fbpx
Wikipedia

Milutin Milanković

Milutin Milanković (sometimes anglicised as Milutin Milankovitch; Serbian Cyrillic: Милутин Миланковић, pronounced [milǔtin milǎːnkoʋitɕ]; 28 May 1879 – 12 December 1958) was a Serbian mathematician, astronomer, climatologist, geophysicist, civil engineer and popularizer of science.

Milutin Milanković
Милутин Миланковић
Milutin Milanković, c. 1924
Born(1879-05-28)28 May 1879[1]
Died12 December 1958(1958-12-12) (aged 79)
NationalitySerbian
Alma materTU Wien
Known for
Scientific career
Fields
ThesisBeitrag zur Theorie der Druck-kurven (1904)
Signature

Milanković gave two fundamental contributions to global science. The first contribution is the "Canon of the Earth's Insolation", which characterizes the climates of all the planets of the Solar System. The second contribution is the explanation of Earth's long-term climate changes caused by changes in the position of the Earth in comparison to the Sun, now known as Milankovitch cycles. This partly explained the ice ages occurring in the geological past of the Earth, as well as the climate changes on the Earth which can be expected in the future.

He founded planetary climatology by calculating temperatures of the upper layers of the Earth's atmosphere as well as the temperature conditions on planets of the inner Solar System, Mercury, Venus, Mars, and the Moon, as well as the depth of the atmosphere of the outer planets. He demonstrated the interrelatedness of celestial mechanics and the Earth sciences and enabled a consistent transition from celestial mechanics to the Earth sciences and transformation of descriptive sciences into exact ones.

A distinguished professor of applied mathematics and celestial mechanics at the University of Belgrade,[2] Milanković was a director of the Belgrade Observatory, member and co-founder of the Commission 7 for celestial mechanics of the International Astronomical Union and vice-president of Serbian Academy of Sciences and Arts.[3] Beginning his career as a construction engineer, he retained an interest in construction throughout his life, and worked as a structural engineer and supervisor on a series of reinforced concrete constructions throughout Yugoslavia. He registered multiple patents related to this area.[3]

Life edit

Early life edit

 
The house in Dalj in which Milanković was born today houses the Cultural and Scientific Center "Milutin Milanković"

Milutin Milanković was born in the village of Dalj, a settlement on the banks of the Danube in what was then part of Austro-Hungarian Empire. Milutin and his twin sister were the oldest of seven children raised in a Serb family. Their father was a merchant, landlord, and a local politician who died when Milutin was eight. As a result, Milutin and his siblings were raised by his mother, grandmother, and an uncle. His three brothers died of tuberculosis at a young age. As his health was fickle, Milutin received his elementary education at home (in "the classroom without walls"), learning from his father Milan, private teachers, and from numerous relatives and friends of the family, some of whom were renowned philosophers, inventors, and poets. He attended secondary school in nearby Osijek, completing it in 1896.

 
Milanković as a student

In October 1896, at the age of seventeen, he moved to Vienna to study Civil Engineering at the TU Wien and graduated in 1902 with the best marks. In his memoirs, Milanković wrote about his lectures on engineering: "Professor Czuber was teaching us mathematics. His every sentence was the masterpiece of strict logic, without any extra word, without any error." After graduating and spending his obligatory year in military service, Milanković borrowed money from an uncle to pay for additional schooling at TU Wien in engineering. He researched concrete and wrote a theoretical evaluation of it as a building material. At age twenty-five, his PhD thesis was entitled Contribution to the Theory of Pressure Curves (Beitrag zur Theorie der Druckkurven) and its implementation allowed assessment of pressure curves' shape and properties when continuous pressure is applied, which is very useful in bridge, cupola and abutment construction.[4] His thesis was successfully defended on 12 December 1904; examination committee members were Johann Emanuel Brik, Josef Finger, Emanuel Czuber and Ludwig von Tetmajer. He then worked for an engineering firm in Vienna, using his knowledge to design structures.

Middle years edit

Structural engineering edit

At the beginning of 1905, Milanković took up practical work and joined the firm of Adolf Baron Pittel Betonbau-Unternehmung in Vienna. He built dams, bridges, viaducts, aqueducts, and other structures in reinforced concrete throughout Austria-Hungary. The result was particularly evident in the extraordinary design of a reinforced-concrete aqueduct for a hydroelectric power plant in Sebeș, Transylvania, which Milanković designed at the beginning of his career.

He patented a new type of reinforced concrete ribbed ceiling and published the first paper on armored concrete, titled "Contribution to the theory of reinforced armored pillars". He published the second paper on the same subject based on new results in 1906. In 1908, he published a paper titled "On membranes of same opposition" in which he proves that the ideal shape for a water reservoir of equally thick walls is that of a drop of water.[5] His six patents were officially recognized and his reputation in the profession was enormous, bringing abundant financial wealth.

Milanković continued to practice civil engineering in Vienna until 1 October 1909 when he was received an offer University of Belgrade to work as an Associate Professor at the Department of Applied Mathematics that comprised three basic branches: rational, celestial mechanics, and theoretical physics. Though he continued to pursue his investigations of various problems pertaining to the application of reinforced concrete, he decided to concentrate on fundamental research.

 
One of the 17 Milankovitch bridges on the railway line through the Nisevac gorge in Serbia.[6]

Milanković continued in design and construction work when he moved to Kingdom of Serbia. In 1912, Milankovitch accepted the invitation of his collegemate from TU Wien and the owner of the construction company Petar Putnik to create a project for bridges on rocky shores on the future route of the Niš - Knjaževac railway, in the Timok Valley through the Nisevac Gorge. Milankovitch, who liked this idea very much, soon drew up structural calculations for all the bridges with reinforced concrete arches.

Planet's insolation edit

While studying the works of the contemporaneous climatologist Julius von Hann, Milanković noticed a significant issue, which became one of the major objects of his scientific research: a mystery ice age. The idea of possible astronomically-related climate changes was first considered by astronomers (John Herschel, 1792–1871) and then postulated by geologists (Louis Agassiz, 1807–1873). In parallel, there were also several attempts to explain the climate change by the influence of astronomical forces (the most comprehensive of them was the theory put forward by James Croll in the 1875).[7] Milanković studied the works of Joseph Adhemar whose pioneering theory on the astronomical origins of ice ages were formally rejected by his contemporaries and James Croll whose work was effectively forgotten about even after acceptance by contemporaries such as Charles Darwin.[8][7] Despite having valuable data on the distribution of ice ages on Alps, climatologists and geologists could not discover the basic causes – that is, the different insolations of the Earth during past ages remained beyond the scope of these sciences. But Milanković decided to follow their path and attempt correctly to calculate the magnitude of such influences. Milanković sought the solution of these complex problems in the field of spherical geometry, celestial mechanics, and theoretical physics.

He began working on it in 1912, after he had realized that "most of meteorology is nothing but a collection of innumerable empirical findings, mainly numerical data, with traces of physics used to explain some of them... Mathematics was even less applied, nothing more than elementary calculus... Advanced mathematics had no role in that science..." His first work described the present climate on Earth and how the Sun's rays determine the temperature on Earth's surface after passing through the atmosphere. He published the first paper on the subject entitled "Contribution to the mathematical theory of climate" in Belgrade on April 1912.[9] His next paper was entitled "Distribution of the sun radiation on the earth's surface" and was published on June 1913.[10] In December of that year, this paper was read by Wilhelm Wien, and was soon published in the German journal Annalen der Physik.[11] He correctly calculates the intensity of insolation and developed a mathematical theory describing Earth's climate zones.[12] His aim was an integral, mathematically accurate theory which connects thermal regimes of the planets to their movement around the Sun. He wrote: "...such a theory would enable us to go beyond the range of direct observations, not only in space, but also in time... It would allow reconstruction of the Earth's climate, and also its predictions, as well as give us the first reliable data about the climate conditions on other planets."

At the same time, the July Crisis between the Austro-Hungarian empire and Serbia broke out, which led to World War I. On 14 June 1914, Milanković married Kristina Topuzović and went on his honeymoon to his native village of Dalj in Austro-Hungary, where he heard about the beginning of the War.[13] He was arrested as a citizen of Serbia and was interned by the Austro-Hungarian army in Nezsider, Hungary (today Neusiedl am See, Austria). He described his first day in prison, where he waited to be taken to the Esseg fortress as a prisoner of war, in the following words:

The heavy iron door closed behind me .... Sat on the bed, I looked around and started synchronizing with my new social position .... In the suitcase I had my printed works and my notes on the cosmic problem, there was clean paper too and I started writing. It was far past midnight when I stopped. I looked around the room, wondering where I was. It felt like I was in a roadhouse on my trip through the Universe..[13]

His wife went to Vienna to talk to Emanuel Czuber, who was his mentor and a good friend. Through his social connections, Professor Czuber arranged Milanković's release from prison and permission to spend his captivity in Budapest with the right to work.

 
M. Milankovitch's table of average Martian ground and atmosphere temperatures.

Immediately after arriving in Budapest, Milanković met the Director of the Library of the Hungarian Academy of Science, Kálmán Szily who, as a mathematician, eagerly accepted Milanković and enabled him to work undisturbed in the Academy's library and the Central Meteorological Institute.[14][15] Milanković spent four years in Budapest, almost the entire war.[14] He published a paper entitled "The problem of the astronomical theory of ice ages" in 1914.[16] Then he tried to find a mathematical model of a cosmic mechanism to describe the Earth's climatic and geological history. But the cosmic mechanism was not an easy problem, and Milanković took three decades to develop an astronomical theory. He used mathematical methods to study the current climate of inner planets of the solar system. In 1916 he published a paper entitled "Investigation of the climate of the planet Mars".[17][18] Milanković calculated that the average temperature in the lower layers the atmosphere on Mars is −45 °C (−49 °F) and the average surface temperature is −17 °C (1 °F). Also, he concluded that: "This large temperature difference between the ground and lower layers of the atmosphere is not unexpected. Great transparency for solar radiation makes that is the climate of Mars very similar to altitudes climate of our Earth." In any case, Milanković theoretically proved that Mars has an extremely harsh climate.[19] In addition to considering Mars, he dealt with the climatic conditions prevailing on Venus and Mercury.[20][19] His calculations of the temperature conditions on the neighboring Moon are particularly significant. Milankovitch knew that the moon rotates on its axis in 27.32 days, so lunar daytime on one side of the moon last about 13.5 Earth days. Milankovitch calculated that the surface temperature on the daylight side of the moon at noon reaches +100.5 °C (212.9 °F). Also, he calculated that the temperature during the early morning on the Moon, or before the rise of the Sun over horizon, was −54 °C (−65 °F).

