fbpx
Wikipedia

Climatology

Climatology (from Greek κλίμα, klima, "place, zone"; and -λογία, -logia) or climate science is the scientific study of Earth's climate, typically defined as weather conditions averaged over a period of at least 30 years.[1] This modern field of study is regarded as a branch of the atmospheric sciences and a subfield of physical geography, which is one of the Earth sciences. Climatology now includes aspects of oceanography and biogeochemistry.

The main methods employed by climatologists are the analysis of observations and modelling of the physical processes that determine the climate. The main topics of research are the study of climate variability, mechanisms of climate changes and modern climate change. Basic knowledge of climate can be used within shorter term weather forecasting, for instance about climatic cycles such as the El Niño–Southern Oscillation (ENSO), the Madden–Julian oscillation (MJO), the North Atlantic oscillation (NAO), the Arctic oscillation (AO), the Pacific decadal oscillation (PDO), and the Interdecadal Pacific Oscillation (IPO).

Climate models are used for a variety of purposes from study of the dynamics of the weather and climate system to projections of future climate. Weather is known as the condition of the atmosphere over a period of time, while climate has to do with the atmospheric condition over an extended to indefinite period of time.[2]

History

The Greeks began the formal study of climate; in fact the word climate is derived from the Greek word klima, meaning "slope," referring to the slope or inclination of the Earth's axis. Arguably the most influential classic text on climate was On Airs, Water and Places[3] written by Hippocrates around 400 BCE. This work commented on the effect of climate on human health and cultural differences between Asia and Europe.[3] This idea that climate controls which countries excel depending on their climate, or climatic determinism, remained influential throughout history.[3] Chinese scientist Shen Kuo (1031–1095) inferred that climates naturally shifted over an enormous span of time, after observing petrified bamboos found underground near Yanzhou (modern day Yan'an, Shaanxi province), a dry-climate area unsuitable for the growth of bamboo.[4]

The invention of the thermometer and the barometer during the Scientific Revolution allowed for systematic recordkeeping, that began as early as 1640–1642 in England.[3] Early climate researchers include Edmund Halley, who published a map of the trade winds in 1686 after a voyage to the southern hemisphere. Benjamin Franklin (1706–1790) first mapped the course of the Gulf Stream for use in sending mail from the United States to Europe. Francis Galton (1822–1911) invented the term anticyclone.[5] Helmut Landsberg (1906–1985) fostered the use of statistical analysis in climatology, which led to its evolution into a physical science.

In the early 20th century, climatology was mostly focused on the description of regional climates. This descriptive climatology was mainly an applied science, giving farmers and other interested people statistics about what the normal weather was and how big chances were of extreme events.[6] To do this, climatologists had to define a climate normal, or an average of weather and weather extremes over a period of typically 30 years.[7]

Around the middle of the 20th century, many assumptions in meteorology and climatology considered climate to be roughly constant. While scientists knew of past climate change such as the ice ages, the concept of climate as unchanging was useful in the development of a general theory of what determines climate. This started to change in the decades that followed, and while the history of climate change science started earlier, climate change only became one of the main topics of study for climatologists in the seventies and onward.[8]

Subfields

 
Map of the average temperature over 30 years. Data sets formed from the long-term average of historical weather parameters are sometimes called a "climatology".

Various subfields of climatology study different aspects of the climate. There are different categorizations of the fields in climatology. The American Meteorological Society for instance identifies descriptive climatology, scientific climatology and applied climatology as the three subcategories of climatology, a categorization based on the complexity and the purpose of the research.[9] Applied climatologists apply their expertise to different industries such as manufacturing and agriculture.[10]

Paleoclimatology seeks to reconstruct and understand past climates by examining records such as ice cores and tree rings (dendroclimatology). Paleotempestology uses these same records to help determine hurricane frequency over millennia. Historical climatology is the study of climate as related to human history and thus focuses only on the last few thousand years.

