbsp Levels of estradiol estrone and estrone sulfate following a single 2 mg oral dose of estradiol valerate in postmenopausal women nbsp Estradiol levels after a single dose of 2 mg oral estradiol or 2 mg oral estradiol valerate and with continuous administration of 2 mg day oral estradiol or 2 mg day oral estradiol valerate at steady state in postmenopausal women Sources See template page Buccal administration edit nbsp Estradiol levels on the first day after single dose of 0 25 mg buccal estradiol or at steady state after the last dose with 0 25 mg buccal estradiol twice daily once every 12 hours 0 5 mg day total in 6 postmenopausal women 142 Estradiol has been studied for use by buccal administration 10 72 142 143 144 145 146 147 Preclinical studies of buccal estradiol have also been conducted 148 149 150 151 Buccal and sublingual administration of estradiol have similar characteristics 10 Administration of a troche lozenge containing 0 25 mg estradiol via the buccal route resulted in peak estradiol levels of about 450 pg mL at 1 hour post dose in postmenopausal women 10 142 Following this estradiol levels decreased to about 60 pg mL at 4 hours post dose and to about 15 pg mL at 12 hours post dose 10 142 With continuous twice daily administration of 0 25 mg estradiol 0 5 mg day total via the buccal route once every 12 hours peak estradiol levels at steady state after the last dose were about 500 pg mL 10 142 Sublingual administration edit Estradiol tablets can be taken sublingually instead of orally 10 152 153 Non micronized estradiol tablets in doses of 0 125 0 25 and 1 mg were previously marketed for use by sublingual administration under brand names such as Diogynets Estradiol Membrettes and Dimenformon in the 1950s 154 155 156 157 158 Non micronized estradiol has poor water solubility but micronized estradiol is rapidly absorbed by the sublingual route 152 All oral estradiol tablets are micronized as this improves the efficiency of estradiol absorption in the gastrointestinal tract 36 Likewise all oral estradiol valerate tablets seem to be micronized 44 The sublingual route is in actuality probably a combination of sublingual and oral delivery of estradiol due to incidental swallowing of some of the estradiol 95 The absorption of sublingual estradiol can be attributed to the rich vascularization under the tongue 152 With administration of an oral estradiol tablet sublingually complete dissolution of the tablet occurs within a few minutes and circulating levels of estradiol begin to rise within 5 minutes 152 Maximal levels of estradiol occur after 30 to 60 minutes of administration 152 After this estradiol levels drop steeply within 4 hours and this is followed by a more gradual decline in levels of estradiol and a return to baseline concentrations by 24 hours 152 The rapid rise and steep fall of estradiol levels with sublingual administration of estradiol is analogous to the case of intravenous injection and intranasal administration of the hormone 10 12 4 Sublingual administration of medications that are subject to a high first pass effect with oral administration can result in improved bioavailability because the first pass through the intestines and liver is bypassed 152 As a result sublingual estradiol has been found to result in estradiol levels and a ratio of estradiol to estrone that are substantially higher than oral estradiol 10 152 159 Maximal circulating levels of estradiol are as much as 10 fold higher with sublingual administration than with oral administration and the absolute bioavailability of estradiol is approximately 5 fold higher 10 152 On the other hand levels of estradiol fall rapidly with sublingual administration whereas they remain elevated for a prolonged period of time with oral administration 10 12 This is due to the large circulating pool of hormonally inert estrogen conjugates with long half lives that is reversibly generated with oral estradiol during first pass metabolism which serves as a metabolism resistant and long lasting reservoir for continuous reconversion back into estradiol 10 12 It is also responsible for the differences in ratios between sublingual estradiol and oral estradiol in terms of maximal estradiol levels 10 1 achieved and absolute bioavailability 5 1 10 12 A study in marmoset monkeys found that the bioavailability of sublingual estradiol was 10 of that of estradiol administered by intramuscular injection 3 After a dose of sublingual estradiol levels of estrone start to slowly but progressively rise within 10 minutes 152 Estrone levels surpass estradiol levels at around 2 hours post dose and reach a maximum at about 4 hours 152 It has been speculated that the high delayed levels of estrone with sublingual estradiol may be due to the rich lymphatic drainage in the neck region which may result in estradiol being taken up by the reticuloendothelial system and then metabolized into estrone 152 Sublingual administration of a single 0 25 mg tablet of micronized estradiol has been found to produce peak levels of 300 pg mL estradiol and 60 pg mL estrone within 1 hour 10 A higher dose of 1 mg estradiol was found to result in maximum levels of 450 pg mL estradiol and 165 pg mL estrone which was followed by a rapid decline in estradiol levels to 85 pg mL within 3 hours 10 Conversely the decline in estrone levels was much slower and reached a level of 80 pg mL after 18 hours 10 A single administration of 4 mg micronized estradiol two 2 mg Estrace tablets under the tongue considered a very high dose of sublingual estradiol has been found to result in maximal levels of estradiol of 1759 704 pg mL with a range of 634 to 2840 pg mL after 1 hour in a mixed group of normotensive and hypertensive postmenopausal women 160 A replication of this study using the same dosage and protocols measured estradiol levels of 2227 1180 pg mL for the whole group of women but found that estradiol levels between the normotensive and hypertensive groups were significantly different at 1790 869 pg mL and 2664 1490 pg mL respectively 161 162 Although sublingual administration of estradiol has a relatively short duration the medication can be administered multiple times per day in divided doses to compensate for this 10 163 164 Studies that used high doses of sublingual estradiol in the treatment of severe postpartum depression have administered a dose of 1 mg 3 to 8 times per day 165 166 163 164 In one study which administered a mean total dosage of sublingual estradiol of 4 8 mg day estradiol levels remained elevated at about 130 pg mL on average in the morning before the first dose of the day 165 Oral micronized estradiol valerate tablets can be taken sublingually as well 167 168 The administration of 2 mg oral micronized estradiol valerate tablets Progynova Schering sublingually 3 or 4 times per day resulted in circulating estradiol levels of about 290 pg mL to 460 pg mL in premenopausal women time of measurements not given 167 168 Steady state levels of estradiol were achieved within about 5 or 6 days 167 168 Levels of progesterone luteinizing hormone and follicle stimulating hormone were all considerably suppressed and ovulation as well as the associated mid cycle hormonal surges were prevented 167 168 Sublingual estradiol valerate is used for cycle control in egg donation and surrogacy in cisgender women and is used in hormone therapy for transgender women 167 168 169 Cyclodextrin containing formulations of sublingual estradiol with improved water solubility and absorption have been developed and studied 170 171 172 173 174 Clinical effects edit The total endometrial proliferation dose of sublingual estradiol in women is 60 to 140 mg per cycle or 14 days and of sublingual estradiol benzoate in women is 60 to 180 mg per cycle or 14 days 75 310 Both sublingual estradiol and sublingual estradiol benzoate have a persistence of estrogenic effect after a dose of only one day 75 310 The effects of sublingual estradiol on gonadotropin levels have also been studied in postmenopausal women 152 175 153 176 After a dose of sublingual estradiol levels of luteinizing hormone LH and follicle stimulating hormone FSH decrease precipitously within 4 hours 152 Following this LH and FSH levels gradually increase and return to near baseline levels by 24 hours 152 One study found no difference between oral and sublingual estradiol in suppression of LH levels 152 However FSH levels were suppressed to a greater extent with sublingual estradiol than with oral estradiol in the study 152 It is notable that the magnitude of the genomic effects of estradiol i e signaling through the nuclear ERs may at least in some cases be dependent on the total estrogenic exposure as opposed to the duration of exposure 10 For instance in normal human epithelial breast cells and ER positive breast cancer cells the rate of breast cell proliferation has been found not to differ with estradiol incubation of 1 nM for 24 hours and incubation of 24 nM for 1 hour 10 In other words short term high concentrations and long term low concentrations of estradiol appear to have the same degree of effect in terms of genomic estrogenic signaling at least in terms of breast cell proliferation over a 24 hour period 10 On the other hand non genomic actions of estradiol such as signaling through membrane estrogen receptors like the GPER may be reduced with short term high concentrations of estradiol relative to more sustained levels 10 For instance although daily intranasal administration of estradiol is associated with comparable clinical effectiveness e g for hot flashes relative to longer acting routes of estradiol administration in postmenopausal women it is also associated with significantly lower rates of breast tension tenderness and enlargement relative to longer acting estradiol routes and this is thought to reflect comparatively diminished non genomic signaling 10 Graphs edit vte Hormone levels with sublingual estradiol nbsp Estradiol levels over a 24 hour period following a single 0 25 0 5 or 1 mg dose of sublingual estradiol or a single 0 5 or 1 mg dose of oral estradiol in postmenopausal women Source Price et al 1997 nbsp Hormone levels after a single 0 5 mg dose of sublingual estradiol in postmenopausal women Source Burnier et al 1981 nbsp Hormone levels after a single 2 mg dose of sublingual estradiol in premenopausal women Source Casper amp Yen 1981 nbsp Hormone levels after a single 0 5 mg dose of sublingual estradiol in postmenopausal