fbpx
Wikipedia

Amphibian

Amphibians are four-limbed and ectothermic vertebrates of the class Amphibia. All living amphibians belong to the group Lissamphibia. They inhabit a wide variety of habitats, with most species living within terrestrial, fossorial, arboreal or freshwater aquatic ecosystems. Thus amphibians typically start out as larvae living in water, but some species have developed behavioural adaptations to bypass this.

Amphibians
Temporal range: Early Carboniferous – present, 350–0 Ma[1]
Left to Right: Leaf green tree frog, Seymouria, Eastern newt, Mexican burrowing caecilian
Scientific classification
Kingdom: Animalia
Phylum: Chordata
Clade: Batrachomorpha
Class: Amphibia
Gray 1825[2]
Subclasses
Many amphibians—like this Ceratophrys cranwelli—exhibit biofluorescence.[3]

The young generally undergo metamorphosis from larva with gills to an adult air-breathing form with lungs. Amphibians use their skin as a secondary respiratory surface and some small terrestrial salamanders and frogs lack lungs and rely entirely on their skin. They are superficially similar to reptiles like lizards but, along with mammals and birds, reptiles are amniotes and do not require water bodies in which to breed. With their complex reproductive needs and permeable skins, amphibians are often ecological indicators; in recent decades there has been a dramatic decline in amphibian populations for many species around the globe.

The earliest amphibians evolved in the Devonian period from sarcopterygian fish with lungs and bony-limbed fins, features that were helpful in adapting to dry land. They diversified and became dominant during the Carboniferous and Permian periods, but were later displaced by reptiles and other vertebrates. The origin of modern amphibians belonging to Lissamphibia, which first appeared during the Early Triassic, around 250 million years ago, has long been contentious. However the emerging consensus is that they likely originated from temnospondyls, the most diverse group of prehistoric amphibians, during the Permian period.[4]

The three modern orders of amphibians are Anura (the frogs), Urodela (the salamanders), and Apoda (the caecilians). A fourth group, the Albanerpetontidae, became extinct around 2 million years ago. The number of known amphibian species is approximately 8,000, of which nearly 90% are frogs. The smallest amphibian (and vertebrate) in the world is a frog from New Guinea (Paedophryne amauensis) with a length of just 7.7 mm (0.30 in). The largest living amphibian is the 1.8 m (5 ft 11 in) South China giant salamander (Andrias sligoi), but this is dwarfed by prehistoric temnospondyls such as Mastodonsaurus which could reach up to 6 metres in length.[5] The study of amphibians is called batrachology, while the study of both reptiles and amphibians is called herpetology.

Classification

 
The world's smallest known vertebrate, Paedophryne amauensis, sitting on a U.S. dime. The dime is 17.9 mm in diameter, for scale

The word amphibian is derived from the Ancient Greek term ἀμφίβιος (amphíbios), which means 'both kinds of life', ἀμφί meaning 'of both kinds' and βιος meaning 'life'. The term was initially used as a general adjective for animals that could live on land or in water, including seals and otters.[6] Traditionally, the class Amphibia includes all tetrapod vertebrates that are not amniotes. Amphibia in its widest sense (sensu lato) was divided into three subclasses, two of which are extinct:[7]

  • Subclass Lepospondyli† (small Paleozoic group, which are more closely related to amniotes than Lissamphibia)
  • Subclass Temnospondyli† (diverse Paleozoic and early Mesozoic grade)
  • Subclass Lissamphibia (all modern amphibians, including frogs, toads, salamanders, newts and caecilians)
    • Salientia (frogs, toads and relatives): Jurassic to present—7,360 current species in 53 families[8]
    • Caudata (salamanders, newts and relatives): Jurassic to present—764 current species in 9 families[8]
    • Gymnophiona (caecilians and relatives): Jurassic to present—215 current species in 10 families[8]
    • Allocaudata† (Albanerpetontidae) Middle Jurassic – Early Pleistocene
 
