fbpx
Wikipedia

Iodine in biology

Iodine is an essential trace element in biological systems. It has the distinction of being the heaviest element commonly needed by living organisms as well as the second-heaviest known to be used by any form of life (only tungsten, a component of a few bacterial enzymes, has a higher atomic number and atomic weight). It is a component of biochemical pathways in organisms from all biological kingdoms, suggesting its fundamental significance throughout the evolutionary history of life.[1]

Iodine cycle diagram showing various biological uses of Iodine

Iodine is critical to the proper functioning of the vertebrate endocrine system, and plays smaller roles in numerous other organs, including those of the digestive and reproductive systems. An adequate intake of iodine-containing compounds is important at all stages of development, especially during the fetal and neonatal periods, and diets deficient in iodine can present serious consequences for growth and metabolism.

Vertebrate functions Edit

Thyroid Edit

In vertebrate biology, iodine's primary function is as a constituent of the thyroid hormones, thyroxine (T4) and triiodothyronine (T3). These molecules are made from addition-condensation products of the amino acid tyrosine, and are stored prior to release in an iodine-containing protein called thyroglobulin. T4 and T3 contain four and three atoms of iodine per molecule, respectively; iodine accounts for 65% of the molecular weight of T4 and 59% of T3. The thyroid gland actively absorbs iodine from the blood to produce and release these hormones into the blood, actions which are regulated by a second hormone, called thyroid-stimulating hormone (TSH), which is produced by the pituitary gland. Thyroid hormones are phylogenetically very old molecules which are synthesized by most multicellular organisms, and which even have some effect on unicellular organisms. Thyroid hormones play a fundamental role in biology, acting upon gene transcription mechanisms to regulate the basal metabolic rate. T3 acts on small intestine cells and adipocytes to increase carbohydrate absorption and fatty acid release, respectively.[2] A deficiency of thyroid hormones can reduce basal metabolic rate up to 50%, while an excessive production of thyroid hormones can increase the basal metabolic rate by 100%.[3] T4 acts largely as a precursor to T3, which is (with minor exceptions) the biologically active hormone. Via the thyroid hormones, iodine has a nutritional relationship with selenium. A family of selenium-dependent enzymes called deiodinases converts T4 to T3 (the active hormone) by removing an iodine atom from the outer tyrosine ring. These enzymes also convert T4 to reverse T3 (rT3) by removing an inner ring iodine atom, and also convert T3 to 3,3'-Diiodothyronine (T2) by removing an inner ring atom. Both of the latter products are inactivated hormones which have essentially no biological effects and are quickly prepared for disposal. A family of non-selenium-dependent enzymes then further deiodinates the products of these reactions.

The total amount of iodine in the human body is still controversial, and in 2001, M.T. Hays published in Thyroid that "it is surprising that the total iodine content of the human body remains uncertain after many years of interest in iodine metabolism. Only the iodine content of the thyroid gland has been measured accurately by fluorescent scanning, and it is now well estimate of 5–15 mg in the normal human thyroid. But similar methods are not available for other tissues and for the extrathyroidal organs. Many researchers reported different numbers of 10–50 mg of the total iodine content in human body".[4][5] Selenium also plays a very important role in the production of glutathione, the body's most powerful antioxidant. During the production of the thyroid hormones, hydrogen peroxide is produced in large quantities, and therefore high iodine in the absence of selenium can destroy the thyroid gland (often described as a sore throat feeling); the peroxides are neutralized through the production of glutathione from selenium. In turn, an excess of selenium increases demand for iodine, and deficiency will result when a diet is high in selenium and low in iodine.[citation needed]

Extrathyroidal iodine Edit

 
Sequence of 123-iodide human scintiscans after an intravenous injection, (from left) after 30 minutes, 20 hours, and 48 hours. A high and rapid concentration of radio-iodide is evident in extrathyroidal organs like cerebrospinal fluid (left), gastric and oral mucosa, salivary glands, arterial walls, ovary and thymus. In the thyroid gland, I-concentration is more progressive, as in a reservoir (from 1% after 30 minutes, and after 6, 20 h, to 5.8% after 48 hours, of the total injected dose).[6]
 
A pheochromocytoma tumor is seen as a dark sphere in the center of the body (it is in the left adrenal gland). The image is by MIBG scintigraphy, showing the tumor by radiation from radioiodine in the MIBG. Two images are seen of the same patient from front and back. The image of the thyroid in the neck is due to unwanted uptake of radioiodine from a radioactive iodine-containing medication by the thyroid gland in the neck. Accumulation at the sides of the head is from salivary gland uptake of iodide. Radioactivity is also seen from uptake by the liver, and excretion and accumulation in the bladder.

Extra-thyroidal iodine exists in several other organs, including the mammary glands, eyes, gastric mucosa, cervix, cerebrospinal fluid, arterial walls, ovary and salivary glands.[6] In the cells of these tissues the iodide ion (I) enters directly by the sodium-iodide symporter (NIS). Different tissue responses for iodine and iodide occur in the mammary glands and the thyroid gland of rats.[7] The role of iodine in mammary tissue is related to fetal and neonatal development, but its role in the other tissues is not well known.[8] It has been shown to act as an antioxidant[8] and antiproliferant[9] in various tissues that can uptake iodine. Molecular iodine (I2) has been shown to have a suppressive effect on benign and cancerous neoplasias.[9]

The U.S. Food and Nutrition Board and Institute of Medicine recommended daily allowance of iodine ranges from 150 micrograms per day for adult humans to 290 micrograms per day for lactating mothers. However, the thyroid gland needs no more than 70 micrograms per day to synthesize the requisite daily amounts of T4 and T3. The higher recommended daily allowance levels of iodine seem necessary for optimal function of a number of other body systems, including lactating breasts, gastric mucosa, salivary glands, oral mucosa, arterial walls, thymus, epidermis, choroid plexus and cerebrospinal fluid, among others.[10][11][12]

Other functions Edit

Iodine and thyroxine have also been shown to stimulate the spectacular apoptosis of the cells of the larval gills, tail and fins during metamorphosis in amphibians, as well as the transformation of their nervous system from that of the aquatic, herbivorous tadpole into that of the terrestrial, carnivorous adult. The frog species Xenopus laevis has proven to be an ideal model organism for experimental study of the mechanisms of apoptosis and the role of iodine in developmental biology.[13][1][14][15]

Invertebrate functions Edit

It is believed that thyroid hormones evolved in the Urbilaterian well before the development of the thyroid itself and molluscs, echinoderms, cephalochordates and ascidians all use such hormones.[16] Cnidarians also respond to Thyroid hormone despite being parahoxozoans rather than bilaterians.[16][17]

Insects use hormones similar to thyroid hormone using iodine.[18][19][20]

Phosphorylated tyrosines created with tyrosine kinases are fundamental signalling molecules in all animals and in choanoflagellates.[21][22]

Non-animal functions Edit

Iodine is known to be crucial for life in many unicellular organisms[23] Phosphorylated tyrosines created with tyrosine kinases are fundamental signalling molecules in all animals and in Choanoflagellates[21][22] and may be linked to the usage of tyrosine iodine compounds for similar roles.[23] Crockford proposes that iodine was originally used in protecting cell membranes from oxidative damage in photosynthesis and later moved into cytoplasm and became involved with balancing cytoplasmic composition of ions, and later the non enzymatic synthesis of tyrosine in early life.[23]

It is common across all domains of life and uses tyrosine bonded to iodine.[23]

Plants, insects, zooplankton and algae store iodine as mono-iodotyrosine (MIT), di-iodotyrosine (DIT), iodocarbons, or iodoproteins.[24][25][26]

Many plants use thyroid like hormones for regulating growth.[24][27]

Gut-inhabiting bacteria use iodine from host thyroid hormone.[28]

Thyroid-like hormones may be linked to the development of multicellularity.[29][30] Iodotyrosines are highly reactive with other molecules[31] which may have made them important cell signalling molecules early in evolutionary history.[23] They form spontaneously without need for enzymatic catalysts which may have contributed to their early adoption by organisms,[32][33] although enzymes make the yields significantly higher.[34]

The ease of reaction with water may explain why iodine is so common across cell signalling in all domains of life.[35]

Many photosynthetic microbes are able to reduce inorganic iodate to iodide in their cell walls[36][37][38][39][40] but much of it gets released into the environment rather than cytoplasm in compounds such as methyl iodide.[41][36][42] Many sulfate-reducing microorganisms and Iron-oxidizing bacteria also reduce iodate to iodide[43][40] as well as many facultative anaerobic organisms[44] suggesting this may be ancestral among anaerobic organisms.[23]

Kelp store large quantities of iodide primarily as iodotyrosines for unknown reasons.[45][46]

Molecular iodine (I2) is toxic to most single-celled organisms by disrupting the cell membrane[47] however Alphaproteobacteria and Choanoflagellates are resistant.[48] Organisms such as Escherichia coli are killed by molecular iodine but require iodine from host thyroid hormone,[28] indicating that not all organisms that need iodine are resistant to the toxic effects of pure iodine.[23]

Agents containing iodine can exert a differential effect upon different species in an agricultural system. The growth of all strains of Fusarium verticillioides is significantly inhibited by an iodine-containing fungistatic (AJ1629-34EC) at concentrations that do not harm the crop. This might be a less toxic anti-fungal agricultural treatment due to its relatively natural chemistry.[49][50]

Dietary recommendations Edit

The U.S. Institute of Medicine (IOM) updated Estimated Average Requirements (EARs) and Recommended Dietary Allowances (RDAs) for iodine in 2000. For people age 14 and up, the iodine RDA is 150 μg/day; the RDA for pregnant women is 220 μg/day and the RDA during lactation is 290 μg/day. For children aged 1–8 years, the RDA is 90 μg/day; for children aged 8–13 years, it is 130 μg/day.[51] As a safety consideration, the IOM sets tolerable upper intake levels (ULs) for vitamins and minerals when evidence is sufficient. The UL for iodine for adults is 1,100 μg/day. This UL was assessed by analyzing the effect of supplementation on thyroid-stimulating hormone.[8] Collectively, the EARs, RDAs, AIs and ULs are referred to as Dietary Reference Intakes (DRIs).[51]

The European Food Safety Authority (EFSA) refers to the collective set of information as Dietary Reference Values, with Population Reference Intake (PRI) instead of RDA, and Average Requirement instead of EAR; AI and UL are defined the same as in the United States. For women and men ages 18 and older, the PRI for iodine is set at 150 μg/day; the PRI during pregnancy or lactation is 200 μg/day. For children aged 1–17 years, the PRI increases with age from 90 to 130 μg/day. These PRIs are comparable to the U.S. RDAs with the exception of that for lactation.[52] The EFSA reviewed the same safety question and set its adult UL at 600 μg/day, which is a bit more than half the U.S. value.[53] Notably, Japan reduced its adult iodine UL from 3,000 to 2,200 µg/day in 2010, but then increased it back to 3,000 µg/day in 2015.[54]

As of 2000, the median observed intake of iodine from food in the United States was 240 to 300 μg/day for men and 190 to 210 μg/day for women.[51] In Japan, consumption is much higher due to the frequent consumption of seaweed or kombu kelp.[8] The average daily intake in Japan ranges from 1,000 to 3,000 μg/day; previous estimates suggested an average intake as high as 13,000 μg/day.[55]

Labeling Edit

For U.S. food and dietary supplement labeling purposes, the amount in a serving is expressed as a percent of Daily Value (%DV). For iodine specifically, 100% of the Daily Value is considered 150 μg, and this figure remained at 150 μg in the May 27, 2016 revision.[56][57] A table of the old and new adult daily values is provided at Reference Daily Intake.