After World War I, Milanković returned to Belgrade with his family on 19 March 1919.[13] He continued his professorial career, becoming a full professor at the University of Belgrade. From 1912 to 1917, he wrote and published seven papers on mathematical theories of climate both on the Earth and on the other planets. He formulated a precise, numerical climatological model with the capacity for reconstruction of the past and prediction of the future, and established the astronomical theory of climate as a generalized mathematical theory of insolation. When these most important problems of the theory were solved, and a firm foundation for further work built, Milanković finished a book which was published in 1920, by the Gauthier-Villars in Paris under the title "Théorie mathématique des phénomènes thermiques produits par la radiation solaire" (Mathematical Theory of Heat Phenomena Produced by Solar Radiation).[14][21][22] .

Orbital variations and ice age cycles edit

After the First World War, with the arrival of Russian scientists - emigrants, the personnel base of the Faculty of Philosophy at the University of Belgrade was expanded. Thus, from 1920 Anton Bilimovich (1879-1970), a distinguished scientist, who came from Odessa, took over the lectures on rational mechanics, and from 1925 the lectures on theoretical physics and vector theory were taken over by the newly elected assistant professor Vyacheslav Yardecki (1896-1962). Between the two wars, Milankovitch taught celestial mechanics and occasionally the theory of relativity, and after the Second World War until 1955, when he retired, he taught celestial mechanics and the history of astronomy.

Milankovitch's works on astronomical explanations of ice ages, especially his curve of insolation for the past 130,000 years, received support from the climatologist Wladimir Köppen and from the geophysicist Alfred Wegener. Köppen noted the usefulness of Milanković's theory for paleoclimatological researchers. Milanković received a letter on 22 September 1922 from Köppen, who asked him to expand his studies from 130,000 years to 600,000 years. He accepted Köppen's suggestion that cool summers were a crucial factor for glaciation and agreed to calculate the secular progress of insolation of the Earth at the outer limit of the atmosphere for the past 650,000 years for parallels of 55°, 60° and 65° northern latitude, where the most important events of the Quaternary glaciations occurred.[7] After developing the mathematical machinery enabling him to calculate the insolation in any given geographical latitude and for any annual season, Milanković was ready to start the realization of the mathematical description of climate of the Earth in the past. Milanković spent 100 days doing the calculations and prepared a graph of solar radiation changes at geographical latitudes of 55°, 60° and 65° north for the past 650,000 years.[23] Milankovitch, in his early works used astronomical value of Stockwell-Pilgram.[16]

These curves showed the variations in insolation which correlated with the series of ice ages. Köppen felt that Milanković's theoretical approach to solar energy was a logical approach to the problem. His solar curve was introduced in a work entitled "Climates of the geological past", published by Wladimir Köppen and his son-in-law Alfred Wegener in 1924.[24][25] In September of that year, he attended the lecture given by Alfred Wegener at Congress of German Naturalist in Insbruck.[26]

 
Orbital eccentricity, obliquity and precession.

Milanković put the Sun at the center of his theory, as the only source of heat and light in the Solar System. He considered three cyclical movements of the Earth: eccentricity (100,000-year cycle – Johannes Kepler, 1609), axial tilt (41,000-year cycle – from 22.1° to 24.5°), and precession (23,000-year cycle – Hipparchus, 130 BC). Each cycle works on a different time-scale and each affects the amount of solar energy received by the planets. Such changes in the geometry of an orbit lead to the changes in the insolation – the quantity of heat received by any spot at the surface of a planet. These orbital variations, which are influenced by gravity of the Moon, Sun, Jupiter, and Saturn, form the basis of the Milankovitch cycle.[27]

The Serbian Academy of Sciences and Arts elected Milanković as a corresponding member in 1920; he became a full member in 1924. The Meteorological service of the Kingdom of Yugoslavia became a member of International Meteorological Organization – IMO (founded in Brussels in 1853 and in Vienna in 1873) as a predecessor of present World Meteorological Organization, WMO. Milanković served as a representative of the Kingdom of Yugoslavia there for many years.

Between 1925 and 1928 Milanković wrote the popular-science book Through Distant Worlds and Times in the form of letters to an anonymous woman.[28] The work discusses the history of astronomy, climatology and science via a series of imaginary visits to various points in space and time by the author and his unnamed companion, encompassing the formation of the Earth, past civilizations, famous ancient and renaissance thinkers and their achievements, and the work of his contemporaries, Köppen and Wegener. In the "letters", Milanković expanded on some of his own theories on astronomy and climatology, and described the complicated problems of celestial mechanics in a simplified manner.

Köppen proposed to Milanković on 14 December 1926 to extend his calculations to a million years and to send his results to Barthel Eberl, a geologist studying the Danube basin, as Eberl's research had unearthed some pre-Ice Ages before over 650,000 years. Eberl published all this in Augsburg in 1930 together with Milanković's curves.

In 1927, Milanković asked his colleague and friend, Vojislav Mišković, to collaborate in the work and calculate astronomical values based on the Le Verrier method. Mišković was a well-established astronomer from the Nice Observatory, who became the head of the Astronomical Observatory of the University of Belgrade and a professor of Theoretical and Practical Astronomy.[26] After almost three years, Mišković and his staff completed the calculation of astronomical values based on the Le Verrier method and using the masses of the planets knows of that time.[29] Milanković used these values in his later works.[16] Subsequently, Milanković wrote the introductory portion of Mathematical science of climate and astronomical theory of the variations of the climate (Mathematische Klimalehre und Astronomische Theorie der Klimaschwankungen), published by Köppen (Handbook of Climatology; Handbuch der Klimalogie Band 1) in 1930 in German and translated into Russian in 1939.[16] In 1935 Milanković published the book Celestial Mechanics.[30][31] This textbook used vector calculus systematically to solve problems of celestial mechanics.[32] His original contribution to celestial mechanics is called Milanković's system of vector elements of planetary orbits. He reduced six Lagrangean-Laplacian elliptical elements to two vectors determining the mechanics of planetary movements. The first specifies the planet's orbital plane, the sense of revolution of the planet, and the orbital ellipse parameter; the second specifies the axis of the orbit in its plane and the orbital eccentricity. By applying those vectors he significantly simplified the calculation and directly obtained all the formulas of the classical theory of secular perturbations. Milanković, in a simple but original manner, first deduced Newton's law of gravitation from Kepler's laws. Then Milanković treated the two-body and the many-body problems of celestial mechanics.

He applied vector calculus from quantum mechanics to celestial mechanics.[33]

Meanwhile, in 1936 he attended the Third symposium of the International Union for Quaternary Research (INQUA) in Vienna.[26]

In the period from 1935 to 1938 Milanković calculated that ice cover depended on changes in insolation. He succeeded in defining the mathematical relationship between summer insolation and the altitude of the snow line.[16] In this way he defined the increase of snow which would occur as a consequence of any given change in summer insolation. He published his results in the study "New Results of the Astronomic Theory of Climate Changes" in 1938.[16] Geologists received a graph for presenting bordering altitudes of ice covers any period of time during the last 600,000 years. André Berger and Jacques Laskar later developed this theory further.

Polar wandering edit

 
Coal mining in Svalbard on 1908

Conversations with Wegener, the author of continental drift theory, got Milanković interested in the interior of the Earth and the movement of the poles, so he told his friend that he would investigate polar wandering. In November 1929, Milanković received an invitation from Professor Beno Gutenberg of Darmstadt to collaborate on a ten volume handbook on geophysics and to publish his views on the problem of the secular variations of the Earth's rotational poles. Wegener presented extensive empirical evidence in his scientific work on the 'great events' during the Earth's past. However, one of the main findings that especially preoccupied Wegener and then Milankovitch was the discovery of big coal reserves on the Svalbard Islands, in the Arctic Ocean, which could not form at the present latitude of these islands. In the meantime, Wegener died (from hypothermia or heart failure) in November 1930 during his fourth expedition to Greenland. Milanković became convinced that the continents 'float' on a somewhat fluid subsurface and that the positions of the continents with respect to the axis of rotation affect the centrifugal force of the rotation and can throw the axis off balance and force it to move.[34] Wegener's tragedy additionally motivated Milankovich to persevere in solving the problem of polar wandering.

In the period from 1930 to 1933, Milankovitch worked on the problem of numerical secular rotation pole movements. The Earth as a whole he considered as a fluid body, which in the case of short-duration forces behaves as a solid body, but under an influence behaves as an elastic body. Using vector analysis he made a mathematical model of the Earth to create a theory of secular motion of the terrestrial poles. He derived the equation of secular trajectory of a terrestrial pole and also the equation of pole motion along this trajectory. The equations further led to a determination of the 25 most characteristic points with pole trajectories for both hemispheres. This mathematical calculation led Milanković to 16 important points from the past that form parts of early explorations; 8 points triggered future explorations. He drew a map of the path of the poles over the past 300 million years and stated that changes happen in the interval of 5 million years (minimum) to 30 million years (maximum).[35] He found that the secular pole trajectory depends only on the configuration of the terrestrial outer shell and the instantaneous pole position on it, more precisely on geometry of the Earth mass. On this basis he could calculate the secular pole trajectory. Also, based on Milanković's model, the continental blocks sink into their underlying "fluidal" base, and slide around, 'aiming to achieve' isostatic equilibrium. In his conclusion about this problem, he wrote: For an extraterrestrial observer, the displacement of the pole takes place in such a way that the ... Earth's axis maintains its orientation in space, but the Earth's crust is displaced on its substratum. Milankovitch published his paper on the subject entitled "Numerical trajectory of secular changes of pole’s rotation" in Belgrade in 1932.

At the same time, Milanković wrote four sections of Beno Gutenberg's "Handbook of Geophysics" (Handbuch der Geophysik) – "The Earth's Position and Movement in Space", "Rotational Movement of the Earth", "Secular shift of the Poles", and "Astronomic Means for Climate Study during the Earth's history" – published by Wegener's father-in-law Köppen in 1933. The lecture on the apparent shift of poles was held at a congress of Balkan mathematicians in Athens in 1934. That same year, Milanković published an article dedicated to the work Alfred Wegener under titled "Moving of the Earth's Poles – A Memory to Alfred Wegener".

Milankovitch's work on the trajectory of poles was well accepted only by Köppen's associates, because most of the scientific community was skeptical about Wegener and Milankovic's new theories. Later, in the 1950s and 1960s, development of the new scientific discipline in geophysics known as palaeomagnetism led to the key evidence on the basis of studying the records of Earth's magnetic field in rocks over geological time. Paleomagnetic evidence, both reversals and polar wandering data, led the revival of the theories of continental drift and its transformation into plate tectonics in the 1960s and 1970s. Unlike Milankovic's linear trajectory of poles, palaeomagnetism reconstructed the path of the poles over geological history to show the nonlinear trajectory.

