fbpx
Wikipedia

Estrogen receptor

Estrogen receptors (ERs) are a group of proteins found inside cells. They are receptors that are activated by the hormone estrogen (17β-estradiol).[1] Two classes of ER exist: nuclear estrogen receptors (ERα and ERβ), which are members of the nuclear receptor family of intracellular receptors, and membrane estrogen receptors (mERs) (GPER (GPR30), ER-X, and Gq-mER), which are mostly G protein-coupled receptors. This article refers to the former (ER).

estrogen receptor 1 (ER-alpha)
A dimer of the ligand-binding region of ERα (PDB rendering based on 3erd​).
Identifiers
SymbolESR1
Alt. symbolsER-α, NR3A1
NCBI gene2099
HGNC3467
OMIM133430
PDB1ERE
RefSeqNM_000125
UniProtP03372
Other data
LocusChr. 6 q24-q27
Search for
StructuresSwiss-model
DomainsInterPro
estrogen receptor 2 (ER-beta)
A dimer of the ligand-binding region of ERβ (PDB rendering based on 1u3s​).
Identifiers
SymbolESR2
Alt. symbolsER-β, NR3A2
NCBI gene2100
HGNC3468
OMIM601663
PDB1QKM
RefSeqNM_001040275
UniProtQ92731
Other data
LocusChr. 14 q21-q22
Search for
StructuresSwiss-model
DomainsInterPro

Once activated by estrogen, the ER is able to translocate into the nucleus and bind to DNA to regulate the activity of different genes (i.e. it is a DNA-binding transcription factor). However, it also has additional functions independent of DNA binding.[2]

As hormone receptors for sex steroids (steroid hormone receptors), ERs, androgen receptors (ARs), and progesterone receptors (PRs) are important in sexual maturation and gestation.

Proteomics edit

There are two different forms of the estrogen receptor, usually referred to as α and β, each encoded by a separate gene (ESR1 and ESR2, respectively). Hormone-activated estrogen receptors form dimers, and, since the two forms are coexpressed in many cell types, the receptors may form ERα (αα) or ERβ (ββ) homodimers or ERαβ (αβ) heterodimers.[3] Estrogen receptor alpha and beta show significant overall sequence homology, and both are composed of five domains designated A/B through F (listed from the N- to C-terminus; amino acid sequence numbers refer to human ER).[citation needed]

 
The domain structures of ERα and ERβ, including some of the known phosphorylation sites involved in ligand-independent regulation.

The N-terminal A/B domain is able to transactivate gene transcription in the absence of bound ligand (e.g., the estrogen hormone). While this region is able to activate gene transcription without ligand, this activation is weak and more selective compared to the activation provided by the E domain. The C domain, also known as the DNA-binding domain, binds to estrogen response elements in DNA. The D domain is a hinge region that connects the C and E domains. The E domain contains the ligand binding cavity as well as binding sites for coactivator and corepressor proteins. The E-domain in the presence of bound ligand is able to activate gene transcription. The C-terminal F domain function is not entirely clear and is variable in length.[citation needed]

Estrogen receptor alpha
N-terminal AF1 domain
Identifiers
SymbolOest_recep
PfamPF02159
InterProIPR001292
SCOP21hcp / SCOPe / SUPFAM
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary
Estrogen and estrogen related receptor C-terminal domain
Identifiers
SymbolESR1_C
PfamPF12743
Available protein structures:
Pfam  structures / ECOD  
PDBRCSB PDB; PDBe; PDBj
PDBsumstructure summary

Due to alternative RNA splicing, several ER isoforms are known to exist. At least three ERα and five ERβ isoforms have been identified. The ERβ isoforms receptor subtypes can transactivate transcription only when a heterodimer with the functional ERß1 receptor of 59 kDa is formed. The ERß3 receptor was detected at high levels in the testis. The two other ERα isoforms are 36 and 46kDa.[4][5]

Only in fish, but not in humans, an ERγ receptor has been described.[6]

Genetics edit

In humans, the two forms of the estrogen receptor are encoded by different genes, ESR1 and ESR2 on the sixth and fourteenth chromosome (6q25.1 and 14q23.2), respectively.

Distribution edit

Both ERs are widely expressed in different tissue types, however there are some notable differences in their expression patterns:[7]

The ERs are regarded to be cytoplasmic receptors in their unliganded state, but visualization research has shown that only a small fraction of the ERs reside in the cytoplasm, with most ER constitutively in the nucleus.[11] The "ERα" primary transcript gives rise to several alternatively spliced variants of unknown function.[12]