Boundary-layer climatology is preoccupied with exchanges in water, energy and momentum near the surface.[11] Further identified subfields are physical climatology, dynamic climatology, tornado climatology, regional climatology, bioclimatology, and synoptic climatology. The study of the hydrological cycle over long time scales is sometimes called hydroclimatology, in particular when studying the effects of climate change on the water cycle.[9]

Methods

The study of contemporary climates incorporates meteorological data accumulated over many years, such as records of rainfall, temperature and atmospheric composition. Knowledge of the atmosphere and its dynamics is also embodied in models, either statistical or mathematical, which help by integrating different observations and testing how they fit together. Modeling is used for understanding past, present and potential future climates.

Climate research is made difficult by the large scale, long time periods, and complex processes which govern climate. Climate is governed by physical laws which can be expressed as differential equations. These equations are coupled and nonlinear, so that approximate solutions are obtained by using numerical methods to create global climate models. Climate is sometimes modeled as a stochastic process but this is generally accepted as an approximation to processes that are otherwise too complicated to analyze.

Climate data

The collection of long record of climate variables is essential for the study of climate. Climatology deals with the aggregate data that meteorology has collected.[12] Scientists use both direct and indirect observations of the climate, from Earth observing satellites and scientific instrumentation such as a global network of thermometers, to prehistoric ice extracted from glaciers.[13] As measuring technology changes over time, records of data cannot be compared directly. As cities are generally warmer than the surrounding areas, urbanization has made it necessary to constantly correct data for this urban heat island effect.[14]

Models

Climate models use quantitative methods to simulate the interactions of the atmosphere, oceans, land surface, and ice. They are used for a variety of purposes from study of the dynamics of the weather and climate system to projections of future climate. All climate models balance, or very nearly balance, incoming energy as short wave (including visible) electromagnetic radiation to the earth with outgoing energy as long wave (infrared) electromagnetic radiation from the earth. Any unbalance results in a change in the average temperature of the earth. Most climate models include the radiative effects of greenhouse gases such as carbon dioxide. These models predict an upward trend in the surface temperatures, as well as a more rapid increase in temperature at higher latitudes.

Models can range from relatively simple to complex:

  • A simple radiant heat transfer model that treats the earth as a single point and averages outgoing energy
  • this can be expanded vertically (radiative-convective models), or horizontally
  • Coupled atmosphere–ocean–sea ice global climate models discretise and solve the full equations for mass and energy transfer and radiant exchange.
  • Earth system models further include the biosphere.

Additionally, they are available on different resolutions ranging from >100 km to 1 km. High resolutions in global climate models are computational very demanding and only few global datasets exists. Examples are ICON [15] or mechanistically downscaled data such as CHELSA (Climatologies at high resolution for the earth's land surface areas).[16][17]

Topics of research

Topics that climatologists study fall roughly into three categories: climate variability, mechanisms of climatic change and modern climate change.[18]

Climatological processes

Various factors impact the average state of the atmosphere at a particular location. For instance, midlatitudes will have a pronounced seasonal cycle in temperature whereas tropical regions show little variation in temperature over the year.[19] Another major control in climate is continentality: the distance to major water bodies such as oceans. Oceans act as a moderating factor, so that land close to it has typically mild winters and moderate summers.[20] The atmosphere interacts with other spheres of the climate system, with winds generating ocean currents that transport heat around the globe.[21]

Climate classification

Classification is an important aspect of many sciences as a tool of simplifying complicated processes. Different climate classifications have been developed over the centuries, with the first ones in Ancient Greece. How climates are classified depends on what the application is. A wind energy producer will require different information (wind) in the classification than somebody interested in agriculture, for who precipitation and temperature are more important.[22] The most widely used classification, the Köppen climate classification, was developed in the late nineteenth century and is based on vegetation. It uses monthly temperature and precipitation data.[23]

Climate variability

 
El Niño impacts

There are different modes of variability: recurring patterns of temperature or other climate variables. They are quantified with different indices. Much in the way the Dow Jones Industrial Average, which is based on the stock prices of 30 companies, is used to represent the fluctuations in the stock market as a whole, climate indices are used to represent the essential elements of climate. Climate indices are generally devised with the twin objectives of simplicity and completeness, and each index typically represents the status and timing of the climate factor it represents. By their very nature, indices are simple, and combine many details into a generalized, overall description of the atmosphere or ocean which can be used to characterize the factors which impact the global climate system.