Later life edit

To collect his scientific work on the theory of solar radiation that was scattered in many books and papers, Milanković began his life's work in 1939.[36][29] This tome was entitled "Canon of Insolation of the Earth and Its Application to the Problem of the Ice Ages", which covered his nearly three decades of research, including a large number of formulas, calculations and schemes, but also summarized universal laws through which it was possible to explain cyclical climate change – his namesake Milankovitch cycles.[37]

Milanković spent two years arranging and writing the "Canon". The manuscript was submitted to print on 2 April 1941 – four days before the attack of Nazi Germany and its allies on the Kingdom of Yugoslavia. In the bombing of Belgrade on 6 April 1941, the printing house where his work was being printed was destroyed; however, almost all of the printed sheet paper remained undamaged in the printing warehouse. After the successful occupation of Serbia on 15 May 1941, two German officers and geology students came to Milanković in his house and brought greetings from Professor Wolfgang Soergel [de] of Freiburg. Milanković gave them the only complete printed copy of the "Canon" to send to Soergel, to make certain that his work would be preserved. Milanković did not take part in the work of the university during the occupation, and after the war he was reinstated as professor.

The "Canon" was issued in 1941[38] by the Royal Serbian Academy, 626 pages in quarto, and was printed in German as "Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem".[38] The titles of the six parts of the book are:

  1. "The planets' motion around the Sun and their mutual perturbations"
  2. "The rotation of the Earth"
  3. "Secular wanderings of the rotational poles of the Earth"
  4. "The Earth's insolation and its secular changes"
  5. "The connection between insolation and the temperature of the Earth and its atmosphere. The mathematical climate of the Earth"
  6. "The ice age, its mechanism, structure and chronology".

During the German occupation of Serbia from 1941 to 1944, Milanković withdrew from public life and decided to write a "history of his life and work" going beyond scientific matters, including his personal life and the love of his father who died in his youth. His autobiography would be published after the war, entitled "Recollection, Experiences and Vision" in Belgrade in 1952.[39]

History of science edit

After the war, in 1947, Milanković's only son emigrated from the new communist Yugoslavia via Paris, London and Egypt to Australia. Milanković will never see his son again and the only way of correspondence between them will be through letters. Milanković was vice president of the Serbian Academy of Sciences (1948–1958). In 1948, the General Assembly of the International Astronomical Union was held in Zürich.[40] Milankovich are listed member of Commission 7 for Celastial Mechanics and V. Mishkovitch member of Commission 19 for Latitude Variation and Commission 20 for Minor Planets.[41] For a short period, he was the head of the Belgrade Observatory (1948 - 1951). In 1953, he was at the symposium of the International Union for Quaternary Research (INQUA) held in Rome.[42] In the same year, he became a member of the Italian Institute of Paleontology. In November 1954, fifty years after receiving his original diploma, he received the Golden Doctor's diploma from the Technical University of Vienna. In 1955, he was also elected to the German Academy of Naturalists "Leopoldina" in Halle, Saxony-Anhalt.

In 1955, Milankovitch retired from the position of professor of celestial mechanics at the University of Belgrade. In the same year, he publishes his last work, which is not from the natural sciences, but from his original profession of structural engineering. The paper was titled The Tower of Babel of modern technology. Milankovitch in this work calculated the highest building possible on our Earth. He was inspired by work of Pieter Bruegel the Elder's Tower of Babel (older version in Vienna). The building would have a base radius of 112.84 km and a height of 21646 m. Since the building penetrates the Earth 1.4 km, it would have a height of 20.25 km above the Earth's surface. At the very top, there would be a wide platform for a meteorological and astronomical station.

At the same time, Milanković began publishing numerous books on the history of science, including Isaac Newton and Newton's Principia (1946), The founders of the natural science Pythagoras – Democritus – Aristotle – Archimedes (1947), History of astronomy – from its beginnings up to 1727 (1948), Through empire of science – images from the lives of great scientists (1950), Twenty-two centuries of Chemistry (1953), and Techniques in the ancient times (1955).

In September 1957, Milutin suffered a stroke and died in Belgrade in 1958.[43] He is buried in his family cemetery in Dalj.[citation needed]

Legacy edit

 
Monument to Milanković in Belgrade.

After Milanković's death, most of the scientific community came to dispute his "astronomical theory" and no longer recognized the results of his research. But ten years after his death and fifty years from the first publication, Milanković's theory was again taken under consideration. His book was translated into English under the title "Canon of Insolation of the Ice-Age Problem" in 1969 by the Israel Program for Scientific Translations, and was published by the U.S. Department of Commerce and the National Science Foundation in Washington, D.C.[44]

In the beginning, recognition came slowly, but later, the theory was proven to be accurate. Project CLIMAP (Climate: Long Range Investigation, Mapping and Production) finally resolved the dispute and proved the theory of Milankovitch cycles. In 1972, scientists compiled a time scale of climatic events in the past 700,000 years from deep-sea cores. They performed the analysis of the cores and four years later, came to the conclusion that in the past 500,000 years, climate has changed depending on the inclination of the Earth's axis of rotation and its precession.[45] In 1988, a new major project COHMAP (Cooperative Holocene Mapping Project) reconstructed the patterns of global climate change over the last 18,000 years, again demonstrating the key role of astronomical factors.[46] In 1989, the project SPECMAP (Spectral Mapping Project), showed that the climate changes are responses to changes in solar radiation of each of the three astronomical cycles.[47]

In 1999, it was shown that variations in the isotopic composition of oxygen in the sediments at the bottom of the ocean follow Milankovitch theory.[48][49] There are other recent studies that indicate the validity of the original Milankovitch theory.[50] Although orbital forcing of Earth's climate is well accepted, the details of how orbitally-induced changes in insolation affect climate are debated.[citation needed]

On the speed of light edit

Milanković authored two papers on relativity. He wrote his first paper "On the theory of Michelson's experiment" in 1924. He was doing research in this theory from 1912. His papers on this matter were on special relativity and both are on the Michelson experiment (now known as the Michelson–Morley experiment) which produced strong evidence against aether theory. In the light of the Michelson experiment he discussed on the validity of the second postulate of special theory of relativity, that the speed of light is the same in every reference frame.[51]

Revised Julian calendar edit

Milanković proposed a revised Julian calendar in 1923.[52][53][54] It made centennial years leap years if division by 900 left a remainder of 200 or 600, unlike the Gregorian rule which required that division by 400 left no remainder. (In both systems, the years 2000 and 2400 are leap years.) In May 1923 a congress of some Eastern Orthodox churches adopted the calendar;[55][56] however, only the removal of 1–13 October 1923 and the revised leap year algorithm were adopted by a number of Eastern Orthodox churches. The dates of Easter and related holy days are still computed using the Julian calendar. At the time of Milanković's proposal, it was suspected the period of rotation of Earth might not be constant, but it was not until the development of quartz and atomic clocks beginning in the 1930s that this could be proven and quantified.[57] The variation in the period of rotation of Earth is the chief cause of long-term inaccuracy in both the Gregorian and Revised Julian calendars.[58]

Awards and honors edit

 
Milanković on a 2019 stamp of Serbia.

On June 25, 1923 he was conferred the Saint Sava Order, 3rd degree. On 1925, he was awarded Tunisian Nichan Iftikhar Order, 3rd degree. On 1929, he was awarded, at the proposal of the Ministry of Finances the White Eagle Order, 5th degree. On 1935, he was awarded Greek decoration - Phoenix Battalion Commander's Cross. On December 20, 1938 he was awarded the Royal Order of the Yugoslav Crown 3rd degree. In 1965, the Academy of Sciences of the Soviet Union named an impact crater on the far side of the Moon as Milankovic, which was later confirmed at the 14th IAU General Assembly in 1970. His name is also given to a crater on Mars at the 15th IAU General Assembly in 1973. Since 1993 the Milutin Milankovic Medal has been awarded by the European Geophysical Society (called the EGU since 2003) for contributions in the area of long-term climate and modeling.[59][60] A main belt asteroid discovered in 1936 has also been dubbed 1605 Milankovitch. At NASA, in their edition of "On the Shoulders of Giants", Milanković has been ranked among the top fifteen minds of all time in the field of earth sciences.[61]

Interesting facts edit

Milankovitch was a great admirer of Nikola Tesla. On behalf of five academics, Milutin Milankovitch wrote a recommendation that Nikola Tesla be elected a full member of the Royal Serbian Academy, which was done at a ceremonial meeting on March 7, 1937.[62]

Selected works edit

  • Théorie mathématique des phénomènes thermiques produits par la radiation solaire, XVI, 338 S. – Paris: Gauthier-Villars, 1920
  • Reforma julijanskog kalendara. Srpska Kr. Akad. Pos. Izda’na 47: 52 S., Beograd: Sv. Sava, 1923
  • Mathematische Klimalehre und astronomische Theorie der Klimaschwankungen. In: Köppen, W.; Geiger R. (Hrsg.): Handbuch der Klimatologie, Bd. 1: Allgemeine Klimalehre, Berlin: Borntraeger, 1930
  • Mathematische Klimalehre. In: Gutenberg, B. (Hrsg.) Handbuch der Geophysik, Berlin: Borntraeger, 1933
  • Durch ferne Welten und Zeiten, Briefe eines Weltallbummlers. 389 S. – Leipzig: Koehler & Amelang, 1936
  • Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem. Académie royale serbe. Éditions speciales; 132 [vielm. 133]: XX, 633, Belgrad, 1941
  • Canon of insolation and the ice-age problem. English translation by the Israel Program for Scientific Translations, published for the U.S. Department of Commerce and National Science Foundation, Washington, D.C.: 633 S., 1969
  • Canon of Insolation and the Ice-Age Problem. Pantic, N. (Hrsg.), Beograd: Zavod Nastavna Sredstva, 634 S., 1998