Ligands edit

Agonists edit

Mixed (agonist and antagonist mode of action) edit

Antagonists edit

Affinities edit

Affinities of estrogen receptor ligands for the ERα and ERβ
Ligand Other names Relative binding affinities (RBA, %)a Absolute binding affinities (Ki, nM)a Action
ERα ERβ ERα ERβ
Estradiol E2; 17β-Estradiol 100 100 0.115 (0.04–0.24) 0.15 (0.10–2.08) Estrogen
Estrone E1; 17-Ketoestradiol 16.39 (0.7–60) 6.5 (1.36–52) 0.445 (0.3–1.01) 1.75 (0.35–9.24) Estrogen
Estriol E3; 16α-OH-17β-E2 12.65 (4.03–56) 26 (14.0–44.6) 0.45 (0.35–1.4) 0.7 (0.63–0.7) Estrogen
Estetrol E4; 15α,16α-Di-OH-17β-E2 4.0 3.0 4.9 19 Estrogen
Alfatradiol 17α-Estradiol 20.5 (7–80.1) 8.195 (2–42) 0.2–0.52 0.43–1.2 Metabolite
16-Epiestriol 16β-Hydroxy-17β-estradiol 7.795 (4.94–63) 50 ? ? Metabolite
17-Epiestriol 16α-Hydroxy-17α-estradiol 55.45 (29–103) 79–80 ? ? Metabolite
16,17-Epiestriol 16β-Hydroxy-17α-estradiol 1.0 13 ? ? Metabolite
2-Hydroxyestradiol 2-OH-E2 22 (7–81) 11–35 2.5 1.3 Metabolite
2-Methoxyestradiol 2-MeO-E2 0.0027–2.0 1.0 ? ? Metabolite
4-Hydroxyestradiol 4-OH-E2 13 (8–70) 7–56 1.0 1.9 Metabolite
4-Methoxyestradiol 4-MeO-E2 2.0 1.0 ? ? Metabolite
2-Hydroxyestrone 2-OH-E1 2.0–4.0 0.2–0.4 ? ? Metabolite
2-Methoxyestrone 2-MeO-E1 <0.001–<1 <1 ? ? Metabolite
4-Hydroxyestrone 4-OH-E1 1.0–2.0 1.0 ? ? Metabolite
4-Methoxyestrone 4-MeO-E1 <1 <1 ? ? Metabolite
16α-Hydroxyestrone 16α-OH-E1; 17-Ketoestriol 2.0–6.5 35 ? ? Metabolite
2-Hydroxyestriol 2-OH-E3 2.0 1.0 ? ? Metabolite
4-Methoxyestriol 4-MeO-E3 1.0 1.0 ? ? Metabolite
Estradiol sulfate E2S; Estradiol 3-sulfate <1 <1 ? ? Metabolite
Estradiol disulfate Estradiol 3,17β-disulfate 0.0004 ? ? ? Metabolite
Estradiol 3-glucuronide E2-3G 0.0079 ? ? ? Metabolite
Estradiol 17β-glucuronide E2-17G 0.0015 ? ? ? Metabolite
Estradiol 3-gluc. 17β-sulfate E2-3G-17S 0.0001 ? ? ? Metabolite
Estrone sulfate E1S; Estrone 3-sulfate <1 <1 >10 >10 Metabolite
Estradiol benzoate EB; Estradiol 3-benzoate 10 ? ? ? Estrogen
Estradiol 17β-benzoate E2-17B 11.3 32.6 ? ? Estrogen
Estrone methyl ether Estrone 3-methyl ether 0.145 ? ? ? Estrogen
ent-Estradiol 1-Estradiol 1.31–12.34 9.44–80.07 ? ? Estrogen
Equilin 7-Dehydroestrone 13 (4.0–28.9) 13.0–49 0.79 0.36 Estrogen
Equilenin 6,8-Didehydroestrone 2.0–15 7.0–20 0.64 0.62 Estrogen
17β-Dihydroequilin 7-Dehydro-17β-estradiol 7.9–113 7.9–108 0.09 0.17 Estrogen
17α-Dihydroequilin 7-Dehydro-17α-estradiol 18.6 (18–41) 14–32 0.24 0.57 Estrogen
17β-Dihydroequilenin 6,8-Didehydro-17β-estradiol 35–68 90–100 0.15 0.20 Estrogen
17α-Dihydroequilenin 6,8-Didehydro-17α-estradiol 20 49 0.50 0.37 Estrogen
Δ8-Estradiol 8,9-Dehydro-17β-estradiol 68 72 0.15 0.25 Estrogen
Δ8-Estrone 8,9-Dehydroestrone 19 32 0.52 0.57 Estrogen
Ethinylestradiol EE; 17α-Ethynyl-17β-E2 120.9 (68.8–480) 44.4 (2.0–144) 0.02–0.05 0.29–0.81 Estrogen
Mestranol EE 3-methyl ether ? 2.5 ? ? Estrogen
Moxestrol RU-2858; 11β-Methoxy-EE 35–43 5–20 0.5 2.6 Estrogen
Methylestradiol 17α-Methyl-17β-estradiol 70 44 ? ? Estrogen
Diethylstilbestrol DES; Stilbestrol 129.5 (89.1–468) 219.63 (61.2–295) 0.04 0.05 Estrogen
Hexestrol Dihydrodiethylstilbestrol 153.6 (31–302) 60–234 0.06 0.06 Estrogen
Dienestrol Dehydrostilbestrol 37 (20.4–223) 56–404 0.05 0.03 Estrogen
Benzestrol (B2) 114 ? ? ? Estrogen
Chlorotrianisene TACE 1.74 ? 15.30 ? Estrogen
Triphenylethylene TPE 0.074 ? ? ? Estrogen
Triphenylbromoethylene TPBE 2.69 ? ? ? Estrogen
Tamoxifen ICI-46,474 3 (0.1–47) 3.33 (0.28–6) 3.4–9.69 2.5 SERM
Afimoxifene 4-Hydroxytamoxifen; 4-OHT 100.1 (1.7–257) 10 (0.98–339) 2.3 (0.1–3.61) 0.04–4.8 SERM
Toremifene 4-Chlorotamoxifen; 4-CT ? ? 7.14–20.3 15.4 SERM
Clomifene MRL-41 25 (19.2–37.2) 12 0.9 1.2 SERM
Cyclofenil F-6066; Sexovid 151–152 243 ? ? SERM
Nafoxidine U-11,000A 30.9–44 16 0.3 0.8 SERM
Raloxifene 41.2 (7.8–69) 5.34 (0.54–16) 0.188–0.52 20.2 SERM
Arzoxifene LY-353,381 ? ? 0.179 ? SERM
Lasofoxifene CP-336,156 10.2–166 19.0 0.229 ? SERM
Ormeloxifene Centchroman ? ? 0.313 ? SERM
Levormeloxifene 6720-CDRI; NNC-460,020 1.55 1.88 ? ? SERM
Ospemifene Deaminohydroxytoremifene 0.82–2.63 0.59–1.22 ? ? SERM
Bazedoxifene ? ? 0.053 ? SERM
Etacstil GW-5638 4.30 11.5 ? ? SERM
ICI-164,384 63.5 (3.70–97.7) 166 0.2 0.08 Antiestrogen
Fulvestrant ICI-182,780 43.5 (9.4–325) 21.65 (2.05–40.5) 0.42 1.3 Antiestrogen
Propylpyrazoletriol PPT 49 (10.0–89.1) 0.12 0.40 92.8 ERα agonist
16α-LE2 16α-Lactone-17β-estradiol 14.6–57 0.089 0.27 131 ERα agonist
16α-Iodo-E2 16α-Iodo-17β-estradiol 30.2 2.30 ? ? ERα agonist
Methylpiperidinopyrazole MPP 11 0.05 ? ? ERα antagonist
Diarylpropionitrile DPN 0.12–0.25 6.6–18 32.4 1.7 ERβ agonist
8β-VE2 8β-Vinyl-17β-estradiol 0.35 22.0–83 12.9 0.50 ERβ agonist
Prinaberel ERB-041; WAY-202,041 0.27 67–72 ? ? ERβ agonist
ERB-196 WAY-202,196 ? 180 ? ? ERβ agonist
Erteberel SERBA-1; LY-500,307 ? ? 2.68 0.19 ERβ agonist
SERBA-2 ? ? 14.5 1.54 ERβ agonist
Coumestrol 9.225 (0.0117–94) 64.125 (0.41–185) 0.14–80.0 0.07–27.0 Xenoestrogen
Genistein 0.445 (0.0012–16) 33.42 (0.86–87) 2.6–126 0.3–12.8 Xenoestrogen
Equol 0.2–0.287 0.85 (0.10–2.85) ? ? Xenoestrogen
Daidzein 0.07 (0.0018–9.3) 0.7865 (0.04–17.1) 2.0 85.3 Xenoestrogen
Biochanin A 0.04 (0.022–0.15) 0.6225 (0.010–1.2) 174 8.9 Xenoestrogen
Kaempferol 0.07 (0.029–0.10) 2.2 (0.002–3.00) ? ? Xenoestrogen
Naringenin 0.0054 (<0.001–0.01) 0.15 (0.11–0.33) ? ? Xenoestrogen
8-Prenylnaringenin 8-PN 4.4 ? ? ? Xenoestrogen
Quercetin <0.001–0.01 0.002–0.040 ? ? Xenoestrogen
Ipriflavone <0.01 <0.01 ? ? Xenoestrogen
Miroestrol 0.39 ? ? ? Xenoestrogen
Deoxymiroestrol 2.0 ? ? ? Xenoestrogen
β-Sitosterol <0.001–0.0875 <0.001–0.016 ? ? Xenoestrogen
Resveratrol <0.001–0.0032 ? ? ? Xenoestrogen
α-Zearalenol 48 (13–52.5) ? ? ? Xenoestrogen
β-Zearalenol 0.6 (0.032–13) ? ? ? Xenoestrogen
Zeranol α-Zearalanol 48–111 ? ? ? Xenoestrogen
Taleranol β-Zearalanol 16 (13–17.8) 14 0.8 0.9 Xenoestrogen
Zearalenone ZEN 7.68 (2.04–28) 9.45 (2.43–31.5) ? ? Xenoestrogen
Zearalanone ZAN 0.51 ? ? ? Xenoestrogen
Bisphenol A BPA 0.0315 (0.008–1.0) 0.135 (0.002–4.23) 195 35 Xenoestrogen
Endosulfan EDS <0.001–<0.01 <0.01 ? ? Xenoestrogen
Kepone Chlordecone 0.0069–0.2 ? ? ? Xenoestrogen
o,p'-DDT 0.0073–0.4 ? ? ? Xenoestrogen
p,p'-DDT 0.03 ? ? ? Xenoestrogen
Methoxychlor p,p'-Dimethoxy-DDT 0.01 (<0.001–0.02) 0.01–0.13 ? ? Xenoestrogen
HPTE Hydroxychlor; p,p'-OH-DDT 1.2–1.7 ? ? ? Xenoestrogen
Testosterone T; 4-Androstenolone <0.0001–<0.01 <0.002–0.040 >5000 >5000 Androgen
Dihydrotestosterone DHT; 5α-Androstanolone 0.01 (<0.001–0.05) 0.0059–0.17 221–>5000 73–1688 Androgen
Nandrolone 19-Nortestosterone; 19-NT 0.01 0.23 765 53 Androgen
Dehydroepiandrosterone DHEA; Prasterone 0.038 (<0.001–0.04) 0.019–0.07 245–1053 163–515 Androgen
5-Androstenediol A5; Androstenediol 6 17 3.6 0.9 Androgen
4-Androstenediol 0.5 0.6 23 19 Androgen
4-Androstenedione A4; Androstenedione <0.01 <0.01 >10000 >10000 Androgen
3α-Androstanediol 3α-Adiol 0.07 0.3 260 48 Androgen
3β-Androstanediol 3β-Adiol 3 7 6 2 Androgen
Androstanedione 5α-Androstanedione <0.01 <0.01 >10000 >10000 Androgen
Etiocholanedione 5β-Androstanedione <0.01 <0.01 >10000 >10000 Androgen
Methyltestosterone 17α-Methyltestosterone <0.0001 ? ? ? Androgen
Ethinyl-3α-androstanediol 17α-Ethynyl-3α-adiol 4.0 <0.07 ? ? Estrogen
Ethinyl-3β-androstanediol 17α-Ethynyl-3β-adiol 50 5.6 ? ? Estrogen
Progesterone P4; 4-Pregnenedione <0.001–0.6 <0.001–0.010 ? ? Progestogen
Norethisterone NET; 17α-Ethynyl-19-NT 0.085 (0.0015–<0.1) 0.1 (0.01–0.3) 152 1084 Progestogen
Norethynodrel 5(10)-Norethisterone 0.5 (0.3–0.7) <0.1–0.22 14 53 Progestogen
Tibolone 7α-Methylnorethynodrel 0.5 (0.45–2.0) 0.2–0.076 ? ? Progestogen
Δ4-Tibolone 7α-Methylnorethisterone 0.069–<0.1 0.027–<0.1 ? ? Progestogen
3α-Hydroxytibolone 2.5 (1.06–5.0) 0.6–0.8 ? ? Progestogen
3β-Hydroxytibolone 1.6 (0.75–1.9) 0.070–0.1 ? ? Progestogen
Footnotes: a = (1) Binding affinity values are of the format "median (range)" (# (#–#)), "range" (#–#), or "value" (#) depending on the values available. The full sets of values within the ranges can be found in the Wiki code. (2) Binding affinities were determined via displacement studies in a variety of in-vitro systems with labeled estradiol and human ERα and ERβ proteins (except the ERβ values from Kuiper et al. (1997), which are rat ERβ). Sources: See template page.

Binding and functional selectivity edit

The ER's helix 12 domain plays a crucial role in determining interactions with coactivators and corepressors and, therefore, the respective agonist or antagonist effect of the ligand.[13][14]

Different ligands may differ in their affinity for alpha and beta isoforms of the estrogen receptor:

Subtype selective estrogen receptor modulators preferentially bind to either the α- or the β-subtype of the receptor. In addition, the different estrogen receptor combinations may respond differently to various ligands, which may translate into tissue selective agonistic and antagonistic effects.[16] The ratio of α- to β- subtype concentration has been proposed to play a role in certain diseases.[17]

The concept of selective estrogen receptor modulators is based on the ability to promote ER interactions with different proteins such as transcriptional coactivator or corepressors. Furthermore, the ratio of coactivator to corepressor protein varies in different tissues.[18] As a consequence, the same ligand may be an agonist in some tissue (where coactivators predominate) while antagonistic in other tissues (where corepressors dominate). Tamoxifen, for example, is an antagonist in breast and is, therefore, used as a breast cancer treatment[19] but an ER agonist in bone (thereby preventing osteoporosis) and a partial agonist in the endometrium (increasing the risk of uterine cancer).