women Source Fiet et al 1982 nbsp Estradiol levels with 2 to 12 mg day sublingual estradiol in transgender women Error bars are SEM Time of blood collection and time and frequency of administration were not specified Source Jain et al 2019 nbsp Hormone levels with 2 mg oral micronized estradiol valerate tablets Progynova Schering taken 3 or 4 times per day 6 8 mg day total sublingually SL in premenopausal women Time of blood collection after medication administration was not specified Sources Serhal et al 1989 1990 nbsp Trough estradiol levels and MADRS scores with 1 mg sublingual micronized estradiol 3 to 8 times per day 3 to 8 mg day total mean 4 8 mg day total in women with postpartum depression Blood was drawn specifically in the mornings before the first dose of sublingual estradiol for the day Source Akohas et al 2001 Sources See template page Intranasal administration edit nbsp Estrogen levels after a single 300 mg dose of estradiol delivered by a cyclodextrin containing nasal spray brand name Aerodiol in postmenopausal women 177 10 Estradiol has been studied and used by intranasal administration 72 10 It was available as a cyclodextrin containing nasal spray under the brand name Aerodiol in some countries 178 179 180 181 although this specific product was discontinued in 2007 182 183 The product was administered once per day as one 150 mg spray in each nostril 300 mg day total 184 Intranasal estradiol has pharmacokinetics similar to those of sublingual and intravenous administration of estradiol including a sharp peak and then rapid decline in estradiol levels 10 Despite the relatively short duration of intranasal estradiol it has similar effectiveness to other longer lasting routes of administration in terms of relief of menopausal symptoms like hot flashes 10 Transdermal administration edit Transdermal estradiol is available in the forms of patches gels emulsions and sprays 185 186 10 17 187 In the case of gels emulsions and sprays the route is sometimes referred to as topical rather than as transdermal 186 188 5 Topical administration can also refer to vaginal administration of gels and creams however citation needed Estradiol has moderate skin permeability which is based on the lipophilicity and hydrophilicity of a compound 10 189 In general the more polar groups such as hydroxyl groups that are present in a steroid and hence the more hydrophilic and less lipophilic it is the lower its skin permeability 10 189 For this reason estrone and progesterone have higher skin permeability while estriol and cortisol have lower skin permeability 10 The transdermal bioavailability of estradiol in an alcohol solution is approximately 10 190 189 Transdermal estradiol reservoir patches have been reported to have a bioavailability of 3 to 5 191 Estradiol is a highly potent compound and circulates at picomolar concentrations pg mL which makes it ideal for transdermal application as only small amounts of substance need to be delivered across the skin 96 Conversely progesterone which circulates at levels in the nanomolar range and requires a far higher quantity of substance for biological effect is not well suited for transdermal delivery 96 Fatty acid esters of estradiol such as estradiol benzoate estradiol valerate and estradiol cypionate have been found to have similar estrogenic potency to estradiol but a comparatively longer duration with transdermal administration in animal studies 192 193 Regardless of administration form such as patch or gel transdermal estradiol is transported into the skin including through the stratum corneum epidermis and dermis by a passive diffusion process 10 194 Following this estradiol is then taken up by local capillary blood vessels and delivered into the circulation 10 There is a depot effect in the skin with transdermal estradiol which results in continuous delivery of transdermal estradiol into the circulation 17 194 This is because the skin functions as a semipermeable membrane and there is a concentration gradient between the application site of transdermal estradiol and capillary blood with the rate of diffusion of estradiol across the stratum corneum being the specific rate limiting factor in absorption 10 194 As a result peaks and troughs in circulating estradiol levels are limited and the skin and subcutaneous fat act as a reservoir of estradiol that maintains circulating estradiol levels between doses 17 For these reasons transdermal estradiol can provide near constant circulating levels of estradiol similarly to oral estradiol 17 10 Enzymes that metabolize estradiol are minimally expressed in the skin and for this reason the metabolism of estradiol in the skin is low 10 The site of application of transdermal estradiol can influence its bioavailability 96 A study found comparable absorption of transdermal estradiol patches within 25 of reference for a number of skin sites including the abdomen upper arm upper thigh lower back and side 195 196 However absorption was 15 lower for the upper thigh compared to the abdomen and the difference was significant 197 196 Another study found that transdermal estradiol patches had 20 to 25 higher bioavailability when applied to the buttocks than when applied to the abdomen 96 Studies of topical steroids have found that the scrotum is especially permeable among skin sites 198 Studies of transdermal testosterone cream gel and patches applied to the scrotum in men have observed 5 to 8 fold higher levels of testosterone than with application to conventional skin sites 199 200 In a study of topical application of hydrocortisone solution in men skin permeability defined as total radiolabeled urinary excretion relative to the forearm 1 0 was 42 0 for the scrotum 13 0 for the jaw angle 6 0 for the forehead 3 6 for the underarm 3 5 for the scalp 1 7 for the back 0 8 for the palm of the hand 0 4 for the ankle and 0 1 for the sole of the foot 198 201 202 203 In accordance with findings with other topical steroids a study in men with prostate cancer treated with transdermal estradiol patches applied to the scrotum observed about 5 fold higher estradiol levels relative to application to conventional skin sites such as the forearm 204 205 Penile skin may have similarly enhanced absorption characteristics relative to scrotal skin 206 Transdermal estradiol bypasses the intestines and liver and hence the first pass metabolism that is associated with oral administration 10 96 In addition unlike oral estradiol transdermal estradiol is not associated with supraphysiological concentrations of estrone or estrogen conjugates like estradiol sulfate and transdermal estradiol does not have disproportionate effects on liver protein synthesis 10 96 In accordance estradiol at typical menopausal replacement dosages has been found not to increase the risk of blood clots or insulin resistance 118 12 nor to affect hepatic SHBG IGF 1 GHBP 119 IGFBP 120 and other protein production and by extension circulating hepatic protein levels 122 123 121 96 However at higher doses transdermal estradiol has been associated with a significantly higher incidence of stroke in postmenopausal women probably due to blood clots 207 208 Another larger study did not find a significantly higher risk of blood clots with similar doses of transdermal estradiol however 209 Transdermal patches edit See also Estrogen patch nbsp Vivelle Dot an estradiol patch Estradiol patches have an extended duration and are available for twice weekly 3 4 day and once weekly 7 day application while gels emulsions and sprays are administered daily 186 15 10 210 There are two types of estradiol patches reservoir patches which have been described as first generation patches and matrix patches which are considered to be improved second generation patches 10 12 186 Reservoir patches were designed for twice weekly application while matrix patches have been produced for both twice weekly and once weekly application 12 Reservoir patches of estradiol e g Estraderm are mostly no longer used with most estradiol patches available today being matrix patches e g Alora Climara Esclim Estradot FemPatch Menostar Oesclim Vivelle and Vivelle Dot 186 vte Available transdermal estradiol patches in the United States 211 212 a Brand name Dose µg day DOA d Size b c cm2 Levels pg mL Intro Alora 25 50 75 100 3 4 9 18 27 36 43 144 1996Climara d 25 37 5 50 60 75 100 7 6 5 9 375 12 5 15 18 75 25 17 174 1994Climara Pro e E2 45 LNG 15 7 22 27 54 2003CombiPatch e E2 50 NETA 14 25 3 4 9 16 27 71 1998Menostar 14 7 3 25 13 21 2004Minivelle 25 37 5 50 75 100 3 4 1 65 2 48 3 3 4 95 6 6 30 117 2012Vivelle 50 100 3 4 14 5 29 30 145 2000Vivelle Dot d 25 37 5 50 75 100 3 4 2 5 3 75 5 7 5 10 30 145 1996 Specific links for each patch s FDA approval and label are not given For comparison a United States quarter is about 4 6 cm2 0 72 in2 Sizes are respective to the dosages in the dose column a b Generic version available a b Combined with a progestin A dosage of 1 mg day oral estradiol is considered to be roughly equivalent to 25 or 50 µg day transdermal estradiol and a dosage of 2 mg day oral estradiol is considered to be equivalent to 50 or 100 µg day transdermal estradiol depending on the source 213 97 12 10 Estradiol patches delivering a daily dosage of 0 05 mg 50 µg achieve mean estradiol and estrone levels of 30 to 65 pg mL and 40 to 45 pg mL respectively while a daily dosage of 0 1 mg 100 µg attains respective mean levels of 50 to 90 pg mL and 30 to 65 pg mL of estradiol and estrone 15 In general Climara type estradiol transdermal patches have an approximate 1 1 ratio of estradiol delivered in mg day relative to circulating estradiol concentration in pg mL 205 In other words a 100 mg day Climara estradiol patch may be expected to produce circulating estradiol levels of around 100 pg mL 205 Transdermal estradiol patches produce an estradiol to estrone ratio of about 1 1 10 12 Following removal of an estradiol patch circulating estradiol levels decrease to baseline within 24 hours 10 Typical dosages of estradiol patches are intended to provide the minimum amount of estrogen replacement necessary for the effective alleviation of menopausal symptoms and for this reason they achieve relatively low levels of estradiol 10 A dosage of two to six 100 µg day transdermal estradiol patches can achieve mean levels of estradiol in the area of 200 to 400 pg mL and can be used as a form of high dose estrogen therapy for instance to suppress testosterone levels in the treatment