See also edit

References edit

  1. ^ Milutin Milankovitch. Encyclopædia Britannica
  2. ^ "Jedan od najuticajnijih srpskih naučnika: Ko je bio Milutin Milanković i koji su njegovi najveći doprinosi nauci?".
  3. ^ a b "Ko je bio Milutin Milanković, jedan od najvećih umova svih vremena".
  4. ^ Federico Foce (October 2007). "Milankovitch's Theorie der Druckkurven: Good mechanics for masonry architecture – Springer". Nexus Network Journal. Springerlink.com. 9 (2): 185–210. doi:10.1007/s00004-007-0039-9.
  5. ^ M. S. Dimitrijević (2002). "Milutin Milanković (1879 - 1959) and his contribution to European astronomy". Astron. Nachr. 323 (6): 570–573. Bibcode:2002AN....323..570D. doi:10.1002/1521-3994(200212)323:6<570::AID-ASNA570>3.0.CO;2-V.
  6. ^ Nisevac gorge and railway line
  7. ^ a b c Ateş, M. Efe (2022). "Pioneers of the ace ages models: a brief history from Agassiz to Milankovitch". History of Geo- and Space Sciences. 13 (1): 23–37. Bibcode:2022HGSS...13...23A. doi:10.5194/hgss-13-23-2022.
  8. ^ Fleming, James R. (2021). "Cosmic connections: James Croll's influence on his contemporaries and his successors". Earth and Environmental Science Transactions of the Royal Society of Edinburgh. 112 (3–4): 239. Bibcode:2021EESTR.112..239F. doi:10.1017/S1755691021000098.
  9. ^ Миланковић, М. (1912). "Прилог теорији математске климе (In Serbian)" (PDF). Београд: Глас Српске краљевске академије: 136–160.
  10. ^ Миланковић, М. (1913). "О распореду сунчеве радијације на површини Земље (In Serbian)" (PDF). Београд: Глас Српске краљевске академије. XCI: 99–179.
  11. ^ Milankovitch, M. (1914). "Zur Theorie der Strahlenabsorption in der Atmosphäre". Annalen der Physik. 348 (4): 623–638. Bibcode:1914AnP...348..623M. doi:10.1002/andp.19143480406.
  12. ^ W. Schwarzacher (24 August 1993). Cyclostratigraphy and the Milankovitch Theory. Elsevier. p. 43. ISBN 978-0-08-086966-7.
  13. ^ a b c Cvijanovic, Ivana; Lukovic, Jelena; Begg, James D. (2020). "One hundred years of Milanković cycles". Nature Geoscience. 13 (8): 524–525. doi:10.5194/cp-17-1727-2021.
  14. ^ a b c Szarka, László; Soon, Willie W.-H; Cionco, Rodolfo G. (2021). "How the astronomical aspects of climate science were settled? On the Milankovitch and Bacsák anniversaries, with lessons for today". Advances in Space Research. 67 (1): 700–707. Bibcode:2021AdSpR..67..700S. doi:10.1016/j.asr.2020.09.020.
  15. ^ "W. H. Calvin's THE ASCENT OF MIND (Chapter 4)". Williamcalvin.com. 1 December 1994. Retrieved 15 August 2012.
  16. ^ a b c d e f Berger, André (2021). "Milankovitch, the father of paleoclimate modeling". Climate of the Past. 17 (4): 1727–1733. Bibcode:2021CliPa..17.1727B. doi:10.5194/cp-17-1727-2021.
  17. ^ Read, Peter L. (2013). "Milankovitch on Mars: observing and modeling astronomically - induced climate change" (PDF). Atmospheric, Oceanic & Planetary Physics, University of Oxford.
  18. ^ M. S. Dimitrijević (2002). "Milutin Milanković (1879 - 1959) and his contribution to European astronomy". Astron. Nachr. 323 (6): 570–573. Bibcode:2002AN....323..570D. doi:10.1002/1521-3994(200212)323:6<570::AID-ASNA570>3.0.CO;2-V.
  19. ^ a b J. D. Macdougall (2006). Frozen Earth: The Once and Future Story of Ice Ages. University of California Press. p. 123. ISBN 978-0-520-24824-3.
  20. ^ Dauvillier, A. (1976). "The Venus oceans problem". Journal of the British Astronomical Association. 86: 147. Bibcode:1976JBAA...86..147D.
  21. ^ P. J. Daniel (1923). "Review: M. Milankovitch Mathématique des Phénomènes Thermiques produits par la Radiation Solaire". Bull. Amer. Math. Soc. 29 (9): 419–420. doi:10.1090/S0002-9904-1923-03773-7.
  22. ^ M. Milankovitch (1920). Théorie mathématique des Phénomènes thermiques produits par la Radiation Solaire (PDF). Paris: Gauthier-Villars. p. 335.
  23. ^ Roger M. McCoy (2006). Ending in Ice: The Revolutionary Idea and Tragic Expedition of Alfred Wegener. Oxford University Press. p. 52. ISBN 978-0-19-977495-1.
  24. ^ Thiede, Jörn (2018). "Wladimir Köppen, Alfred Wegener and Milutin Milankovitch: their Impact on modern paleoclimate research and revival of the Milankovitch hypothesis" (PDF). Vestnik of St Petersburg University. 63 (2): 230–250.
  25. ^ The Climates of the Geological Past by Wladimir Köppen and Alfred Wegener
  26. ^ a b c Janc, Natalija; Gavrilov, Milivoj B.; Marković, Slobodan B.; Benišek, Vojislava Protić; Benišek, Vladimir; Popović, Luka Č; Tomić, Nemanja (1 January 2019). "Ice Age theory: a correspondence between Milutin Milanković and Vojislav Mišković". Open Geosciences. 11 (1): 263–272. Bibcode:2019OGeo...11...21J. doi:10.1515/geo-2019-0021.
  27. ^ W. Schwarzacher (1993). Cyclostratigraphy and the Milankovitch Theory. Elsevier. p. 29. ISBN 9780080869667.
  28. ^ John Imbrie; Katherine Palmer Imbrie (1986). Ice Ages: Solving the Mystery. Harvard University Press. p. 109. ISBN 9780674440753. Retrieved 5 June 2013.
  29. ^ a b Janc, N, Gavrilo, M. B, Marković, S. B., Benišek, V. P. Popović, L. C., and Benišek V. (2020). "Milutin Milanković and Associates in the Creation of the "Kanon"". Publications of the Astronomical Society "Rudjer Bošković". 20: 123–128. Bibcode:2020PASRB..20..123J.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  30. ^ N. Pejović (2011). "Digitisation of textbook Nebeska mehanika by Milutin´c". NCD Review. 19: 63–68.
  31. ^ M. S. Dimitrijević (2002). "Milutin Milanković (1879 - 1959) and his contribution to European astronomy". Astron. Nachr. 323 (6): 570–573. Bibcode:2002AN....323..570D. doi:10.1002/1521-3994(200212)323:6<570::AID-ASNA570>3.0.CO;2-V.
  32. ^ N. Pejović (2011). "Digitisation of textbook Nebeska mehanika by Milutin Milankovi´c". NCD Review. 19: 63–68.
  33. ^ Rosengren, A. J.; Scheeres, D. J. (2014). "On the Milankovitch orbital elements for pertubed Keplerian motion". Celastial Mechanics and Dinamical Astronomy. 118 (3).
  34. ^ "Milanković (Milankovitch), Milutin – Dictionary definition of Milanković (Milankovitch), Milutin | Encyclopedia.com: FREE online dictionary". Encyclopedia.com. 12 December 1958. Retrieved 15 August 2012.
  35. ^ "Milankovic's "End of the World" by Vlado Milicevic p. 7/85" (PDF).
  36. ^ M. S. Dimitrijević (2002). "Milutin Milanković (1879 - 1959) and his contribution to European astronomy". Astron. Nachr. 323 (6): 570–573. Bibcode:2002AN....323..570D. doi:10.1002/1521-3994(200212)323:6<570::AID-ASNA570>3.0.CO;2-V.
  37. ^ . National Geographic. Archived from the original on 2 October 2011. Retrieved 15 August 2012.
  38. ^ a b M. Milankovitch (1941). Kanon der Erdbestrahlung (PDF). Belgrade: Königlich Serbishe Akademie. p. 622.
  39. ^ . Scc.digital.nb.rs. Archived from the original on 31 March 2012. Retrieved 15 August 2012.
  40. ^ Wilson, Ralph E. (1948). "Meeting of the International Astronomical Union". Publications of the Astronomical Society of the Pacific. 60 (356): 281. Bibcode:1948PASP...60..281W. doi:10.1086/126072.
  41. ^ B. Arbutina (2021). "The First Yugoslav National Committee for Astronomy". Public. Astron. Obs. Belgrade. No. 100: 185–191. Bibcode:2021POBeo.100..185A.
  42. ^ Romano, Marco; Rubidge, Bruce and Sardella, Raffaele (2021). "A century since the recognition of cyclic climatic change by Milanković". Sociatà Geologica Italiana. 53: 9–13.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  43. ^ J. D. Macdougall (2006). Frozen Earth: The Once and Future Story of Ice Ages. University of California Press. p. 132. ISBN 978-0-520-24824-3.
  44. ^ Milutin Milanković (1969). Canon of Insolation and the Ice-age Problem: (Kanon Der Erdbestrahlung und Seine Anwendung Auf Das Eiszeitenproblem) Belgrade, 1941. Israel Program for Scientific Translations. Bibcode:1969ciip.book.....M.
  45. ^ J.D. Hays; John Imbrie & N.J. Shackleton (1976). "Variations in the Earth's Orbit: Pacemaker of the Ice Ages". Science. 194 (4270): 1121–1132. Bibcode:1976Sci...194.1121H. doi:10.1126/science.194.4270.1121. JSTOR 1743620. PMID 17790893. S2CID 667291.
  46. ^ "Welcome to nginx!". encyclopedia.com. Archived from the original on 29 July 2012. Retrieved 2 February 2022.
  47. ^ Vivien Gornitz (31 October 2008). Encyclopedia of Paleoclimatology and Ancient Environments. Springer Science & Business Media. p. 911. ISBN 978-1-4020-4551-6.
  48. ^ J.A. Rial (1999). "Pacemaking the ice ages by frequency modulation of Earth's orbital eccentricity". Science. 285 (5427): 564–8. doi:10.1126/science.285.5427.564. PMID 10417382.
  49. ^ Richard A. Kerr (1999). "Why the Ice Ages Don't Keep Time". Science. 285 (5427): 503–505. doi:10.1126/science.285.5427.503. JSTOR 2898704. S2CID 129517667.
  50. ^ James W. C. White (2004). "PALEOCLIMATE: Do I Hear a Million?". Science. 304 (5677): 1609–1610. doi:10.1126/science.1100084. PMID 15192208. S2CID 129188583.
  51. ^ Mijajlović, Žarko; Pejović, Nadežda; Radović, Viktor (2018). "First Serbian works on the theory of relativity". Publ. Astron. Soc. "Ruđer Bošković" (18): 99–107.
  52. ^ M. S. Dimitrijević, Th. Theodossiou and P. Z. Mantarakis (2008). "Milutin Milanković and Reform of the Julian Calendar". Journal of Astronomical History and Heritage. 11 (1): 50–54. doi:10.3724/SP.J.1440-2807.2008.01.05. S2CID 161099128.
  53. ^ Dimitrijević, Мilan S. (2019). "Milutin Milanković and Reform of Julian calendar of Ecoumenical congress in Constantinople in 1923". International Conference: The Life and Work of Milutin Milanković - Past, Present and Future: 87–91.
  54. ^ Gajić, Nenad (2019). "The curious case of the Milankovitch calendar". Hist. Geo Space. Sci. 10 (2): 235–243. Bibcode:2019HGSS...10..235G. doi:10.5194/hgss-10-235-2019.
  55. ^ M. Milankovitch (1924). "Das Ende des julianischen Kalenders und der neue Kalender der orientalischen Kirchen". Astronomische Nachrichten. 220 (5279): 379–384. Bibcode:1924AN....220..379M. doi:10.1002/asna.19232202303.
  56. ^ Miriam Nancy Shields (1924). "The new calendar of the Eastern churches". Popular Astronomy. 32: 407–411. Bibcode:1924PA.....32..407S.. This is a translation of the paper by Milankovitch in Astronomische Nachrichten.
  57. ^ D. D. McCarthy and P. K. Seidelmann (2009) TIME From Earth Rotation to Atomic Physics. Weinheim: Wiley-VCH. Ch. 4, 5, 6, 8, 9, 12. ISBN 9783527627943. doi:10.1002/9783527627943
  58. ^ B. Blackburn and L. Holford-Strevens (1999) The Oxford Companion to the Year: An exploration of calendar customs and time-reckoning. Oxford University Press, pp. 688, 692. ISBN 0192142313
  59. ^ "EGS – Milutin Milankovic Medal". Egu.eu. 8 March 2010. Retrieved 15 August 2012.
  60. ^ "EGU – Awards & Medals – Milutin Milankovic Medal". Egu.eu. Retrieved 29 November 2015.
  61. ^ "Milutin Milankovitch : Feature Articles". Earthobservatory.nasa.gov. 24 March 2000. Retrieved 15 August 2012.
  62. ^ Inđijić M. (1997). "Life, scientific and professional activity of Milutin Milanković". Bulletin Astronomique de Belgrade. 155: 169–197. Bibcode:1997BABel.155..169I.