Signal transduction edit

Since estrogen is a steroidal hormone, it can pass through the phospholipid membranes of the cell, and receptors therefore do not need to be membrane-bound in order to bind with estrogen.[citation needed]

Genomic edit

In the absence of hormone, estrogen receptors are largely located in the cytosol. Hormone binding to the receptor triggers a number of events starting with migration of the receptor from the cytosol into the nucleus, dimerization of the receptor, and subsequent binding of the receptor dimer to specific sequences of DNA known as hormone response elements. The DNA/receptor complex then recruits other proteins that are responsible for the transcription of downstream DNA into mRNA and finally protein that results in a change in cell function. Estrogen receptors also occur within the cell nucleus, and both estrogen receptor subtypes have a DNA-binding domain and can function as transcription factors to regulate the production of proteins.[citation needed]

The receptor also interacts with activator protein 1 and Sp-1 to promote transcription, via several coactivators such as PELP-1.[2]

Direct acetylation of the estrogen receptor alpha at the lysine residues in hinge region by p300 regulates transactivation and hormone sensitivity.[20]

Non-genomic edit

Some estrogen receptors associate with the cell surface membrane and can be rapidly activated by exposure of cells to estrogen.[21][22]

In addition, some ER may associate with cell membranes by attachment to caveolin-1 and form complexes with G proteins, striatin, receptor tyrosine kinases (e.g., EGFR and IGF-1), and non-receptor tyrosine kinases (e.g., Src).[2][21] Through striatin, some of this membrane bound ER may lead to increased levels of Ca2+ and nitric oxide (NO).[23] Through the receptor tyrosine kinases, signals are sent to the nucleus through the mitogen-activated protein kinase (MAPK/ERK) pathway and phosphoinositide 3-kinase (Pl3K/AKT) pathway.[24] Glycogen synthase kinase-3 (GSK)-3β inhibits transcription by nuclear ER by inhibiting phosphorylation of serine 118 of nuclear ERα. Phosphorylation of GSK-3β removes its inhibitory effect, and this can be achieved by the PI3K/AKT pathway and the MAPK/ERK pathway, via rsk.[citation needed]

17β-Estradiol has been shown to activate the G protein-coupled receptor GPR30.[25] However the subcellular localization and role of this receptor are still object of controversy.[26]

Differences and malfunction edit

 
Nolvadex (tamoxifen) 20 mg
 
Arimidex (anastrozole) 1 mg

Cancer edit

Estrogen receptors are over-expressed in around 70% of breast cancer cases, referred to as "ER-positive", and can be demonstrated in such tissues using immunohistochemistry. Two hypotheses have been proposed to explain why this causes tumorigenesis, and the available evidence suggests that both mechanisms contribute:

The result of both processes is disruption of cell cycle, apoptosis and DNA repair, which increases the chance of tumour formation. ERα is certainly associated with more differentiated tumours, while evidence that ERβ is involved is controversial. Different versions of the ESR1 gene have been identified (with single-nucleotide polymorphisms) and are associated with different risks of developing breast cancer.[19]

Estrogen and the ERs have also been implicated in breast cancer, ovarian cancer, colon cancer, prostate cancer, and endometrial cancer. Advanced colon cancer is associated with a loss of ERβ, the predominant ER in colon tissue, and colon cancer is treated with ERβ-specific agonists.[27]

Endocrine therapy for breast cancer involves selective estrogen receptor modulators (SERMS), such as tamoxifen, which behave as ER antagonists in breast tissue, or aromatase inhibitors, such as anastrozole. ER status is used to determine sensitivity of breast cancer lesions to tamoxifen and aromatase inhibitors.[28] Another SERM, raloxifene, has been used as a preventive chemotherapy for women judged to have a high risk of developing breast cancer.[29] Another chemotherapeutic anti-estrogen, ICI 182,780 (Faslodex), which acts as a complete antagonist, also promotes degradation of the estrogen receptor.

However, de novo resistance to endocrine therapy undermines the efficacy of using competitive inhibitors like tamoxifen. Hormone deprivation through the use of aromatase inhibitors is also rendered futile.[30] Massively parallel genome sequencing has revealed the common presence of point mutations on ESR1 that are drivers for resistance, and promote the agonist conformation of ERα without the bound ligand. Such constitutive, estrogen-independent activity is driven by specific mutations, such as the D538G or Y537S/C/N mutations, in the ligand binding domain of ESR1 and promote cell proliferation and tumor progression without hormone stimulation.[31]

Menopause edit

The metabolic effects of estrogen in postmenopausal women has been linked to the genetic polymorphism of estrogen receptor beta (ER-β).[32]

Aging edit

Studies in female mice have shown that estrogen receptor-alpha declines in the pre-optic hypothalamus as they grow old. Female mice that were given a calorically restricted diet during the majority of their lives maintained higher levels of ERα in the pre-optic hypothalamus than their non-calorically restricted counterparts.[8]

Obesity edit

A dramatic demonstration of the importance of estrogens in the regulation of fat deposition comes from transgenic mice that were genetically engineered to lack a functional aromatase gene. These mice have very low levels of estrogen and are obese.[33] Obesity was also observed in estrogen deficient female mice lacking the follicle-stimulating hormone receptor.[34] The effect of low estrogen on increased obesity has been linked to estrogen receptor alpha.[35]

SERMs for other treatment purposes edit

SERMs are also being studied for the treatment of uterine fibroids[36] and endometriosis.[37]

Estrogen insensitivity syndrome edit

Estrogen insensitivity syndrome is a rare intersex condition with 5 reported cases, in which estrogen receptors do not function. The phenotype results in extensive masculinization. Unlike androgen insensitivity syndrome, EIS does not result in phenotype sex reversal. It is incredibly rare and is anologious to the AIS, and forms of adrenal hyperplasia. The reason why AIS is common and EIS is exceptionally rare is that XX AIS does not result in infertility, and therefore can be maternally inheirented, while EIS always results in infertility regardless of karotype. A negative feedback loop between the endocrine system also occurs in EIS, in which the gonads produce markedly higher levels of estrogen for individuals with EIS (119–272 pg/mL XY and 750-3,500 pg/mL XX, see average levels) however no feminizing effects occur.[38][39]

Discovery edit

Estrogen receptors were first identified by Elwood V. Jensen at the University of Chicago in 1958,[40][41] for which Jensen was awarded the Lasker Award.[42] The gene for a second estrogen receptor (ERβ) was identified in 1996 by Kuiper et al. in rat prostate and ovary using degenerate ERalpha primers.[43]