of prostate cancer in men and in feminizing hormone therapy for transgender women 14 214 215 High dose transdermal estradiol patches have also been studied in the treatment of postpartum depression and postpartum psychosis in one such study 200 400 and 800 mg day estradiol in the form of transdermal patches resulted in estradiol levels of 286 pg mL 675 pg mL and 1032 pg mL respectively 216 In another study estradiol levels with 800 mg day estradiol in the form of transdermal patches Estraderm TTS resulted in estradiol levels of 690 to 815 pg mL 217 However there is erratic absorption and considerable variation in estradiol levels using high dose estradiol patches both between and within individuals with one study finding that estradiol levels ranged from 70 pg mL to 1 045 pg mL mean 460 7 pg mL with six 100 mg day estradiol patches 218 219 The Prostate Adenocarcinoma TransCutaneous Hormones PATCH study is a randomized controlled trial of high dose transdermal estradiol patches versus gonadotropin releasing hormone agonist monotherapy in the treatment of prostate cancer in approximately 2 200 men 220 221 222 It is specifically comparing three to four 100 mg day estradiol patches FemSeven against goserelin implants 220 The study was started in March 2006 and is estimated for completion in August 2021 220 Its objectives include comparison of survival cardiovascular mortality and morbidity pharmacological activity e g suppression of testosterone levels other side effects and toxicities and quality of life 220 In addition to the PATCH trial the Systemic Therapy in Advancing or Metastatic Prostate Cancer Evaluation of Drug Efficacy STAMPEDE study added a high dose estradiol patches arm 2 000 men in July 2017 223 221 222 Estradiol patches are associated with local skin reactions and such as irritation in 14 2 of individuals with reservoir patches mild to moderate erythema redness in 50 to 60 of individuals and allergic reactions due to cutaneous sensitization 10 12 Up to 5 of people using reservoir patches may discontinue therapy due to skin reactions 12 Visible adhesive residues are also often left by estradiol patches following their removal 10 Transdermal estradiol gel can serve as an alternative to transdermal estradiol patches for individuals who experience intolerable skin reactions with them 224 Estradiol patches should not be applied to the breast as this may result in high local levels of estradiol in the breasts and hence an increased likelihood of breast tenderness 225 Hormone levels with transdermal estradiol patches nbsp Levels of estradiol at steady state over a period of 4 days with different dosages of Vivelle type Vivelle Vivelle Dot Mylan generic twice weekly transdermal estradiol matrix patches applied to the abdomen and worn until day 4 in postmenopausal women 226 227 228 nbsp Levels of estradiol over a period of 7 5 days after a single application of different dosages of a Climara type Climara Menostar Mylan generic once weekly transdermal estradiol matrix patch to the abdomen and removed on day 7 in postmenopausal women 229 230 231 nbsp Levels of estradiol over a period of 8 days after a single application of a 50 or 100 mg day Climara type Climara Menostar Mylan generic once weekly transdermal estradiol matrix patch to the abdomen and removed on day 7 in postmenopausal women 232 nbsp Levels of estradiol and estrone with application of a single 50 µg day estradiol transdermal reservoir patch Estraderm in postmenopausal women 188 nbsp Estradiol level with a single 100 µg day estradiol reservoir patch Estraderm with and without ethanol added in postmenopausal women 17 233 This patch has a 3 to 4 day duration and is designed for twice weekly application In one group ethanol was injected into the area between the patch and the skin on day 3 17 233 This gave significantly higher and prolonged estradiol levels 17 233 nbsp Estradiol and testosterone levels with high dosage transdermal estradiol in the form of two to six 100 µg day estradiol patches Progynova TS forte in men with prostate cancer 14 214 234 nbsp Estradiol levels with 50 to 100 mg day transdermal estradiol patches applied to the forearm and to the scrotum in a crossover study in 2 men with prostate cancer 204 In 35 men treated continuously with one 100 mg day estradiol patch scrotally the mean estradiol level was 500 pg mL range 125 1 200 pg mL 204 Transdermal gel edit Estradiol is available as a transdermal gel in the form of gel dispensers and gel packets Major estradiol gel dispenser products include EstroGel and Elestrin while major estradiol gel packet products include DiviGel and Sandrena Estradiol gels are administered daily 186 15 10 212 When estradiol is administered as a hydroalcoholic gel it dries within 2 to 5 minutes following application to the skin 194 A single application of a transdermal estradiol gel results in a sustained increase in estradiol levels for at least 24 hours 17 194 The apparent elimination half life of estradiol with transdermal estradiol gel is 36 hours 194 Once daily application of 1 25 g topical gel containing 0 75 mg estradiol brand name EstroGel for 2 weeks was found to produce mean peak estradiol and estrone levels of 46 4 pg mL and 64 2 pg mL respectively 194 The time averaged levels of circulating estradiol and estrone with this formulation over the 24 hour dose interval were 28 3 pg mL and 48 6 pg mL respectively 194 Levels of estradiol and estrone are stable and change relatively little over the course of the 24 hours following an application indicating a long duration of action of this route 194 Steady state levels of estradiol are achieved after 3 days of application 194 A higher dosage of estradiol gel containing 1 5 mg estradiol per daily application has been found to produce mean estradiol levels of 40 to 100 pg mL and estrone levels of 90 pg mL while 3 mg per day has been found to result in respective mean estradiol and estrone levels of 60 to 140 pg mL and 45 to 155 pg mL 15 Topical estradiol gel at a dosage of 3 mg day has been reported to be equipotent with 2 mg oral estradiol in terms of therapeutic effects and FSH suppression as well as to produce similar estradiol levels 129 Transdermal estradiol gel produces an estradiol to estrone ratio of about 1 1 10 12 Transdermal estradiol gel can be used as a form of high dose estrogen in transgender women 224 However the doses needed require application to a large surface of skin that amounts to the combined area of both legs for proper absorption 224 As a result high dose transdermal estradiol gel is not a primary choice of estrogen therapy for most transgender individuals 224 Similarly to transdermal estradiol patches high dose transdermal estradiol gel has been studied in the treatment of prostate cancer as well 235 236 237 238 239 240 241 In these studies levels of estradiol with estradiol gel or ointment were 84 pg mL with 3 mg day 185 pg mL with 6 mg day 107 pg mL with 10 mg day and 473 pg mL with 20 mg day 236 237 238 239 240 241 In women high doses of estradiol gel including 3 mg day 4 mg day and 8 mg day have been reported to produce estradiol levels of 99 pg mL 117 pg mL and 204 pg mL respectively 242 70 Studies have found that topical application of estradiol to the breasts increases local levels of estradiol in breast tissue 243 244 245 246 The total endometrial proliferation dose of transdermal estradiol gel in women has been reported to be 150 mg per cycle or 14 days 247 75 310 However it has also been found that 6 mg day estradiol gel is effective for endometrial proliferation in women 248 Hormone levels with transdermal estradiol gel nbsp Levels of estradiol and estrone with once daily appli cation of 1 25 g of a transdermal estradiol gel EstroGel containing 0 06 or 0 75 mg estradiol after 14 days of continuous therapy in postmenopausal women 194 nbsp Levels of estradiol with once daily application of a transdermal estradiol gel EstroGel containing 1 5 or 3 0 mg estradiol over 3 days of administration in postmenopausal women 96 249 nbsp Estradiol levels after the last dose with 1 mg day transdermal estradiol gel applied to different amounts of skin area 200 cm2 400 cm2 or as large as possible in postmenopausal women 250 Other transdermal formulations edit nbsp Estradiol levels with different doses of an estradiol transdermal spray brand name Lenzetto in postmenopausal women 251 nbsp Estradiol levels with different doses of an estradiol transdermal emulsion brand name Estrasorb in postmenopausal women 252 253 Estradiol is available in the form of transdermal emulsions e g Estrasorb and sprays e g Lenzetto Evamist 187 Estradiol emulsions and sprays are administered daily 186 15 10 212 The pharmacokinetics of these preparations have been studied 251 252 253 Variability in pharmacokinetics edit Transdermal estradiol patches are described as delivering a fixed amount of estradiol such as 50 µg day or 100 µg day 10 However there is large interindividual variability and intraindividual variability in the pharmacokinetic parameters of transdermal estradiol and fluctuations in circulating estradiol levels with estradiol patches are almost as great as with oral estradiol 10 96 12 17 As such the actual delivery rate of estradiol and mean levels of estradiol achieved with transdermal estradiol patches may be different from what is described and from the mean levels observed in clinical studies respectively 10 A wide range of estradiol levels are measured in women using the same estradiol patch or gel and dosage with an up to about 10 fold difference in levels 10 96 17 In a study of estradiol gel and patches the maximal difference in peak levels between individuals was 11 fold for the gel and 7 fold for the patch and the maximal difference in area under the curve levels total exposure was 6 fold for the gel and 8 fold for the patch 96 It has likewise been reported that the interindividual variability in bioavailability with Estraderm reservoir patches ranges from 25 to 225 17 In as many as 30 of women treated with a 50 µg day estradiol patch estradiol levels are low 10 There are also significant short term intraindividual differences in estradiol levels with estradiol patches estradiol levels can fluctuate considerably from hour to hour 10 188 In addition estradiol levels with estradiol patches are higher in the evening than in the morning which may be due to circadian variations in skin blood flow that may influence absorption 10 In terms of