Triadobatrachus massinoti, a proto-frog from the Early Triassic of Madagascar

The actual number of species in each group depends on the taxonomic classification followed. The two most common systems are the classification adopted by the website AmphibiaWeb, University of California, Berkeley, and the classification by herpetologist Darrel Frost and the American Museum of Natural History, available as the online reference database "Amphibian Species of the World".[9] The numbers of species cited above follows Frost and the total number of known amphibian species as of March 31, 2019, is exactly 8,000,[10] of which nearly 90% are frogs.[11]

With the phylogenetic classification, the taxon Labyrinthodontia has been discarded as it is a polyparaphyletic group without unique defining features apart from shared primitive characteristics. Classification varies according to the preferred phylogeny of the author and whether they use a stem-based or a node-based classification. Traditionally, amphibians as a class are defined as all tetrapods with a larval stage, while the group that includes the common ancestors of all living amphibians (frogs, salamanders and caecilians) and all their descendants is called Lissamphibia. The phylogeny of Paleozoic amphibians is uncertain, and Lissamphibia may possibly fall within extinct groups, like the Temnospondyli (traditionally placed in the subclass Labyrinthodontia) or the Lepospondyli, and in some analyses even in the amniotes. This means that advocates of phylogenetic nomenclature have removed a large number of basal Devonian and Carboniferous amphibian-type tetrapod groups that were formerly placed in Amphibia in Linnaean taxonomy, and included them elsewhere under cladistic taxonomy.[2] If the common ancestor of amphibians and amniotes is included in Amphibia, it becomes a paraphyletic group.[12]

All modern amphibians are included in the subclass Lissamphibia, which is usually considered a clade, a group of species that have evolved from a common ancestor. The three modern orders are Anura (the frogs), Caudata (or Urodela, the salamanders), and Gymnophiona (or Apoda, the caecilians).[13] It has been suggested that salamanders arose separately from a Temnospondyl-like ancestor, and even that caecilians are the sister group of the advanced reptiliomorph amphibians, and thus of amniotes.[14] Although the fossils of several older proto-frogs with primitive characteristics are known, the oldest "true frog" is Prosalirus bitis, from the Early Jurassic Kayenta Formation of Arizona. It is anatomically very similar to modern frogs.[15] The oldest known caecilian is another Early Jurassic species, Eocaecilia micropodia, also from Arizona.[16] The earliest salamander is Beiyanerpeton jianpingensis from the Late Jurassic of northeastern China.[17]

Authorities disagree as to whether Salientia is a superorder that includes the order Anura, or whether Anura is a sub-order of the order Salientia. The Lissamphibia are traditionally divided into three orders, but an extinct salamander-like family, the Albanerpetontidae, is now considered part of Lissamphibia alongside the superorder Salientia. Furthermore, Salientia includes all three recent orders plus the Triassic proto-frog, Triadobatrachus.[18]

Evolutionary history

 
Restoration of Eusthenopteron, a fully aquatic lobe-finned fish
 
Restoration of Tiktaalik, an advanced tetrapodomorph fish

The first major groups of amphibians developed in the Devonian period, around 370 million years ago, from lobe-finned fish which were similar to the modern coelacanth and lungfish.[19] These ancient lobe-finned fish had evolved multi-jointed leg-like fins with digits that enabled them to crawl along the sea bottom. Some fish had developed primitive lungs that help them breathe air when the stagnant pools of the Devonian swamps were low in oxygen. They could also use their strong fins to hoist themselves out of the water and onto dry land if circumstances so required. Eventually, their bony fins would evolve into limbs and they would become the ancestors to all tetrapods, including modern amphibians, reptiles, birds, and mammals. Despite being able to crawl on land, many of these prehistoric tetrapodomorph fish still spent most of their time in the water. They had started to develop lungs, but still breathed predominantly with gills.[20]