See also edit

References edit

  1. ^ Dahlman-Wright K, Cavailles V, Fuqua SA, Jordan VC, Katzenellenbogen JA, Korach KS, Maggi A, Muramatsu M, Parker MG, Gustafsson JA (Dec 2006). "International Union of Pharmacology. LXIV. Estrogen receptors". Pharmacological Reviews. 58 (4): 773–81. doi:10.1124/pr.58.4.8. PMID 17132854. S2CID 45996586.
  2. ^ a b c Levin ER (Aug 2005). "Integration of the extranuclear and nuclear actions of estrogen". Molecular Endocrinology. 19 (8): 1951–9. doi:10.1210/me.2004-0390. PMC 1249516. PMID 15705661.
  3. ^ Li X, Huang J, Yi P, Bambara RA, Hilf R, Muyan M (Sep 2004). "Single-chain estrogen receptors (ERs) reveal that the ERalpha/beta heterodimer emulates functions of the ERalpha dimer in genomic estrogen signaling pathways". Molecular and Cellular Biology. 24 (17): 7681–94. doi:10.1128/MCB.24.17.7681-7694.2004. PMC 506997. PMID 15314175.
  4. ^ Nilsson S, Mäkelä S, Treuter E, Tujague M, Thomsen J, Andersson G, Enmark E, Pettersson K, Warner M, Gustafsson JA (Oct 2001). "Mechanisms of estrogen action". Physiological Reviews. 81 (4): 1535–65. doi:10.1152/physrev.2001.81.4.1535. PMID 11581496. S2CID 10223568.
  5. ^ Leung YK, Mak P, Hassan S, Ho SM (Aug 2006). "Estrogen receptor (ER)-beta isoforms: a key to understanding ER-beta signaling". Proceedings of the National Academy of Sciences of the United States of America. 103 (35): 13162–7. Bibcode:2006PNAS..10313162L. doi:10.1073/pnas.0605676103. PMC 1552044. PMID 16938840.
  6. ^ Hawkins MB, Thornton JW, Crews D, Skipper JK, Dotte A, Thomas P (Sep 2000). "Identification of a third distinct estrogen receptor and reclassification of estrogen receptors in teleosts". Proceedings of the National Academy of Sciences of the United States of America. 97 (20): 10751–6. Bibcode:2000PNAS...9710751H. doi:10.1073/pnas.97.20.10751. PMC 27095. PMID 11005855.
  7. ^ Couse JF, Lindzey J, Grandien K, Gustafsson JA, Korach KS (Nov 1997). "Tissue distribution and quantitative analysis of estrogen receptor-alpha (ERalpha) and estrogen receptor-beta (ERbeta) messenger ribonucleic acid in the wild-type and ERalpha-knockout mouse". Endocrinology. 138 (11): 4613–21. doi:10.1210/en.138.11.4613. PMID 9348186.
  8. ^ a b Yaghmaie F, Saeed O, Garan SA, Freitag W, Timiras PS, Sternberg H (Jun 2005). "Caloric restriction reduces cell loss and maintains estrogen receptor-alpha immunoreactivity in the pre-optic hypothalamus of female B6D2F1 mice" (PDF). Neuro Endocrinology Letters. 26 (3): 197–203. PMID 15990721.
  9. ^ Hess RA (Jul 2003). "Estrogen in the adult male reproductive tract: a review". Reproductive Biology and Endocrinology. 1 (52): 52. doi:10.1186/1477-7827-1-52. PMC 179885. PMID 12904263.
  10. ^ Babiker FA, De Windt LJ, van Eickels M, Grohe C, Meyer R, Doevendans PA (Feb 2002). "Estrogenic hormone action in the heart: regulatory network and function". Cardiovascular Research. 53 (3): 709–19. doi:10.1016/S0008-6363(01)00526-0. PMID 11861041.
  11. ^ Htun H, Holth LT, Walker D, Davie JR, Hager GL (Feb 1999). "Direct visualization of the human estrogen receptor alpha reveals a role for ligand in the nuclear distribution of the receptor". Molecular Biology of the Cell. 10 (2): 471–86. doi:10.1091/mbc.10.2.471. PMC 25181. PMID 9950689.
  12. ^ Pfeffer U, Fecarotta E, Vidali G (May 1995). "Coexpression of multiple estrogen receptor variant messenger RNAs in normal and neoplastic breast tissues and in MCF-7 cells". Cancer Research. 55 (10): 2158–65. PMID 7743517.
  13. ^ Ascenzi P, Bocedi A, Marino M (Aug 2006). "Structure-function relationship of estrogen receptor alpha and beta: impact on human health". Molecular Aspects of Medicine. 27 (4): 299–402. doi:10.1016/j.mam.2006.07.001. PMID 16914190.
  14. ^ Bourguet W, Germain P, Gronemeyer H (Oct 2000). "Nuclear receptor ligand-binding domains: three-dimensional structures, molecular interactions and pharmacological implications". Trends in Pharmacological Sciences. 21 (10): 381–8. doi:10.1016/S0165-6147(00)01548-0. PMID 11050318.
  15. ^ a b c Zhu BT, Han GZ, Shim JY, Wen Y, Jiang XR (Sep 2006). "Quantitative structure-activity relationship of various endogenous estrogen metabolites for human estrogen receptor alpha and beta subtypes: Insights into the structural determinants favoring a differential subtype binding". Endocrinology. 147 (9): 4132–50. doi:10.1210/en.2006-0113. PMID 16728493.
  16. ^ Kansra S, Yamagata S, Sneade L, Foster L, Ben-Jonathan N (Jul 2005). "Differential effects of estrogen receptor antagonists on pituitary lactotroph proliferation and prolactin release". Molecular and Cellular Endocrinology. 239 (1–2): 27–36. doi:10.1016/j.mce.2005.04.008. PMID 15950373. S2CID 42052008.
  17. ^ Bakas P, Liapis A, Vlahopoulos S, Giner M, Logotheti S, Creatsas G, Meligova AK, Alexis MN, Zoumpourlis V (Nov 2008). "Estrogen receptor alpha and beta in uterine fibroids: a basis for altered estrogen responsiveness". Fertility and Sterility. 90 (5): 1878–85. doi:10.1016/j.fertnstert.2007.09.019. hdl:10442/7330. PMID 18166184.
  18. ^ Shang Y, Brown M (Mar 2002). "Molecular determinants for the tissue specificity of SERMs". Science. 295 (5564): 2465–8. Bibcode:2002Sci...295.2465S. doi:10.1126/science.1068537. PMID 11923541. S2CID 30634073.
  19. ^ a b Deroo BJ, Korach KS (Mar 2006). "Estrogen receptors and human disease". The Journal of Clinical Investigation. 116 (3): 561–70. doi:10.1172/JCI27987. PMC 2373424. PMID 16511588.
  20. ^ Wang C, Fu M, Angeletti RH, Siconolfi-Baez L, Reutens AT, Albanese C, Lisanti MP, Katzenellenbogen BS, Kato S, Hopp T, Fuqua SA, Lopez GN, Kushner PJ, Pestell RG (May 2001). "Direct acetylation of the estrogen receptor alpha hinge region by p300 regulates transactivation and hormone sensitivity". The Journal of Biological Chemistry. 276 (21): 18375–83. doi:10.1074/jbc.M100800200. PMID 11279135.
  21. ^ a b Zivadinovic D, Gametchu B, Watson CS (2005). "Membrane estrogen receptor-alpha levels in MCF-7 breast cancer cells predict cAMP and proliferation responses". Breast Cancer Research. 7 (1): R101–12. doi:10.1186/bcr958. PMC 1064104. PMID 15642158.
  22. ^ Björnström L, Sjöberg M (Jun 2004). "Estrogen receptor-dependent activation of AP-1 via non-genomic signalling". Nuclear Receptor. 2 (1): 3. doi:10.1186/1478-1336-2-3. PMC 434532. PMID 15196329.
  23. ^ Lu Q, Pallas DC, Surks HK, Baur WE, Mendelsohn ME, Karas RH (Dec 2004). "Striatin assembles a membrane signaling complex necessary for rapid, nongenomic activation of endothelial NO synthase by estrogen receptor alpha". Proceedings of the National Academy of Sciences of the United States of America. 101 (49): 17126–31. Bibcode:2004PNAS..10117126L. doi:10.1073/pnas.0407492101. PMC 534607. PMID 15569929.
  24. ^ Kato S, Endoh H, Masuhiro Y, Kitamoto T, Uchiyama S, Sasaki H, Masushige S, Gotoh Y, Nishida E, Kawashima H, Metzger D, Chambon P (Dec 1995). "Activation of the estrogen receptor through phosphorylation by mitogen-activated protein kinase". Science. 270 (5241): 1491–4. Bibcode:1995Sci...270.1491K. doi:10.1126/science.270.5241.1491. PMID 7491495. S2CID 4662264.
  25. ^ Prossnitz ER, Arterburn JB, Sklar LA (Feb 2007). "GPR30: A G protein-coupled receptor for estrogen". Molecular and Cellular Endocrinology. 265–266: 138–42. doi:10.1016/j.mce.2006.12.010. PMC 1847610. PMID 17222505.
  26. ^ Otto C, Rohde-Schulz B, Schwarz G, Fuchs I, Klewer M, Brittain D, Langer G, Bader B, Prelle K, Nubbemeyer R, Fritzemeier KH (Oct 2008). "G protein-coupled receptor 30 localizes to the endoplasmic reticulum and is not activated by estradiol". Endocrinology. 149 (10): 4846–56. doi:10.1210/en.2008-0269. PMID 18566127.
  27. ^ Harris HA, Albert LM, Leathurby Y, Malamas MS, Mewshaw RE, Miller CP, Kharode YP, Marzolf J, Komm BS, Winneker RC, Frail DE, Henderson RA, Zhu Y, Keith JC (Oct 2003). "Evaluation of an estrogen receptor-beta agonist in animal models of human disease". Endocrinology. 144 (10): 4241–9. doi:10.1210/en.2003-0550. PMID 14500559.
  28. ^ Clemons M, Danson S, Howell A (Aug 2002). "Tamoxifen ("Nolvadex"): a review". Cancer Treatment Reviews. 28 (4): 165–80. doi:10.1016/s0305-7372(02)00036-1. PMID 12363457.
  29. ^ Fabian CJ, Kimler BF (Mar 2005). "Selective estrogen-receptor modulators for primary prevention of breast cancer". Journal of Clinical Oncology. 23 (8): 1644–55. doi:10.1200/JCO.2005.11.005. PMID 15755972.
  30. ^ Oesterreich S, Davidson NE (Dec 2013). "The search for ESR1 mutations in breast cancer". Nature Genetics. 45 (12): 1415–6. doi:10.1038/ng.2831. PMC 4934882. PMID 24270445.
  31. ^ Li S, Shen D, Shao J, Crowder R, Liu W, Prat A, et al. (Sep 2013). "Endocrine-therapy-resistant ESR1 variants revealed by genomic characterization of breast-cancer-derived xenografts". Cell Reports. 4 (6): 1116–30. doi:10.1016/j.celrep.2013.08.022. PMC 3881975. PMID 24055055.
  32. ^ Darabi M, Ani M, Panjehpour M, Rabbani M, Movahedian A, Zarean E (2011). "Effect of estrogen receptor β A1730G polymorphism on ABCA1 gene expression response to postmenopausal hormone replacement therapy". Genetic Testing and Molecular Biomarkers. 15 (1–2): 11–5. doi:10.1089/gtmb.2010.0106. PMID 21117950.
  33. ^ Hewitt KN, Boon WC, Murata Y, Jones ME, Simpson ER (Sep 2003). "The aromatase knockout mouse presents with a sexually dimorphic disruption to cholesterol homeostasis". Endocrinology. 144 (9): 3895–903. doi:10.1210/en.2003-0244. PMID 12933663.
  34. ^ Danilovich N, Babu PS, Xing W, Gerdes M, Krishnamurthy H, Sairam MR (Nov 2000). "Estrogen deficiency, obesity, and skeletal abnormalities in follicle-stimulating hormone receptor knockout (FORKO) female mice". Endocrinology. 141 (11): 4295–308. doi:10.1210/endo.141.11.7765. PMID 11089565.
  35. ^ Ohlsson C, Hellberg N, Parini P, Vidal O, Bohlooly-Y M, Bohlooly M, Rudling M, Lindberg MK, Warner M, Angelin B, Gustafsson JA (Nov 2000). "Obesity and disturbed lipoprotein profile in estrogen receptor-alpha-deficient male mice". Biochemical and Biophysical Research Communications. 278 (3): 640–5. doi:10.1006/bbrc.2000.3827. PMID 11095962.
  36. ^ Lingxia, X; Taixiang, W; Xiaoyan, C (2007). Xie, Lingxia (ed.). "Selective Estrogen Receptor Modulators (Serms) for Uterine Leiomyomas". Cochrane Database of Systematic Reviews (2): CD005287. doi:10.1002/14651858.cd005287.pub2. PMID 17443581.
  37. ^ van Hoesel, Maaike HT; Chen, Ya Li; Zheng, Ai; Wan, Qi; Mourad, Selma M (2021-05-11). Cochrane Gynaecology and Fertility Group (ed.). "Selective oestrogen receptor modulators (SERMs) for endometriosis". Cochrane Database of Systematic Reviews. 2021 (5): CD011169. doi:10.1002/14651858.CD011169.pub2. PMC 8130989. PMID 33973648.
  38. ^ Thomas L. Lemke; David A. Williams (24 January 2012). Foye's Principles of Medicinal Chemistry. Lippincott Williams & Wilkins. pp. 1392–. ISBN 978-1-60913-345-0.
  39. ^ Smith EP, Boyd J, Frank GR, Takahashi H, Cohen RM, Specker B, Williams TC, Lubahn DB, Korach KS (October 1994). "Estrogen resistance caused by a mutation in the estrogen-receptor gene in a man". The New England Journal of Medicine. 331 (16): 1056–61. doi:10.1056/NEJM199410203311604. PMID 8090165.
  40. ^ Jensen EV, Jordan VC (Jun 2003). "The estrogen receptor: a model for molecular medicine" (abstract). Clinical Cancer Research. 9 (6): 1980–9. PMID 12796359.
  41. ^ Jensen E (2011). "A conversation with Elwood Jensen. Interview by David D. Moore". Annual Review of Physiology. 74: 1–11. doi:10.1146/annurev-physiol-020911-153327. PMID 21888507.
  42. ^ David Bracey, 2004 "UC Scientist Wins 'American Nobel' Research Award." University of Cincinnati press release.
  43. ^ Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA (Jun 1996). "Cloning of a novel receptor expressed in rat prostate and ovary". Proceedings of the National Academy of Sciences of the United States of America. 93 (12): 5925–30. doi:10.1073/pnas.93.12.5925. PMC 39164. PMID 8650195.