area under the curve levels of estradiol the interindividual variability of transdermal estradiol has been found to be 20 to 44 using different transdermal formulations and the intraindividual variability with transdermal estradiol has been found to be 20 12 Factors which may contribute to inter and intraindividual variability with transdermal estradiol include skin location and thickness hair follicle density solvent alcohol evaporation skin dehydration ambient temperature and humidity and reservoir size 17 Vaginal administration edit See also Vaginal estrogen Vaginal estradiol is available in the forms of tablets creams inserts or suppositories and rings 186 10 185 Vaginal estradiol tablets creams and inserts are usually administered once daily to twice weekly whereas vaginal estradiol rings have a sustained action and are replaced once every 90 days 186 10 Vaginal estradiol can be used both as a systemic form of estradiol therapy and at very low doses to selectively achieve a local vaginal effect without systemic effects for instance in the treatment of menopausal symptoms such as vaginal atrophy and dryness 10 254 Vaginal estradiol is rapidly and almost completely absorbed 72 The absorption of vaginal estradiol is slightly greater in women with vaginal atrophy 72 Vaginal estradiol has high bioavailability and greatly increased potency compared to oral estradiol with about 10 to 20 fold the comparative potency of oral estradiol 10 The greater potency of vaginal estradiol relative to oral estradiol is due to the lack of the first pass associated with oral estradiol and due to low local metabolism of estradiol in the vagina 10 Because of the high estradiol levels achieved LH and FSH are more strongly suppressed with vaginal estradiol than with other routes 72 A daily dosage of 0 5 mg vaginal micronized estradiol has been found to result in estradiol and estrone levels of 250 pg mL and 130 pg mL respectively 15 Vaginal estradiol has a much higher estradiol to estrone ratio in comparison to oral estradiol 10 The average ratio of estradiol to estrone with vaginal estradiol is 5 1 compared to 1 5 in the case of oral estradiol a 10 fold difference 10 As vaginal estradiol is not subject to a first pass and bypasses the intestines and liver it does not affect liver protein synthesis at menopausal replacement dosages similarly to transdermal estradiol 255 On the other hand a first pass effect in the uterus may occur with vaginal administration of estradiol and this may have implications for uterine safety 256 Hormone levels with vaginal estradiol nbsp Estrogen levels with a single vaginal application of 0 5 mg micronized estradiol in 2 mL solution in postmenopausal women 257 258 259 nbsp Percent change in estradiol estrone LH and FSH levels with a single vaginal application of 1 mg micronized estradiol in saline in hypoestrogenic women 260 40 111 Rectal administration edit nbsp Estradiol levels with rectal administration of estradiol in women after a single 1 mg dose 3 hours post dose with 0 5 mg day 6 hours after the last dose and with 1 mg day 6 hours after the last dose 261 72 242 70 Estradiol has been assessed for use by rectal administration in a number of studies 242 70 261 262 263 Uses of estradiol by this route have included treatment of menopausal symptoms in postmenopausal women 242 70 261 262 Rectal administration of estradiol is described as qualitatively and quantitatively similar to vaginal administration of estradiol 261 262 264 The use of estradiol by the rectal route considerably bypasses the liver and hence the first pass metabolism that occurs with oral estradiol similarly to other parenteral routes of estradiol such as vaginal and transdermal administration 242 265 Irritation of the intestines does not usually occur with rectal estradiol 261 The use of estradiol by the rectal route is not well accepted by all individuals 261 and due to its inconvenience it has been said that rectal administration of estradiol has gained no practical clinical importance 265 Lauritzen 1986 reported that 3 hours after a single rectal dose of 1 mg micronized estradiol estradiol levels increased by 620 pg mL and estrone levels increased by 120 pg mL 261 72 Subsequently Lauritzen 1987 1990 reported that 0 5 mg day and 1 mg day rectal estradiol resulted in respective estradiol levels of 363 pg mL and 515 pg mL 6 hours following the last dose 242 70 These estradiol levels are fairly similar to those achieved by vaginal estradiol 261 70 72 The estradiol to estrone ratio of rectal estradiol is about 5 1 which likewise is the same as that of vaginal estradiol 242 261 72 Absorption of rectal estradiol occurs rapidly within 30 to 60 minutes maximal estradiol levels occur at 3 hours post dose and circulating estradiol levels are reportedly maintained for 4 to 10 hours 261 262 72 The duration of rectal estradiol is said to necessitate repeated administration 1 to 2 times per day 261 262 Rectal administration of estriol which has similar properties to estradiol has also been studied 266 Administration of a rectal suppository containing 100 mg estriol resulted in estriol levels in pregnant women at term increasing by about 53 266 Estriol levels at term are normally between 5 000 and 20 000 pg mL which suggests that estriol levels may have increased following the suppository by about 5 000 to 10 000 pg mL precise levels were not provided 267 268 269 Intramuscular injection edit Intramuscular injections are injections into muscle for instance the gluteal or deltoid muscle Estradiol and estradiol esters can be administered in a variety of forms by intramuscular injection 270 10 271 Aqueous solutions of estradiol and estradiol esters by intramuscular injection have a rapid onset and duration analogously to but slightly more delayed than intravenous injection citation needed However intramuscular injections of oil solutions crystalline aqueous suspensions and emulsions of estradiol and estradiol esters as well as solutions and suspensions of estradiol polymers and estradiol microspheres act as long lasting depot injections citation needed Estradiol esters including but not limited to estradiol benzoate estradiol valerate estradiol cypionate estradiol enanthate and estradiol undecylate are inactive prodrugs of estradiol that are converted into estradiol in the body 10 272 The aforementioned estradiol esters are fatty acid esters and are more lipophilic fat soluble than estradiol citation needed More lipophilic compounds are absorbed more slowly from the injection site when given by depot intramuscular injection as oil solutions aqueous suspensions and emulsions and hence more lipophilic estradiol esters have longer durations than free estradiol or less lipophilic estradiol esters via this route citation needed Polyestradiol phosphate is a polymer of the hydrophilic water soluble estradiol ester estradiol phosphate which circulates in the blood but is metabolized into estradiol very slowly citation needed The bioavailability of estradiol and estradiol esters given by intramuscular injection is said to be essentially complete 4 For comparison the bioavailability of oral estradiol is around 5 10 The estradiol levels that result with typical clinical doses of estradiol and estradiol esters by intramuscular injection tend to be high compared to the typical estradiol levels that occur with other clinically used routes and forms of estradiol 10 16 273 274 13 vte Potencies and durations of natural estrogens by intramuscular injection Estrogen Form Dose mg Duration by dose mg EPD CICDEstradiol Aq soln lt 1 dOil soln 40 60 1 2 1 2 dAq susp 3 5 0 5 2 2 7 d 3 5 gt 5 dMicrosph 1 30 dEstradiol benzoate Oil soln 25 35 1 66 2 3 d 5 3 6 dAq susp 20 10 16 21 dEmulsion 10 14 21 dEstradiol dipropionate Oil soln 25 30 5 5 8 dEstradiol valerate Oil soln 20 30 5 5 7 8 d 10 10 14 d 40 14 21 d 100 21 28 dEstradiol benz butyrate Oil soln 10 10 21 dEstradiol cypionate Oil soln 20 30 5 11 14 dAq susp 5 5 14 24 dEstradiol enanthate Oil soln 5 10 10 20 30 dEstradiol dienanthate Oil soln 7 5 gt 40 dEstradiol undecylate Oil soln 10 20 40 60 d 25 50 60 120 dPolyestradiol phosphate Aq soln 40 60 40 30 d 80 60 d 160 120 dEstrone Oil soln 1 2 2 3 dAq susp 0 1 2 2 7 dEstriol Oil soln 1 2 1 4 dPolyestriol phosphate Aq soln 50 30 d 80 60 dNotes and sourcesNotes All aqueous suspensions are of microcrystalline particle size Estradiol production during the menstrual cycle is 30 640 µg d 6 4 8 6 mg total per month or cycle The vaginal epithelium maturation dosage of estradiol benzoate or estradiol valerate has been reported as 5 to 7 mg week An effective ovulation inhibiting dose of estradiol undecylate is 20 30 mg month Sources See template Aqueous solutions edit Aqueous solutions are solutions of a compound with water citation needed In contrast to other formulations such as oil solutions aqueous suspensions and emulsions aqueous solutions of estradiol and estradiol esters by intramuscular injection are not depot injections citation needed Instead they are rapidly absorbed and eliminated analogously to intravenous injections of estradiol and estradiol esters citation needed The durations of aqueous solutions of estradiol and estradiol esters by intramuscular injection are measured in hours citation needed Oil solutions edit Oil solutions are solutions of a compound with oil for instance sesame oil or castor oil citation needed When free steroids like estradiol are administered in oil solution by intramuscular injection they are rapidly absorbed and the duration is relatively short 270 275 A single 1 to 2 mg dose of estradiol in oil solution by intramuscular injection has a duration of about 1 or 2 days 265 276 277 Little prolongation of duration is achieved with the use of larger doses 270 278 279 Nonetheless the duration of estradiol in oil solution by intramuscular injection is significantly longer than an intravenous injection of estradiol or estradiol valerate which show a duration of only a few hours 10 12 4 60 280 281 Conversely intramuscular injections of estradiol esters in oil solution have durations of days to months depending on the ester administered 265 Following a single 4 or 5 mg intramuscular injection in oil solution peak estradiol levels are about 950 pg mL with estradiol benzoate after 2 days 400 to 650 pg mL with estradiol valerate after 2 days and 250 to 350 pg mL with estradiol cypionate after 4 days 274 16 273 The durations with a 5 mg dose are 4 or 5 days with