Food sources Edit

Natural sources of iodine include many marine organisms, such as kelp and certain seafood products, as well as plants grown on iodine-rich soil.[58][59] Iodized salt is fortified with iodine.[59] According to a Food Fortification Initiative 2016 report, 130 countries have mandatory iodine fortification of salt and an additional 10 have voluntary fortification.[citation needed]

Deficiency Edit

Worldwide, iodine deficiency affects two billion people and is the leading preventable cause of intellectual disability.[60] Mental disability is a result which occurs primarily when babies or small children are rendered hypothyroidic by a lack of dietary iodine (new hypothyroidism in adults may cause temporary mental slowing, but not permanent damage).

In areas where there is little iodine in the diet, typically remote inland areas and semi-arid equatorial climates where no marine foods are eaten, iodine deficiency also gives rise to hypothyroidism, the most serious symptoms of which are epidemic goitre (swelling of the thyroid gland), extreme fatigue, mental slowing, depression, weight gain, and low basal body temperatures.[61]

The addition of iodine to table salt (so-called iodized salt) has largely eliminated the most severe consequences of iodine deficiency in wealthier nations, but deficiency remains a serious public health problem in the developing world.[62] Iodine deficiency is also a problem in certain areas of Europe; in Germany, an estimated one billion dollars in healthcare costs is spent each year in combating and treating iodine deficiency.[8]

Iodine and cancer risk Edit

Source:[63]

  • Breast cancer. The mammary gland actively concentrates iodine into milk for the benefit of the developing infant, and may develop a goiter-like hyperplasia, sometimes manifesting as fibrocystic breast disease, when iodine level is low. Studies indicate that iodine deficiency, either dietary or pharmacologic, can lead to breast atypia and increased incidence of malignancy in animal models, while iodine treatment can reverse dysplasia,[7][64][65] with elemental iodine (I2) having been found to be more effective in reducing ductal hyperplasias and perilobular fibrosis in iodine-deficient rats than iodide (I).[7] On the observation that Japanese women who consume iodine-rich seaweed have a relatively low rate of breast cancer, iodine is suggested as a protection against breast cancer.[66][67] Iodine is known to induce apoptosis in breast cancer cells.[68] Laboratory evidence has demonstrated an effect of iodine on breast cancer that is in part independent of thyroid function, with iodine inhibiting cancer through modulation of the estrogen pathway. Gene array profiling of the estrogen responsive breast cancer cell line shows that the combination of iodine and iodide alters gene expression and inhibits the estrogen response through up-regulating proteins involved in estrogen metabolism. Whether iodine/iodide will be useful as an adjuvant therapy in the pharmacologic manipulation of the estrogen pathway in women with breast cancer has not been determined clinically.[64]
  • Gastric cancer. Some researchers have found an epidemiologic correlation between iodine deficiency, iodine-deficient goitre, and gastric cancer;[69][70][71] a decrease in the death incidence from stomach cancer after iodine-prophylaxis.[72] In the proposed mechanism, the iodide ion functions in gastric mucosa as an antioxidant reducing species that detoxifies poisonous reactive oxygen species, such as hydrogen peroxide.

Precautions and toxicity Edit

Elemental iodine Edit

Elemental iodine is an oxidizing irritant, and direct contact with skin can cause lesions, so iodine crystals should be handled with care. Solutions with high elemental iodine concentration such as tincture of iodine are capable of causing tissue damage if use for cleaning and antisepsis is prolonged. Although elemental iodine is used in the formulation of Lugol's solution, a common medical disinfectant, it becomes triiodide upon reacting with the potassium iodide used in the solution and is therefore non-toxic.[citation needed] Only a small amount of elemental iodine will dissolve in water, but triiodides are highly soluble; potassium iodide thus serves as a phase transfer catalyst in the tincture. This allows Lugol's iodine to be produced in strengths varying from 2% to 15% iodine.

Elemental iodine (I2) is poisonous if taken orally in large amounts; 2–3 grams is a lethal dose for an adult human.[73][74] Potassium iodide, on the other hand, has a median lethal dose (LD50) that is relatively high in several other animals: in rabbits, it is 10 g/kg; in rats, 14 g/kg, and in mice, 22 g/kg.[75] The tolerable upper intake level for iodine as established by the Food and Nutrition Board is 1,100 µg/day for adults. The safe upper limit of consumption set by the Ministry of Health, Labor and Welfare in Japan is 3,000 µg/day.[76]

The biological half-life of iodine differs between the various organs of the body, from 100 days in the thyroid, to 14 days in the kidneys and spleen, to 7 days in the reproductive organs. Typically the daily urinary elimination rate ranges from 100 to 200 µg/L in humans.[77] However, the Japanese diet, high in iodine-rich kelp, contains 1,000 to 3,000 µg of iodine per day, and research indicates the body can readily eliminate excess iodine that is not needed for thyroid hormone production.[76] The literature reports as much as 30,000 µg/L (30 mg/L) of iodine being safely excreted in the urine in a single day, with levels returning to the standard range in a couple of days, depending on seaweed intake.[78] One study concluded the range of total body iodine content in males was 12.1 mg to 25.3 mg, with a mean of 14.6 mg.[79] It is presumed that once thyroid-stimulating hormone is suppressed, the body simply eliminates excess iodine, and as a result, long-term supplementation with high doses of iodine has no additional effect once the body is replete with enough iodine. It is unknown if the thyroid gland is the rate-limiting factor in generating thyroid hormone from iodine and tyrosine, but assuming it is not, a short-term loading dose of one or two weeks at the tolerable upper intake level may quickly restore thyroid function in iodine-deficient patients.[citation needed]

Iodine vapor is very irritating to the eye, to mucous membranes, and in the respiratory tract. Concentration of iodine in the air should not exceed 1 mg/m3 (eight-hour time-weighted average).

When mixed with ammonia and water, elemental iodine forms nitrogen triiodide, which is extremely shock-sensitive and can explode unexpectedly.

Iodide ion Edit

Excessive iodine intake presents symptoms similar to those of iodine deficiency. Commonly encountered symptoms are abnormal growth of the thyroid gland and disorders in functioning,[80] as well as in growth of the organism as a whole. Iodide toxicity is similar to (but not the same as) toxicity to ions of the other halogens, such as bromides or fluorides. Excess bromine and fluorine can prevent successful iodine uptake, storage and use in organisms, as both elements can selectively replace iodine biochemically.

Excess iodine may also be more cytotoxic in combination with selenium deficiency.[81] Iodine supplementation in selenium-deficient populations is theoretically problematic, partly for this reason.[8] Selenocysteine (abbreviated as Sec or U, in older publications also as Se-Cys)[82] is the 21st proteinogenic amino acid, and is the root of iodide ion toxicity when there is a simultaneous insufficiency of biologically available selenium. Selenocysteine exists naturally in all kingdoms of life as a building block of selenoproteins.[83]

Hypersensitivity reactions Edit

Some people develop a hypersensitivity to compounds of iodine but there are no known cases of people being directly allergic to elemental iodine itself.[84] Notable sensitivity reactions that have been observed in humans include:

Medical use of iodine compounds (i.e. as a contrast agent) can cause anaphylactic shock in highly sensitive patients, presumably due to sensitivity to the chemical carrier. Cases of sensitivity to iodine compounds should not be formally classified as iodine allergies, as this perpetuates the erroneous belief that it is the iodine to which patients react, rather than to the specific allergen. Sensitivity to iodine-containing compounds is rare but has a considerable effect given the extremely widespread use of iodine-based contrast media; however, the only adverse effect of contrast material that can convincingly be ascribed to free iodide is iodide mumps and other manifestations of iodism.[86]