External links edit

  • Estrogen Receptors at the U.S. National Library of Medicine Medical Subject Headings (MeSH)
  • David S. Goodsell (2003-09-01). . Protein Data Bank, Research Collaboratory for Structural Bioinformatics (RCSB). Archived from the original on March 11, 2006. Retrieved 2008-03-15.

estrogen, receptor, group, proteins, found, inside, cells, they, receptors, that, activated, hormone, estrogen, 17β, estradiol, classes, exist, nuclear, estrogen, receptors, erα, erβ, which, members, nuclear, receptor, family, intracellular, receptors, membran. Estrogen receptors ERs are a group of proteins found inside cells They are receptors that are activated by the hormone estrogen 17b estradiol 1 Two classes of ER exist nuclear estrogen receptors ERa and ERb which are members of the nuclear receptor family of intracellular receptors and membrane estrogen receptors mERs GPER GPR30 ER X and Gq mER which are mostly G protein coupled receptors This article refers to the former ER estrogen receptor 1 ER alpha A dimer of the ligand binding region of ERa PDB rendering based on 3erd IdentifiersSymbolESR1Alt symbolsER a NR3A1NCBI gene2099HGNC3467OMIM133430PDB1ERERefSeqNM 000125UniProtP03372Other dataLocusChr 6 q24 q27Search forStructuresSwiss modelDomainsInterProestrogen receptor 2 ER beta A dimer of the ligand binding region of ERb PDB rendering based on 1u3s IdentifiersSymbolESR2Alt symbolsER b NR3A2NCBI gene2100HGNC3468OMIM601663PDB1QKMRefSeqNM 001040275UniProtQ92731Other dataLocusChr 14 q21 q22Search forStructuresSwiss modelDomainsInterProOnce activated by estrogen the ER is able to translocate into the nucleus and bind to DNA to regulate the activity of different genes i e it is a DNA binding transcription factor However it also has additional functions independent of DNA binding 2 As hormone receptors for sex steroids steroid hormone receptors ERs androgen receptors ARs and progesterone receptors PRs are important in sexual maturation and gestation Contents 1 Proteomics 2 Genetics 3 Distribution 4 Ligands 4 1 Agonists 4 2 Mixed agonist and antagonist mode of action 4 3 Antagonists 4 4 Affinities 5 Binding and functional selectivity 6 Signal transduction 6 1 Genomic 6 2 Non genomic 7 Differences and malfunction 7 1 Cancer 7 2 Menopause 7 3 Aging 7 4 Obesity 7 5 SERMs for other treatment purposes 7 6 Estrogen insensitivity syndrome 8 Discovery 9 See also 10 References 11 External linksProteomics editThere are two different forms of the estrogen receptor usually referred to as a and b each encoded by a separate gene ESR1 and ESR2 respectively Hormone activated estrogen receptors form dimers and since the two forms are coexpressed in many cell types the receptors may form ERa aa or ERb bb homodimers or ERab ab heterodimers 3 Estrogen receptor alpha and beta show significant overall sequence homology and both are composed of five domains designated A B through F listed from the N to C terminus amino acid sequence numbers refer to human ER citation needed nbsp The domain structures of ERa and ERb including some of the known phosphorylation sites involved in ligand independent regulation The N terminal A B domain is able to transactivate gene transcription in the absence of bound ligand e g the estrogen hormone While this region is able to activate gene transcription without ligand this activation is weak and more selective compared to the activation provided by the E domain The C domain also known as the DNA binding domain binds to estrogen response elements in DNA The D domain is a hinge region that connects the C and E domains The E domain contains the ligand binding cavity as well as binding sites for coactivator and corepressor proteins The E domain in the presence of bound ligand is able to activate gene transcription The C terminal F domain function is not entirely clear and is variable in length citation needed Estrogen receptor alphaN terminal AF1 domainIdentifiersSymbolOest recepPfamPF02159InterProIPR001292SCOP21hcp SCOPe SUPFAMAvailable protein structures Pfam structures ECOD PDBRCSB PDB PDBe PDBjPDBsumstructure summary Estrogen and estrogen related receptor C terminal domainIdentifiersSymbolESR1 CPfamPF12743Available protein structures Pfam structures ECOD PDBRCSB PDB PDBe PDBjPDBsumstructure summaryDue to alternative RNA splicing several ER isoforms are known to exist At least three ERa and five ERb isoforms have been identified The ERb isoforms receptor subtypes can transactivate transcription only when a heterodimer with the functional ERss1 receptor of 59 kDa is formed The ERss3 receptor was detected at high levels in the testis The two other ERa isoforms are 36 and 46kDa 4 5 Only in fish but not in humans an ERg receptor has been described 6 Genetics editIn humans the two forms of the estrogen receptor are encoded by different genes ESR1 and ESR2 on the sixth and fourteenth chromosome 6q25 1 and 14q23 2 respectively Distribution editBoth ERs are widely expressed in different tissue types however there are some notable differences in their expression patterns 7 The ERa is found in endometrium breast cancer cells ovarian stromal cells and the hypothalamus 8 In males ERa protein is found in the epithelium of the efferent ducts 9 The expression of the ERb protein has been documented in ovarian granulosa cells kidney brain bone heart 10 lungs intestinal mucosa prostate and endothelial cells The ERs are regarded to be cytoplasmic receptors in their unliganded state but visualization research has shown that only a small fraction of the ERs reside in the cytoplasm with most ER constitutively in the nucleus 11 The ERa primary transcript gives rise to several alternatively spliced variants of unknown function 12 Ligands editAgonists edit Endogenous estrogens e g estradiol estrone estriol estetrol Natural estrogens e g conjugated estrogens Synthetic estrogens e g ethinylestradiol diethylstilbestrol Mixed agonist and antagonist mode of action edit Phytoestrogens e g coumestrol daidzein genistein miroestrol Selective estrogen receptor modulators e g tamoxifen clomifene raloxifene Antagonists edit Antiestrogens e g fulvestrant ICI 164384 ethamoxytriphetol Affinities edit vte Affinities of estrogen receptor ligands for the ERa and ERb Ligand Other names Relative binding affinities RBA a Absolute binding affinities Ki nM a ActionERa ERb ERa ERbEstradiol E2 17b Estradiol 100 100 0 115 0 04 0 24 0 15 0 10 2 08 EstrogenEstrone E1 17 Ketoestradiol 16 39 0 7 60 6 5 1 36 52 0 445 0 3 1 01 1 75 0 35 9 24 EstrogenEstriol E3 16a OH 17b E2 12 65 4 03 56 26 14 0 44 6 0 45 0 35 1 4 0 7 0 63 0 7 EstrogenEstetrol E4 15a 16a Di OH 17b E2 4 0 3 0 4 9 19 EstrogenAlfatradiol 17a Estradiol 20 5 7 80 1 8 195 2 42 0 2 0 52 0 43 1 2 Metabolite16 Epiestriol 16b Hydroxy 17b estradiol 7 795 4 94 63 50 Metabolite17 Epiestriol 16a Hydroxy 17a estradiol 55 45 29 103 79 80 Metabolite16 17 Epiestriol 16b Hydroxy 17a estradiol 1 0 13 Metabolite2 Hydroxyestradiol 2 OH E2 22 7 81 11 35 2 5 1 3 Metabolite2 Methoxyestradiol 2 MeO E2 0 0027 2 0 1 0 Metabolite4 Hydroxyestradiol 4 OH E2 13 8 70 7 56 1 0 1 9 Metabolite4 Methoxyestradiol 4 MeO E2 2 0 1 0 Metabolite2 Hydroxyestrone 2 OH E1 2 0 4 0 0 2 0 4 Metabolite2 Methoxyestrone 2 MeO E1 lt 0 001 lt 1 lt 1 Metabolite4 Hydroxyestrone 4 OH E1 1 0 2 0 1 0 Metabolite4 Methoxyestrone 4 MeO E1 lt 1 lt 1 Metabolite16a Hydroxyestrone 16a OH E1 17 Ketoestriol 2 0 6 5 35 Metabolite2 Hydroxyestriol 2 OH E3 2 0 1 0 Metabolite4 Methoxyestriol 4 MeO E3 1 0 1 0 MetaboliteEstradiol sulfate E2S Estradiol 3 sulfate lt 1 lt 1 MetaboliteEstradiol disulfate Estradiol 3 17b disulfate 0 0004 MetaboliteEstradiol 3 glucuronide E2 3G 0 0079 MetaboliteEstradiol 17b glucuronide E2 17G 0 0015 MetaboliteEstradiol 3 gluc 17b sulfate E2 3G 17S 0 0001 MetaboliteEstrone sulfate E1S Estrone 3 sulfate lt 1 lt 1 gt 10 gt 10 MetaboliteEstradiol benzoate EB Estradiol 3 benzoate 10 EstrogenEstradiol 17b benzoate E2 17B 11 3 32 6 EstrogenEstrone methyl ether Estrone 3 methyl ether 0 145 Estrogenent Estradiol 1 Estradiol 1 31 12 34 9 44 80 07 EstrogenEquilin 7 Dehydroestrone 13 4 0 28 9 13 0 49 0 79 0 36 EstrogenEquilenin 6 8 Didehydroestrone 2 0 15 7 0 20 0 64 0 62 Estrogen17b Dihydroequilin 7 Dehydro 17b estradiol 7 9 113 7 9 108 0 09 0 17 Estrogen17a Dihydroequilin 7 Dehydro 17a estradiol 18 6 18 41 14 32 0 24 0 57 Estrogen17b Dihydroequilenin 6 8 Didehydro 17b estradiol 35 68 90 100 0 15 0 20 Estrogen17a