El Niño–Southern Oscillation (ENSO) is a coupled ocean-atmosphere phenomenon in the Pacific Ocean responsible for most of the global variability in temperature,[21] and has a cycle between two and seven years.[24] The North Atlantic oscillation is a mode of variability that is mainly contained to the lower atmosphere, the troposphere. The layer of atmosphere above, the stratosphere is also capable of creating its own variability, most importantly in the Madden–Julian oscillation (MJO), which has a cycle of approximately 30 to 60 days. The Interdecadal Pacific oscillation can create changes in the Pacific Ocean and lower atmosphere on decadal time scales.

Climate change

Climate change occurs when changes in Earth's climate system result in new weather patterns that remain in place for an extended period of time. This length of time can be as short as a few decades to as long as millions of years. The climate system receives nearly all of its energy from the sun. The climate system also gives off energy to outer space. The balance of incoming and outgoing energy, and the passage of the energy through the climate system, determines Earth's energy budget. When the incoming energy is greater than the outgoing energy, earth's energy budget is positive and the climate system is warming. If more energy goes out, the energy budget is negative and earth experiences cooling.[25] Climate change also influences the average sea level.

Modern climate change is driven by the human emissions of greenhouse gas from the burning of fossil fuel driving up global mean surface temperatures. Rising temperatures are only one aspect of modern climate change though, with includes observed changes in precipitation, storm tracks and cloudiness. Warmer temperatures are driving further changes in the climate system, such as the widespread melt of glaciers, sea level rise and shifts in flora and fauna.[26]

Differences with meteorology

In contrast to meteorology, which focuses on short term weather systems lasting up to a few weeks, climatology studies the frequency and trends of those systems. It studies the periodicity of weather events over years to millennia, as well as changes in long-term average weather patterns, in relation to atmospheric conditions. Climatologists study both the nature of climates – local, regional or global – and the natural or human-induced factors that cause climates to change. Climatology considers the past and can help predict future climate change.

Phenomena of climatological interest include the atmospheric boundary layer, circulation patterns, heat transfer (radiative, convective and latent), interactions between the atmosphere and the oceans and land surface (particularly vegetation, land use and topography), and the chemical and physical composition of the atmosphere.

Use in weather forecasting

A more complicated way of making a forecast, the analog technique requires remembering a previous weather event which is expected to be mimicked by an upcoming event. What makes it a difficult technique to use is that there is rarely a perfect analog for an event in the future.[27] Some call this type of forecasting pattern recognition, which remains a useful method of observing rainfall over data voids such as oceans with knowledge of how satellite imagery relates to precipitation rates over land,[28] as well as the forecasting of precipitation amounts and distribution in the future. A variation on this theme is used in medium range forecasting, which is known as teleconnections, when systems in other locations are used to help pin down the location of a system within the surrounding regime.[29] One method of using teleconnections are by using climate indices such as ENSO-related phenomena.[30]