External links edit

  • Three variables known as the Milankovitch Cycles affect how and when Earth enters an ice age or global warming.
  • Rusov, Lazar (2009). "Milanković's analysis of Newton's law of universal gravitation" (PDF). FME Transcations. 37 (4): 211–217.
  • Milankovitch theory hits and misses
  • Life and Scientific Work of Milutin Milanković
  • Precession and the Milanković Theory
Academic offices
Preceded by Dean of the Faculty of Philosophy
1926–1927
Succeeded by

milutin, milanković, sometimes, anglicised, milutin, milankovitch, serbian, cyrillic, Милутин, Миланковић, pronounced, milǔtin, milǎːnkoʋitɕ, 1879, december, 1958, serbian, mathematician, astronomer, climatologist, geophysicist, civil, engineer, popularizer, s. Milutin Milankovic sometimes anglicised as Milutin Milankovitch Serbian Cyrillic Milutin Milankoviћ pronounced milǔtin milǎːnkoʋitɕ 28 May 1879 12 December 1958 was a Serbian mathematician astronomer climatologist geophysicist civil engineer and popularizer of science Milutin MilankovicMilutin MilankoviћMilutin Milankovic c 1924Born 1879 05 28 28 May 1879 1 Dalj Austria Hungary modern day Croatia Died12 December 1958 1958 12 12 aged 79 Belgrade PR Serbia YugoslaviaNationalitySerbianAlma materTU WienKnown forInsolationMilankovitch cyclesScientific careerFieldsMathematicsastronomyastrophysicsclimatologypaleoclimatologygeophysicsThesisBeitrag zur Theorie der Druck kurven 1904 SignatureMilankovic gave two fundamental contributions to global science The first contribution is the Canon of the Earth s Insolation which characterizes the climates of all the planets of the Solar System The second contribution is the explanation of Earth s long term climate changes caused by changes in the position of the Earth in comparison to the Sun now known as Milankovitch cycles This partly explained the ice ages occurring in the geological past of the Earth as well as the climate changes on the Earth which can be expected in the future He founded planetary climatology by calculating temperatures of the upper layers of the Earth s atmosphere as well as the temperature conditions on planets of the inner Solar System Mercury Venus Mars and the Moon as well as the depth of the atmosphere of the outer planets He demonstrated the interrelatedness of celestial mechanics and the Earth sciences and enabled a consistent transition from celestial mechanics to the Earth sciences and transformation of descriptive sciences into exact ones A distinguished professor of applied mathematics and celestial mechanics at the University of Belgrade 2 Milankovic was a director of the Belgrade Observatory member and co founder of the Commission 7 for celestial mechanics of the International Astronomical Union and vice president of Serbian Academy of Sciences and Arts 3 Beginning his career as a construction engineer he retained an interest in construction throughout his life and worked as a structural engineer and supervisor on a series of reinforced concrete constructions throughout Yugoslavia He registered multiple patents related to this area 3 Contents 1 Life 1 1 Early life 1 2 Middle years 1 2 1 Structural engineering 1 2 2 Planet s insolation 1 2 3 Orbital variations and ice age cycles 1 2 4 Polar wandering 1 3 Later life 1 3 1 History of science 1 4 Legacy 2 On the speed of light 3 Revised Julian calendar 4 Awards and honors 5 Interesting facts 6 Selected works 7 See also 8 References 9 External linksLife editEarly life edit nbsp The house in Dalj in which Milankovic was born today houses the Cultural and Scientific Center Milutin Milankovic Milutin Milankovic was born in the village of Dalj a settlement on the banks of the Danube in what was then part of Austro Hungarian Empire Milutin and his twin sister were the oldest of seven children raised in a Serb family Their father was a merchant landlord and a local politician who died when Milutin was eight As a result Milutin and his siblings were raised by his mother grandmother and an uncle His three brothers died of tuberculosis at a young age As his health was fickle Milutin received his elementary education at home in the classroom without walls learning from his father Milan private teachers and from numerous relatives and friends of the family some of whom were renowned philosophers inventors and poets He attended secondary school in nearby Osijek completing it in 1896 nbsp Milankovic as a studentIn October 1896 at the age of seventeen he moved to Vienna to study Civil Engineering at the TU Wien and graduated in 1902 with the best marks In his memoirs Milankovic wrote about his lectures on engineering Professor Czuber was teaching us mathematics His every sentence was the masterpiece of strict logic without any extra word without any error After graduating and spending his obligatory year in military service Milankovic borrowed money from an uncle to pay for additional schooling at TU Wien in engineering He researched concrete and wrote a theoretical evaluation of it as a building material At age twenty five his PhD thesis was entitled Contribution to the Theory of Pressure Curves Beitrag zur Theorie der Druckkurven and its implementation allowed assessment of pressure curves shape and properties when continuous pressure is applied which is very useful in bridge cupola and abutment construction 4 His thesis was successfully defended on 12 December 1904 examination committee members were Johann Emanuel Brik Josef Finger Emanuel Czuber and Ludwig von Tetmajer He then worked for an engineering firm in Vienna using his knowledge to design structures Middle years edit Structural engineering edit At the beginning of 1905 Milankovic took up practical work and joined the firm of Adolf Baron Pittel Betonbau Unternehmung in Vienna He built dams bridges viaducts aqueducts and other structures in reinforced concrete throughout Austria Hungary The result was particularly evident in the extraordinary design of a reinforced concrete aqueduct for a hydroelectric power plant in Sebeș Transylvania which Milankovic designed at the beginning of his career He patented a new type of reinforced concrete ribbed ceiling and published the first paper on armored concrete titled Contribution to the theory of reinforced armored pillars He published the second paper on the same subject based on new results in 1906 In 1908 he published a paper titled On membranes of same opposition in which he proves that the ideal shape for a water reservoir of equally thick walls is that of a drop of water 5 His six patents were officially recognized and his reputation in the profession was enormous bringing abundant financial wealth Milankovic continued to practice civil engineering in Vienna until 1 October 1909 when he was received an offer University of Belgrade to work as an Associate Professor at the Department of Applied Mathematics that comprised three basic branches rational celestial mechanics and theoretical physics Though he continued to pursue his investigations of various problems pertaining to the application of reinforced concrete he decided to concentrate on fundamental research nbsp One of the 17 Milankovitch bridges on the railway line through the Nisevac gorge in Serbia 6 Milankovic continued in design and construction work when he moved to Kingdom of Serbia In 1912 Milankovitch accepted the invitation of his collegemate from TU Wien and the owner of the construction company Petar Putnik to create a project for bridges on rocky shores on the future route of the Nis Knjazevac railway in the Timok Valley through the Nisevac Gorge Milankovitch who liked this idea very much soon drew up structural calculations for all the bridges with reinforced concrete arches Planet s insolation edit While studying the works of the contemporaneous climatologist Julius von Hann Milankovic noticed a significant issue which became one of the major objects of his scientific research a mystery ice age The idea of possible astronomically related climate changes was first considered by astronomers John Herschel 1792 1871 and then postulated by geologists Louis Agassiz 1807 1873 In parallel there were also several attempts to explain the climate change by the influence of astronomical forces the most comprehensive of them was the theory put forward by James Croll in the 1875 7 Milankovic studied the works of Joseph Adhemar whose pioneering theory on the astronomical origins of ice ages were formally rejected by his contemporaries and James Croll whose work was effectively forgotten about even after acceptance by contemporaries such as Charles Darwin 8 7 Despite having valuable data on the distribution of ice ages on Alps climatologists and geologists could not discover the basic causes that is the different insolations of the Earth during past ages remained beyond the scope of these sciences But Milankovic decided to follow their path and attempt correctly to calculate the magnitude of such influences Milankovic sought the solution of these complex problems in the field of spherical geometry celestial mechanics and theoretical physics He began working on it in 1912 after he had realized that most of meteorology is nothing but a collection of innumerable empirical findings mainly numerical data with traces of physics used to explain some of them Mathematics was even less applied nothing more than elementary calculus Advanced mathematics had no role in that science His first work described the present climate on Earth and how the Sun s rays determine the temperature on Earth s surface after passing through the atmosphere He published the first paper on the subject entitled Contribution to the mathematical theory of climate in Belgrade on April 1912 9 His next paper was entitled Distribution of the sun radiation on the earth s surface and was published on June 1913 10 In December of that year this paper was read by Wilhelm Wien and was soon published in the German journal Annalen der Physik 11 He correctly calculates the intensity of insolation and developed a mathematical theory describing Earth s climate zones 12 His aim was an integral mathematically accurate theory which connects thermal regimes of the planets to their movement around the Sun He wrote such a theory would enable us to go beyond the range of direct observations not only in space but also in time It would allow reconstruction of the Earth s climate and also its predictions as well as give us the first reliable data about the climate conditions on other planets At the same time the July Crisis between the Austro Hungarian empire and Serbia broke out which led to World War I On 14 June 1914 Milankovic married Kristina Topuzovic and went on his honeymoon to his native village of Dalj in Austro Hungary where he heard about the beginning of the War 13 He was arrested as a citizen of Serbia and was interned by the Austro Hungarian army in Nezsider Hungary today Neusiedl am See Austria He described his first day in prison where he waited to be taken to the Esseg fortress as a prisoner of war in the following words The heavy iron door closed behind me Sat on the bed I looked around and started synchronizing with my new social position In the suitcase I had my printed works and my notes on the cosmic problem there was clean paper too and I started writing It was far past midnight when I stopped I looked around the room wondering where I was It felt like I was in a roadhouse on my trip through the Universe 13 His wife went to Vienna to talk to Emanuel Czuber who was his mentor and a good friend Through his social connections Professor Czuber arranged Milankovic s release from prison and permission to spend his captivity in Budapest with the right to work nbsp M Milankovitch s table of average Martian ground and atmosphere temperatures Immediately after arriving in Budapest Milankovic met the Director of the Library of the Hungarian Academy of Science Kalman Szily who as a mathematician eagerly accepted Milankovic and enabled him to work