Dihydroequilenin 6 8 Didehydro 17a estradiol 20 49 0 50 0 37 EstrogenD8 Estradiol 8 9 Dehydro 17b estradiol 68 72 0 15 0 25 EstrogenD8 Estrone 8 9 Dehydroestrone 19 32 0 52 0 57 EstrogenEthinylestradiol EE 17a Ethynyl 17b E2 120 9 68 8 480 44 4 2 0 144 0 02 0 05 0 29 0 81 EstrogenMestranol EE 3 methyl ether 2 5 EstrogenMoxestrol RU 2858 11b Methoxy EE 35 43 5 20 0 5 2 6 EstrogenMethylestradiol 17a Methyl 17b estradiol 70 44 EstrogenDiethylstilbestrol DES Stilbestrol 129 5 89 1 468 219 63 61 2 295 0 04 0 05 EstrogenHexestrol Dihydrodiethylstilbestrol 153 6 31 302 60 234 0 06 0 06 EstrogenDienestrol Dehydrostilbestrol 37 20 4 223 56 404 0 05 0 03 EstrogenBenzestrol B2 114 EstrogenChlorotrianisene TACE 1 74 15 30 EstrogenTriphenylethylene TPE 0 074 EstrogenTriphenylbromoethylene TPBE 2 69 EstrogenTamoxifen ICI 46 474 3 0 1 47 3 33 0 28 6 3 4 9 69 2 5 SERMAfimoxifene 4 Hydroxytamoxifen 4 OHT 100 1 1 7 257 10 0 98 339 2 3 0 1 3 61 0 04 4 8 SERMToremifene 4 Chlorotamoxifen 4 CT 7 14 20 3 15 4 SERMClomifene MRL 41 25 19 2 37 2 12 0 9 1 2 SERMCyclofenil F 6066 Sexovid 151 152 243 SERMNafoxidine U 11 000A 30 9 44 16 0 3 0 8 SERMRaloxifene 41 2 7 8 69 5 34 0 54 16 0 188 0 52 20 2 SERMArzoxifene LY 353 381 0 179 SERMLasofoxifene CP 336 156 10 2 166 19 0 0 229 SERMOrmeloxifene Centchroman 0 313 SERMLevormeloxifene 6720 CDRI NNC 460 020 1 55 1 88 SERMOspemifene Deaminohydroxytoremifene 0 82 2 63 0 59 1 22 SERMBazedoxifene 0 053 SERMEtacstil GW 5638 4 30 11 5 SERMICI 164 384 63 5 3 70 97 7 166 0 2 0 08 AntiestrogenFulvestrant ICI 182 780 43 5 9 4 325 21 65 2 05 40 5 0 42 1 3 AntiestrogenPropylpyrazoletriol PPT 49 10 0 89 1 0 12 0 40 92 8 ERa agonist16a LE2 16a Lactone 17b estradiol 14 6 57 0 089 0 27 131 ERa agonist16a Iodo E2 16a Iodo 17b estradiol 30 2 2 30 ERa agonistMethylpiperidinopyrazole MPP 11 0 05 ERa antagonistDiarylpropionitrile DPN 0 12 0 25 6 6 18 32 4 1 7 ERb agonist8b VE2 8b Vinyl 17b estradiol 0 35 22 0 83 12 9 0 50 ERb agonistPrinaberel ERB 041 WAY 202 041 0 27 67 72 ERb agonistERB 196 WAY 202 196 180 ERb agonistErteberel SERBA 1 LY 500 307 2 68 0 19 ERb agonistSERBA 2 14 5 1 54 ERb agonistCoumestrol 9 225 0 0117 94 64 125 0 41 185 0 14 80 0 0 07 27 0 XenoestrogenGenistein 0 445 0 0012 16 33 42 0 86 87 2 6 126 0 3 12 8 XenoestrogenEquol 0 2 0 287 0 85 0 10 2 85 XenoestrogenDaidzein 0 07 0 0018 9 3 0 7865 0 04 17 1 2 0 85 3 XenoestrogenBiochanin A 0 04 0 022 0 15 0 6225 0 010 1 2 174 8 9 XenoestrogenKaempferol 0 07 0 029 0 10 2 2 0 002 3 00 XenoestrogenNaringenin 0 0054 lt 0 001 0 01 0 15 0 11 0 33 Xenoestrogen8 Prenylnaringenin 8 PN 4 4 XenoestrogenQuercetin lt 0 001 0 01 0 002 0 040 XenoestrogenIpriflavone lt 0 01 lt 0 01 XenoestrogenMiroestrol 0 39 XenoestrogenDeoxymiroestrol 2 0 Xenoestrogenb Sitosterol lt 0 001 0 0875 lt 0 001 0 016 XenoestrogenResveratrol lt 0 001 0 0032 Xenoestrogena Zearalenol 48 13 52 5 Xenoestrogenb Zearalenol 0 6 0 032 13 XenoestrogenZeranol a Zearalanol 48 111 XenoestrogenTaleranol b Zearalanol 16 13 17 8 14 0 8 0 9 XenoestrogenZearalenone ZEN 7 68 2 04 28 9 45 2 43 31 5 XenoestrogenZearalanone ZAN 0 51 XenoestrogenBisphenol A BPA 0 0315 0 008 1 0 0 135 0 002 4 23 195 35 XenoestrogenEndosulfan EDS lt 0 001 lt 0 01 lt 0 01 XenoestrogenKepone Chlordecone 0 0069 0 2 Xenoestrogeno p DDT 0 0073 0 4 Xenoestrogenp p DDT 0 03 XenoestrogenMethoxychlor p p Dimethoxy DDT 0 01 lt 0 001 0 02 0 01 0 13 XenoestrogenHPTE Hydroxychlor p p OH DDT 1 2 1 7 XenoestrogenTestosterone T 4 Androstenolone lt 0 0001 lt 0 01 lt 0 002 0 040 gt 5000 gt 5000 AndrogenDihydrotestosterone DHT 5a Androstanolone 0 01 lt 0 001 0 05 0 0059 0 17 221 gt 5000 73 1688 AndrogenNandrolone 19 Nortestosterone 19 NT 0 01 0 23 765 53 AndrogenDehydroepiandrosterone DHEA Prasterone 0 038 lt 0 001 0 04 0 019 0 07 245 1053 163 515 Androgen5 Androstenediol A5 Androstenediol 6 17 3 6 0 9 Androgen4 Androstenediol 0 5 0 6 23 19 Androgen4 Androstenedione A4 Androstenedione lt 0 01 lt 0 01 gt 10000 gt 10000 Androgen3a Androstanediol 3a Adiol 0 07 0 3 260 48 Androgen3b Androstanediol 3b Adiol 3 7 6 2 AndrogenAndrostanedione 5a Androstanedione lt 0 01 lt 0 01 gt 10000 gt 10000 AndrogenEtiocholanedione 5b Androstanedione lt 0 01 lt 0 01 gt 10000 gt 10000 AndrogenMethyltestosterone 17a Methyltestosterone lt 0 0001 AndrogenEthinyl 3a androstanediol 17a Ethynyl 3a adiol 4 0 lt 0 07 EstrogenEthinyl 3b androstanediol 17a Ethynyl 3b adiol 50 5 6 EstrogenProgesterone P4 4 Pregnenedione lt 0 001 0 6 lt 0 001 0 010 ProgestogenNorethisterone NET 17a Ethynyl 19 NT 0 085 0 0015 lt 0 1 0 1 0 01 0 3 152 1084 ProgestogenNorethynodrel 5 10 Norethisterone 0 5 0 3 0 7 lt 0 1 0 22 14 53 ProgestogenTibolone 7a Methylnorethynodrel 0 5 0 45 2 0 0 2 0 076 ProgestogenD4 Tibolone 7a Methylnorethisterone 0 069 lt 0 1 0 027 lt 0 1 Progestogen3a Hydroxytibolone 2 5 1 06 5 0 0 6 0 8 Progestogen3b Hydroxytibolone 1 6 0 75 1 9 0 070 0 1 ProgestogenFootnotes a 1 Binding affinity values are of the format median range range or value depending on the values available The full sets of values within the ranges can be found in the Wiki code 2 Binding affinities were determined via displacement studies in a variety of in vitro systems with labeled estradiol and human ERa and ERb proteins except the ERb values from Kuiper et al 1997 which are rat ERb Sources See template page Binding and functional selectivity editThe ER s helix 12 domain plays a crucial role in determining interactions with coactivators and corepressors and therefore the respective agonist or antagonist effect of the ligand 13 14 Different ligands may differ in their affinity for alpha and beta isoforms of the estrogen receptor estradiol binds equally well to both receptors 15 estrone and raloxifene bind preferentially to the alpha receptor 15 estriol and genistein to the beta receptor 15 Subtype selective estrogen receptor modulators preferentially bind to either the a or the b subtype of the receptor In addition the different estrogen receptor combinations may respond differently to various ligands which may translate into tissue selective agonistic and antagonistic effects 16 The ratio of a to b subtype concentration has been proposed to play a role in certain diseases 17 The concept of selective estrogen receptor modulators is based on the ability to promote ER interactions with different proteins such as transcriptional coactivator or corepressors Furthermore the ratio of coactivator to corepressor protein varies in different tissues 18 As a consequence the same ligand may be an agonist in some tissue where coactivators predominate while antagonistic in other tissues where corepressors dominate Tamoxifen for example is an antagonist in breast and is therefore used as a breast cancer treatment 19 but an ER agonist in bone thereby preventing osteoporosis and a partial agonist in the endometrium increasing the risk of uterine cancer Signal transduction editSince estrogen is a steroidal hormone it can pass through the phospholipid membranes of the cell and receptors therefore do not need to be membrane bound in order to bind with estrogen citation needed Genomic edit In the absence of hormone estrogen receptors are largely located in the cytosol Hormone binding to the receptor triggers a number of events starting with migration of the receptor from the cytosol into the nucleus dimerization of the receptor and subsequent binding of the receptor dimer to specific sequences of DNA known as hormone response elements The DNA receptor complex then recruits other proteins that are responsible for the transcription of downstream DNA into mRNA and finally protein that results in a change in cell function Estrogen receptors also occur within the cell nucleus and both estrogen receptor subtypes have a DNA binding domain and can function as transcription factors to regulate the production of proteins citation needed The receptor also interacts with activator protein 1 and Sp 1 to promote transcription via several coactivators such as PELP 1 2 Direct acetylation of the estrogen receptor alpha at the lysine residues in hinge region by p300 regulates transactivation and hormone sensitivity 20 Non genomic edit Some estrogen receptors associate with the cell surface membrane and can be rapidly activated by exposure of cells to estrogen 21 22 In addition some ER may associate with cell membranes by attachment to caveolin 1 and form complexes with G proteins striatin receptor tyrosine kinases e g EGFR and IGF 