See also

References

  1. ^ Climate Prediction Center. Climate Glossary. 6 October 2006 at the Wayback Machine Retrieved on 23 November 2006.
  2. ^ "What is Climatology?". drought.unl.edu. Retrieved 27 February 2017.
  3. ^ a b c d Heymann, Matthias (2010). "The evolution of climate ideas and knowledge". Wiley Interdisciplinary Reviews: Climate Change. 1 (4): 581–597. doi:10.1002/wcc.61. ISSN 1757-7799. S2CID 126580528.
  4. ^ A. J. Bowden; Cynthia V. Burek; C. V. Burek; Richard Wilding (2005). History of palaeobotany: selected essays. Geological Society. p. 293. ISBN 978-1-86239-174-1. Retrieved 3 April 2013.
  5. ^ Life Stories. Francis Galton. Retrieved on 19 April 2007.
  6. ^ Weart, Spencer (2008). "Climatology as a Profession". history.aip.org. American Institute of Physics. Retrieved 25 October 2019.
  7. ^ Robinson & Henderson-Sellers 1999, pp. 4–5.
  8. ^ Robinson & Henderson-Sellers 1999, pp. 5–6.
  9. ^ a b Collins, Jennifer M. (25 October 2018). "Climatology - Geography - Oxford Bibliographies - obo". doi:10.1093/obo/9780199874002-0096. Retrieved 25 October 2019.
  10. ^ Wang & Gillies 2012, p. IX.
  11. ^ Rohli & Vega 2018, p. 6
  12. ^ "How do weather observations become climate data? | NOAA Climate.gov". www.climate.gov. Retrieved 13 January 2020.
  13. ^ "What kinds of data do scientists use to study climate?". Climate Change: Vital Signs of the Planet. Retrieved 13 January 2020.
  14. ^ Rohli & Vega 2011, p. 8.
  15. ^ Dipankar, A.; Heinze, Rieke; Moseley, Christopher; Stevens, Bjorn; Zängl, Günther; Brdar, Slavko (2015). "A Large Eddy Simulation Version of ICON (ICOsahedral Nonhydrostatic): Model Description and Validation". Journal of Advances in Modeling Earth Systems. 7.
  16. ^ Karger, D.N.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, P.; Kessler, M. (2017). "Climatologies at high resolution for the Earth land surface areas". Scientific Data. 4 (170122): 170122. doi:10.1038/sdata.2017.122. PMC 5584396. PMID 28872642.
  17. ^ Karger, D.N.; Lange, S.; Hari, C.; Reyer, C.P.O.; Zimmermann, N.E. (2021). "CHELSA-W5E5 v1.0: W5E5 v1.0 downscaled with CHELSA v2.0". ISIMIP Repository. doi:10.48364/ISIMIP.836809.
  18. ^ Oblack, Rachelle; McDougal, Holt; weather. (3 July 2019). "How Climatology Is Different From Meteorology". ThoughtCo. Retrieved 23 October 2019.
  19. ^ Rohli & Vega 2018, p. 25.
  20. ^ Rohli & Vega 2018.
  21. ^ a b Rohli & Vega 2018, p. 54.
  22. ^ Rohli & Vega 2018, p. 159.
  23. ^ Rohli & Vega 2018, p. 160.
  24. ^ Climate Prediction Center (19 December 2005). . National Centers for Environmental Prediction. Archived from the original on 27 August 2009. Retrieved 26 July 2009.
  25. ^ "Climate and Earth's Energy Budget". earthobservatory.nasa.gov. 14 January 2009. Retrieved 3 December 2021.
  26. ^ "Global Warming Effects". National Geographic. 14 January 2019. Retrieved 2 January 2020.
  27. ^ Other Forecasting Methods: climatology, analogue and numerical weather prediction. Retrieved on 16 February 2006.
  28. ^ Kenneth C. Allen. Pattern Recognition Techniques Applied to the NASA-ACTS Order-Wire Problem. 14 July 2007 at the Wayback Machine Retrieved on 16 February 2007.
  29. ^ Weather Associates, Inc. The Role of Teleconnections & Ensemble Forecasting in Extended- to Medium-Range Forecasting. Retrieved on 16 February 2007.
  30. ^ Thinkquest.org. Teleconnections: Linking El Niño with Other Places. 20 April 2007 at the Wayback Machine Retrieved on 16 February 2007.

Books

  • Robinson, Peter J. Robinson; Henderson-Sellers, Ann (1999). Contemporary Climatology. Harlow, England: Pearson Prentice Hall. ISBN 0582276314.
  • Rohli, Robert. V.; Vega, Anthony J. (2018). Climatology (fourth ed.). Jones & Bartlett Learning. ISBN 9781284126563.
  • Rohli, Robert. V.; Vega, Anthony J. (2011). Climatology (second ed.). Jones & Bartlett Learning.
  • Wang, Shih-Yu; Gillies, Robert R., eds. (2012). Modern Climatology. Rijeka, Croatia: InTech. ISBN 978-953-51-0095-9.

Further reading

  • Jenny Uglow, "What the Weather Is" (review of Sarah Dry, Waters of the World: The Story of the Scientists Who Unraveled the Mysteries of Our Oceans, Atmosphere, and Ice Sheets and Made the Planet Whole, University of Chicago Press, 2019, 332 pp.), The New York Review of Books, vol. LXVI, no. 20 (19 December 2019), pp. 56–58.