estradiol benzoate 7 or 8 days with estradiol valerate and 11 to 14 days with estradiol cypionate 274 16 273 The differences in estradiol levels and the different durations with estradiol levels are due to their different rates of release from the oily depot at the injection site 274 The longer and hence more lipophilic the fatty acid ester the slower the release from the depot the lower the peak estradiol levels and the longer the duration 274 10 265 The duration of estradiol esters in oil solution by intramuscular injection is dose dependent 282 With estradiol valerate it is reported that a dose of 5 mg has a duration of 7 to 8 days 274 10 mg a duration of 10 to 14 days 265 282 40 mg a duration of 2 to 3 weeks and 100 mg a duration of 3 to 4 weeks 282 High doses of estradiol valerate such as 40 mg per week can achieve pregnancy levels of estradiol 283 A study of pseudopregnancy with intramuscular injections of 40 mg week estradiol valerate and 250 mg week hydroxyprogesterone caproate observed estradiol levels of about 2 500 to 3 000 pg mL 283 vte Pharmacokinetics of three estradiol esters by intramuscular injection Estrogen Dose Cmax Tmax DurationEstradiol benzoate 5 mg E2 940 pg mLE1 343 pg mL E2 1 8 daysE1 2 4 days 4 5 daysEstradiol valerate 5 mg E2 667 pg mLE1 324 pg mL E2 2 2 daysE1 2 7 days 7 8 daysEstradiol cypionate 5 mg E2 338 pg mLE1 145 pg mL E2 3 9 daysE1 5 1 days 11 daysNotes All via i m injection of oil solution Determinations via radioimmunoassay with chromatographic separation Sources See template Aqueous suspensions edit Aqueous suspensions are suspensions of crystal particles of a compound in water citation needed Estradiol in microcrystalline aqueous suspension for use by intramuscular injection was previously marketed in the 1950s under brand names such as Aquadiol Diogyn Progynon Aqueous Suspension and Progynon Micropellets 284 285 286 287 288 289 290 291 It was used at a dose of 0 5 to 1 5 mg 2 or 3 times per week 290 Newman 1950 found that 0 5 to 2 mg once per week was satisfactory 292 As such the preparation presumably had a duration in the range of 2 to 7 days 290 292 Microcrystalline aqueous suspensions of estradiol esters for instance of estradiol benzoate brand names Agofollin Depot alone and Follivirin in combination with testosterone isobutyrate 293 294 have been found to have longer duration of actions than oil solutions of the same esters when administered via intramuscular injection 295 296 271 297 298 49 299 310 Whereas the duration of a single intramuscular injection of amorphous estradiol benzoate in oil solution is 6 days the duration of a single intramuscular injection of microcrystalline estradiol benzoate in aqueous suspension is 16 to 21 days 75 296 300 301 The duration of crystalline aqueous suspensions is highly dependent on crystal size 302 303 298 304 305 Steroids and steroid fatty acid esters are lipophilic and have very low water solubility 306 When they are suspended in the form of crystals in water these crystals dissolve slowly releasing steroid from their surfaces in the process 306 307 The larger the particle sizes of the crystals the slower the dissolution rate 306 When a crystalline aqueous suspension of steroid is administered via intramuscular injection a crystalline depot suspended in fluid is formed locally within the muscle 306 307 These crystals slowly dissolve and the steroid is gradually absorbed into the body resulting in the long durations of such preparations 306 307 Particle sizes of 10 mm or less have no apparent depot effect 308 A larger needle size is needed for aqueous suspensions of steroids to allow the steroid crystals to pass through the needle lumen 309 310 Aqueous suspensions pose a risk of injection site reactions such as local irritation swelling and redness with often severe pain 303 310 The reactions are worse with larger crystal sizes 303 311 Particle sizes of more than 300 mm in the case of estradiol benzoate have been found to be too painful for use 311 The local injection site reactions which do not occur with oil solutions have limited the clinical use of aqueous suspensions of estradiol and its esters as well as other steroids 312 313 314 Emulsions edit Emulsions are mixtures of immiscible liquids Water in oil emulsions of estradiol benzoate were evaluated as long acting preparations for use by intramuscular injection in the 1940s and 1950s 298 271 Formulations of estradiol benzoate alone under the brand name Menformon Emulsion and with progesterone under the brand name Di Pro Emulsion were previously marketed 315 316 A 10 mg dose of estradiol benzoate in emulsion by intramuscular injection is said to have a duration of about 2 to 3 weeks 315 This is similar to the duration of an aqueous suspension of 10 mg estradiol benzoate or an oil solution of 10 mg estradiol valerate 315 Emulsions of steroids by intramuscular injection have similar properties e g duration relative to aqueous suspensions 298 271 Painful injection site reactions have been reported with emulsions similarly to suspensions 317 Polymers edit Polymers are large molecules of repeating subunits Polyestradiol phosphate brand name Estradurin is a water soluble estradiol ester in the form of a polymer and a very slowly hydrolyzed prodrug of estradiol 318 319 It is formulated as an aqueous solution and is given by intramuscular injection 318 319 The medication has an exceptionally long duration of action with an elimination half life of about 70 days or 10 weeks following a single injection 320 Estradiol levels during polyestradiol phosphate therapy are very constant and uniform 320 Levels of estradiol after 6 months of treatment with polyestradiol phosphate were about 350 450 and 650 pg mL with doses of 160 240 and 320 mg once per month respectively 13 Polyestradiol phosphate has mostly been discontinued and remains available only in a few countries 319 321 Microspheres edit Microspheres are microscopic spherical particles which can be used to encapsulate compounds citation needed Estradiol is available in the form of an aqueous suspension of 1 0 mg estradiol in microspheres for use by intramuscular injection once a month under the brand name Juvenum E in Mexico 322 323 It achieves circulating estradiol levels of 163 pg mL to 219 pg mL in the first 3 to 12 hours following injection which decrease to 42 to 66 pg mL during the first 4 days post injection and to 20 to 35 pg mL after 8 days with levels remaining in this range thereafter over 30 days 322 These estradiol levels are similar to the normal levels that occur during the early follicular phase of the menstrual cycle in premenopausal women 24 to 75 pg mL 322 The elimination of the formulation follows three phases a rapid phase in the first 2 days a second phase during days 2 to 12 days with a biological half life of 7 to 10 days and a third phase in which estradiol levels remain elevated above baseline for up to 30 days 322 Graphs edit Hormone levels with estradiol and estradiol esters by intramuscular injection nbsp Tritiated estradiol radioactivity in blood with a single intramuscular injection of 1 5 to 2 8 mg tritiated estradiol in aqueous solution in four women 324 Peak blood radioactivity occurred within 15 minutes in three of the women and in the remaining woman after 2 hours 324 Source Davis et al 1963 324 nbsp Estradiol and testosterone levels with a single intramuscular injection of 2 mg estradiol in an aqueous preparation in healthy young men 325 Type of aqueous preparation solution or suspension was not specified 325 Source Jones et al 1978 325 nbsp Estradiol levels after a single intramuscular injection of 5 mg estradiol benzoate 5 mg estradiol valerate or 5 mg estradiol cypionate in oil solution in women 274 Source Oriowo et al 1980 274 nbsp Simplified curves of estradiol levels after intramuscular injection of different 5 mg estradiol benzoate 5 mg estradiol valerate 5 mg estradiol cypionate or 10 mg estradiol enanthate in oil solution in women 326 Source Garza Flores 1994 326 nbsp Vaginal cornification with a single intramuscular injection of 5 mg estradiol benzoate 5 mg estradiol dipropionate or 5 to 25 mg estradiol cypionate in oil solution in women 327 Source Schwartz amp Soule 1955 327 nbsp Estradiol levels after a short intravenous infusion of 20 mg estradiol in aqueous solution or an intramuscular injection of an equimolar dose of estradiol benzoate estradiol valerate or estradiol undecylate in oil solution in women 328 280 Sources Geppert 1975 and Leyendecker et al 1975 328 280 nbsp Estradiol levels after a single intramuscular injection of 10 mg estradiol valerate or 100 mg estradiol undecylate in oil solution 329 Source Vermeulen 1975 329 nbsp Estradiol and testosterone levels after a single intramuscular injection of 320 mg polyestradiol phosphate in aqueous solution in men with prostate cancer 320 Source Stege et al 1996 320 nbsp Estradiol levels after the fourth dose during continuous therapy with estradiol and progesterone microspheres in aqueous suspension by intramuscular injection once per month in menopausal women 330 331 Source Espino y Sosa et al 2019 330 Note See individual articles estradiol valerate cypionate benzoate dipropionate enanthate dienanthate and undecylate as well as polyestradiol phosphate for more graphs Subcutaneous injection edit nbsp Estradiol levels after subcutaneous s c or intramuscular i m injection of 5 mg estradiol cypionate in aqueous suspension 8 Estradiol esters like estradiol valerate and estradiol cypionate can be given by subcutaneous injection instead of intramuscular injection 332 Subcutaneous and intramuscular injection of estradiol cypionate in an aqueous suspension has been found to result in levels of estradiol and other pharmacokinetic parameters e g duration that were virtually identical 8 Studies have shown that subcutaneous injection of closely related steroid esters in oil like the androgen esters testosterone cypionate testosterone enantate and nandrolone decanoate is effective and has similar pharmacokinetics to intramuscular injection as well 333 215 334 335 336 337 338 339 In addition studies have found that many intramuscular injections are really subcutaneous injections as individuals often do not actually penetrate deep enough to inject into muscle when attempting to perform an intramuscular injection and instead inject into the subcutaneous fat layer above the muscle 340 341 This is particularly prevalent with injections into the buttocks