1 and non receptor tyrosine kinases e g Src 2 21 Through striatin some of this membrane bound ER may lead to increased levels of Ca2 and nitric oxide NO 23 Through the receptor tyrosine kinases signals are sent to the nucleus through the mitogen activated protein kinase MAPK ERK pathway and phosphoinositide 3 kinase Pl3K AKT pathway 24 Glycogen synthase kinase 3 GSK 3b inhibits transcription by nuclear ER by inhibiting phosphorylation of serine 118 of nuclear ERa Phosphorylation of GSK 3b removes its inhibitory effect and this can be achieved by the PI3K AKT pathway and the MAPK ERK pathway via rsk citation needed 17b Estradiol has been shown to activate the G protein coupled receptor GPR30 25 However the subcellular localization and role of this receptor are still object of controversy 26 Differences and malfunction edit nbsp Nolvadex tamoxifen 20 mg nbsp Arimidex anastrozole 1 mgCancer edit Estrogen receptors are over expressed in around 70 of breast cancer cases referred to as ER positive and can be demonstrated in such tissues using immunohistochemistry Two hypotheses have been proposed to explain why this causes tumorigenesis and the available evidence suggests that both mechanisms contribute First binding of estrogen to the ER stimulates proliferation of mammary cells with the resulting increase in cell division and DNA replication leading to mutations Second estrogen metabolism produces genotoxic waste The result of both processes is disruption of cell cycle apoptosis and DNA repair which increases the chance of tumour formation ERa is certainly associated with more differentiated tumours while evidence that ERb is involved is controversial Different versions of the ESR1 gene have been identified with single nucleotide polymorphisms and are associated with different risks of developing breast cancer 19 Estrogen and the ERs have also been implicated in breast cancer ovarian cancer colon cancer prostate cancer and endometrial cancer Advanced colon cancer is associated with a loss of ERb the predominant ER in colon tissue and colon cancer is treated with ERb specific agonists 27 Endocrine therapy for breast cancer involves selective estrogen receptor modulators SERMS such as tamoxifen which behave as ER antagonists in breast tissue or aromatase inhibitors such as anastrozole ER status is used to determine sensitivity of breast cancer lesions to tamoxifen and aromatase inhibitors 28 Another SERM raloxifene has been used as a preventive chemotherapy for women judged to have a high risk of developing breast cancer 29 Another chemotherapeutic anti estrogen ICI 182 780 Faslodex which acts as a complete antagonist also promotes degradation of the estrogen receptor However de novo resistance to endocrine therapy undermines the efficacy of using competitive inhibitors like tamoxifen Hormone deprivation through the use of aromatase inhibitors is also rendered futile 30 Massively parallel genome sequencing has revealed the common presence of point mutations on ESR1 that are drivers for resistance and promote the agonist conformation of ERa without the bound ligand Such constitutive estrogen independent activity is driven by specific mutations such as the D538G or Y537S C N mutations in the ligand binding domain of ESR1 and promote cell proliferation and tumor progression without hormone stimulation 31 Menopause edit The metabolic effects of estrogen in postmenopausal women has been linked to the genetic polymorphism of estrogen receptor beta ER b 32 Aging edit Studies in female mice have shown that estrogen receptor alpha declines in the pre optic hypothalamus as they grow old Female mice that were given a calorically restricted diet during the majority of their lives maintained higher levels of ERa in the pre optic hypothalamus than their non calorically restricted counterparts 8 Obesity edit A dramatic demonstration of the importance of estrogens in the regulation of fat deposition comes from transgenic mice that were genetically engineered to lack a functional aromatase gene These mice have very low levels of estrogen and are obese 33 Obesity was also observed in estrogen deficient female mice lacking the follicle stimulating hormone receptor 34 The effect of low estrogen on increased obesity has been linked to estrogen receptor alpha 35 SERMs for other treatment purposes edit SERMs are also being studied for the treatment of uterine fibroids 36 and endometriosis 37 Estrogen insensitivity syndrome edit Estrogen insensitivity syndrome is a rare intersex condition with 5 reported cases in which estrogen receptors do not function The phenotype results in extensive masculinization Unlike androgen insensitivity syndrome EIS does not result in phenotype sex reversal It is incredibly rare and is anologious to the AIS and forms of adrenal hyperplasia The reason why AIS is common and EIS is exceptionally rare is that XX AIS does not result in infertility and therefore can be maternally inheirented while EIS always results in infertility regardless of karotype A negative feedback loop between the endocrine system also occurs in EIS in which the gonads produce markedly higher levels of estrogen for individuals with EIS 119 272 pg mL XY and 750 3 500 pg mL XX see average levels however no feminizing effects occur 38 39 Discovery editEstrogen receptors were first identified by Elwood V Jensen at the University of Chicago in 1958 40 41 for which Jensen was awarded the Lasker Award 42 The gene for a second estrogen receptor ERb was identified in 1996 by Kuiper et al in rat prostate and ovary using degenerate ERalpha primers 43 See also editMembrane estrogen receptor Estrogen insensitivity syndrome Aromatase deficiency Aromatase excess syndromeReferences edit Dahlman Wright K Cavailles V Fuqua SA Jordan VC Katzenellenbogen JA Korach KS Maggi A Muramatsu M Parker MG Gustafsson JA Dec 2006 International Union of Pharmacology LXIV Estrogen receptors Pharmacological Reviews 58 4 773 81 doi 10 1124 pr 58 4 8 PMID 17132854 S2CID 45996586 a b c Levin ER Aug 2005 Integration of the extranuclear and nuclear actions of estrogen Molecular Endocrinology 19 8 1951 9 doi 10 1210 me 2004 0390 PMC 1249516 PMID 15705661 Li X Huang J Yi P Bambara RA Hilf R Muyan M Sep 2004 Single chain estrogen receptors ERs reveal that the ERalpha beta heterodimer emulates functions of the ERalpha dimer in genomic estrogen signaling pathways Molecular and Cellular Biology 24 17 7681 94 doi 10 1128 MCB 24 17 7681 7694 2004 PMC 506997 PMID 15314175 Nilsson S Makela S Treuter E Tujague M Thomsen J Andersson G Enmark E Pettersson K Warner M Gustafsson JA Oct 2001 Mechanisms of estrogen action Physiological Reviews 81 4 1535 65 doi 10 1152 physrev 2001 81 4 1535 PMID 11581496 S2CID 10223568 Leung YK Mak P Hassan S Ho SM Aug 2006 Estrogen receptor ER beta isoforms a key to understanding ER beta signaling Proceedings of the National Academy of Sciences of the United States of America 103 35 13162 7 Bibcode 2006PNAS 10313162L doi 10 1073 pnas 0605676103 PMC 1552044 PMID 16938840 Hawkins MB Thornton JW Crews D Skipper JK Dotte A Thomas P Sep 2000 Identification of a third distinct estrogen receptor and reclassification of estrogen receptors in teleosts Proceedings of the National Academy of Sciences of the United States of America 97 20 10751 6 Bibcode 2000PNAS 9710751H doi 10 1073 pnas 97 20 10751 PMC 27095 PMID 11005855 Couse JF Lindzey J Grandien K Gustafsson JA Korach KS Nov 1997 Tissue distribution and quantitative analysis of estrogen receptor alpha ERalpha and estrogen receptor beta ERbeta messenger ribonucleic acid in the wild type and ERalpha knockout mouse Endocrinology 138 11 4613 21 doi 10 1210 en 138 11 4613 PMID 9348186 a b Yaghmaie F Saeed O Garan SA Freitag W Timiras PS Sternberg H Jun 2005 Caloric restriction reduces cell loss and maintains estrogen receptor alpha immunoreactivity in the pre optic hypothalamus of female B6D2F1 mice PDF Neuro Endocrinology Letters 26 3 197 203 PMID 15990721 Hess RA Jul 2003 Estrogen in the adult male reproductive tract a review Reproductive Biology and Endocrinology 1 52 52 doi 10 1186 1477 7827 1 52 PMC 179885 PMID 12904263 Babiker FA De Windt LJ van Eickels M Grohe C Meyer R Doevendans PA Feb 2002 Estrogenic hormone action in the heart regulatory network and function Cardiovascular Research 53 3 709 19 doi 10 1016 S0008 6363 01 00526 0 PMID 11861041 Htun H Holth LT Walker D Davie JR Hager GL