See also Edit

References Edit

  1. ^ a b Venturi, Sebastiano (2011). "Evolutionary Significance of Iodine". Current Chemical Biology. 5 (3): 155–162. doi:10.2174/187231311796765012. ISSN 1872-3136.
  2. ^ Widmaier, Eric; Strang, Kevin; Raff, Hershel (2016). Human Physiology: The Mechanisms of Body Function (Fourteenth ed.). New York: McGraw Hill. p. 340. ISBN 9781259294099.
  3. ^ Nussey; Whitehead (2001). "Endocrinology: An Integrated Approach". NCBI. Oxford: BIOS Scientific Publishers. Retrieved 9 February 2017.
  4. ^ Hays, M.T. (2001). "Estimation of Total Body Iodine Content in Normal Young Men". Thyroid. 11 (7): 671–675. doi:10.1089/105072501750362745. PMID 11484896.
  5. ^ Venturi, Sebastiano (2020). "Controversy in the content and action of human extrathyroidal iodine". Human Evolution. 35 (1–2): 1–16. doi:10.14673/HE2020121064.
  6. ^ a b Venturi, S.; Donati, F.M.; Venturi, A.; Venturi, M. (2000). "Environmental Iodine Deficiency: A Challenge to the Evolution of Terrestrial Life?". Thyroid. 10 (8): 727–9. doi:10.1089/10507250050137851. PMID 11014322.
  7. ^ a b c Eskin, Bernard A.; Grotkowski, Carolyn E.; Connolly, Christopher P.; Ghent, William R. (1995). "Different tissue responses for iodine and iodide in rat thyroid and mammary glands". Biological Trace Element Research. 49 (1): 9–19. doi:10.1007/BF02788999. PMID 7577324. S2CID 24230708.
  8. ^ a b c d e f Patrick L (2008). (PDF). Altern Med Rev. 13 (2): 116–27. PMID 18590348. Archived from the original (PDF) on 2013-05-31.
  9. ^ a b Aceves C, Anguiano B, Delgado G (August 2013). "The extrathyronine actions of iodine as antioxidant, apoptotic, and differentiation factor in various tissues". Thyroid. 23 (8): 938–46. doi:10.1089/thy.2012.0579. PMC 3752513. PMID 23607319.
  10. ^ Brown-Grant, K. (1961). "Extrathyroidal iodide concentrating mechanisms". Physiol. Rev. 41 (1): 189–213. doi:10.1152/physrev.1961.41.1.189.
  11. ^ Spitzweg, C., Joba, W., Eisenmenger, W. and Heufelder, A.E. (1998). "Analysis of human sodium iodide symporter gene expression in extrathyroidal tissues and cloning of its complementary deoxyribonucleic acid from salivary gland, mammary gland, gastric mucosa". J Clin Endocrinol Metab. 83 (5): 1746–51. doi:10.1210/jcem.83.5.4839. PMID 9589686.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  12. ^ Banerjee, R.K., Bose, A.K., Chakraborty, t.K., de, S.K. and datta, A.G. (1985). "Peroxidase catalysed iodotyrosine formation in dispersed cells of mouse extrathyroidal tissues". J. Endocrinol. 106 (2): 159–65. doi:10.1677/joe.0.1060159. PMID 2991413.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  13. ^ Jewhurst K, Levin M, McLaughlin KA (2014). "Optogenetic Control of Apoptosis in Targeted Tissues of Xenopus laevis Embryos". J Cell Death. 7: 25–31. doi:10.4137/JCD.S18368. PMC 4213186. PMID 25374461.
  14. ^ Venturi, S.; Venturi, M. (2014). "Iodine, PUFAs and Iodolipids in Health and Disease: An Evolutionary Perspective". Human Evolution. 29 (1–3): 185–205. ISSN 0393-9375.
  15. ^ Tamura K, Takayama S, Ishii T, Mawaribuchi S, Takamatsu N, Ito M (2015). "Apoptosis and differentiation of Xenopus tail-derived myoblasts by thyroid hormone". J Mol Endocrinol. 54 (3): 185–192. doi:10.1530/JME-14-0327. PMID 25791374.
  16. ^ a b Taylor, Elias; Heyland, Andreas (2017-12-25). "Evolution of thyroid hormone signaling in animals: Non-genomic and genomic modes of action". Molecular and Cellular Endocrinology. 459: 14–20. doi:10.1016/j.mce.2017.05.019. ISSN 1872-8057. PMID 28549993. S2CID 22986726.
  17. ^ Ryan, Joseph F.; Pang, Kevin; Mullikin, James C.; Martindale, Mark Q.; Baxevanis, Andreas D. (2010-10-04). "The homeodomain complement of the ctenophore Mnemiopsis leidyi suggests that Ctenophora and Porifera diverged prior to the Parahoxozoa". EvoDevo. 1 (1): 9. doi:10.1186/2041-9139-1-9. ISSN 2041-9139. PMC 2959044. PMID 20920347.
  18. ^ Nijhout, H. Frederik (1999-03-01). "Control Mechanisms of Polyphenic Development in Insects: In polyphenic development, environmental factors alter some aspects of development in an orderly and predictable way". BioScience. 49 (3): 181–192. doi:10.2307/1313508. ISSN 0006-3568. JSTOR 1313508.
  19. ^ Wheeler, Diana E.; Nijhout, H. F. (October 2003). "A perspective for understanding the modes of juvenile hormone action as a lipid signaling system". BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology. 25 (10): 994–1001. doi:10.1002/bies.10337. ISSN 0265-9247. PMID 14505366.
  20. ^ Flatt, Thomas; Moroz, Leonid L.; Tatar, Marc; Heyland, Andreas (December 2006). "Comparing thyroid and insect hormone signaling". Integrative and Comparative Biology. 46 (6): 777–794. doi:10.1093/icb/icl034. ISSN 1540-7063. PMID 21672784.
  21. ^ a b King, Nicole (September 2004). "The unicellular ancestry of animal development". Developmental Cell. 7 (3): 313–325. doi:10.1016/j.devcel.2004.08.010. ISSN 1534-5807. PMID 15363407.
  22. ^ a b Manning, Gerard; Young, Susan L.; Miller, W. Todd; Zhai, Yufeng (2008-07-15). "The protist, Monosiga brevicollis, has a tyrosine kinase signaling network more elaborate and diverse than found in any known metazoan". Proceedings of the National Academy of Sciences of the United States of America. 105 (28): 9674–9679. doi:10.1073/pnas.0801314105. ISSN 1091-6490. PMC 2453073. PMID 18621719.
  23. ^ a b c d e f g Crockford, Susan J. (2009-08-01). "Evolutionary roots of iodine and thyroid hormones in cell–cell signaling". Integrative and Comparative Biology. 49 (2): 155–166. doi:10.1093/icb/icp053. ISSN 1540-7063. PMID 21669854.
  24. ^ a b Eales, J. G. (April 1997). "Iodine metabolism and thyroid-related functions in organisms lacking thyroid follicles: are thyroid hormones also vitamins?". Proceedings of the Society for Experimental Biology and Medicine. 214 (4): 302–317. doi:10.3181/00379727-214-44098. ISSN 0037-9727. PMID 9111521. S2CID 45625312.
  25. ^ Johnson, L. G. (1997). "Thyroxine's evolutionary roots". Perspectives in Biology and Medicine. 40 (4): 529–535. doi:10.1353/pbm.1997.0076. ISSN 0031-5982. PMID 9269742. S2CID 37083224.
  26. ^ Heyland, Andreas; Moroz, Leonid L. (December 2005). "Cross-kingdom hormonal signaling: an insight from thyroid hormone functions in marine larvae". The Journal of Experimental Biology. 208 (Pt 23): 4355–4361. doi:10.1242/jeb.01877. ISSN 0022-0949. PMID 16339856. S2CID 1668295.
  27. ^ Farnsworth, Elizabeth (January 2004). "Hormones and Shifting Ecology Throughout Plant Development". Ecology. 85 (1): 5–15. doi:10.1890/02-655. ISSN 0012-9658.
  28. ^ a b DiStefano, J. J.; de Luze, A.; Nguyen, T. T. (June 1993). "Binding and degradation of 3,5,3'-triiodothyronine and thyroxine by rat intestinal bacteria". The American Journal of Physiology. 264 (6 Pt 1): E966–972. doi:10.1152/ajpendo.1993.264.6.E966. ISSN 0002-9513. PMID 8333521.
  29. ^ "Google Scholar".
  30. ^ "Google Scholar".
  31. ^ Harshman, S. (1979-02-09). "Action of staphylococcal alpha-toxin on membranes: some recent advances". Molecular and Cellular Biochemistry. 23 (3): 143–152. doi:10.1007/BF00219453. ISSN 0300-8177. PMID 481427. S2CID 35122996.
  32. ^ Nishinaga, Akira.; Cahnmann, Hans J.; Kon, Hideo.; Matsuura, Teruo. (1968-01-01). "Model reactions for the biosynthesis of thyroxine. XII. Nature of a thyroxine precursor formed in the synthesis of thyroxine from diiodotyrosine and its keto acid analog". Biochemistry. 7 (1): 388–397. doi:10.1021/bi00841a049. ISSN 0006-2960. PMID 5758555.
  33. ^ Cahnmann, H. J.; Funakoshi, K. (1970-01-06). "Model reactions for the biosynthesis of thyroxine. Nonenzymic formation of 3,5,3'-triiodothyronine from 4-hydroxy-3-iodophenylpyruvic acid, 3,5-diiodotyrosine, and oxygen". Biochemistry. 9 (1): 90–98. doi:10.1021/bi00803a012. ISSN 0006-2960. PMID 5411209.
  34. ^ Hulbert, A. J. (November 2000). "Thyroid hormones and their effects: a new perspective". Biological Reviews of the Cambridge Philosophical Society. 75 (4): 519–631. doi:10.1017/s146479310000556x. ISSN 1464-7931. PMID 11117200.
  35. ^ Comparative Iodine Geochemistry of Earth and Mars: A Possible Biomarker (PDF). 30th Annual Lunar and Planetary Science Conference. 1999. Bibcode:1999LPI....30.1661G.
  36. ^ a b Wong, George T. F.; Piumsomboon, Ajcharaporn U.; Dunstan, William M. (2002-07-18). "The transformation of iodate to iodide in marine phytoplankton cultures". Marine Ecology Progress Series. 237: 27–39. Bibcode:2002MEPS..237...27W. doi:10.3354/meps237027. ISSN 0171-8630.
  37. ^ Amachi, Seigo; Kasahara, Mizuyo; Hanada, Satoshi; Kamagata, Yoichi; Shinoyama, Hirofumi; Fujii, Takaaki; Muramatsu, Yasuyuki (2003-09-01). "Microbial participation in iodine volatilization from soils". Environmental Science & Technology. 37 (17): 3885–3890. Bibcode:2003EnST...37.3885A. doi:10.1021/es0210751. ISSN 0013-936X. PMID 12967109.
  38. ^ Amachi, Seigo; Mishima, Yukako; Shinoyama, Hirofumi; Muramatsu, Yasuyuki; Fujii, Takaaki (February 2005). "Active transport and accumulation of iodide by newly isolated marine bacteria". Applied and Environmental Microbiology. 71 (2): 741–745. Bibcode:2005ApEnM..71..741A. doi:10.1128/AEM.71.2.741-745.2005. ISSN 0099-2240. PMC 546781. PMID 15691925.
  39. ^ Chance, Rosie; Malin, Gill; Jickells, Tim; Baker, Alex R. (2007-04-25). "Reduction of iodate to iodide by cold water diatom cultures". Marine Chemistry. 105 (1): 169–180. doi:10.1016/j.marchem.2006.06.008. ISSN 0304-4203.
  40. ^ a b Truesdale, Victor W. (2008-06-01). "The biogeochemical effect of seaweeds upon close-to natural concentrations of dissolved iodate and iodide in seawater – Preliminary study with Laminaria digitata and Fucus serratus". Estuarine, Coastal and Shelf Science. 78 (1): 155–165. Bibcode:2008ECSS...78..155T. doi:10.1016/j.ecss.2007.11.022. ISSN 0272-7714.
  41. ^ Baker, A. R; Thompson, D; Campos, M. L. A. M; Parry, S. J; Jickells, T. D (2000-07-26). "Iodine concentration and availability in atmospheric aerosol". Atmospheric Environment. 34 (25): 4331–4336. Bibcode:2000AtmEn..34.4331B. doi:10.1016/S1352-2310(00)00208-9. ISSN 1352-2310.