External links

  • Climate Science Special Report – U.S. Global Change Research Program
  • KNMI Climate Explorer The Royal Netherlands Meteorological Institute's Climate Explorer graphs climatological relationships of spatial and temporal data.
  • Climatology as a Profession Amer. Inst. of Physics account of the history of the discipline of climatology in the 20th century

climatology, climate, research, redirects, here, journal, that, name, climate, research, journal, from, greek, κλίμα, klima, place, zone, λογία, logia, climate, science, scientific, study, earth, climate, typically, defined, weather, conditions, averaged, over. Climate Research redirects here For the journal of that name see Climate Research journal Climatology from Greek klima klima place zone and logia logia or climate science is the scientific study of Earth s climate typically defined as weather conditions averaged over a period of at least 30 years 1 This modern field of study is regarded as a branch of the atmospheric sciences and a subfield of physical geography which is one of the Earth sciences Climatology now includes aspects of oceanography and biogeochemistry Koppen Geiger climate classification 1980 2016 The main methods employed by climatologists are the analysis of observations and modelling of the physical processes that determine the climate The main topics of research are the study of climate variability mechanisms of climate changes and modern climate change Basic knowledge of climate can be used within shorter term weather forecasting for instance about climatic cycles such as the El Nino Southern Oscillation ENSO the Madden Julian oscillation MJO the North Atlantic oscillation NAO the Arctic oscillation AO the Pacific decadal oscillation PDO and the Interdecadal Pacific Oscillation IPO Climate models are used for a variety of purposes from study of the dynamics of the weather and climate system to projections of future climate Weather is known as the condition of the atmosphere over a period of time while climate has to do with the atmospheric condition over an extended to indefinite period of time 2 Contents 1 History 2 Subfields 3 Methods 3 1 Climate data 3 2 Models 4 Topics of research 4 1 Climatological processes 4 2 Climate classification 4 3 Climate variability 4 4 Climate change 5 Differences with meteorology 6 Use in weather forecasting 7 See also 8 References 8 1 Books 9 Further reading 10 External linksHistory EditFurther information History of climate change science The Greeks began the formal study of climate in fact the word climate is derived from the Greek word klima meaning slope referring to the slope or inclination of the Earth s axis Arguably the most influential classic text on climate was On Airs Water and Places 3 written by Hippocrates around 400 BCE This work commented on the effect of climate on human health and cultural differences between Asia and Europe 3 This idea that climate controls which countries excel depending on their climate or climatic determinism remained influential throughout history 3 Chinese scientist Shen Kuo 1031 1095 inferred that climates naturally shifted over an enormous span of time after observing petrified bamboos found underground near Yanzhou modern day Yan an Shaanxi province a dry climate area unsuitable for the growth of bamboo 4 The invention of the thermometer and the barometer during the Scientific Revolution allowed for systematic recordkeeping that began as early as 1640 1642 in England 3 Early climate researchers include Edmund Halley who published a map of the trade winds in 1686 after a voyage to the southern hemisphere Benjamin Franklin 1706 1790 first mapped the course of the Gulf Stream for use in sending mail from the United States to Europe Francis Galton 1822 1911 invented the term anticyclone 5 Helmut Landsberg 1906 1985 fostered the use of statistical analysis in climatology which led to its evolution into a physical science In the early 20th century climatology was mostly focused on the description of regional climates This descriptive climatology was mainly an applied science giving farmers and other interested people statistics about what the normal weather was and how big chances were of extreme events 6 To do this climatologists had to define a climate normal or an average of weather and weather extremes over a period of typically 30 years 7 Around the middle of the 20th century many assumptions in meteorology and climatology considered climate to be roughly constant While scientists knew of past climate change such as the ice ages the concept of climate as unchanging was useful in the development of a general theory of what determines climate This started to change in the decades that followed and while the history of climate change science started earlier climate change only became one of the main topics of study for climatologists in the seventies and onward 8 Subfields Edit Map of the average temperature over 30 years Data sets formed from the long term average of historical weather parameters are sometimes