and in overweight and obese individuals due to the thicker layer of fat over muscle 340 341 Subcutaneous injections of estradiol esters may be easier and less painful to perform than intramuscular injections and hence may result in improved compliance and satisfaction with therapy 8 Subcutaneous implantation edit nbsp Levels of estradiol after surgical implantation of a subcutaneous pellet of 100 mg estradiol in women 10 342 64 Estradiol can be administered in a very long lasting form via subcutaneous implantation of pure crystalline estradiol compressed into a small solid cylindrical pellet 10 343 These pellets slowly and completely dissolve and are replaced once every 6 to 12 months achieving high and very constant circulating levels of estradiol 10 344 345 They are surgically inserted with the aid of a trocar by a trained physician in a medical office or clinic and can be placed into locations including the lower abdomen lower back buttocks or hips 10 344 343 Subcutaneous pellets containing 20 mg estradiol brand name Meno Implant or 25 50 or 100 mg estradiol brand name Estradiol Implants discontinued for replacement usually once every 6 months range 4 to 8 months are or have been available as approved pharmaceutical medications 345 Up to 800 mg estradiol per implantation has been used 346 Pharmaceutical estradiol pellet implants have been used almost exclusively in the United Kingdom but have also been available in Australia and the Netherlands 347 348 However estradiol pellets have been discontinued in both the United Kingdom and Australia 349 350 An estradiol implant has not been approved by the FDA as a pharmaceutical medication in the United States but hormone pellet implants including estradiol pellets are available as custom compounded products in this country 351 352 353 Estradiol pellet implants are advantageous in that some women seem to need higher levels of estradiol for adequate relief of menopausal symptoms and subcutaneous estradiol pellets are easily able to achieve such levels 345 10 Conversely this is not necessarily the case with oral or transdermal estradiol 345 10 Another major advantage of estradiol pellet implants is convenience and guaranteed compliance 345 They also do not have the issues pertaining to first pass metabolism and liver protein synthesis of oral estradiol 345 10 A major disadvantage of estradiol pellet implants is that they cannot be easily removed should this be necessary 345 There are also concerns about accumulation of estradiol levels with long term repeated pellet implantation 345 10 Estradiol levels may remain above baseline for a year or in some cases 3 to 4 years following the last pellet insertion 345 During this time progestogen therapy should be continued to avoid the risk of endometrial changes 345 344 Regular monitoring of estradiol levels and adjustment of dosing is recommended during therapy with estradiol pellet implants 345 Tachyphylaxis of relief of vasomotor symptoms or hot flashes returning even with normal or supraphysiological estradiol levels may occur in a small subset of cases with estradiol pellet implants 345 10 347 354 344 The reason for this is unknown but has been hypothesized to be a paradoxical effect of the high levels of estradiol achieved and or a result of receptor desensitization caused by the long term gradually decreasing levels of estradiol 345 10 Such symptoms have been said to occur once estradiol levels begin to decrease although there are also reports of such symptoms occurring 3 to 16 weeks 1 to 4 months after pellet insertion when estradiol levels should still be constant 345 10 Hot flashes have notably been reported in pregnant women who have very high and constantly increasing levels of estradiol 355 When recurrence of hot flashes occurs with estradiol pellets treated women often complain that their pellet has run out 345 Such symptoms can be temporarily offset with the use of supplemental oral or transdermal estradiol 345 Following insertion of an estradiol pellet levels of estradiol rapidly increase remain constant for about 4 months and then gradually decrease 345 A 25 mg subcutaneous estradiol pellet has been found to result in average estradiol levels of 90 pg mL for 6 months while two 25 mg pellets 50 mg total resulted in estradiol levels of 180 pg mL after 24 hours and levels of 100 to 120 pg mL for 6 months 10 Higher dose pellets resulted in estradiol levels for 50 mg of 100 pg mL for 75 mg of 140 pg mL and for 100 mg of 150 pg mL 10 Estradiol levels are generally 50 higher than those of estrone for an estradiol to estrone ratio of 1 5 1 10 Very high levels of estradiol of between 400 and 1 000 pg mL have been observed in a small subset of women treated with estradiol pellets and notably in those experiencing symptoms of tachyphylaxis 345 10 Estradiol pellet implants have been studied in the treatment of prostate cancer in men 356 357 358 359 360 Intrauterine administration edit Intrauterine estradiol has been studied in the treatment of uterine hypoplasia in women 361 362 297 Intravenous injection edit The administration of estradiol by intravenous injection has been studied 60 280 363 364 9 It achieves extremely high peak levels of estradiol but has a very short duration 60 280 9 Kuhnz et al 1993 reported that a single intravenous injection of 0 3 mg estradiol resulted in peak estradiol concentrations of 8 321 pg mL at 5 minutes post injection 60 Estradiol levels decreased to 1 628 pg mL after 30 minutes to 778 pg mL after 1 hour and to 23 pg mL after 6 hours 60 Leyendecker et al 1975 reported that a single intravenous injection of 20 mg estradiol resulted in estradiol levels of 2 950 pg mL at 12 hours after the injection earlier time points were not measured 280 Following this estradiol levels decreased to around 400 pg mL by 24 hours post injection and reached near baseline levels of 45 pg mL after 48 hours 280 The ratio of estradiol to estrone is very high initially e g around 10 1 at peak but becomes smaller as estradiol levels decline 60 280 The distribution half life of intravenous estradiol is about 6 minutes and the terminal half life of intravenous estradiol is about 0 5 to 2 hours 10 12 4 9 The peak estradiol levels are far higher and the duration far shorter when estradiol is given by intravenous injection than when estradiol esters are administered by intramuscular or subcutaneous injection 280 10 The administration of estradiol valerate by intravenous injection has been studied as well 4 365 It has been found to be very rapidly cleaved into estradiol in the blood 4 365 The metabolism of estradiol valerate does not differ with intravenous versus intramuscular injection 365 While estradiol itself has not been used clinically by intravenous injection certain estrogen preparations such as conjugated estrogens and estramustine phosphate are available in formulations indicated for intravenous injection 366 Both of these medications act in part as prodrugs of estradiol 367 368 369 The intravenous formulation of conjugated estrogens is available at a dose of 25 mg per injection and is used in the treatment of abnormal uterine bleeding due to its ability to rapidly and temporarily enhance coagulation 366 It has also been used off label to treat severe bleeding after hysteroscopic metroplasty and as an emergency contraceptive 366 370 368 The formulation is given in a single injection but can be repeated after 6 to 12 hours if necessary 366 370 368 Intravenous estramustine phosphate has a relatively long duration and like oral estramustine phosphate is used in the treatment of prostate cancer 369 371 Estramustine phosphate was initially introduced as an intravenous formulation and was only later introduced as an oral medication 371 Following introduction of the more convenient oral formulation intravenous estramustine phosphate has largely been abandoned 371 The administration of large doses of estrogens intravenously has been studied 372 373 374 Hormone levels with estradiol by intravenous administration nbsp Baseline corrected levels of estradiol estrone and estrone conjugates e g estrone sulfate after a single intravenous infusion of 0 3 mg estradiol in aqueous solution in women 60 nbsp Estradiol levels after a short intravenous infusion of 20 mg estradiol in aqueous solution or an intramuscular injection of an equimolar dose of estradiol benzoate estradiol valerate or estradiol undecylate in oil solution in women 281 280 Earlier time points than 12 hours post infusion for intravenous estradiol were not measured 281 280 Sources 60 281 280 General editAbsorption edit Estradiol is well absorbed regardless of route of administration 10 However the bioavailability of estradiol differs substantially with different routes of administration 10 4 Oral estradiol has an average bioavailability of around 5 requiring relatively high dosages of estradiol for effects 10 Estradiol administered in the form of an ester by intramuscular or subcutaneous injection has complete bioavailability 4 332 8 Distribution edit Estradiol is rapidly distributed throughout the body with a distribution phase of about 6 minutes following intravenous injection 12 Estradiol is taken up into cells via passive diffusion due to its lipophilicity 375 Due to binding to the ERs estradiol is preferentially concentrated in tissues with the highest ER content 12 In animals these tissues have included the uterus vagina mammary glands pituitary gland hypothalamus other brain regions adipose tissue liver and adrenal glands among other tissues 12 376 In contrast to estradiol due to its low affinities for the ERs estrone is not accumulated in target tissues 10 Estradiol has been found to cross the blood brain barrier in rhesus monkeys 12 The volume of distribution of estradiol has been found to be 0 85 to 1 17 L kg 12 In another study however its volume of distribution was only 0 082 0 015 L kg 4 8 L in women of average weight 58 4 kg 9 In terms of plasma protein binding estradiol is bound loosely to albumin and tightly to SHBG with approximately 97 to 98 of estradiol bound to plasma proteins 2 In the circulation approximately 38 of estradiol is bound to SHBG and 60 is bound to albumin with 2 to 3 free or unbound 3 However with oral estradiol there is an increase in hepatic SHBG production and hence SHBG levels e g 50 and this results in a relatively reduced fraction of free estradiol 1 17 As only free estradiol that is not bound to plasma proteins or SHBG is