undisturbed in the Academy s library and the Central Meteorological Institute 14 15 Milankovic spent four years in Budapest almost the entire war 14 He published a paper entitled The problem of the astronomical theory of ice ages in 1914 16 Then he tried to find a mathematical model of a cosmic mechanism to describe the Earth s climatic and geological history But the cosmic mechanism was not an easy problem and Milankovic took three decades to develop an astronomical theory He used mathematical methods to study the current climate of inner planets of the solar system In 1916 he published a paper entitled Investigation of the climate of the planet Mars 17 18 Milankovic calculated that the average temperature in the lower layers the atmosphere on Mars is 45 C 49 F and the average surface temperature is 17 C 1 F Also he concluded that This large temperature difference between the ground and lower layers of the atmosphere is not unexpected Great transparency for solar radiation makes that is the climate of Mars very similar to altitudes climate of our Earth In any case Milankovic theoretically proved that Mars has an extremely harsh climate 19 In addition to considering Mars he dealt with the climatic conditions prevailing on Venus and Mercury 20 19 His calculations of the temperature conditions on the neighboring Moon are particularly significant Milankovitch knew that the moon rotates on its axis in 27 32 days so lunar daytime on one side of the moon last about 13 5 Earth days Milankovitch calculated that the surface temperature on the daylight side of the moon at noon reaches 100 5 C 212 9 F Also he calculated that the temperature during the early morning on the Moon or before the rise of the Sun over horizon was 54 C 65 F After World War I Milankovic returned to Belgrade with his family on 19 March 1919 13 He continued his professorial career becoming a full professor at the University of Belgrade From 1912 to 1917 he wrote and published seven papers on mathematical theories of climate both on the Earth and on the other planets He formulated a precise numerical climatological model with the capacity for reconstruction of the past and prediction of the future and established the astronomical theory of climate as a generalized mathematical theory of insolation When these most important problems of the theory were solved and a firm foundation for further work built Milankovic finished a book which was published in 1920 by the Gauthier Villars in Paris under the title Theorie mathematique des phenomenes thermiques produits par la radiation solaire Mathematical Theory of Heat Phenomena Produced by Solar Radiation 14 21 22 Orbital variations and ice age cycles edit After the First World War with the arrival of Russian scientists emigrants the personnel base of the Faculty of Philosophy at the University of Belgrade was expanded Thus from 1920 Anton Bilimovich 1879 1970 a distinguished scientist who came from Odessa took over the lectures on rational mechanics and from 1925 the lectures on theoretical physics and vector theory were taken over by the newly elected assistant professor Vyacheslav Yardecki 1896 1962 Between the two wars Milankovitch taught celestial mechanics and occasionally the theory of relativity and after the Second World War until 1955 when he retired he taught celestial mechanics and the history of astronomy Milankovitch s works on astronomical explanations of ice ages especially his curve of insolation for the past 130 000 years received support from the climatologist Wladimir Koppen and from the geophysicist Alfred Wegener Koppen noted the usefulness of Milankovic s theory for paleoclimatological researchers Milankovic received a letter on 22 September 1922 from Koppen who asked him to expand his studies from 130 000 years to 600 000 years He accepted Koppen s suggestion that cool summers were a crucial factor for glaciation and agreed to calculate the secular progress of insolation of the Earth at the outer limit of the atmosphere for the past 650 000 years for parallels of 55 60 and 65 northern latitude where the most important events of the Quaternary glaciations occurred 7 After developing the mathematical machinery enabling him to calculate the insolation in any given geographical latitude and for any annual season Milankovic was ready to start the realization of the mathematical description of climate of the Earth in the past Milankovic spent 100 days doing the calculations and prepared a graph of solar radiation changes at geographical latitudes of 55 60 and 65 north for the past 650 000 years 23 Milankovitch in his early works used astronomical value of Stockwell Pilgram 16 These curves showed the variations in insolation which correlated with the series of ice ages Koppen felt that Milankovic s theoretical approach to solar energy was a logical approach to the problem His solar curve was introduced in a work entitled Climates of the geological past published by Wladimir Koppen and his son in law Alfred Wegener in 1924 24 25 In September of that year he attended the lecture given by Alfred Wegener at Congress of German Naturalist in Insbruck 26 nbsp Orbital eccentricity obliquity and precession Milankovic put the Sun at the center of his theory as the only source of heat and light in the Solar System He considered three cyclical movements of the Earth eccentricity 100 000 year cycle Johannes Kepler 1609 axial tilt 41 000 year cycle from 22 1 to 24 5 and precession 23 000 year cycle Hipparchus 130 BC Each cycle works on a different time scale and each affects the amount of solar energy received by the planets Such changes in the geometry of an orbit lead to the changes in the insolation the quantity of heat received by any spot at the surface of a planet These orbital variations which are influenced by gravity of the Moon Sun Jupiter and Saturn form the basis of the Milankovitch cycle 27 The Serbian Academy of Sciences and Arts elected Milankovic as a corresponding member in 1920 he became a full member in 1924 The Meteorological service of the Kingdom of Yugoslavia became a member of International Meteorological Organization IMO founded in Brussels in 1853 and in Vienna in 1873 as a predecessor of present World Meteorological Organization WMO Milankovic served as a representative of the Kingdom of Yugoslavia there for many years Between 1925 and 1928 Milankovic wrote the popular science book Through Distant Worlds and Times in the form of letters to an anonymous woman 28 The work discusses the history of astronomy climatology and science via a series of imaginary visits to various points in space and time by the author and his unnamed companion encompassing the formation of the Earth past civilizations famous ancient and renaissance thinkers and their achievements and the work of his contemporaries Koppen and Wegener In the letters Milankovic expanded on some of his own theories on astronomy and climatology and described the complicated problems of celestial mechanics in a simplified manner Koppen proposed to Milankovic on 14 December 1926 to extend his calculations to a million years and to send his results to Barthel Eberl a geologist studying the Danube basin as Eberl s research had unearthed some pre Ice Ages before over 650 000 years Eberl published all this in Augsburg in 1930 together with Milankovic s curves In 1927 Milankovic asked his colleague and friend Vojislav Miskovic to collaborate in the work and calculate astronomical values based on the Le Verrier method Miskovic was a well established astronomer from the Nice Observatory who became the head of the Astronomical Observatory of the University of Belgrade and a professor of Theoretical and Practical Astronomy 26 After almost three years Miskovic and his staff completed the calculation of astronomical values based on the Le Verrier method and using the masses of the planets knows of that time 29 Milankovic used these values in his later works 16 Subsequently Milankovic wrote the introductory portion of Mathematical science of climate and astronomical theory of the variations of the climate Mathematische Klimalehre und Astronomische Theorie der Klimaschwankungen published by Koppen Handbook of Climatology Handbuch der Klimalogie Band 1 in 1930 in German and translated into Russian in 1939 16 In 1935 Milankovic published the book Celestial Mechanics 30 31 This textbook used vector calculus systematically to solve problems of celestial mechanics 32 His original contribution to celestial mechanics is called Milankovic s system of vector elements of planetary orbits He reduced six Lagrangean Laplacian elliptical elements to two vectors determining the mechanics of planetary movements The first specifies the planet s orbital plane the sense of revolution of the planet and the orbital ellipse parameter the second specifies the axis of the orbit in its plane and the orbital eccentricity By applying those vectors he significantly simplified the calculation and directly obtained all the formulas of the classical theory of secular perturbations Milankovic in a simple but original manner first deduced Newton s law of gravitation from Kepler s laws Then Milankovic treated the two body and the many body problems of celestial mechanics He applied vector calculus from quantum mechanics to celestial mechanics 33 Meanwhile in 1936 he attended the Third symposium of the International Union for Quaternary Research INQUA in Vienna 26 In the period from 1935 to 1938 Milankovic calculated that ice cover depended on changes in insolation He succeeded in defining the mathematical relationship between summer insolation and the altitude of the snow line 16 In this way he defined the increase of snow which would occur as a consequence of any given change in summer insolation He published his results in the study New Results of the Astronomic Theory of Climate Changes in 1938 16 Geologists received a graph for presenting bordering altitudes of ice covers any period of time during the last 600 000 years Andre Berger and Jacques Laskar later developed this theory further Polar wandering edit Main article Paleomagnetism nbsp Coal mining in Svalbard on 1908Conversations with Wegener the author of continental drift theory got Milankovic interested in the interior of the Earth and the movement of the poles so he told his friend that he would investigate polar wandering In November 1929 Milankovic received an invitation from Professor Beno Gutenberg of Darmstadt to collaborate on a ten volume handbook on geophysics and to publish his views on the problem of the secular variations of the Earth s rotational poles Wegener presented extensive empirical evidence in his scientific work on the great events during the Earth s past However one of the main findings that especially preoccupied Wegener and then Milankovitch was the discovery of big coal reserves on the Svalbard Islands in the Arctic Ocean which could not form at the present latitude of these islands In the meantime Wegener died from hypothermia or heart failure in November 1930 during his fourth expedition to Greenland Milankovic became convinced that the continents float on a somewhat fluid subsurface and that the positions of the continents with respect to the axis of rotation affect the centrifugal force of the rotation and can throw the axis off balance and force it to move 34 Wegener s tragedy additionally motivated Milankovich to persevere in solving the problem of polar wandering In the period from 1930 to 1933 Milankovitch worked on the problem of numerical secular rotation pole movements The Earth as a whole he considered as a fluid body which in the case of short duration forces behaves as a solid body but under an influence behaves as an elastic body Using vector analysis he made a mathematical model of the Earth to create a theory of secular motion of the terrestrial poles He derived the equation of secular trajectory of a terrestrial pole and also the equation of pole motion along