Feb 1999 Direct visualization of the human estrogen receptor alpha reveals a role for ligand in the nuclear distribution of the receptor Molecular Biology of the Cell 10 2 471 86 doi 10 1091 mbc 10 2 471 PMC 25181 PMID 9950689 Pfeffer U Fecarotta E Vidali G May 1995 Coexpression of multiple estrogen receptor variant messenger RNAs in normal and neoplastic breast tissues and in MCF 7 cells Cancer Research 55 10 2158 65 PMID 7743517 Ascenzi P Bocedi A Marino M Aug 2006 Structure function relationship of estrogen receptor alpha and beta impact on human health Molecular Aspects of Medicine 27 4 299 402 doi 10 1016 j mam 2006 07 001 PMID 16914190 Bourguet W Germain P Gronemeyer H Oct 2000 Nuclear receptor ligand binding domains three dimensional structures molecular interactions and pharmacological implications Trends in Pharmacological Sciences 21 10 381 8 doi 10 1016 S0165 6147 00 01548 0 PMID 11050318 a b c Zhu BT Han GZ Shim JY Wen Y Jiang XR Sep 2006 Quantitative structure activity relationship of various endogenous estrogen metabolites for human estrogen receptor alpha and beta subtypes Insights into the structural determinants favoring a differential subtype binding Endocrinology 147 9 4132 50 doi 10 1210 en 2006 0113 PMID 16728493 Kansra S Yamagata S Sneade L Foster L Ben Jonathan N Jul 2005 Differential effects of estrogen receptor antagonists on pituitary lactotroph proliferation and prolactin release Molecular and Cellular Endocrinology 239 1 2 27 36 doi 10 1016 j mce 2005 04 008 PMID 15950373 S2CID 42052008 Bakas P Liapis A Vlahopoulos S Giner M Logotheti S Creatsas G Meligova AK Alexis MN Zoumpourlis V Nov 2008 Estrogen receptor alpha and beta in uterine fibroids a basis for altered estrogen responsiveness Fertility and Sterility 90 5 1878 85 doi 10 1016 j fertnstert 2007 09 019 hdl 10442 7330 PMID 18166184 Shang Y Brown M Mar 2002 Molecular determinants for the tissue specificity of SERMs Science 295 5564 2465 8 Bibcode 2002Sci 295 2465S doi 10 1126 science 1068537 PMID 11923541 S2CID 30634073 a b Deroo BJ Korach KS Mar 2006 Estrogen receptors and human disease The Journal of Clinical Investigation 116 3 561 70 doi 10 1172 JCI27987 PMC 2373424 PMID 16511588 Wang C Fu M Angeletti RH Siconolfi Baez L Reutens AT Albanese C Lisanti MP Katzenellenbogen BS Kato S Hopp T Fuqua SA Lopez GN Kushner PJ Pestell RG May 2001 Direct acetylation of the estrogen receptor alpha hinge region by p300 regulates transactivation and hormone sensitivity The Journal of Biological Chemistry 276 21 18375 83 doi 10 1074 jbc M100800200 PMID 11279135 a b Zivadinovic D Gametchu B Watson CS 2005 Membrane estrogen receptor alpha levels in MCF 7 breast cancer cells predict cAMP and proliferation responses Breast Cancer Research 7 1 R101 12 doi 10 1186 bcr958 PMC 1064104 PMID 15642158 Bjornstrom L Sjoberg M Jun 2004 Estrogen receptor dependent activation of AP 1 via non genomic signalling Nuclear Receptor 2 1 3 doi 10 1186 1478 1336 2 3 PMC 434532 PMID 15196329 Lu Q Pallas DC Surks HK Baur WE Mendelsohn ME Karas RH Dec 2004 Striatin assembles a membrane signaling complex necessary for rapid nongenomic activation of endothelial NO synthase by estrogen receptor alpha Proceedings of the National Academy of Sciences of the United States of America 101 49 17126 31 Bibcode 2004PNAS 10117126L doi 10 1073 pnas 0407492101 PMC 534607 PMID 15569929 Kato S Endoh H Masuhiro Y Kitamoto T Uchiyama S Sasaki H Masushige S Gotoh Y Nishida E Kawashima H Metzger D Chambon P Dec 1995 Activation of the estrogen receptor through phosphorylation by mitogen activated protein kinase Science 270 5241 1491 4 Bibcode 1995Sci 270 1491K doi 10 1126 science 270 5241 1491 PMID 7491495 S2CID 4662264 Prossnitz ER Arterburn JB Sklar LA Feb 2007 GPR30 A G protein coupled receptor for estrogen Molecular and Cellular Endocrinology 265 266 138 42 doi 10 1016 j mce 2006 12 010 PMC 1847610 PMID 17222505 Otto C Rohde Schulz B Schwarz G Fuchs I Klewer M Brittain D Langer G Bader B Prelle K Nubbemeyer R Fritzemeier KH Oct 2008 G protein coupled receptor 30 localizes to the endoplasmic reticulum and is not activated by estradiol Endocrinology 149 10 4846 56 doi 10 1210 en 2008 0269 PMID 18566127 Harris HA Albert LM Leathurby Y Malamas MS Mewshaw RE Miller CP Kharode YP Marzolf J Komm BS Winneker RC Frail DE Henderson RA Zhu Y Keith JC Oct 2003 Evaluation of an estrogen receptor beta agonist in animal models of human disease Endocrinology 144 10 4241 9 doi 10 1210 en 2003 0550 PMID 14500559 Clemons M Danson S Howell A Aug 2002 Tamoxifen Nolvadex a review Cancer Treatment Reviews 28 4 165 80 doi 10 1016 s0305 7372 02 00036 1 PMID 12363457 Fabian CJ Kimler BF Mar 2005 Selective estrogen receptor modulators for primary prevention of breast cancer Journal of Clinical Oncology 23 8 1644 55 doi 10 1200 JCO 2005 11 005 PMID 15755972 Oesterreich S Davidson NE Dec 2013 The search for ESR1 mutations in breast cancer Nature Genetics 45 12 1415 6 doi 10 1038 ng 2831 PMC 4934882 PMID 24270445 Li S Shen D Shao J Crowder R Liu W Prat A et al Sep 2013 Endocrine therapy resistant ESR1 variants revealed by genomic characterization of breast cancer derived xenografts Cell Reports 4 6 1116 30 doi 10 1016 j celrep 2013 08 022 PMC 3881975 PMID 24055055 Darabi M Ani M Panjehpour M Rabbani M Movahedian A Zarean E 2011 Effect of estrogen receptor b A1730G polymorphism on ABCA1 gene expression response to postmenopausal hormone replacement therapy Genetic Testing and Molecular Biomarkers 15 1 2 11 5 doi 10 1089 gtmb 2010 0106 PMID 21117950 Hewitt KN Boon WC Murata Y Jones ME Simpson ER Sep 2003 The aromatase knockout mouse presents with a sexually dimorphic disruption to cholesterol homeostasis Endocrinology 144 9 3895 903 doi 10 1210 en 2003 0244 PMID 12933663 Danilovich N Babu PS Xing W Gerdes M Krishnamurthy H Sairam MR Nov 2000 Estrogen deficiency obesity and skeletal abnormalities in follicle stimulating hormone receptor knockout FORKO female mice Endocrinology 141 11 4295 308 doi 10 1210 endo 141 11 7765 PMID 11089565 Ohlsson C Hellberg N Parini P Vidal O Bohlooly Y M Bohlooly M Rudling M Lindberg MK Warner M Angelin B Gustafsson JA Nov 2000 Obesity and disturbed lipoprotein profile in estrogen receptor alpha deficient male mice Biochemical and Biophysical Research Communications 278 3 640 5 doi 10 1006 bbrc 2000 3827 PMID 11095962 Lingxia X Taixiang W Xiaoyan C 2007 Xie Lingxia ed Selective Estrogen Receptor Modulators Serms for Uterine Leiomyomas Cochrane Database of Systematic Reviews 2 CD005287 doi 10 1002 14651858 cd005287 pub2 PMID 17443581 van Hoesel Maaike HT Chen Ya Li Zheng Ai Wan Qi Mourad Selma M 2021 05 11 Cochrane Gynaecology and Fertility Group ed Selective oestrogen receptor modulators SERMs for endometriosis Cochrane Database of Systematic Reviews 2021 5 CD011169 doi 10 1002 14651858 CD011169 pub2 PMC 8130989 PMID 33973648 Thomas L Lemke David A Williams 24 January 2012 Foye s Principles of Medicinal Chemistry Lippincott Williams amp Wilkins pp 1392 ISBN 978 1 60913 345 0 Smith EP Boyd J Frank GR Takahashi H Cohen RM Specker B Williams TC Lubahn DB Korach KS October 1994 Estrogen resistance caused by a mutation in the estrogen receptor gene in a man The New England Journal of Medicine 331 16 1056 61 doi 10 1056 NEJM199410203311604 PMID 8090165 Jensen EV Jordan VC Jun 2003 The estrogen receptor a model for molecular medicine abstract Clinical Cancer Research 9 6 1980 9 PMID 12796359 Jensen E 2011 A conversation with Elwood Jensen Interview by David D Moore Annual Review of Physiology 74 1 11 doi 10 1146 annurev physiol 020911 153327 PMID 21888507 David Bracey 2004 UC Scientist Wins American Nobel Research Award University of Cincinnati press release Kuiper GG Enmark E Pelto Huikko M Nilsson S Gustafsson JA Jun 1996 Cloning of a novel receptor expressed in rat prostate and ovary Proceedings of the National Academy of Sciences of the United States of America 93 12 5925 30 doi 10 1073 pnas 93 12 5925 PMC 39164 PMID 8650195 External links editEstrogen Receptors at the U S National Library of Medicine Medical Subject Headings MeSH David S Goodsell 2003 09 01 Estrogen Receptor Protein Data Bank Research Collaboratory for Structural Bioinformatics RCSB Archived from the original on March 11 2006 Retrieved 2008 03 15 Retrieved from https en wikipedia org w index php title Estrogen receptor amp oldid 1187352907, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.