  42. ^ Baker, Alex R. (2005-12-08). "Marine Aerosol Iodine Chemistry: The Importance of Soluble Organic Iodine". Environmental Chemistry. 2 (4): 295–298. doi:10.1071/EN05070. ISSN 1449-8979.
  43. ^ Councell, Terry B.; Landa, Edward R.; Lovley, Derek R. (1997-11-01). "Microbial Reduction of Iodate". Water, Air, and Soil Pollution. 100 (1): 99–106. Bibcode:1997WASP..100...99C. doi:10.1023/A:1018370423790. ISSN 1573-2932. S2CID 94289106.
  44. ^ Farrenkopf, Anna M.; Dollhopf, Michael E.; Chadhain, Sinéad Ní; Luther, George W.; Nealson, Kenneth H. (1997-07-01). "Reduction of iodate in seawater during Arabian Sea shipboard incubations and in laboratory cultures of the marine bacterium Shewanella putrefaciens strain MR-4". Marine Chemistry. 57 (3): 347–354. doi:10.1016/S0304-4203(97)00039-X. ISSN 0304-4203.
  45. ^ Küpper, F. C.; Schweigert, N.; Ar Gall, E.; Legendre, J.-M.; Vilter, H.; Kloareg, B. (1998-11-01). "Iodine uptake in Laminariales involves extracellular, haloperoxidase-mediated oxidation of iodide". Planta. 207 (2): 163–171. doi:10.1007/s004250050469. ISSN 1432-2048. S2CID 7554142.
  46. ^ Küpper, Frithjof C.; Carpenter, Lucy J.; McFiggans, Gordon B.; Palmer, Carl J.; Waite, Tim J.; Boneberg, Eva-Maria; Woitsch, Sonja; Weiller, Markus; Abela, Rafael; Grolimund, Daniel; Potin, Philippe (2008-05-13). "Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry". Proceedings of the National Academy of Sciences of the United States of America. 105 (19): 6954–6958. Bibcode:2008PNAS..105.6954K. doi:10.1073/pnas.0709959105. ISSN 1091-6490. PMC 2383960. PMID 18458346.
  47. ^ McDonnell, G.; Russell, A. D. (January 1999). "Antiseptics and disinfectants: activity, action, and resistance". Clinical Microbiology Reviews. 12 (1): 147–179. doi:10.1128/CMR.12.1.147. ISSN 0893-8512. PMC 88911. PMID 9880479.
  48. ^ Amachi, Seigo; Muramatsu, Yasuyuki; Akiyama, Yukako; Miyazaki, Kazumi; Yoshiki, Sayaka; Hanada, Satoshi; Kamagata, Yoichi; Ban-nai, Tadaaki; Shinoyama, Hirofumi; Fujii, Takaaki (2005-05-01). "Isolation of Iodide-Oxidizing Bacteria from Iodide-Rich Natural Gas Brines and Seawaters". Microbial Ecology. 49 (4): 547–557. doi:10.1007/s00248-004-0056-0. ISSN 1432-184X. PMID 16047096. S2CID 973540.
  49. ^ Yates, IE; Arnold, JW; Bacon, CW; Hinton, DM (2004). "In vitro assessments of diverse plant pathogenic fungi treated with a novel growth control agent". Crop Protection. Elsevier. 23 (12): 1169–1176. doi:10.1016/j.cropro.2004.03.019. ISSN 0261-2194. S2CID 84907161.
  50. ^ Durham, Sharon (January 2003). "Seed Saver: Iodine-based Fungicide Foils Fusarium". AgResearch. USDA ARS (United States Department of Agriculture Agricultural Research Service). 51 (1).
  51. ^ a b c United States National Research Council (2000). Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc. National Academies Press. pp. 258–259. doi:10.17226/10026. ISBN 978-0-309-07279-3. PMID 25057538.
  52. ^ "Overview on Dietary Reference Values for the EU population as derived by the EFSA Panel on Dietetic Products, Nutrition and Allergies" (PDF). 2017.
  53. ^ Tolerable Upper Intake Levels For Vitamins And Minerals (PDF), European Food Safety Authority, 2006
  54. ^ Overview of Dietary Reference Intakes for Japanese (2015) Minister of Health, Labour and Welfare, Japan| url = http://www.mhlw.go.jp/file/06-Seisakujouhou-10900000-Kenkoukyoku/Overview.pdf
  55. ^ Zava, Theodore T.; Zava, David T. (2011). "Assessment of Japanese iodine intake based on seaweed consumption in Japan: A literature-based analysis". Thyroid Research. 4: 14. doi:10.1186/1756-6614-4-14. PMC 3204293. PMID 21975053.
  56. ^ "Federal Register May 27, 2016 Food Labeling: Revision of the Nutrition and Supplement Facts Labels. FR page 33982" (PDF).
  57. ^ . Dietary Supplement Label Database (DSLD). Archived from the original on 7 April 2020. Retrieved 16 May 2020.
  58. ^ . International Council for the Control of Iodine Deficiency Disorders. Archived from the original on 2012-02-13.
  59. ^ a b "MedlinePlus Medical Encyclopedia: Iodine in diet".
  60. ^ McNeil, Donald G. Jr (2006-12-16). "In Raising the World's I.Q., the Secret's in the Salt". New York Times. Retrieved 2008-12-04.
  61. ^ Felig, Philip; Frohman, Lawrence A. (2001). "Endemic Goiter". Endocrinology & metabolism. McGraw-Hill Professional. ISBN 978-0-07-022001-0.
  62. ^ "Micronutrients - Iodine, Iron and Vitamin A". UNICEF.
  63. ^ De la Vieja, A.; Santisteban, P (2008). "Role of iodide metabolism in physiology and cancer". Endocr. Relat. Cancer. 25 (4): R225–R245. doi:10.1530/ERC-17-0515. PMID 29437784.
  64. ^ a b Stoddard II, F. R.; Brooks, A. D.; Eskin, B. A.; Johannes, G. J. (2008). "Iodine Alters Gene Expression in the MCF7 Breast Cancer Cell Line: Evidence for an Anti-Estrogen Effect of Iodine". International Journal of Medical Sciences. 5 (4): 189–96. doi:10.7150/ijms.5.189. PMC 2452979. PMID 18645607.
  65. ^ Venturi, S.; Grotkowski, CE; Connolly, CP; Ghent, WR (2001). "Is there a role for iodine in breast diseases?". The Breast. 10 (1): 379–82. doi:10.1054/brst.2000.0267. PMID 14965610. S2CID 41558438.
  66. ^ Smyth PP (July 2003). "The thyroid, iodine and breast cancer". Breast Cancer Research (review). 5 (5): 235–8. doi:10.1186/bcr638. PMC 314438. PMID 12927031.
  67. ^ Smyth PP (2003). "Role of iodine in antioxidant defence in thyroid and breast disease". BioFactors (review). 19 (3–4): 121–30. doi:10.1002/biof.5520190304. PMID 14757962. S2CID 7803619.
  68. ^ Shrivastava, A. (2006). "Molecular Iodine Induces Caspase-independent Apoptosis in Human Breast Carcinoma Cells Involving the Mitochondria-mediated Pathway". Journal of Biological Chemistry. 281 (28): 19762–19771. doi:10.1074/jbc.M600746200. ISSN 0021-9258. PMID 16679319.
  69. ^ Josefssson, M.; Ekblad, E. (2009). "Sodium Iodide Symporter (NIS) in Gastric Mucosa: Gastric Iodide Secretion". In Preedy, Victor R.; Burrow, Gerard N.; Watson, Ronald (eds.). Comprehensive Handbook of Iodine: Nutritional, Biochemical, Pathological and Therapeutic Aspects.
  70. ^ Abnet CC, Fan JH, Kamangar F, Sun XD, Taylor PR, Ren JS, Mark SD, Zhao P, Fraumeni JF Jr, Qiao YL, Dawsey SM (2006). "Self-reported goiter is associated with a significantly increased risk of gastric noncardia adenocarcinoma in a large population-based Chinese cohort". International Journal of Cancer. 119 (6): 1508–1510. doi:10.1002/ijc.21993. PMID 16642482. S2CID 45732451.
  71. ^ Behrouzian, R.; Aghdami, N. (2004). "Urinary iodine/creatinine ratio in patients with stomach cancer in Urmia, Islamic Republic of Iran". East Mediterr Health J. 10 (6): 921–924. doi:10.26719/2004.10.6.921. PMID 16335780. S2CID 35495048..
  72. ^ Golkowski F, Szybinski Z, Rachtan J, Sokolowski A, Buziak-Bereza M, Trofimiuk M, Hubalewska-Dydejczyk A, Przybylik-Mazurek E, Huszno B (2007). "Iodine prophylaxis--the protective factor against stomach cancer in iodine deficient areas". Eur J Nutr. 46 (5): 251–6. doi:10.1007/s00394-007-0657-8. PMID 17497074. S2CID 24494246.
  73. ^ "Iodine". CDC NIOSH. 1994.
  74. ^ Moore, Merrill (1938). "The Ingestion of Iodine as a Method of Attempted Suicide". New England Journal of Medicine. 219 (11): 383–388. doi:10.1056/NEJM193809152191104. ISSN 0028-4793.
  75. ^ Lewis, Richard (1996). Sax's Dangerous Properties of Industrial Materials. 9th Ed. Volumes 1-3. New York, NY: Van Nostrand Reinhold. ISBN 9780442022570.
  76. ^ a b Zava, T. T.; Zava, D. T. (2011). "Assessment of Japanese iodine intake based on seaweed consumption in Japan: A literature-based analysis". Thyroid Research. 4: 14. doi:10.1186/1756-6614-4-14. PMC 3204293. PMID 21975053.
  77. ^ World Health Organization (2007). United Nations Children's Fund & International Council for the Control of Iodine Deficiency Disorders. Assessment of iodine deficiency disorders and monitoring their elimination . 3rd ed.
  78. ^ Nagataki, S.; Shizume, K.; Nakao, K. (1967). "Thyroid Function in Chronic Excess Iodide Ingestion: Comparison of Thyroidal Absolute Iodine Uptake and Degradation of Thyroxine in Euthyroid Japanese Subjects". Journal of Clinical Endocrinology & Metabolism. 27 (5): 638–647. doi:10.1210/jcem-27-5-638. PMID 4164900.
  79. ^ Hays, M. T. (2001). "Estimation of Total Body Iodine Content in Normal Young Men". Thyroid. 11 (7): 671–675. doi:10.1089/105072501750362745. PMID 11484896.
  80. ^ Pearce, EN.; Gerber, AR.; Gootnick, DB.; Kettel Khan, L.; Li, R.; Pino, S.; Braverman, LE. (2002). "Effects of Chronic Iodine Excess in a Cohort of LongTerm American Workers in West Africa". Journal of Clinical Endocrinology & Metabolism. 87 (12): 5499–5502. doi:10.1210/jc.2002-020692. PMID 12466344.
  81. ^ Smyth, PP (2003). "Role of iodine in antioxidant defence in thyroid and breast disease". BioFactors. 19 (3–4): 121–30. doi:10.1002/biof.5520190304. PMID 14757962. S2CID 7803619.
  82. ^ "IUPAC-IUBMB Joint Commission on Biochemical Nomenclature (JCBN) and Nomenclature Committee of IUBMB (NC-IUBMB)". European Journal of Biochemistry. 264 (2): 607–609. 1999. doi:10.1046/j.1432-1327.1999.news99.x.
  83. ^ Johansson, L.; Gafvelin, G.; Amér, E. S. J. (2005). "Selenocysteine in Proteins — Properties and Biotechnological Use". Biochimica et Biophysica Acta (BBA) - General Subjects. 1726 (1): 1–13. doi:10.1016/j.bbagen.2005.05.010. hdl:10616/39311. PMID 15967579.
  84. ^ Böhm I, Silva Hasembank Keller P, Heverhagen JT (2016). ""Iodine Allergy" – The Neverending Story" (PDF). RöFo. 188 (8): 733–4. doi:10.1055/s-0042-110102. PMID 27459005. S2CID 36715998.
  85. ^ D. O. Lowe; S. R. Knowles; E. A. Weber; C. J. Railton; N. H. Shear (2006). "Povidone-iodine-induced burn: case report and review of the literature". Pharmacotherapy. 26 (11): 1641–5. doi:10.1592/phco.26.11.1641. PMID 17064209. S2CID 25708713.
  86. ^ Katelaris, Constance (2009). "'Iodine Allergy' label is misleading". Australian Prescriber. 32 (5): 125–128. doi:10.18773/austprescr.2009.061..