called a climatology Various subfields of climatology study different aspects of the climate There are different categorizations of the fields in climatology The American Meteorological Society for instance identifies descriptive climatology scientific climatology and applied climatology as the three subcategories of climatology a categorization based on the complexity and the purpose of the research 9 Applied climatologists apply their expertise to different industries such as manufacturing and agriculture 10 Paleoclimatology seeks to reconstruct and understand past climates by examining records such as ice cores and tree rings dendroclimatology Paleotempestology uses these same records to help determine hurricane frequency over millennia Historical climatology is the study of climate as related to human history and thus focuses only on the last few thousand years Boundary layer climatology is preoccupied with exchanges in water energy and momentum near the surface 11 Further identified subfields are physical climatology dynamic climatology tornado climatology regional climatology bioclimatology and synoptic climatology The study of the hydrological cycle over long time scales is sometimes called hydroclimatology in particular when studying the effects of climate change on the water cycle 9 Methods EditThe study of contemporary climates incorporates meteorological data accumulated over many years such as records of rainfall temperature and atmospheric composition Knowledge of the atmosphere and its dynamics is also embodied in models either statistical or mathematical which help by integrating different observations and testing how they fit together Modeling is used for understanding past present and potential future climates Climate research is made difficult by the large scale long time periods and complex processes which govern climate Climate is governed by physical laws which can be expressed as differential equations These equations are coupled and nonlinear so that approximate solutions are obtained by using numerical methods to create global climate models Climate is sometimes modeled as a stochastic process but this is generally accepted as an approximation to processes that are otherwise too complicated to analyze Climate data Edit The collection of long record of climate variables is essential for the study of climate Climatology deals with the aggregate data that meteorology has collected 12 Scientists use both direct and indirect observations of the climate from Earth observing satellites and scientific instrumentation such as a global network of thermometers to prehistoric ice extracted from glaciers 13 As measuring technology changes over time records of data cannot be compared directly As cities are generally warmer than the surrounding areas urbanization has made it necessary to constantly correct data for this urban heat island effect 14 Models Edit Main article Climate models Climate models use quantitative methods to simulate the interactions of the atmosphere oceans land surface and ice They are used for a variety of purposes from study of the dynamics of the weather and climate system to projections of future climate All climate models balance or very nearly balance incoming energy as short wave including visible electromagnetic radiation to the earth with outgoing energy as long wave infrared electromagnetic radiation from the earth Any unbalance results in a change in the average temperature of the earth Most climate models include the radiative effects of greenhouse gases such as carbon dioxide These models predict an upward trend in the surface temperatures as well as a more rapid increase in temperature at higher latitudes Models can range from relatively simple to complex A simple radiant heat transfer model that treats the earth as a single point and averages outgoing energy this can be expanded vertically radiative convective models or horizontally Coupled atmosphere ocean sea ice global climate models discretise and solve the full equations for mass and energy transfer and radiant exchange Earth system models further include the biosphere Additionally they are available on different resolutions ranging from gt 100 km to 1 km High resolutions in global climate models are computational very demanding and only few global datasets exists Examples are ICON 15 or mechanistically downscaled data such as CHELSA Climatologies at high resolution for the earth s land surface areas 16 17 Topics of research EditTopics that climatologists study fall roughly into three categories climate variability mechanisms of climatic change and modern climate change 18 Climatological processes Edit Various factors impact the average state of the atmosphere at a particular location For instance midlatitudes will have a pronounced seasonal cycle in temperature whereas tropical regions show little variation in temperature over the year 19 Another major control in climate is continentality the distance to major water bodies such as oceans Oceans act as a moderating factor so