this trajectory The equations further led to a determination of the 25 most characteristic points with pole trajectories for both hemispheres This mathematical calculation led Milankovic to 16 important points from the past that form parts of early explorations 8 points triggered future explorations He drew a map of the path of the poles over the past 300 million years and stated that changes happen in the interval of 5 million years minimum to 30 million years maximum 35 He found that the secular pole trajectory depends only on the configuration of the terrestrial outer shell and the instantaneous pole position on it more precisely on geometry of the Earth mass On this basis he could calculate the secular pole trajectory Also based on Milankovic s model the continental blocks sink into their underlying fluidal base and slide around aiming to achieve isostatic equilibrium In his conclusion about this problem he wrote For an extraterrestrial observer the displacement of the pole takes place in such a way that the Earth s axis maintains its orientation in space but the Earth s crust is displaced on its substratum Milankovitch published his paper on the subject entitled Numerical trajectory of secular changes of pole s rotation in Belgrade in 1932 At the same time Milankovic wrote four sections of Beno Gutenberg s Handbook of Geophysics Handbuch der Geophysik The Earth s Position and Movement in Space Rotational Movement of the Earth Secular shift of the Poles and Astronomic Means for Climate Study during the Earth s history published by Wegener s father in law Koppen in 1933 The lecture on the apparent shift of poles was held at a congress of Balkan mathematicians in Athens in 1934 That same year Milankovic published an article dedicated to the work Alfred Wegener under titled Moving of the Earth s Poles A Memory to Alfred Wegener Milankovitch s work on the trajectory of poles was well accepted only by Koppen s associates because most of the scientific community was skeptical about Wegener and Milankovic s new theories Later in the 1950s and 1960s development of the new scientific discipline in geophysics known as palaeomagnetism led to the key evidence on the basis of studying the records of Earth s magnetic field in rocks over geological time Paleomagnetic evidence both reversals and polar wandering data led the revival of the theories of continental drift and its transformation into plate tectonics in the 1960s and 1970s Unlike Milankovic s linear trajectory of poles palaeomagnetism reconstructed the path of the poles over geological history to show the nonlinear trajectory Later life edit To collect his scientific work on the theory of solar radiation that was scattered in many books and papers Milankovic began his life s work in 1939 36 29 This tome was entitled Canon of Insolation of the Earth and Its Application to the Problem of the Ice Ages which covered his nearly three decades of research including a large number of formulas calculations and schemes but also summarized universal laws through which it was possible to explain cyclical climate change his namesake Milankovitch cycles 37 Milankovic spent two years arranging and writing the Canon The manuscript was submitted to print on 2 April 1941 four days before the attack of Nazi Germany and its allies on the Kingdom of Yugoslavia In the bombing of Belgrade on 6 April 1941 the printing house where his work was being printed was destroyed however almost all of the printed sheet paper remained undamaged in the printing warehouse After the successful occupation of Serbia on 15 May 1941 two German officers and geology students came to Milankovic in his house and brought greetings from Professor Wolfgang Soergel de of Freiburg Milankovic gave them the only complete printed copy of the Canon to send to Soergel to make certain that his work would be preserved Milankovic did not take part in the work of the university during the occupation and after the war he was reinstated as professor The Canon was issued in 1941 38 by the Royal Serbian Academy 626 pages in quarto and was printed in German as Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem 38 The titles of the six parts of the book are The planets motion around the Sun and their mutual perturbations The rotation of the Earth Secular wanderings of the rotational poles of the Earth The Earth s insolation and its secular changes The connection between insolation and the temperature of the Earth and its atmosphere The mathematical climate of the Earth The ice age its mechanism structure and chronology During the German occupation of Serbia from 1941 to 1944 Milankovic withdrew from public life and decided to write a history of his life and work going beyond scientific matters including his personal life and the love of his father who died in his youth His autobiography would be published after the war entitled Recollection Experiences and Vision in Belgrade in 1952 39 History of science edit After the war in 1947 Milankovic s only son emigrated from the new communist Yugoslavia via Paris London and Egypt to Australia Milankovic will never see his son again and the only way of correspondence between them will be through letters Milankovic was vice president of the Serbian Academy of Sciences 1948 1958 In 1948 the General Assembly of the International Astronomical Union was held in Zurich 40 Milankovich are listed member of Commission 7 for Celastial Mechanics and V Mishkovitch member of Commission 19 for Latitude Variation and Commission 20 for Minor Planets 41 For a short period he was the head of the Belgrade Observatory 1948 1951 In 1953 he was at the symposium of the International Union for Quaternary Research INQUA held in Rome 42 In the same year he became a member of the Italian Institute of Paleontology In November 1954 fifty years after receiving his original diploma he received the Golden Doctor s diploma from the Technical University of Vienna In 1955 he was also elected to the German Academy of Naturalists Leopoldina in Halle Saxony Anhalt In 1955 Milankovitch retired from the position of professor of celestial mechanics at the University of Belgrade In the same year he publishes his last work which is not from the natural sciences but from his original profession of structural engineering The paper was titled The Tower of Babel of modern technology Milankovitch in this work calculated the highest building possible on our Earth He was inspired by work of Pieter Bruegel the Elder s Tower of Babel older version in Vienna The building would have a base radius of 112 84 km and a height of 21646 m Since the building penetrates the Earth 1 4 km it would have a height of 20 25 km above the Earth s surface At the very top there would be a wide platform for a meteorological and astronomical station At the same time Milankovic began publishing numerous books on the history of science including Isaac Newton and Newton s Principia 1946 The founders of the natural science Pythagoras Democritus Aristotle Archimedes 1947 History of astronomy from its beginnings up to 1727 1948 Through empire of science images from the lives of great scientists 1950 Twenty two centuries of Chemistry 1953 and Techniques in the ancient times 1955 In September 1957 Milutin suffered a stroke and died in Belgrade in 1958 43 He is buried in his family cemetery in Dalj citation needed Legacy edit nbsp Monument to Milankovic in Belgrade After Milankovic s death most of the scientific community came to dispute his astronomical theory and no longer recognized the results of his research But ten years after his death and fifty years from the first publication Milankovic s theory was again taken under consideration His book was translated into English under the title Canon of Insolation of the Ice Age Problem in 1969 by the Israel Program for Scientific Translations and was published by the U S Department of Commerce and the National Science Foundation in Washington D C 44 In the beginning recognition came slowly but later the theory was proven to be accurate Project CLIMAP Climate Long Range Investigation Mapping and Production finally resolved the dispute and proved the theory of Milankovitch cycles In 1972 scientists compiled a time scale of climatic events in the past 700 000 years from deep sea cores They performed the analysis of the cores and four years later came to the conclusion that in the past 500 000 years climate has changed depending on the inclination of the Earth s axis of rotation and its precession 45 In 1988 a new major project COHMAP Cooperative Holocene Mapping Project reconstructed the patterns of global climate change over the last 18 000 years again demonstrating the key role of astronomical factors 46 In 1989 the project SPECMAP Spectral Mapping Project showed that the climate changes are responses to changes in solar radiation of each of the three astronomical cycles 47 In 1999 it was shown that variations in the isotopic composition of oxygen in the sediments at the bottom of the ocean follow Milankovitch theory 48 49 There are other recent studies that indicate the validity of the original Milankovitch theory 50 Although orbital forcing of Earth s climate is well accepted the details of how orbitally induced changes in insolation affect climate are debated citation needed On the speed of light editMilankovic authored two papers on relativity He wrote his first paper On the theory of Michelson s experiment in 1924 He was doing research in this theory from 1912 His papers on this matter were on special relativity and both are on the Michelson experiment now known as the Michelson Morley experiment which produced strong evidence against aether theory In the light of the Michelson experiment he discussed on the validity of the second postulate of special theory of relativity that the speed of light is the same in every reference frame 51 Revised Julian calendar editMain article Revised Julian calendar Milankovic proposed a revised Julian calendar in 1923 52 53 54 It made centennial years leap years if division by 900 left a remainder of 200 or 600 unlike the Gregorian rule which required that division by 400 left no remainder In both systems the years 2000 and 2400 are leap years In May 1923 a congress of some Eastern Orthodox churches adopted the calendar 55 56 however only the removal of 1 13 October 1923 and the revised leap year algorithm were adopted by a number of Eastern Orthodox churches The dates of Easter and related holy days are still computed using the Julian calendar At the time of Milankovic s proposal it was suspected the period of rotation of Earth might not be constant but it was not until the development of quartz and atomic clocks beginning in the 1930s that this could be proven and quantified 57 The variation in the period of rotation of Earth is the chief cause of long term inaccuracy in both the Gregorian and Revised Julian calendars 58 Awards and honors edit nbsp Milankovic on a 2019 stamp of Serbia On June 25 1923 he was conferred the Saint Sava Order 3rd degree On 1925 he was awarded Tunisian Nichan Iftikhar Order 3rd degree On 1929 he was awarded at the proposal of the Ministry of Finances the White Eagle Order 5th degree On 1935 he was awarded Greek decoration Phoenix Battalion Commander s Cross On December 20 1938 he was awarded the Royal Order of the Yugoslav Crown 3rd degree In 1965 the Academy of Sciences of the Soviet Union named an impact crater on the far side of the Moon as Milankovic which was later confirmed at the 14th IAU General Assembly in 1970 His name is also given to a crater on Mars at the 15th IAU General Assembly in 1973 Since 1993 the Milutin Milankovic Medal has been awarded by the European Geophysical Society called the EGU since 2003 for contributions in the area of long term climate and modeling 59 60 A main belt asteroid discovered in 1936 has also been dubbed 1605 Milankovitch At NASA in their edition of On the Shoulders of Giants Milankovic has