iodine, biology, iodine, essential, trace, element, biological, systems, distinction, being, heaviest, element, commonly, needed, living, organisms, well, second, heaviest, known, used, form, life, only, tungsten, component, bacterial, enzymes, higher, atomic,. Iodine is an essential trace element in biological systems It has the distinction of being the heaviest element commonly needed by living organisms as well as the second heaviest known to be used by any form of life only tungsten a component of a few bacterial enzymes has a higher atomic number and atomic weight It is a component of biochemical pathways in organisms from all biological kingdoms suggesting its fundamental significance throughout the evolutionary history of life 1 Iodine cycle diagram showing various biological uses of IodineIodine is critical to the proper functioning of the vertebrate endocrine system and plays smaller roles in numerous other organs including those of the digestive and reproductive systems An adequate intake of iodine containing compounds is important at all stages of development especially during the fetal and neonatal periods and diets deficient in iodine can present serious consequences for growth and metabolism Contents 1 Vertebrate functions 1 1 Thyroid 1 2 Extrathyroidal iodine 1 3 Other functions 2 Invertebrate functions 3 Non animal functions 4 Dietary recommendations 4 1 Labeling 4 2 Food sources 5 Deficiency 5 1 Iodine and cancer risk 6 Precautions and toxicity 6 1 Elemental iodine 6 2 Iodide ion 6 3 Hypersensitivity reactions 7 See also 8 ReferencesVertebrate functions EditThyroid Edit In vertebrate biology iodine s primary function is as a constituent of the thyroid hormones thyroxine T4 and triiodothyronine T3 These molecules are made from addition condensation products of the amino acid tyrosine and are stored prior to release in an iodine containing protein called thyroglobulin T4 and T3 contain four and three atoms of iodine per molecule respectively iodine accounts for 65 of the molecular weight of T4 and 59 of T3 The thyroid gland actively absorbs iodine from the blood to produce and release these hormones into the blood actions which are regulated by a second hormone called thyroid stimulating hormone TSH which is produced by the pituitary gland Thyroid hormones are phylogenetically very old molecules which are synthesized by most multicellular organisms and which even have some effect on unicellular organisms Thyroid hormones play a fundamental role in biology acting upon gene transcription mechanisms to regulate the basal metabolic rate T3 acts on small intestine cells and adipocytes to increase carbohydrate absorption and fatty acid release respectively 2 A deficiency of thyroid hormones can reduce basal metabolic rate up to 50 while an excessive production of thyroid hormones can increase the basal metabolic rate by 100 3 T4 acts largely as a precursor to T3 which is with minor exceptions the biologically active hormone Via the thyroid hormones iodine has a nutritional relationship with selenium A family of selenium dependent enzymes called deiodinases converts T4 to T3 the active hormone by removing an iodine atom from the outer tyrosine ring These enzymes also convert T4 to reverse T3 rT3 by removing an inner ring iodine atom and also convert T3 to 3 3 Diiodothyronine T2 by removing an inner ring atom Both of the latter products are inactivated hormones which have essentially no biological effects and are quickly prepared for disposal A family of non selenium dependent enzymes then further deiodinates the products of these reactions The total amount of iodine in the human body is still controversial and in 2001 M T Hays published in Thyroid that it is surprising that the total iodine content of the human body remains uncertain after many years of interest in iodine metabolism Only the iodine content of the thyroid gland has been measured accurately by fluorescent scanning and it is now well estimate of 5 15 mg in the normal human thyroid But similar methods are not available for other tissues and for the extrathyroidal organs Many researchers reported different numbers of 10 50 mg of the total iodine content in human body 4 5 Selenium also plays a very important role in the production of glutathione the body s most powerful antioxidant During the production of the thyroid hormones hydrogen peroxide is produced in large quantities and therefore high iodine in the absence of selenium can destroy the thyroid gland often described as a sore throat feeling the peroxides are neutralized through the production of glutathione from selenium In turn an excess of selenium increases demand for iodine and deficiency will result when a diet is high in selenium and low in iodine citation needed Extrathyroidal iodine Edit nbsp Sequence of 123 iodide human scintiscans after an intravenous injection from left after 30 minutes 20 hours and 48 hours A high and rapid concentration of radio iodide is evident in extrathyroidal organs like cerebrospinal fluid left gastric and oral mucosa salivary glands arterial walls ovary and thymus In the thyroid gland I concentration is more progressive as in a reservoir from 1 after 30 minutes and after 6 20 h to 5 8 after 48 hours of the total injected dose 6 nbsp A pheochromocytoma tumor is seen as a dark sphere in the center of the body it is in the left adrenal gland The image is by MIBG scintigraphy showing the tumor by radiation from radioiodine in the MIBG Two images are seen of the same patient from front and back The image of the thyroid in the neck is due to unwanted uptake of radioiodine from a radioactive iodine containing medication by the thyroid gland in the neck Accumulation at the sides of the head is from salivary gland uptake of iodide Radioactivity is also seen from uptake by the liver and excretion and accumulation in the bladder Extra thyroidal iodine exists in several other organs including the mammary glands eyes gastric mucosa cervix cerebrospinal fluid arterial walls ovary and salivary glands 6 In the cells of these tissues the iodide ion I enters directly by the sodium iodide symporter NIS Different tissue responses for iodine and iodide occur in the mammary glands and the thyroid gland of rats 7 The role of iodine in mammary tissue is related to fetal and neonatal development but its role in the other tissues is not well known 8 It has been shown to act as an antioxidant 8 and antiproliferant 9 in various tissues that can uptake iodine Molecular iodine I2 has been shown to have a suppressive effect on benign and cancerous neoplasias 9 The U S Food and Nutrition Board and Institute of Medicine recommended daily allowance of iodine ranges from 150 micrograms per day for adult humans to 290 micrograms per day for lactating mothers However the thyroid gland needs no more than 70 micrograms per day to synthesize the requisite daily amounts of T4 and T3 The higher recommended daily allowance levels of iodine seem necessary for optimal function of a number of other body systems including lactating breasts gastric mucosa salivary glands oral mucosa arterial walls thymus epidermis choroid plexus and cerebrospinal fluid among others 10 11 12 Other functions Edit Iodine and thyroxine have also been shown to stimulate the spectacular apoptosis of the cells of the larval gills tail and fins during metamorphosis in amphibians as well as the transformation of their nervous system from that of the aquatic herbivorous tadpole into that of the terrestrial carnivorous adult The frog species Xenopus laevis has proven to be an ideal model organism for experimental study of the mechanisms of apoptosis and the role of iodine in developmental biology 13 1 14 15 Invertebrate functions EditThis section needs expansion with Article is mainly focused on vertebrates You can help by adding to it May 2022 It is believed that thyroid hormones evolved in the Urbilaterian well before the development of the thyroid itself and molluscs echinoderms cephalochordates and ascidians all use such hormones 16 Cnidarians also respond to Thyroid hormone despite being parahoxozoans rather than bilaterians 16 17 Insects use hormones similar to thyroid hormone using iodine 18 19 20 Phosphorylated tyrosines created with tyrosine kinases are fundamental signalling molecules in all animals and in choanoflagellates 21 22 Non animal functions EditThis section needs expansion with Article is mainly focused on animals You can help by adding to it May 2022 Iodine is known to be crucial for life in many unicellular organisms 23 Phosphorylated tyrosines created with tyrosine kinases are fundamental signalling molecules in all animals and in Choanoflagellates 21 22 and may be linked to the usage of tyrosine iodine compounds for similar roles 23 Crockford proposes that iodine was originally used in protecting cell membranes from oxidative damage in photosynthesis and later moved into cytoplasm and became involved with balancing cytoplasmic composition of ions and later the non enzymatic synthesis of tyrosine in early life 23 It is common across all domains of life and uses tyrosine bonded to iodine 23 Plants insects zooplankton and algae store iodine as mono iodotyrosine MIT di iodotyrosine DIT iodocarbons or iodoproteins 24 25 26 Many plants use thyroid like hormones for regulating growth 24 27 Gut inhabiting bacteria use iodine from host thyroid hormone 28 Thyroid like hormones may be linked to the development of multicellularity 29 30 Iodotyrosines are highly reactive with other molecules 31 which may have made them important cell signalling molecules early in evolutionary history 23 They form spontaneously without need for enzymatic catalysts which may have contributed to their early adoption by organisms 32 33 although enzymes make the yields significantly higher 34 The ease of reaction with water may explain why iodine is so common across cell signalling in all domains of life 35 Many photosynthetic microbes are able to reduce inorganic iodate to iodide in their cell walls 36 37 38 39 40 but much of it gets released into the environment rather than cytoplasm in