that land close to it has typically mild winters and moderate summers 20 The atmosphere interacts with other spheres of the climate system with winds generating ocean currents that transport heat around the globe 21 Climate classification Edit Classification is an important aspect of many sciences as a tool of simplifying complicated processes Different climate classifications have been developed over the centuries with the first ones in Ancient Greece How climates are classified depends on what the application is A wind energy producer will require different information wind in the classification than somebody interested in agriculture for who precipitation and temperature are more important 22 The most widely used classification the Koppen climate classification was developed in the late nineteenth century and is based on vegetation It uses monthly temperature and precipitation data 23 Climate variability Edit El Nino impacts There are different modes of variability recurring patterns of temperature or other climate variables They are quantified with different indices Much in the way the Dow Jones Industrial Average which is based on the stock prices of 30 companies is used to represent the fluctuations in the stock market as a whole climate indices are used to represent the essential elements of climate Climate indices are generally devised with the twin objectives of simplicity and completeness and each index typically represents the status and timing of the climate factor it represents By their very nature indices are simple and combine many details into a generalized overall description of the atmosphere or ocean which can be used to characterize the factors which impact the global climate system El Nino Southern Oscillation ENSO is a coupled ocean atmosphere phenomenon in the Pacific Ocean responsible for most of the global variability in temperature 21 and has a cycle between two and seven years 24 The North Atlantic oscillation is a mode of variability that is mainly contained to the lower atmosphere the troposphere The layer of atmosphere above the stratosphere is also capable of creating its own variability most importantly in the Madden Julian oscillation MJO which has a cycle of approximately 30 to 60 days The Interdecadal Pacific oscillation can create changes in the Pacific Ocean and lower atmosphere on decadal time scales Climate change Edit Climate change occurs when changes in Earth s climate system result in new weather patterns that remain in place for an extended period of time This length of time can be as short as a few decades to as long as millions of years The climate system receives nearly all of its energy from the sun The climate system also gives off energy to outer space The balance of incoming and outgoing energy and the passage of the energy through the climate system determines Earth s energy budget When the incoming energy is greater than the outgoing energy earth s energy budget is positive and the climate system is warming If more energy goes out the energy budget is negative and earth experiences cooling 25 Climate change also influences the average sea level Modern climate change is driven by the human emissions of greenhouse gas from the burning of fossil fuel driving up global mean surface temperatures Rising temperatures are only one aspect of modern climate change though with includes observed changes in precipitation storm tracks and cloudiness Warmer temperatures are driving further changes in the climate system such as the widespread melt of glaciers sea level rise and shifts in flora and fauna 26 Differences with meteorology EditIn contrast to meteorology which focuses on short term weather systems lasting up to a few weeks climatology studies the frequency and trends of those systems It studies the periodicity of weather events over years to millennia as well as changes in long term average weather patterns in relation to atmospheric conditions Climatologists study both the nature of climates local regional or global and the natural or human induced factors that cause climates to change Climatology considers the past and can help predict future climate change Phenomena of climatological interest include the atmospheric boundary layer circulation patterns heat transfer radiative convective and latent interactions between the atmosphere and the oceans and land surface particularly vegetation land use and topography and the chemical and physical composition of the atmosphere Use in weather forecasting EditMain article Weather forecasting A more complicated way of making a forecast the analog technique requires remembering a previous weather event which is expected to be mimicked by an upcoming event What makes it a difficult technique to use is that there is rarely a perfect analog for an event in the future 27 Some call this type of forecasting pattern recognition which remains a useful method of observing rainfall over data voids such as oceans with knowledge of how satellite imagery relates to precipitation rates over land 28 as well