biologically active this may reduce the potency of oral estradiol by some degree 12 17 However a study found that the free fraction of estradiol was similar with doses of oral and topical estradiol that resulted in equivalent total estradiol levels 129 Metabolism edit vte Metabolic pathways of estradiol in humans nbsp Estradiol Estrone sulfate Estrone glucuronide 2 Hydroxyestrone Estrone 4 Hydroxyestrone 2 Methoxyestrone 16a Hydroxyestrone 4 Methoxyestrone 17 Epiestriol Estriol 16 Epiestriol 17b HSD EST STS UGT1A3UGT1A9 CYP450 CYP450 COMT CYP450 COMT unidentified 17b HSD unidentified nbsp Description The metabolic pathways involved in the metabolism of estradiol and other natural estrogens e g estrone estriol in humans In addition to the metabolic transformations shown in the diagram conjugation e g sulfation and glucuronidation occurs in the case of estradiol and metabolites of estradiol that have one or more available hydroxyl OH groups Sources See template page There are several major pathways of estradiol metabolism which occur both in the liver and in other tissues 12 10 1 Dehydrogenation by 17b hydroxysteroid dehydrogenase 17b HSD into estrone Conjugation by estrogen sulfotransferases and UDP glucuronyltransferases into C3 and or C17b estrogen conjugates like estrone sulfate and estradiol glucuronide Hydroxylation by cytochrome P450 enzymes such as CYP1A1 and CYP3A4 into catechol estrogens like 2 hydroxyestrone and 2 hydroxyestradiol as well as 16 hydroxylated estrogens like 16a hydroxyestrone and estriol 16a hydroxyestradiol The liver is almost entirely responsible for metabolism of estradiol 377 Both dehydrogenation of estradiol by 17b HSD into estrone and conjugation into estrogen conjugates are reversible transformations 12 10 However in regards to sulfation and desulfation transformation of estrone into estrone sulfate is predominant relative to the reverse reaction 12 110 Estradiol can also be reversibly converted into long lived lipoidal estradiol forms like estradiol palmitate and estradiol stearate as a minor route of metabolism 11 The elimination half life of estradiol administered via intravenous injection has been found to be 2 hours in men and 27 to 50 minutes in women 4 9 378 379 Other routes of administration of estradiol like oral administration or intramuscular injection have far longer elimination half lives and durations of action due to 1 the formation of a large circulating reservoir of metabolism resistant estrogen conjugates that can be reconverted back into estradiol and or 2 the formation of slowly releasing depots 12 10 The metabolic clearance rates of estradiol estrone and estrone sulfate are 580 L day m2 1 050 L day m2 and 80 L day m2 respectively 10 Elimination edit A single dose of oral estradiol valerate is eliminated 54 in urine and 6 in feces 1 A substantial amount of estradiol is also excreted in bile 1 The urinary metabolites of estradiol are predominantly present in the form of estrogen conjugates including glucuronides and to a lesser extent sulfates 1 The main metabolites of estradiol in urine are estrone glucuronide 13 30 2 hydroxyestrone 2 6 10 1 unchanged estradiol 5 2 7 5 estriol 2 0 5 9 and 16a hydroxyestrone 1 0 2 9 1 Following an intravenous injection of labeled estradiol in women almost 90 is excreted in urine and feces within 4 to 5 days 378 379 Enterohepatic recirculation causes a delay in excretion of estradiol 378 See also editPharmacodynamics of estradiol Pharmacodynamics of progesterone Pharmacokinetics of progesterone Pharmacokinetics of testosteroneReferences edit a b c d e f g h i j k l m n o p q r Stanczyk FZ Archer DF Bhavnani BR June 2013 Ethinyl estradiol and 17b estradiol in combined oral contraceptives pharmacokinetics pharmacodynamics and risk assessment Contraception 87 6 706 727 doi 10 1016 j contraception 2012 12 011 PMID 23375353 a b c d e f O Connell MB 1995 Pharmacokinetic and pharmacologic variation between different estrogen products J Clin Pharmacol 35 9 Suppl 18S 24S doi 10 1002 j 1552 4604 1995 tb04143 x PMID 8530713 S2CID 10159196 a b c d e f g h i j k Kuhnz W Blode H Zimmermann H 1993 Pharmacokinetics of Exogenous Natural and Synthetic Estrogens and Antiestrogens Estrogens and Antiestrogens II Handbook of Experimental Pharmacology Vol 135 2 pp 261 322 doi 10 1007 978 3 642 60107 1 15 ISBN 978 3 642 64261 6 ISSN 0171 2004 a b c d e f g h i j k l Dusterberg B Nishino Y 1982 Pharmacokinetic and pharmacological features of oestradiol valerate Maturitas 4 4 315 24 doi 10 1016 0378 5122 82 90064 0 PMID 7169965 a b Falcone T Hurd WW 2007 Clinical Reproductive Medicine and Surgery Elsevier Health Sciences pp 22 362 388 ISBN 978 0 323 03309 1 Price TM Blauer KL Hansen M Stanczyk F Lobo R Bates GW March 1997 Single dose pharmacokinetics of sublingual versus oral administration of micronized 17 beta estradiol Obstetrics and Gynecology 89 3 340 345 doi 10 1016 S0029 7844 96 00513 3 PMID 9052581 S2CID 71641652 Naunton M Al Hadithy AF Brouwers JR Archer DF 2006 Estradiol gel review of the pharmacology pharmacokinetics efficacy and safety in menopausal women Menopause 13 3 517 527 doi 10 1097 01 gme 0000191881 52175 8c PMID 16735950 S2CID 42748448 a b c d e Sierra Ramirez JA Lara Ricalde R Lujan M Velazquez Ramirez N Godinez Victoria M Hernadez Munguia IA et al December 2011 Comparative pharmacokinetics and pharmacodynamics after subcutaneous and intramuscular administration of medroxyprogesterone acetate 25 mg and estradiol cypionate 5 mg Contraception 84 6 565 570 doi 10 1016 j contraception 2011 03 014 PMID 22078184 a b c d e f g White CM Ferraro Borgida MJ Fossati AT McGill CC Ahlberg AW Feng YJ et al 1998 The pharmacokinetics of intravenous estradiol a preliminary study Pharmacotherapy 18 6 1343 1346 doi 10 1002 j 1875 9114 1998 tb03157 x PMID 9855336 S2CID 9970669 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au av aw ax ay az ba bb bc bd be bf bg bh bi bj bk bl bm bn bo bp bq br bs bt bu bv bw bx by bz ca cb cc cd ce cf cg ch ci cj ck cl cm cn co cp cq cr cs ct cu cv cw cx cy cz da db dc dd de df dg dh di dj dk dl dm dn do dp dq dr ds dt du Kuhl H 2005 Pharmacology of estrogens and progestogens influence of different routes of administration PDF Climacteric 8 Suppl 1 3 63 doi 10 1080 13697130500148875 PMID 16112947 S2CID 24616324 a b Oettel M Schillinger E 6 December 2012 Estrogens and Antiestrogens I Physiology and Mechanisms of Action of Estrogens and Antiestrogens Springer Science amp Business Media pp 121 226 235 237 ISBN 978 3 642 58616 3 a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq Oettel M Schillinger E 6 December 2012 Estrogens and Antiestrogens II Pharmacology and Clinical Application of Estrogens and Antiestrogen Springer Science amp Business Media pp 163 178 235 237 252 253 261 276 538 543 ISBN 978 3 642 60107 1 a b c Stege R Carlstrom K Collste L Eriksson A Henriksson P Pousette A 1988 Single drug polyestradiol phosphate therapy in prostatic cancer Am J Clin Oncol 11 Suppl 2 S101 3 doi 10 1097 00000421 198801102 00024 PMID 3242384 S2CID 32650111 a b c Ockrim JL Lalani EN Laniado ME Carter SS Abel PD May 2003 Transdermal estradiol therapy for advanced prostate cancer forward to the past J Urol 169 5 1735 7 doi 10 1097 01 ju 0000061024 75334 40 PMID 12686820 a b c d e f g h i Lobo RA 5 June 2007 Treatment of the Postmenopausal Woman Basic and Clinical Aspects Academic Press pp 177 217 226 770 771 ISBN 978 0 08 055309 2 a b c d Notelovitz M van Keep PA 6 December 2012 The Climacteric in Perspective Proceedings of the Fourth International Congress on the Menopause held at Lake Buena Vista Florida October 28 November 2 1984 Springer Science amp Business Media pp 397 399 ISBN 978 94 009 4145 8 following the menopause circulating estradiol levels decrease from a premenopausal mean of 120 pg ml to only 13 pg ml a b c d e f g h i j k l m n o p q r s Christian C von Schoultz B 15 March 1994 Hormone Replacement Therapy Standardized or Individually Adapted Doses CRC Press pp 9 16 60 ISBN 978 1 85070 545 1 The mean integrated estradiol level during a full 28 day normal cycle is around 80 pg ml Muller EE MacLeod RM 6 December 2012 Neuroendocrine Perspectives Springer Science amp Business Media pp 121 ISBN 978 1 4612 3554 5 premenopausal mean estradiol concentration of 150 pg ml Becker KL 2001 Principles and Practice of Endocrinology and Metabolism Lippincott Williams amp Wilkins pp 889 1059 1060 2153 ISBN 978 0 7817 1750 2 ARCHITECT Estradiol assay PDF Abbott Laboratories November 2009 Troisi R Potischman N Roberts JM Harger G Markovic N Cole B Lykins D Siiteri P Hoover RN 2003 Correlation of serum hormone concentrations in maternal and umbilical cord samples Cancer Epidemiol Biomarkers Prev 12 5 452 6 PMID 12750241 Drugs FDA FDA Approved Drug Products United States Food and Drug Administration Retrieved 26 July 2018 Lobo RA 5 June 2007 Treatment of the Postmenopausal Woman Basic and Clinical Aspects Academic Press pp 177 217 226 770 771 ISBN 978 0 08 055309 2 Falcone T Hurd WW 14 June 2017 Clinical Reproductive Medicine and Surgery A Practical Guide Springer pp 179 ISBN 978 3 319 52210 4 Becker KL 2001 Principles and Practice of Endocrinology and Metabolism Lippincott Williams amp Wilkins pp 889 1059 1060 2153 ISBN 978 0 7817 1750 2 Kleemann A Engel J Kutscher B Reichert D 14 May 2014 Pharmaceutical Substances 5th Edition 2009 Syntheses Patents and Applications of the most relevant APIs Thieme pp 1167 1174 ISBN 978 3 13 179525 0 Muller 19 June 1998 European Drug Index European Drug Registrations Fourth Edition CRC Press pp 276 454 455 566 567 ISBN 978 3 7692 2114 5 Krishna UR Sheriar NK 1996 Menopause Orient Blackswan pp 70 ISBN 978 81 250 0910 8 NNR Products Recently Accepted by the A M A Council on Pharmacy and Chemistry Journal of the American Pharmaceutical Association Practical Pharmacy ed 10 11 692 694 1949 doi 10 1016 S0095 9561 16 31995 8 ISSN 0095 9561 AERODIOL Oestradiol hemihydrate 150 micrograms actuation PDF Servier Laboratories Aust Pty Ltd Estradiol Drugs com Sahin FK Koken G Cosar E Arioz DT Degirmenci B Albayrak R Acar M 2008 Effect of Aerodiol administration on ocular arteries in postmenopausal women Gynecol Endocrinol 24 4 173 7 doi 10 1080 09513590701807431 PMID 18382901 300 mg 17b estradiol Aerodiol Servier Chambrayles Tours France was administered via the nasal route by a gynecologist This product is unavailable after March 31 2007 because its manufacturing and marketing are being discontinued Plouffe Jr L