Many examples of species showing transitional features have been discovered. Ichthyostega was one of the first primitive amphibians, with nostrils and more efficient lungs. It had four sturdy limbs, a neck, a tail with fins and a skull very similar to that of the lobe-finned fish, Eusthenopteron.[19] Amphibians evolved adaptations that allowed them to stay out of the water for longer periods. Their lungs improved and their skeletons became heavier and stronger, better able to support the weight of their bodies on land. They developed "hands" and "feet" with five or more digits;[21] the skin became more capable of retaining body fluids and resisting desiccation.[20] The fish's hyomandibula bone in the hyoid region behind the gills diminished in size and became the stapes of the amphibian ear, an adaptation necessary for hearing on dry land.[22] An affinity between the amphibians and the teleost fish is the multi-folded structure of the teeth and the paired supra-occipital bones at the back of the head, neither of these features being found elsewhere in the animal kingdom.[23]

 
The Permian lepospondyl Diplocaulus was largely aquatic

At the end of the Devonian period (360 million years ago), the seas, rivers and lakes were teeming with life while the land was the realm of early plants and devoid of vertebrates,[23] though some, such as Ichthyostega, may have sometimes hauled themselves out of the water. It is thought they may have propelled themselves with their forelimbs, dragging their hindquarters in a similar manner to that used by the elephant seal.[21] In the early Carboniferous (360 to 345 million years ago), the climate became wet and warm. Extensive swamps developed with mosses, ferns, horsetails and calamites. Air-breathing arthropods evolved and invaded the land where they provided food for the carnivorous amphibians that began to adapt to the terrestrial environment. There were no other tetrapods on the land and the amphibians were at the top of the food chain, occupying the ecological position currently held by the crocodile. Though equipped with limbs and the ability to breathe air, most still had a long tapering body and strong tail.[23] They were the top land predators, sometimes reaching several metres in length, preying on the large insects of the period and the many types of fish in the water. They still needed to return to water to lay their shell-less eggs, and even most modern amphibians have a fully aquatic larval stage with gills like their fish ancestors. It was the development of the amniotic egg, which prevents the developing embryo from drying out, that enabled the reptiles to reproduce on land and which led to their dominance in the period that followed.[19]

After the Carboniferous rainforest collapse amphibian dominance gave way to reptiles,[24] and amphibians were further devastated by the Permian–Triassic extinction event.[25] During the Triassic Period (250 to 200 million years ago), the reptiles continued to out-compete the amphibians, leading to a reduction in both the amphibians' size and their importance in the biosphere. According to the fossil record, Lissamphibia, which includes all modern amphibians and is the only surviving lineage, may have branched off from the extinct groups Temnospondyli and Lepospondyli at some period between the Late Carboniferous and the Early Triassic. The relative scarcity of fossil evidence precludes precise dating,[20] but the most recent molecular study, based on multilocus sequence typing, suggests a Late Carboniferous/Early Permian origin for extant amphibians.[26]

 
The temnospondyl Eryops had sturdy limbs to support its body on land

The origins and evolutionary relationships between the three main groups of amphibians is a matter of debate. A 2005 molecular phylogeny, based on rDNA analysis, suggests that salamanders and caecilians are more closely related to each other than they are to frogs. It also appears that the divergence of the three groups took place in the Paleozoic or early Mesozoic (around 250 million years ago), before the breakup of the supercontinent Pangaea and soon after their divergence from the lobe-finned fish. The briefness of this period, and the swiftness with which radiation took place, would help account for the relative scarcity of primitive amphibian fossils.[27] There are large gaps in the fossil record, the discovery of the dissorophoid temnospondyl Gerobatrachus from the Early Permian in Texas in 2008 provided a missing link with many of the characteristics of modern frogs.[14] Molecular analysis suggests that the frog–salamander divergence took place considerably earlier than the palaeontological evidence indicates.[14] One study suggested suggested that the last common ancestor of all modern amphibians lived about 315 million years ago, and that stereospondyl temnospondyls are the closest relatives to the caecilians.[28] However, most studies support a single monophyletic origin of all modern amphibians within the dissorophoid temnospondyls.[4]