compounds such as methyl iodide 41 36 42 Many sulfate reducing microorganisms and Iron oxidizing bacteria also reduce iodate to iodide 43 40 as well as many facultative anaerobic organisms 44 suggesting this may be ancestral among anaerobic organisms 23 Kelp store large quantities of iodide primarily as iodotyrosines for unknown reasons 45 46 Molecular iodine I2 is toxic to most single celled organisms by disrupting the cell membrane 47 however Alphaproteobacteria and Choanoflagellates are resistant 48 Organisms such as Escherichia coli are killed by molecular iodine but require iodine from host thyroid hormone 28 indicating that not all organisms that need iodine are resistant to the toxic effects of pure iodine 23 Agents containing iodine can exert a differential effect upon different species in an agricultural system The growth of all strains of Fusarium verticillioides is significantly inhibited by an iodine containing fungistatic AJ1629 34EC at concentrations that do not harm the crop This might be a less toxic anti fungal agricultural treatment due to its relatively natural chemistry 49 50 Dietary recommendations EditThe U S Institute of Medicine IOM updated Estimated Average Requirements EARs and Recommended Dietary Allowances RDAs for iodine in 2000 For people age 14 and up the iodine RDA is 150 mg day the RDA for pregnant women is 220 mg day and the RDA during lactation is 290 mg day For children aged 1 8 years the RDA is 90 mg day for children aged 8 13 years it is 130 mg day 51 As a safety consideration the IOM sets tolerable upper intake levels ULs for vitamins and minerals when evidence is sufficient The UL for iodine for adults is 1 100 mg day This UL was assessed by analyzing the effect of supplementation on thyroid stimulating hormone 8 Collectively the EARs RDAs AIs and ULs are referred to as Dietary Reference Intakes DRIs 51 The European Food Safety Authority EFSA refers to the collective set of information as Dietary Reference Values with Population Reference Intake PRI instead of RDA and Average Requirement instead of EAR AI and UL are defined the same as in the United States For women and men ages 18 and older the PRI for iodine is set at 150 mg day the PRI during pregnancy or lactation is 200 mg day For children aged 1 17 years the PRI increases with age from 90 to 130 mg day These PRIs are comparable to the U S RDAs with the exception of that for lactation 52 The EFSA reviewed the same safety question and set its adult UL at 600 mg day which is a bit more than half the U S value 53 Notably Japan reduced its adult iodine UL from 3 000 to 2 200 µg day in 2010 but then increased it back to 3 000 µg day in 2015 54 As of 2000 the median observed intake of iodine from food in the United States was 240 to 300 mg day for men and 190 to 210 mg day for women 51 In Japan consumption is much higher due to the frequent consumption of seaweed or kombu kelp 8 The average daily intake in Japan ranges from 1 000 to 3 000 mg day previous estimates suggested an average intake as high as 13 000 mg day 55 Labeling Edit For U S food and dietary supplement labeling purposes the amount in a serving is expressed as a percent of Daily Value DV For iodine specifically 100 of the Daily Value is considered 150 mg and this figure remained at 150 mg in the May 27 2016 revision 56 57 A table of the old and new adult daily values is provided at Reference Daily Intake Food sources Edit Natural sources of iodine include many marine organisms such as kelp and certain seafood products as well as plants grown on iodine rich soil 58 59 Iodized salt is fortified with iodine 59 According to a Food Fortification Initiative 2016 report 130 countries have mandatory iodine fortification of salt and an additional 10 have voluntary fortification citation needed Deficiency EditMain article Iodine deficiency Worldwide iodine deficiency affects two billion people and is the leading preventable cause of intellectual disability 60 Mental disability is a result which occurs primarily when babies or small children are rendered hypothyroidic by a lack of dietary iodine new hypothyroidism in adults may cause temporary mental slowing but not permanent damage In areas where there is little iodine in the diet typically remote inland areas and semi arid equatorial climates where no marine foods are eaten iodine deficiency also gives rise to hypothyroidism the most serious symptoms of which are epidemic goitre swelling of the thyroid gland extreme fatigue mental slowing depression weight gain and low basal body temperatures 61 The addition of iodine to table salt so called iodized salt has largely eliminated the most severe consequences of iodine deficiency in wealthier nations but deficiency remains a serious public health problem in the developing world 62 Iodine deficiency is also a problem in certain areas of Europe in Germany an estimated one billion dollars in healthcare costs is spent each year in combating and treating iodine deficiency 8 Iodine and cancer risk Edit Source 63 Breast cancer The mammary gland actively concentrates iodine into milk for the benefit of the developing infant and may develop a goiter like hyperplasia sometimes manifesting as fibrocystic breast disease when iodine level is low Studies indicate that iodine deficiency either dietary or pharmacologic can lead to breast atypia and increased incidence of malignancy in animal models while iodine treatment can reverse dysplasia 7 64 65 with elemental iodine I2 having been found to be more effective in reducing ductal hyperplasias and perilobular fibrosis in iodine deficient rats than iodide I 7 On the observation that Japanese women who consume iodine rich seaweed have a relatively low rate of breast cancer iodine is suggested as a protection against breast cancer 66 67 Iodine is known to induce apoptosis in breast cancer cells 68 Laboratory evidence has demonstrated an effect of iodine on breast cancer that is in part independent of thyroid function with iodine inhibiting cancer through modulation of the estrogen pathway Gene array profiling of the estrogen responsive breast cancer cell line shows that the combination of iodine and iodide alters gene expression and inhibits the estrogen response through up regulating proteins involved in estrogen metabolism Whether iodine iodide will be useful as an adjuvant therapy in the pharmacologic manipulation of the estrogen pathway in women with breast cancer has not been determined clinically 64 Gastric cancer Some researchers have found an epidemiologic correlation between iodine deficiency iodine deficient goitre and gastric cancer 69 70 71 a decrease in the death incidence from stomach cancer after iodine prophylaxis 72 In the proposed mechanism the iodide ion functions in gastric mucosa as an antioxidant reducing species that detoxifies poisonous reactive oxygen species such as hydrogen peroxide Precautions and toxicity EditElemental iodine Edit Elemental iodine is an oxidizing irritant and direct contact with skin can cause lesions so iodine crystals should be handled with care Solutions with high elemental iodine concentration such as tincture of iodine are capable of causing tissue damage if use for cleaning and antisepsis is prolonged Although elemental iodine is used in the formulation of Lugol s solution a common medical disinfectant it becomes triiodide upon reacting with the potassium iodide used in the solution and is therefore non toxic citation needed Only a small amount of elemental iodine will dissolve in water but triiodides are highly soluble potassium iodide thus serves as a phase transfer catalyst in the tincture This allows Lugol s iodine to be produced in strengths varying from 2 to 15 iodine Elemental iodine I2 is poisonous if taken orally in large amounts 2 3 grams is a lethal dose for an adult human 73 74 Potassium iodide on the other hand has a median lethal dose LD50 that is relatively high in several other animals in rabbits it is 10 g kg in rats 14 g kg and in mice 22 g kg 75 The tolerable upper intake level for iodine as established by the Food and Nutrition Board is 1 100 µg day for adults The safe upper limit of consumption set by the Ministry of Health Labor and Welfare in Japan is 3 000 µg day 76 The biological half life of iodine differs between the various organs of the body from 100 days in the thyroid to 14 days in the kidneys and spleen to 7 days in the reproductive organs Typically the daily urinary elimination rate ranges from 100 to 200 µg L in humans 77 However the Japanese diet high in iodine rich kelp contains 1 000 to 3 000 µg of iodine per day and research indicates the body can readily eliminate excess iodine that is not needed for thyroid hormone production 76 The literature reports as much as 30 000 µg L 30 mg L of iodine being safely excreted in the urine in a single day with levels returning to the standard range in a couple of days depending on seaweed intake 78 One study concluded the range of total body iodine content in males was 12 1 mg to 25 3 mg with a mean of 14 6 mg 79 It is presumed that once thyroid stimulating hormone is suppressed the body simply eliminates excess iodine and as a result long term supplementation with high doses of iodine has no additional effect once the body is replete with enough iodine It is unknown if the thyroid gland is the rate limiting factor in generating thyroid hormone from iodine and tyrosine but assuming it is not a short term loading dose of one or two weeks at the tolerable upper intake level may quickly restore thyroid function in iodine deficient patients citation needed Iodine vapor is very irritating to the eye to mucous membranes and in the respiratory tract Concentration of iodine in the air should not exceed 1 mg m3 eight hour time weighted average When mixed with ammonia and water elemental iodine forms nitrogen triiodide which is extremely shock sensitive and can explode unexpectedly Iodide ion Edit Excessive iodine intake presents symptoms similar to those of iodine deficiency Commonly encountered symptoms are abnormal growth of the thyroid gland and disorders in functioning 80 as