Ravnikar VA Speroff L Watts NB 6 December 2012 Comprehensive Management of Menopause Springer Science amp Business Media pp 271 ISBN 978 1 4612 4330 4 University of California 1868 1952 1952 Hospital Formulary and Compendium of Useful Information University of California Press pp 49 GGKEY 2UAAZRZ5LN0 a href Template Cite book html title Template Cite book cite book a CS1 maint numeric names authors list link Leidenberger FA 17 April 2013 Klinische Endokrinologie fur Frauenarzte Springer Verlag pp 527 ISBN 978 3 662 08110 5 a b c d Meikle AW 1 June 1999 Hormone Replacement Therapy Springer Science amp Business Media pp 380 ISBN 978 1 59259 700 0 a b James VH Pasqualini JR 22 October 2013 Hormonal Steroids Proceedings of the Sixth International Congress on Hormonal Steroids Elsevier Science pp 821 ISBN 978 1 4831 9067 9 a b c d e f g h i Englund DE Johansson ED 1981 Oral versus vaginal absorption in oestradiol in postmenopausal women Effects of different particles sizes Upsala Journal of Medical Sciences 86 3 297 307 doi 10 3109 03009738109179241 PMID 7324289 Dosage Form Design Considerations Elsevier Science 28 July 2018 pp 159 ISBN 978 0 12 814424 4 a b c d e Henzl MR 1978 Natural and Synthetic Female Sex Hormones In Yen SS Jaffe RB eds Reproductive Endocrinology Physiology Pathophysiology and Clinical Management W B Saunders Co pp 421 468 ISBN 978 0 7216 9625 6 Stanczyk FZ 1998 Pharmacological background of estrogen replacement therapy and continuance In Fraser IS Jansen RP Lobo RA Whitehead MI eds Estrogens and Progestogens in Clinical Practice Churchill Livingstone pp 655 666 ISBN 978 0 443 04706 0 a b c Yen SS Martin PL Burnier AM Czekala NM Greaney MO Callantine MR March 1975 Circulating estradiol estrone and gonadotropin levels following the administration of orally active 17beta estradiol in postmenopausal women The Journal of Clinical Endocrinology and Metabolism 40 3 518 521 doi 10 1210 jcem 40 3 518 PMID 1117058 Hammond CB Maxson WS June 1986 Estrogen replacement therapy Clin Obstet Gynecol 29 2 407 30 doi 10 1097 00003081 198606000 00022 PMID 3522011 S2CID 31166713 A micronized form of estradiol in which 80 of the particles present are 20 106 M or less results in effective oral sublingual or vaginal absorption 61 a b Devroey P Pados G 1998 Preparation of endometrium for egg donation Hum Reprod Update 4 6 856 61 doi 10 1093 humupd 4 6 856 PMID 10098476 Oestradiol valerate and oestradiol in a micronized form are the most widely used oestrogen per os for steroid substitution therapy Our regimen as of most other groups is oestradiol valerate Progynova Schering Berlin Germany given in various concentrations throughout the cycle According to Norfolk s protocol 2 mg of micronized oestradiol valerate are given on cycle days 1 5 In tablet form micronized oestradiol valerate is also efficiently absorbed a b Martin PL Burnier AM Greaney MO May 1972 Oral menopausal therapy using 17 micronized estradiol A preliminary study of effectiveness tolerance and patient preference Obstetrics and Gynecology 39 5 771 774 PMID 5023261 a b Herr F Revesz C Manson AJ Jewell JB 1970 Biological Properties of Estrogen Sulfates Chemical and Biological Aspects of Steroid Conjugation pp 368 408 doi 10 1007 978 3 642 49793 3 8 ISBN 978 3 642 49506 9 Martinez Manautou J Rudel HW 1966 Antiovulatory Activity of Several Synthetic and Natural Estrogens In Greenblatt RB ed Ovulation Stimulation Suppression and Detection Lippincott pp 243 253 ISBN 9780397590100 a b Martinez Manautou J Rudel HW 1966 Antiovulatory Activity of Several Synthetic and Natural Estrogens In Robert Benjamin Greenblatt ed Ovulation Stimulation Suppression and Detection Lippincott pp 243 253 a b Dorfman RI 5 December 2016 Steroidal Activity in Experimental Animals and Man Elsevier Science pp 40 392 ISBN 978 1 4832 7299 3 Ferin 1952 also studied duration of action in women with estrogen deficiency by recording the days of freedom from hot flushes He rates estradiol 3 benzoate estradiol 3 furoate estradiol dipropionate estradiol 17 caprylate estradiol 3 benzoate 17 caprylate in oil and finally estradiol 3 benzoate in emulsion or as microcrystals in that order of duration of action After 10 mg of each of the above preparations a woman would typically remain free of symptoms for 10 days This could however be as much as 50 days Horsky J Presl J 6 December 2012 Ovarian Function and its Disorders Diagnosis and Therapy Springer Science amp Business Media pp 313 ISBN 978 94 009 8195 9 Brotherton J 1976 Sex Hormone Pharmacology Academic Press p 34 ISBN 978 0 12 137250 7 Gibian H Kopp R Kramer M Neumann F Richter H 1968 Effect of particle size on biological activity of norethisterone acetate Acta Physiologica Latino Americana 18 4 323 326 PMID 5753386 He CH Shi YE Liao DL Zhu YH Xu JQ Matlin SA et al May 1990 Comparative cross over pharmacokinetic study on two types of postcoital contraceptive tablets containing levonorgestrel Contraception 41 5 557 567 doi 10 1016 0010 7824 90 90064 3 PMID 2112080 Goretzlehner G Lauritzen C Romer T Rossmanith W 30 November 2011 Praktische Hormontherapie in der Gynakologie Walter de Gruyter pp 44 ISBN 978 3 11 024568 4 Ryden AB 1950 Natural and synthetic oestrogenic substances their relative effectiveness when administered orally Acta Endocrinologica 4 2 121 139 doi 10 1530 acta 0 0040121 PMID 15432047 Ryden A 1947 Natural and synthetic estrogenic substances a comparison of the effect upon the endometrium in castrated women Acta Pathologica et Microbiologica Scandinavica 24 3 4 213 241 doi 10 1111 j 1699 0463 1947 tb00592 x PMID 18900891 Kottmeier HL 1947 Ueber blutungen in der menopause Speziell der klinischen bedeutung eines endometriums mit zeichen hormonaler beeinflussung Part I Acta Obstetricia et Gynecologica Scandinavica 27 s6 1 121 doi 10 3109 00016344709154486 ISSN 0001 6349 S2CID 81371648 There is no doubt that the conversion of the endometrium with injections of both synthetic and native estrogenic hormone preparations succeeds but the opinion whether native orally administered preparations can produce a proliferation mucosa changes with different authors PEDERSEN BJERGAARD 1939 was able to show that 90 of the folliculin taken up in the blood of the vena portae is inactivated in the liver Neither KAUFMANN 1933 1935 RAUSCHER 1939 1942 nor HERRNBERGER 1941 succeeded in bringing a castration endometrium into proliferation using large doses of orally administered preparations of estrone or estradiol Other results are reported by NEUSTAEDTER 1939 LAUTERWEIN 1940 and FERIN 1941 they succeeded in converting an atrophic castration endometrium into an unambiguous proliferation mucosa with 120 300 mg oestradiol or with 380 mg oestrone Kvorning I Christensen MS 1981 Bioavailability of Four Oestradiol Suspensions with Different Particle Sizes In Vivo In Vitro Correlation Drug Development and Industrial Pharmacy Informa UK Limited 7 3 289 303 doi 10 3109 03639048109051946 ISSN 0363 9045 a b c d e f g h Fotherby K August 1996 Bioavailability of orally administered sex steroids used in oral contraception and hormone replacement therapy Contraception 54 2 59 69 doi 10 1016 0010 7824 96 00136 9 PMID 8842581 a b c d e f g h i j k Kuhnz W Gansau C Mahler M September 1993 Pharmacokinetics of estradiol free and total estrone in young women following single intravenous and oral administration of 17b estradiol Arzneimittelforschung 43 9 966 73 ISSN 0004 4172 PMID 8240460 Leinung MC Feustel PJ Joseph J 2018 Hormonal Treatment of Transgender Women with Oral Estradiol Transgend Health 3 1 74 81 doi 10 1089 trgh 2017 0035 PMC 5944393 PMID 29756046 Lewin A Pisov G Turgeman R Fatum M Shufaro Y Simon A Laufer N Revel A Reubinoff B Safran A April 2002 Simplified artificial endometrial preparation using oral estradiol and novel vaginal progesterone tablets a prospective randomized study Gynecol Endocrinol 16 2 131 6 doi 10 1080 gye 16 2 131 136 PMID 12012623 S2CID 40295755 Ellis MJ Gao F Dehdashti F Jeffe DB Marcom PK Carey LA Dickler MN Silverman P Fleming GF Kommareddy A Jamalabadi Majidi S Crowder R Siegel BA August 2009 Lower dose vs high dose oral estradiol therapy of hormone receptor positive aromatase inhibitor resistant advanced breast cancer a phase 2 randomized study JAMA 302 7 774 80 doi 10 1001 jama 2009 1204 PMC 3460383 PMID 19690310 a b c Kuhl H September 1990 Pharmacokinetics of oestrogens and progestogens Maturitas 12 3 171 197 doi 10 1016 0378 5122 90 90003 o PMID 2170822 a b Fotherby K 1976 Pharmacology of Natural and Synthetic Estrogens In Campbell S ed The Management of the Menopause amp Post Menopausal Years The Proceedings of the International Symposium held in London 24 26 November 1975 Arranged by the Institute of Obstetrics and Gynaecology The University of London pp 87 95 doi 10 1007 978 94 011 6165 7 7 ISBN 978 94 011 6165 7 a b Fruzzetti F Bitzer J January 2010 Review of clinical experience with estradiol in combined oral contraceptives Contraception 81 1 8 15 doi 10 1016 j contraception 2009 08 010 PMID 20004267 a b Vree TB Timmer CJ August 1998 Enterohepatic cycling and pharmacokinetics of oestradiol in postmenopausal women The Journal of Pharmacy and Pharmacology 50 8 857 864 doi 10 1111 j 2042 7158 1998 tb04000 x PMID 9751449 S2CID 23550553 a b Timmer CJ Geurts TB 1999 Bioequivalence assessment of three different estradiol formulations in postmenopausal women in an open randomized single dose 3 way cross over study European Journal of Drug Metabolism and Pharmacokinetics 24 1 47 53 doi 10 1007 BF03190010 PMID 10412891 S2CID 20513936 a b Wiegratz I Fink T Rohr UD Lang E Leukel P Kuhl H September 2001 Cross over comparison of the pharmacokinetics of estradiol during hormone replacement therapy with estradiol valerate or micronized estradiol Cross over comparison of the pharmacokinetics of estradiol during hormone replacement therapy with estradiol valerate or micronized estradiol Zentralblatt fur Gynakologie in German 123 9 505 512 doi 10 1055 s 2001 18223 PMID 11709743 S2CID 260353858 a b c d e f g Lauritzen C September 1990 Clinical use of oestrogens and progestogens Maturitas 12 3 199 214 doi 10 1016 0378 5122 90 90004 P PMID 2215269 Lauritzen C June 1977 Estrogen thearpy in practice 3 Estrogen preparations and combination preparations Estrogen therapy in practice 3 Estrogen preparations and combination preparations Fortschritte Der Medizin in German 95 21 1388 92 PMID 559617 a b c d e a, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.