been ranked among the top fifteen minds of all time in the field of earth sciences 61 Interesting facts editMilankovitch was a great admirer of Nikola Tesla On behalf of five academics Milutin Milankovitch wrote a recommendation that Nikola Tesla be elected a full member of the Royal Serbian Academy which was done at a ceremonial meeting on March 7 1937 62 Selected works editTheorie mathematique des phenomenes thermiques produits par la radiation solaire XVI 338 S Paris Gauthier Villars 1920 Reforma julijanskog kalendara Srpska Kr Akad Pos Izda na 47 52 S Beograd Sv Sava 1923 Mathematische Klimalehre und astronomische Theorie der Klimaschwankungen In Koppen W Geiger R Hrsg Handbuch der Klimatologie Bd 1 Allgemeine Klimalehre Berlin Borntraeger 1930 Mathematische Klimalehre In Gutenberg B Hrsg Handbuch der Geophysik Berlin Borntraeger 1933 Durch ferne Welten und Zeiten Briefe eines Weltallbummlers 389 S Leipzig Koehler amp Amelang 1936 Kanon der Erdbestrahlung und seine Anwendung auf das Eiszeitenproblem Academie royale serbe Editions speciales 132 vielm 133 XX 633 Belgrad 1941 Canon of insolation and the ice age problem English translation by the Israel Program for Scientific Translations published for the U S Department of Commerce and National Science Foundation Washington D C 633 S 1969 Canon of Insolation and the Ice Age Problem Pantic N Hrsg Beograd Zavod Nastavna Sredstva 634 S 1998See also editHistory of climate change scienceReferences edit Milutin Milankovitch Encyclopaedia Britannica Jedan od najuticajnijih srpskih naucnika Ko je bio Milutin Milankovic i koji su njegovi najveci doprinosi nauci a b Ko je bio Milutin Milankovic jedan od najvecih umova svih vremena Federico Foce October 2007 Milankovitch s Theorie der Druckkurven Good mechanics for masonry architecture Springer Nexus Network Journal Springerlink com 9 2 185 210 doi 10 1007 s00004 007 0039 9 M S Dimitrijevic 2002 Milutin Milankovic 1879 1959 and his contribution to European astronomy Astron Nachr 323 6 570 573 Bibcode 2002AN 323 570D doi 10 1002 1521 3994 200212 323 6 lt 570 AID ASNA570 gt 3 0 CO 2 V Nisevac gorge and railway line a b c Ates M Efe 2022 Pioneers of the ace ages models a brief history from Agassiz to Milankovitch History of Geo and Space Sciences 13 1 23 37 Bibcode 2022HGSS 13 23A doi 10 5194 hgss 13 23 2022 Fleming James R 2021 Cosmic connections James Croll s influence on his contemporaries and his successors Earth and Environmental Science Transactions of the Royal Society of Edinburgh 112 3 4 239 Bibcode 2021EESTR 112 239F doi 10 1017 S1755691021000098 Milankoviћ M 1912 Prilog teoriјi matematske klime In Serbian PDF Beograd Glas Srpske kraљevske akademiјe 136 160 Milankoviћ M 1913 O rasporedu suncheve radiјaciјe na povrshini Zemљe In Serbian PDF Beograd Glas Srpske kraљevske akademiјe XCI 99 179 Milankovitch M 1914 Zur Theorie der Strahlenabsorption in der Atmosphare Annalen der Physik 348 4 623 638 Bibcode 1914AnP 348 623M doi 10 1002 andp 19143480406 W Schwarzacher 24 August 1993 Cyclostratigraphy and the Milankovitch Theory Elsevier p 43 ISBN 978 0 08 086966 7 a b c Cvijanovic Ivana Lukovic Jelena Begg James D 2020 One hundred years of Milankovic cycles Nature Geoscience 13 8 524 525 doi 10 5194 cp 17 1727 2021 a b c Szarka Laszlo Soon Willie W H Cionco Rodolfo G 2021 How the astronomical aspects of climate science were settled On the Milankovitch and Bacsak anniversaries with lessons for today Advances in Space Research 67 1 700 707 Bibcode 2021AdSpR 67 700S doi 10 1016 j asr 2020 09 020 W H Calvin s THE ASCENT OF MIND Chapter 4 Williamcalvin com 1 December 1994 Retrieved 15 August 2012 a b c d e f Berger Andre 2021 Milankovitch the father of paleoclimate modeling Climate of the Past 17 4 1727 1733 Bibcode 2021CliPa 17 1727B doi 10 5194 cp 17 1727 2021 Read Peter L 2013 Milankovitch on Mars observing and modeling astronomically induced climate change PDF Atmospheric Oceanic amp Planetary Physics University of Oxford M S Dimitrijevic 2002 Milutin Milankovic 1879 1959 and his contribution to European astronomy Astron Nachr 323 6 570 573 Bibcode 2002AN 323 570D doi 10 1002 1521 3994 200212 323 6 lt 570 AID ASNA570 gt 3 0 CO 2 V a b J D Macdougall 2006 Frozen Earth The Once and Future Story of Ice Ages University of California Press p 123 ISBN 978 0 520 24824 3 Dauvillier A 1976 The Venus oceans problem Journal of the British Astronomical Association 86 147 Bibcode 1976JBAA 86 147D P J Daniel 1923 Review M Milankovitch Mathematique des Phenomenes Thermiques produits par la Radiation Solaire Bull Amer Math Soc 29 9 419 420 doi 10 1090 S0002 9904 1923 03773 7 M Milankovitch 1920 Theorie mathematique des Phenomenes thermiques produits par la Radiation Solaire PDF Paris Gauthier Villars p 335 Roger M McCoy 2006 Ending in Ice The Revolutionary Idea and Tragic Expedition of Alfred Wegener Oxford University Press p 52 ISBN 978 0 19 977495 1 Thiede Jorn 2018 Wladimir Koppen Alfred Wegener and Milutin Milankovitch their Impact on modern paleoclimate research and revival of the Milankovitch hypothesis PDF Vestnik of St Petersburg University 63 2 230 250 The Climates of the Geological Past by Wladimir Koppen and Alfred Wegener a b c Janc Natalija Gavrilov Milivoj B Markovic Slobodan B Benisek Vojislava Protic Benisek Vladimir Popovic Luka C Tomic Nemanja 1 January 2019 Ice Age theory a correspondence between Milutin Milankovic and Vojislav Miskovic Open Geosciences 11 1 263 272 Bibcode 2019OGeo 11 21J doi 10 1515 geo 2019 0021 W Schwarzacher 1993 Cyclostratigraphy and the Milankovitch Theory Elsevier p 29 ISBN 9780080869667 John Imbrie Katherine Palmer Imbrie 1986 Ice Ages Solving the Mystery Harvard University Press p 109 ISBN 9780674440753 Retrieved 5 June 2013 a b Janc N Gavrilo M B Markovic S B Benisek V P Popovic L C and Benisek V 2020 Milutin Milankovic and Associates in the Creation of the Kanon Publications of the Astronomical Society Rudjer Boskovic 20 123 128 Bibcode 2020PASRB 20 123J a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link N Pejovic 2011 Digitisation of textbook Nebeska mehanika by Milutin c NCD Review 19 63 68 M S Dimitrijevic 2002 Milutin Milankovic 1879 1959 and his contribution to European astronomy Astron Nachr 323 6 570 573 Bibcode 2002AN 323 570D doi 10 1002 1521 3994 200212 323 6 lt 570 AID ASNA570 gt 3 0 CO 2 V N Pejovic 2011 Digitisation of textbook Nebeska mehanika by Milutin Milankovi c NCD Review 19 63 68 Rosengren A J Scheeres D J 2014 On the Milankovitch orbital elements for pertubed Keplerian motion Celastial Mechanics and Dinamical Astronomy 118 3 Milankovic Milankovitch Milutin Dictionary definition of Milankovic Milankovitch Milutin Encyclopedia com FREE online dictionary Encyclopedia com 12 December 1958 Retrieved 15 August 2012 Milankovic s End of the World by Vlado Milicevic p 7 85 PDF M S Dimitrijevic 2002 Milutin Milankovic 1879 1959 and his contribution to European astronomy Astron Nachr 323 6 570 573 Bibcode 2002AN 323 570D doi 10 1002 1521 3994 200212 323 6 lt 570 AID ASNA570 gt 3 0 CO 2 V Video Ice Age Cycles National Geographic Archived from the original on 2 October 2011 Retrieved 15 August 2012 a b M Milankovitch 1941 Kanon der Erdbestrahlung PDF Belgrade Koniglich Serbishe Akademie p 622 Uspomene dozhivљaјi i saznaњa iz godina 1909 do 1944 II 016015 195 Digitalna Narodna biblioteka Srbiјe Scc digital nb rs Archived from the original on 31 March 2012 Retrieved 15 August 2012 Wilson Ralph E 1948 Meeting of the International Astronomical Union Publications of the Astronomical Society of the Pacific 60 356 281 Bibcode 1948PASP 60 281W doi 10 1086 126072 B Arbutina 2021 The First Yugoslav National Committee for Astronomy Public Astron Obs Belgrade No 100 185 191 Bibcode 2021POBeo 100 185A Romano Marco Rubidge Bruce and Sardella Raffaele 2021 A century since the recognition of cyclic climatic change by Milankovic Sociata Geologica Italiana 53 9 13 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link J D Macdougall 2006 Frozen Earth The Once and Future Story of Ice Ages University of California Press p 132 ISBN 978 0 520 24824 3 Milutin Milankovic 1969 Canon of Insolation and the Ice age Problem Kanon Der Erdbestrahlung und Seine Anwendung Auf Das Eiszeitenproblem Belgrade 1941 Israel Program for Scientific Translations Bibcode 1969ciip book M J D Hays John Imbrie amp N J Shackleton 1976 Variations in the Earth s Orbit Pacemaker of the Ice Ages Science 194 4270 1121 1132 Bibcode 1976Sci 194 1121H doi 10 1126 science 194 4270 1121 JSTOR 1743620 PMID 17790893 S2CID 667291 Welcome to nginx encyclopedia com Archived from the original on 29 July 2012 Retrieved 2 February 2022 Vivien Gornitz 31 October 2008 Encyclopedia of Paleoclimatology and Ancient Environments Springer Science amp Business Media p 911 ISBN 978 1 4020 4551 6 J A Rial 1999 Pacemaking the ice ages by frequency modulation of Earth s orbital eccentricity Science 285 5427 564 8 doi 10 1126 science 285 5427 564 PMID 10417382 Richard A Kerr 1999 Why the Ice Ages Don t Keep Time Science 285 5427 503 505 doi 10 1126 science 285 5427 503 JSTOR 2898704 S2CID 129517667 James W C White 2004 PALEOCLIMATE Do I Hear a Million Science 304 5677 1609 1610 doi 10 1126 science 1100084 PMID 15192208 S2CID 129188583 Mijajlovic Zarko Pejovic Nadezda Radovic Viktor 2018 First Serbian works on the theory of relativity Publ Astron Soc Ruđer Boskovic 18 99 107 M S Dimitrijevic Th Theodossiou and P Z Mantarakis 2008 Milutin Milankovic and Reform of the Julian Calendar Journal of Astronomical History and Heritage 11 1 50 54 doi 10 3724 SP J 1440 2807 2008 01 05 S2CID 161099128 Dimitrijevic Milan S 2019 Milutin Milankovic and Reform of Julian calendar of Ecoumenical congress in Constantinople in 1923 International Conference The Life and Work of Milutin Milankovic Past Present and Future 87 91 Gajic Nenad 2019 The curious case of the Milankovitch calendar Hist Geo Space Sci 10 2 235 243 Bibcode 2019HGSS 10 235G doi 10 5194 hgss 10 235 2019 M Milankovitch 1924 Das Ende des julianischen Kalenders und der neue Kalender der orientalischen Kirchen Astronomische Nachrichten 220 5279 379 384 Bibcode 1924AN 220 379M doi 10 1002 asna 19232202303 Miriam Nancy Shields 1924 The new calendar of the Eastern churches Popular Astronomy 32 407 411 Bibcode 1924PA 32 407S This is a translation of the paper by Milankovitch in Astronomische Nachrichten D D McCarthy and P K Seidelmann 2009 TIME From Earth Rotation to Atomic Physics Weinheim Wiley VCH Ch 4 5 6 8 9 12 ISBN 9783527627943 doi 10 1002 9783527627943 B Blackburn and L Holford Strevens 1999 The Oxford Companion to the Year An exploration of calendar customs and time reckoning Oxford University Press pp 688 692 ISBN 0192142313 EGS Milutin Milankovic Medal Egu eu 8 March 2010 Retrieved 15 August 2012 EGU Awards amp Medals Milutin Milankovic Medal Egu eu Retrieved 29 November 2015 Milutin Milankovitch Feature Articles Earthobservatory nasa gov 24 March 2000 Retrieved 15 August 2012 Inđijic M 1997 Life scientific and professional activity of Milutin Milankovic Bulletin Astronomique de Belgrade 155 169 197 Bibcode 1997BABel 155 169I External links edit nbsp Wikimedia Commons has media related to Milutin Milankovic Ice Age Milankovitch Cycles National Geographic Channel Three variables known as the Milankovitch Cycles affect how and when Earth enters an ice age or global warming Rusov Lazar 2009 Milankovic s analysis of Newton s law of universal gravitation PDF FME Transcations 37 4 211 217 Milankovitch theory hits and misses Milankovitch cycles Life and Scientific Work of Milutin Milankovic Solar Radiation and Milankovic Precession and the Milankovic Theory NASA Earth Observatory article in the on the shoulders of giants seriesAcademic officesPreceded byVladimir K Petkovic Dean of the Faculty of Philosophy1926 1927 Succeeded byMilos Trivunac Retrieved from https en wikipedia org w index php title Milutin Milankovic amp oldid 1201085120, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.