As they evolved from lunged fish, amphibians had to make certain adaptations for living on land, including the need to develop new means of locomotion. In the water, the sideways thrusts of their tails had propelled them forward, but on land, quite different mechanisms were required. Their vertebral columns, limbs, limb girdles and musculature needed to be strong enough to raise them off the ground for locomotion and feeding. Terrestrial adults discarded their lateral line systems and adapted their sensory systems to receive stimuli via the medium of the air. They needed to develop new methods to regulate their body heat to cope with fluctuations in ambient temperature. They developed behaviours suitable for reproduction in a terrestrial environment. Their skins were exposed to harmful ultraviolet rays that had previously been absorbed by the water. The skin changed to become more protective and prevent excessive water loss.[29]

Characteristics

The superclass Tetrapoda is divided into four classes of vertebrate animals with four limbs.[30] Reptiles, birds and mammals are amniotes, the eggs of which are either laid or carried by the female and are surrounded by several membranes, some of which are impervious.[31] Lacking these membranes, amphibians require water bodies for reproduction, although some species have developed various strategies for protecting or bypassing the vulnerable aquatic larval stage.[29] They are not found in the sea with the exception of one or two frogs that live in brackish water in mangrove swamps;[32] the Anderson's salamander meanwhile occurs in brackish or salt water lakes.[33] On land, amphibians are restricted to moist habitats because of the need to keep their skin damp.[29]

Modern amphibians have a simplified anatomy compared to their ancestors due to paedomorphosis, caused by two evolutionary trends: miniaturization and an unusually large genome, which result in a slower growth and development rate compared to other vertebrates.[34][35] Another reason for their size is associated with their rapid metamorphosis, which seems to have evolved only in the ancestors of lissamphibia; in all other known lines the development was much more gradual. Because a remodeling of the feeding apparatus means they don't eat during the metamorphosis, the metamorphosis has to go faster the smaller the individual is, so it happens at an early stage when the larvae are still small. (The largest species of salamanders don't go through a metamorphosis.)[36] Amphibians that lay eggs on land often go through the whole metamorphosis inside the egg. An anamniotic terrestrial egg is less than 1 cm in diameter due to diffusion problems, a size which puts a limit on the amount of posthatching growth.[37]

The smallest amphibian (and vertebrate) in the world is a microhylid frog from New Guinea (Paedophryne amauensis) first discovered in 2012. It has an average length of 7.7 mm (0.30 in) and is part of a genus that contains four of the world's ten smallest frog species.[38] The largest living amphibian is the 1.8 m (5 ft 11 in) Chinese giant salamander (Andrias davidianus)[39] but this is a great deal smaller than the largest amphibian that ever existed—the extinct 9 m (30 ft) Prionosuchus, a crocodile-like temnospondyl dating to 270 million years ago from the middle Permian of Brazil.[40] The largest frog is the African Goliath frog (Conraua goliath), which can reach 32 cm (13 in) and weigh 3 kg (6.6 lb).[39]

Amphibians are ectothermic (cold-blooded) vertebrates that do not maintain their body temperature through internal physiological processes. Their metabolic rate is low and as a result, their food and energy requirements are limited. In the adult state, they have tear ducts and movable eyelids, and most species have ears that can detect airborne or ground vibrations. They have muscular tongues, which in many species can be protruded. Modern amphibians have fully ossified vertebrae with articular processes. Their ribs are usually short and may be fused to the vertebrae. Their skulls are mostly broad and short, and are often incompletely ossified. Their skin contains little keratin and lacks scales, apart from a few fish-like scales in certain caecilians. The skin contains many mucous glands and in some species, poison glands (a type of granular gland). The hearts of amphibians have three chambers, two atria and one ventricle. They have a urinary bladder and nitrogenous waste products are excreted primarily as urea. Most amphibians lay their eggs in water and have aquatic larvae that undergo metamorphosis to become terrestrial adults. Amphibians breathe by means of a pump action in which air is first drawn into the buccopharyngeal region through the nostrils. These are then closed and the air is forced into the lungs by contraction of the throat.[41] They supplement this with gas exchange through the skin.[29]

Anura

 
Red-eyed tree frog (Agalychnis callidryas) with limbs and feet specialised for climbing