well as in growth of the organism as a whole Iodide toxicity is similar to but not the same as toxicity to ions of the other halogens such as bromides or fluorides Excess bromine and fluorine can prevent successful iodine uptake storage and use in organisms as both elements can selectively replace iodine biochemically Excess iodine may also be more cytotoxic in combination with selenium deficiency 81 Iodine supplementation in selenium deficient populations is theoretically problematic partly for this reason 8 Selenocysteine abbreviated as Sec or U in older publications also as Se Cys 82 is the 21st proteinogenic amino acid and is the root of iodide ion toxicity when there is a simultaneous insufficiency of biologically available selenium Selenocysteine exists naturally in all kingdoms of life as a building block of selenoproteins 83 Hypersensitivity reactions Edit Some people develop a hypersensitivity to compounds of iodine but there are no known cases of people being directly allergic to elemental iodine itself 84 Notable sensitivity reactions that have been observed in humans include The application of tincture of iodine may cause a rash citation needed Some cases of reaction to povidone iodine Betadine have been documented to be a chemical burn 85 Medical use of iodine compounds i e as a contrast agent can cause anaphylactic shock in highly sensitive patients presumably due to sensitivity to the chemical carrier Cases of sensitivity to iodine compounds should not be formally classified as iodine allergies as this perpetuates the erroneous belief that it is the iodine to which patients react rather than to the specific allergen Sensitivity to iodine containing compounds is rare but has a considerable effect given the extremely widespread use of iodine based contrast media however the only adverse effect of contrast material that can convincingly be ascribed to free iodide is iodide mumps and other manifestations of iodism 86 See also EditBiology and pharmacology of chemical elements Calcium in biology Use of calcium by organisms Magnesium in biology Use of Magnesium by organisms Potassium in biology Use of Potassium by organisms Selenium in biology Use of Selenium by organisms Sodium in biology Use of Sodium by organismsReferences Edit a b Venturi Sebastiano 2011 Evolutionary Significance of Iodine Current Chemical Biology 5 3 155 162 doi 10 2174 187231311796765012 ISSN 1872 3136 Widmaier Eric Strang Kevin Raff Hershel 2016 Human Physiology The Mechanisms of Body Function Fourteenth ed New York McGraw Hill p 340 ISBN 9781259294099 Nussey Whitehead 2001 Endocrinology An Integrated Approach NCBI Oxford BIOS Scientific Publishers Retrieved 9 February 2017 Hays M T 2001 Estimation of Total Body Iodine Content in Normal Young Men Thyroid 11 7 671 675 doi 10 1089 105072501750362745 PMID 11484896 Venturi Sebastiano 2020 Controversy in the content and action of human extrathyroidal iodine Human Evolution 35 1 2 1 16 doi 10 14673 HE2020121064 a b Venturi S Donati F M Venturi A Venturi M 2000 Environmental Iodine Deficiency A Challenge to the Evolution of Terrestrial Life Thyroid 10 8 727 9 doi 10 1089 10507250050137851 PMID 11014322 a b c Eskin Bernard A Grotkowski Carolyn E Connolly Christopher P Ghent William R 1995 Different tissue responses for iodine and iodide in rat thyroid and mammary glands Biological Trace Element Research 49 1 9 19 doi 10 1007 BF02788999 PMID 7577324 S2CID 24230708 a b c d e f Patrick L 2008 Iodine deficiency and therapeutic considerations PDF Altern Med Rev 13 2 116 27 PMID 18590348 Archived from the original PDF on 2013 05 31 a b Aceves C Anguiano B Delgado G August 2013 The extrathyronine actions of iodine as antioxidant apoptotic and differentiation factor in various tissues Thyroid 23 8 938 46 doi 10 1089 thy 2012 0579 PMC 3752513 PMID 23607319 Brown Grant K 1961 Extrathyroidal iodide concentrating mechanisms Physiol Rev 41 1 189 213 doi 10 1152 physrev 1961 41 1 189 Spitzweg C Joba W Eisenmenger W and Heufelder A E 1998 Analysis of human sodium iodide symporter gene expression in extrathyroidal tissues and cloning of its complementary deoxyribonucleic acid from salivary gland mammary gland gastric mucosa J Clin Endocrinol Metab 83 5 1746 51 doi 10 1210 jcem 83 5 4839 PMID 9589686 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link Banerjee R K Bose A K Chakraborty t K de S K and datta A G 1985 Peroxidase catalysed iodotyrosine formation in dispersed cells of mouse extrathyroidal tissues J Endocrinol 106 2 159 65 doi 10 1677 joe 0 1060159 PMID 2991413 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link Jewhurst K Levin M McLaughlin KA 2014 Optogenetic Control of Apoptosis in Targeted Tissues of Xenopus laevis Embryos J Cell Death 7 25 31 doi 10 4137 JCD S18368 PMC 4213186 PMID 25374461 Venturi S Venturi M 2014 Iodine PUFAs and Iodolipids in Health and Disease An Evolutionary Perspective Human Evolution 29 1 3 185 205 ISSN 0393 9375 Tamura K Takayama S Ishii T Mawaribuchi S Takamatsu N Ito M 2015 Apoptosis and differentiation of Xenopus tail derived myoblasts by thyroid hormone J Mol Endocrinol 54 3 185 192 doi 10 1530 JME 14 0327 PMID 25791374 a b Taylor Elias Heyland Andreas 2017 12 25 Evolution of thyroid hormone signaling in animals Non genomic and genomic modes of action Molecular and Cellular Endocrinology 459 14 20 doi 10 1016 j mce 2017 05 019 ISSN 1872 8057 PMID 28549993 S2CID 22986726 Ryan Joseph F Pang Kevin Mullikin James C Martindale Mark Q Baxevanis Andreas D 2010 10 04 The homeodomain complement of the ctenophore Mnemiopsis leidyi suggests that Ctenophora and Porifera diverged prior to the Parahoxozoa EvoDevo 1 1 9 doi 10 1186 2041 9139 1 9 ISSN 2041 9139 PMC 2959044 PMID 20920347 Nijhout H Frederik 1999 03 01 Control Mechanisms of Polyphenic Development in Insects In polyphenic development environmental factors alter some aspects of development in an orderly and predictable way BioScience 49 3 181 192 doi 10 2307 1313508 ISSN 0006 3568 JSTOR 1313508 Wheeler Diana E Nijhout H F October 2003 A perspective for understanding the modes of juvenile hormone action as a lipid signaling system BioEssays News and Reviews in Molecular Cellular and Developmental Biology 25 10 994 1001 doi 10 1002 bies 10337 ISSN 0265 9247 PMID 14505366 Flatt Thomas Moroz Leonid L Tatar Marc Heyland Andreas December 2006 Comparing thyroid and insect hormone signaling Integrative and Comparative Biology 46 6 777 794 doi 10 1093 icb icl034 ISSN 1540 7063 PMID 21672784 a b King Nicole September 2004 The unicellular ancestry of animal development Developmental Cell 7 3 313 325 doi 10 1016 j devcel 2004 08 010 ISSN 1534 5807 PMID 15363407 a b Manning Gerard Young Susan L Miller W Todd Zhai Yufeng 2008 07 15 The protist Monosiga brevicollis has a tyrosine kinase signaling network more elaborate and diverse than found in any known metazoan Proceedings of the National Academy of Sciences of the United States of America 105 28 9674 9679 doi 10 1073 pnas 0801314105 ISSN 1091 6490 PMC 2453073 PMID 18621719 a b c d e f g Crockford Susan J 2009 08 01 Evolutionary roots of iodine and thyroid hormones in cell cell signaling Integrative and Comparative Biology 49 2 155 166 doi 10 1093 icb icp053 ISSN 1540 7063 PMID 21669854 a b Eales J G April 1997 Iodine metabolism and thyroid related functions in organisms lacking thyroid follicles are thyroid hormones also vitamins Proceedings of the Society for Experimental Biology and Medicine 214 4 302 317 doi 10 3181 00379727 214 44098 ISSN 0037 9727 PMID 9111521 S2CID 45625312 Johnson L G 1997 Thyroxine s evolutionary roots Perspectives in Biology and Medicine 40 4 529 535 doi 10 1353 pbm 1997 0076 ISSN 0031 5982 PMID 9269742 S2CID 37083224 Heyland Andreas Moroz Leonid L December 2005 Cross kingdom hormonal signaling an insight from thyroid hormone functions in marine larvae The Journal of Experimental Biology 208 Pt 23 4355 4361 doi 10 1242 jeb 01877 ISSN 0022 0949 PMID 16339856 S2CID 1668295 Farnsworth Elizabeth January 2004 Hormones and Shifting Ecology Throughout Plant Development Ecology 85 1 5 15 doi 10 1890 02 655 ISSN 0012 9658 a b DiStefano J J de Luze A Nguyen T T June 1993 Binding and degradation of 3 5 3 triiodothyronine and thyroxine by rat intestinal bacteria The American Journal of Physiology 264 6 Pt 1 E966 972 doi 10 1152 ajpendo 1993 264 6 E966 ISSN 0002 9513 PMID 8333521 Google Scholar Google Scholar Harshman S 1979 02 09 Action of staphylococcal alpha toxin on membranes some recent advances Molecular and Cellular Biochemistry 23 3 143 152 doi 10 1007 BF00219453 ISSN 0300 8177 PMID 481427 S2CID 35122996 Nishinaga Akira Cahnmann Hans J Kon Hideo Matsuura Teruo 1968 01 01 Model reactions for the biosynthesis of thyroxine XII Nature of a thyroxine precursor formed in the synthesis of thyroxine from diiodotyrosine and its keto acid analog Biochemistry 7 1 388 397 doi 10 1021 bi00841a049 ISSN 0006 2960 PMID 5758555 Cahnmann H J Funakoshi K 1970 01 06 Model reactions for the biosynthesis of thyroxine Nonenzymic formation of 3 5 3 triiodothyronine from 4 hydroxy 3 iodophenylpyruvic acid 3 5 diiodotyrosine and oxygen Biochemistry 9 1 90 98 doi 10 1021 bi00803a012 ISSN 0006 2960 PMID 5411209 Hulbert A J November 2000 Thyroid hormones and their effects a new perspective Biological Reviews of the Cambridge Philosophical Society 75 4 519 631 doi 10 1017 s146479310000556x ISSN 1464 7931 PMID 11117200 Comparative Iodine Geochemistry of Earth and Mars A Possible Biomarker PDF 30th Annual Lunar and Planetary Science Conference 1999 Bibcode 1999LPI 30 1661G a b Wong George T F Piumsomboon Ajcharaporn U Dunstan William M 2002 07 18 The transformation of iodate to iodide in marine phytoplankton cultures Marine Ecology Progress Series 237 27 39 Bibcode 2002MEPS 237 27W doi 10 3354 meps237027 ISSN 0171 8630 Amachi Seigo Kasahara Mizuyo Hanada Satoshi Kamagata Yoichi Shinoyama Hirofumi Fujii Takaaki Muramatsu Yasuyuki 2003 09 01 Microbial participation in iodine volatilization from soils Environmental Science amp Technology 37 17 3885 3890 Bibcode 2003EnST 37 3885A doi 10 1021 es0210751 ISSN 0013 936X PMID 12967109 Amachi