as the forecasting of precipitation amounts and distribution in the future A variation on this theme is used in medium range forecasting which is known as teleconnections when systems in other locations are used to help pin down the location of a system within the surrounding regime 29 One method of using teleconnections are by using climate indices such as ENSO related phenomena 30 See also EditBiogeochemistry Climate as complex networks Climatic geomorphology Climate reanalysis Geophysics Tropical cyclone rainfall climatology Urban climatology List of climate scientists List of women climate scientists and activistsReferences Edit Climate Prediction Center Climate Glossary Archived 6 October 2006 at the Wayback Machine Retrieved on 23 November 2006 What is Climatology drought unl edu Retrieved 27 February 2017 a b c d Heymann Matthias 2010 The evolution of climate ideas and knowledge Wiley Interdisciplinary Reviews Climate Change 1 4 581 597 doi 10 1002 wcc 61 ISSN 1757 7799 S2CID 126580528 A J Bowden Cynthia V Burek C V Burek Richard Wilding 2005 History of palaeobotany selected essays Geological Society p 293 ISBN 978 1 86239 174 1 Retrieved 3 April 2013 Life Stories Francis Galton Retrieved on 19 April 2007 Weart Spencer 2008 Climatology as a Profession history aip org American Institute of Physics Retrieved 25 October 2019 Robinson amp Henderson Sellers 1999 pp 4 5 Robinson amp Henderson Sellers 1999 pp 5 6 a b Collins Jennifer M 25 October 2018 Climatology Geography Oxford Bibliographies obo doi 10 1093 obo 9780199874002 0096 Retrieved 25 October 2019 Wang amp Gillies 2012 p IX Rohli amp Vega 2018 p 6 How do weather observations become climate data NOAA Climate gov www climate gov Retrieved 13 January 2020 What kinds of data do scientists use to study climate Climate Change Vital Signs of the Planet Retrieved 13 January 2020 Rohli amp Vega 2011 p 8 Dipankar A Heinze Rieke Moseley Christopher Stevens Bjorn Zangl Gunther Brdar Slavko 2015 A Large Eddy Simulation Version of ICON ICOsahedral Nonhydrostatic Model Description and Validation Journal of Advances in Modeling Earth Systems 7 Karger D N Conrad O Bohner J Kawohl T Kreft H Soria Auza R W Zimmermann N E Linder P Kessler M 2017 Climatologies at high resolution for the Earth land surface areas Scientific Data 4 170122 170122 doi 10 1038 sdata 2017 122 PMC 5584396 PMID 28872642 Karger D N Lange S Hari C Reyer C P O Zimmermann N E 2021 CHELSA W5E5 v1 0 W5E5 v1 0 downscaled with CHELSA v2 0 ISIMIP Repository doi 10 48364 ISIMIP 836809 Oblack Rachelle McDougal Holt weather 3 July 2019 How Climatology Is Different From Meteorology ThoughtCo Retrieved 23 October 2019 Rohli amp Vega 2018 p 25 Rohli amp Vega 2018 a b Rohli amp Vega 2018 p 54 Rohli amp Vega 2018 p 159 Rohli amp Vega 2018 p 160 Climate Prediction Center 19 December 2005 ENSO FAQ How often do El Nino and La Nina typically occur National Centers for Environmental Prediction Archived from the original on 27 August 2009 Retrieved 26 July 2009 Climate and Earth s Energy Budget earthobservatory nasa gov 14 January 2009 Retrieved 3 December 2021 Global Warming Effects National Geographic 14 January 2019 Retrieved 2 January 2020 Other Forecasting Methods climatology analogue and numerical weather prediction Retrieved on 16 February 2006 Kenneth C Allen Pattern Recognition Techniques Applied to the NASA ACTS Order Wire Problem Archived 14 July 2007 at the Wayback Machine Retrieved on 16 February 2007 Weather Associates Inc The Role of Teleconnections amp Ensemble Forecasting in Extended to Medium Range Forecasting Retrieved on 16 February 2007 Thinkquest org Teleconnections Linking El Nino with Other Places Archived 20 April 2007 at the Wayback Machine Retrieved on 16 February 2007 Books Edit Robinson Peter J Robinson Henderson Sellers Ann 1999 Contemporary Climatology Harlow England Pearson Prentice Hall ISBN 0582276314 Rohli Robert V Vega Anthony J 2018 Climatology fourth ed Jones amp Bartlett Learning ISBN 9781284126563 Rohli Robert V Vega Anthony J 2011 Climatology second ed Jones amp Bartlett Learning Wang Shih Yu Gillies Robert R eds 2012 Modern Climatology Rijeka Croatia InTech ISBN 978 953 51 0095 9 Further reading EditJenny Uglow What the Weather Is review of Sarah Dry Waters of the World The Story of the Scientists Who Unraveled the Mysteries of Our Oceans Atmosphere and Ice Sheets and Made the Planet Whole University of Chicago Press 2019 332 pp The New York Review of Books vol LXVI no 20 19 December 2019 pp 56 58 External links Edit Wikiversity has learning resources about Climatology Climate Science Special Report U S Global Change Research Program KNMI Climate Explorer The Royal Netherlands Meteorological Institute s Climate Explorer graphs climatological relationships of spatial and temporal data Climatology as a Profession Amer Inst of Physics account of the history of the discipline of climatology in the 20th century Retrieved from https en wikipedia org w index php title Climatology amp oldid 1145335372, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.