The order Anura (from the Ancient Greek a(n)- meaning "without" and oura meaning "tail") comprises the frogs and toads. They usually have long hind limbs that fold underneath them, shorter forelimbs, webbed toes with no claws, no tails, large eyes and glandular moist skin.[13] Members of this order with smooth skins are commonly referred to as frogs, while those with warty skins are known as toads. The difference is not a formal one taxonomically and there are numerous exceptions to this rule. Members of the family Bufonidae are known as the "true toads".[42] Frogs range in size from the 30-centimetre (12 in) Goliath frog (Conraua goliath) of West Africa[43] to the 7.7-millimetre (0.30 in) Paedophryne amauensis, first described in Papua New Guinea in 2012, which is also the smallest known vertebrate.[44] Although most species are associated with water and damp habitats, some are specialised to live in trees or in deserts. They are found worldwide except for polar areas.[45]

Anura is divided into three suborders that are broadly accepted by the scientific community, but the relationships between some families remain unclear. Future molecular studies should provide further insights into their evolutionary relationships.[46] The suborder Archaeobatrachia contains four families of primitive frogs. These are Ascaphidae, Bombinatoridae, Discoglossidae and Leiopelmatidae which have few derived features and are probably paraphyletic with regard to other frog lineages.[47] The six families in the more evolutionarily advanced suborder Mesobatrachia are the fossorial Megophryidae, Pelobatidae, Pelodytidae, Scaphiopodidae and Rhinophrynidae and the obligatorily aquatic Pipidae. These have certain characteristics that are intermediate between the two other suborders.[47] Neobatrachia is by far the largest suborder and includes the remaining families of modern frogs, including most common species. Ninety-six percent of the over 5,000 extant species of frog are neobatrachians.[48]

Caudata

 
Japanese giant salamander
(Andrias japonicus), a primitive salamander

The order Caudata (from the Latin cauda meaning "tail") consists of the salamanders—elongated, low-slung animals that mostly resemble lizards in form. This is a symplesiomorphic trait and they are no more closely related to lizards than they are to mammals.[49] Salamanders lack claws, have scale-free skins, either smooth or covered with tubercles, and tails that are usually flattened from side to side and often finned. They range in size from the Chinese giant salamander (Andrias davidianus), which has been reported to grow to a length of 1.8 metres (5 ft 11 in),[50] to the diminutive Thorius pennatulus from Mexico which seldom exceeds 20 mm (0.8 in) in length.[51] Salamanders have a mostly Laurasian distribution, being present in much of the Holarctic region of the northern hemisphere. The family Plethodontidae is also found in Central America and South America north of the Amazon basin;[45] South America was apparently invaded from Central America by about the start of the Miocene, 23 million years ago.[52] Urodela is a name sometimes used for all the extant species of salamanders.[53] Members of several salamander families have become paedomorphic and either fail to complete their metamorphosis or retain some larval characteristics as adults.[54] Most salamanders are under 15 cm (6 in) long. They may be terrestrial or aquatic and many spend part of the year in each habitat. When on land, they mostly spend the day hidden under stones or logs or in dense vegetation, emerging in the evening and night to forage for worms, insects and other invertebrates.[45]

 
Danube crested newt
(Triturus dobrogicus), an advanced salamander

The suborder Cryptobranchoidea contains the primitive salamanders. A number of fossil cryptobranchids have been found, but there are only three living species, the Chinese giant salamander (Andrias davidianus), the Japanese giant salamander (Andrias japonicus) and the hellbender (Cryptobranchus alleganiensis) from North America. These large amphibians retain several larval characteristics in their adult state; gills slits are present and the eyes are unlidded. A unique feature is their ability to feed by suction, depressing either the left side of their lower jaw or the right.[55] The males excavate nests, persuade females to lay their egg strings inside them, and guard them. As well as breathing with lungs, they respire through the many folds in their thin skin, which has capillaries close to the surface.[56]

The suborder Salamandroidea contains the advanced salamanders. They differ from the cryptobranchids by having fused prearticular bones in the lower jaw, and by using internal fertilisation. In salamandrids, the male deposits a bundle of sperm, the spermatophore, and the female picks it up and inserts it into her cloaca where the sperm is stored until the eggs are laid.[57] The largest family in this group is Plethodontidae, the lungless salamanders, which includes 60% of all salamander species. The family Salamandridae includes the true salamanders and the name "newt" is given to members of its subfamily Pleurodelinae.[13]