Seigo Mishima Yukako Shinoyama Hirofumi Muramatsu Yasuyuki Fujii Takaaki February 2005 Active transport and accumulation of iodide by newly isolated marine bacteria Applied and Environmental Microbiology 71 2 741 745 Bibcode 2005ApEnM 71 741A doi 10 1128 AEM 71 2 741 745 2005 ISSN 0099 2240 PMC 546781 PMID 15691925 Chance Rosie Malin Gill Jickells Tim Baker Alex R 2007 04 25 Reduction of iodate to iodide by cold water diatom cultures Marine Chemistry 105 1 169 180 doi 10 1016 j marchem 2006 06 008 ISSN 0304 4203 a b Truesdale Victor W 2008 06 01 The biogeochemical effect of seaweeds upon close to natural concentrations of dissolved iodate and iodide in seawater Preliminary study with Laminaria digitata and Fucus serratus Estuarine Coastal and Shelf Science 78 1 155 165 Bibcode 2008ECSS 78 155T doi 10 1016 j ecss 2007 11 022 ISSN 0272 7714 Baker A R Thompson D Campos M L A M Parry S J Jickells T D 2000 07 26 Iodine concentration and availability in atmospheric aerosol Atmospheric Environment 34 25 4331 4336 Bibcode 2000AtmEn 34 4331B doi 10 1016 S1352 2310 00 00208 9 ISSN 1352 2310 Baker Alex R 2005 12 08 Marine Aerosol Iodine Chemistry The Importance of Soluble Organic Iodine Environmental Chemistry 2 4 295 298 doi 10 1071 EN05070 ISSN 1449 8979 Councell Terry B Landa Edward R Lovley Derek R 1997 11 01 Microbial Reduction of Iodate Water Air and Soil Pollution 100 1 99 106 Bibcode 1997WASP 100 99C doi 10 1023 A 1018370423790 ISSN 1573 2932 S2CID 94289106 Farrenkopf Anna M Dollhopf Michael E Chadhain Sinead Ni Luther George W Nealson Kenneth H 1997 07 01 Reduction of iodate in seawater during Arabian Sea shipboard incubations and in laboratory cultures of the marine bacterium Shewanella putrefaciens strain MR 4 Marine Chemistry 57 3 347 354 doi 10 1016 S0304 4203 97 00039 X ISSN 0304 4203 Kupper F C Schweigert N Ar Gall E Legendre J M Vilter H Kloareg B 1998 11 01 Iodine uptake in Laminariales involves extracellular haloperoxidase mediated oxidation of iodide Planta 207 2 163 171 doi 10 1007 s004250050469 ISSN 1432 2048 S2CID 7554142 Kupper Frithjof C Carpenter Lucy J McFiggans Gordon B Palmer Carl J Waite Tim J Boneberg Eva Maria Woitsch Sonja Weiller Markus Abela Rafael Grolimund Daniel Potin Philippe 2008 05 13 Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry Proceedings of the National Academy of Sciences of the United States of America 105 19 6954 6958 Bibcode 2008PNAS 105 6954K doi 10 1073 pnas 0709959105 ISSN 1091 6490 PMC 2383960 PMID 18458346 McDonnell G Russell A D January 1999 Antiseptics and disinfectants activity action and resistance Clinical Microbiology Reviews 12 1 147 179 doi 10 1128 CMR 12 1 147 ISSN 0893 8512 PMC 88911 PMID 9880479 Amachi Seigo Muramatsu Yasuyuki Akiyama Yukako Miyazaki Kazumi Yoshiki Sayaka Hanada Satoshi Kamagata Yoichi Ban nai Tadaaki Shinoyama Hirofumi Fujii Takaaki 2005 05 01 Isolation of Iodide Oxidizing Bacteria from Iodide Rich Natural Gas Brines and Seawaters Microbial Ecology 49 4 547 557 doi 10 1007 s00248 004 0056 0 ISSN 1432 184X PMID 16047096 S2CID 973540 Yates IE Arnold JW Bacon CW Hinton DM 2004 In vitro assessments of diverse plant pathogenic fungi treated with a novel growth control agent Crop Protection Elsevier 23 12 1169 1176 doi 10 1016 j cropro 2004 03 019 ISSN 0261 2194 S2CID 84907161 Durham Sharon January 2003 Seed Saver Iodine based Fungicide Foils Fusarium AgResearch USDA ARS United States Department of Agriculture Agricultural Research Service 51 1 a b c United States National Research Council 2000 Dietary Reference Intakes for Vitamin A Vitamin K Arsenic Boron Chromium Copper Iodine Iron Manganese Molybdenum Nickel Silicon Vanadium and Zinc National Academies Press pp 258 259 doi 10 17226 10026 ISBN 978 0 309 07279 3 PMID 25057538 Overview on Dietary Reference Values for the EU population as derived by the EFSA Panel on Dietetic Products Nutrition and Allergies PDF 2017 Tolerable Upper Intake Levels For Vitamins And Minerals PDF European Food Safety Authority 2006 Overview of Dietary Reference Intakes for Japanese 2015 Minister of Health Labour and Welfare Japan url http www mhlw go jp file 06 Seisakujouhou 10900000 Kenkoukyoku Overview pdf Zava Theodore T Zava David T 2011 Assessment of Japanese iodine intake based on seaweed consumption in Japan A literature based analysis Thyroid Research 4 14 doi 10 1186 1756 6614 4 14 PMC 3204293 PMID 21975053 Federal Register May 27 2016 Food Labeling Revision of the Nutrition and Supplement Facts Labels FR page 33982 PDF Daily Value Reference of the Dietary Supplement Label Database DSLD Dietary Supplement Label Database DSLD Archived from the original on 7 April 2020 Retrieved 16 May 2020 Sources of iodine International Council for the Control of Iodine Deficiency Disorders Archived from the original on 2012 02 13 a b MedlinePlus Medical Encyclopedia Iodine in diet McNeil Donald G Jr 2006 12 16 In Raising the World s I Q the Secret s in the Salt New York Times Retrieved 2008 12 04 Felig Philip Frohman Lawrence A 2001 Endemic Goiter Endocrinology amp metabolism McGraw Hill Professional ISBN 978 0 07 022001 0 Micronutrients Iodine Iron and Vitamin A UNICEF De la Vieja A Santisteban P 2008 Role of iodide metabolism in physiology and cancer Endocr Relat Cancer 25 4 R225 R245 doi 10 1530 ERC 17 0515 PMID 29437784 a b Stoddard II F R Brooks A D Eskin B A Johannes G J 2008 Iodine Alters Gene Expression in the MCF7 Breast Cancer Cell Line Evidence for an Anti Estrogen Effect of Iodine International Journal of Medical Sciences 5 4 189 96 doi 10 7150 ijms 5 189 PMC 2452979 PMID 18645607 Venturi S Grotkowski CE Connolly CP Ghent WR 2001 Is there a role for iodine in breast diseases The Breast 10 1 379 82 doi 10 1054 brst 2000 0267 PMID 14965610 S2CID 41558438 Smyth PP July 2003 The thyroid iodine and breast cancer Breast Cancer Research review 5 5 235 8 doi 10 1186 bcr638 PMC 314438 PMID 12927031 Smyth PP 2003 Role of iodine in antioxidant defence in thyroid and breast disease BioFactors review 19 3 4 121 30 doi 10 1002 biof 5520190304 PMID 14757962 S2CID 7803619 Shrivastava A 2006 Molecular Iodine Induces Caspase independent Apoptosis in Human Breast Carcinoma Cells Involving the Mitochondria mediated Pathway Journal of Biological Chemistry 281 28 19762 19771 doi 10 1074 jbc M600746200 ISSN 0021 9258 PMID 16679319 Josefssson M Ekblad E 2009 Sodium Iodide Symporter NIS in Gastric Mucosa Gastric Iodide Secretion In Preedy Victor R Burrow Gerard N Watson Ronald eds Comprehensive Handbook of Iodine Nutritional Biochemical Pathological and Therapeutic Aspects Abnet CC Fan JH Kamangar F Sun XD Taylor PR Ren JS Mark SD Zhao P Fraumeni JF Jr Qiao YL Dawsey SM 2006 Self reported goiter is associated with a significantly increased risk of gastric noncardia adenocarcinoma in a large population based Chinese cohort International Journal of Cancer 119 6 1508 1510 doi 10 1002 ijc 21993 PMID 16642482 S2CID 45732451 Behrouzian R Aghdami N 2004 Urinary iodine creatinine ratio in patients with stomach cancer in Urmia Islamic Republic of Iran East Mediterr Health J 10 6 921 924 doi 10 26719 2004 10 6 921 PMID 16335780 S2CID 35495048 Golkowski F Szybinski Z Rachtan J Sokolowski A Buziak Bereza M Trofimiuk M Hubalewska Dydejczyk A Przybylik Mazurek E Huszno B 2007 Iodine prophylaxis the protective factor against stomach cancer in iodine deficient areas Eur J Nutr 46 5 251 6 doi 10 1007 s00394 007 0657 8 PMID 17497074 S2CID 24494246 Iodine CDC NIOSH 1994 Moore Merrill 1938 The Ingestion of Iodine as a Method of Attempted Suicide New England Journal of Medicine 219 11 383 388 doi 10 1056 NEJM193809152191104 ISSN 0028 4793 Lewis Richard 1996 Sax s Dangerous Properties of Industrial Materials 9th Ed Volumes 1 3 New York NY Van Nostrand Reinhold ISBN 9780442022570 a b Zava T T Zava D T 2011 Assessment of Japanese iodine intake based on seaweed consumption in Japan A literature based analysis Thyroid Research 4 14 doi 10 1186 1756 6614 4 14 PMC 3204293 PMID 21975053 World Health Organization 2007 United Nations Children s Fund amp International Council for the Control of Iodine Deficiency Disorders Assessment of iodine deficiency disorders and monitoring their elimination 3rd ed Nagataki S Shizume K Nakao K 1967 Thyroid Function in Chronic Excess Iodide Ingestion Comparison of Thyroidal Absolute Iodine Uptake and Degradation of Thyroxine in Euthyroid Japanese Subjects Journal of Clinical Endocrinology amp Metabolism 27 5 638 647 doi 10 1210 jcem 27 5 638 PMID 4164900 Hays M T 2001 Estimation of Total Body Iodine Content in Normal Young Men Thyroid 11 7 671 675 doi 10 1089 105072501750362745 PMID 11484896 Pearce EN Gerber AR Gootnick DB Kettel Khan L Li R Pino S Braverman LE 2002 Effects of Chronic Iodine Excess in a Cohort of LongTerm American Workers in West Africa Journal of Clinical Endocrinology amp Metabolism 87 12 5499 5502 doi 10 1210 jc 2002 020692 PMID 12466344 Smyth PP 2003 Role of iodine in antioxidant defence in thyroid and breast disease BioFactors 19 3 4 121 30 doi 10 1002 biof 5520190304 PMID 14757962 S2CID 7803619 IUPAC IUBMB Joint Commission on Biochemical Nomenclature JCBN and Nomenclature Committee of IUBMB NC IUBMB European Journal of Biochemistry 264 2 607 609 1999 doi 10 1046 j 1432 1327 1999 news99 x Johansson L Gafvelin G Amer E S J 2005 Selenocysteine in Proteins Properties and Biotechnological Use Biochimica et Biophysica Acta BBA General Subjects 1726 1 1 13 doi 10 1016 j bbagen 2005 05 010 hdl 10616 39311 PMID 15967579 Bohm I Silva Hasembank Keller P Heverhagen JT 2016 Iodine Allergy The Neverending Story PDF RoFo 188 8 733 4 doi 10 1055 s 0042 110102 PMID 27459005 S2CID 36715998 D O Lowe S R Knowles E A Weber C J Railton N H Shear 2006 Povidone iodine induced burn case report and review of the literature Pharmacotherapy 26 11 1641 5 doi 10 1592 phco 26 11 1641 PMID 17064209 S2CID 25708713 Katelaris Constance 2009 Iodine Allergy label is misleading Australian Prescriber 32 5 125 128 doi 10 18773 austprescr 2009 061 Retrieved from https en wikipedia org w index php title Iodine in biology amp oldid 1176474966, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.