The third suborder, Sirenoidea, contains the four species of sirens, which are in a single family, Sirenidae. Members of this order are eel-like aquatic salamanders with much reduced forelimbs and no hind limbs. Some of their features are primitive while others are derived.[58] Fertilisation is likely to be external as sirenids lack the cloacal glands used by male salamandrids to produce spermatophores and the females lack spermathecae for sperm storage. Despite this, the eggs are laid singly, a behaviour not conducive for external fertilisation.[57]

Gymnophiona

 
The limbless South American caecilian Siphonops paulensis

The order Gymnophiona (from the Greek gymnos meaning "naked" and ophis meaning "serpent") or Apoda comprises the caecilians. These are long, cylindrical, limbless animals with a snake- or worm-like form. The adults vary in length from 8 to 75 centimetres (3 to 30 inches) with the exception of Thomson's caecilian (Caecilia thompsoni), which can reach 150 centimetres (4.9 feet). A caecilian's skin has a large number of transverse folds and in some species contains tiny embedded dermal scales. It has rudimentary eyes covered in skin, which are probably limited to discerning differences in light intensity. It also has a pair of short tentacles near the eye that can be extended and which have tactile and olfactory functions. Most caecilians live underground in burrows in damp soil, in rotten wood and under plant debris, but some are aquatic.[59] Most species lay their eggs underground and when the larvae hatch, they make their way to adjacent bodies of water. Others brood their eggs and the larvae undergo metamorphosis before the eggs hatch. A few species give birth to live young, nourishing them with glandular secretions while they are in the oviduct.[60] Caecilians have a mostly Gondwanan distribution, being found in tropical regions of Africa, Asia and Central and South America.[61]

Anatomy and physiology

Skin

 
The bright colours of the common reed frog (Hyperolius viridiflavus) are typical of a toxic species

The integumentary structure contains some typical characteristics common to terrestrial vertebrates, such as the presence of highly cornified outer layers, renewed periodically through a moulting process controlled by the pituitary and thyroid glands. Local thickenings (often called warts) are common, such as those found on toads. The outside of the skin is shed periodically mostly in one piece, in contrast to mammals and birds where it is shed in flakes. Amphibians often eat the sloughed skin.[45] Caecilians are unique among amphibians in having mineralized dermal scales embedded in the dermis between the furrows in the skin. The similarity of these to the scales of bony fish is largely superficial. Lizards and some frogs have somewhat similar osteoderms forming bony deposits in the dermis, but this is an example of convergent evolution with similar structures having arisen independently in diverse vertebrate lineages.[62]

 
Cross section of frog skin:
  1. Mucous gland
  2. Chromatophore
  3. Granular poison gland
  4. Connective tissue
  5. Stratum corneum
  6. Transition zone
  7. Epidermis
  8. Dermis

Amphibian skin is permeable to water. Gas exchange can take place through the skin (cutaneous respiration) and this allows adult amphibians to respire without rising to the surface of water and to hibernate at the bottom of ponds.[45] To compensate for their thin and delicate skin, amphibians have evolved mucous glands, principally on their heads, backs and tails. The secretions produced by these help keep the skin moist. In addition, most species of amphibian have granular glands that secrete distasteful or poisonous substances. Some amphibian toxins can be lethal to humans while others have little effect.[63] The main poison-producing glands, the parotoids, produce the neurotoxin bufotoxin and are located behind the ears of toads, along the backs of frogs, behind the eyes of salamanders and on the upper surface of caecilians.[64]

The skin colour of amphibians is produced by three layers of pigment cells called chromatophores. These three cell layers consist of the melanophores (occupying the deepest layer), the guanophores (forming an intermediate layer and containing many granules, producing a blue-green colour) and the lipophores (yellow, the most superficial layer). The colour change displayed by many species is initiated by hormones secreted by the pituitary gland. Unlike bony fish, there is no direct control of the pigment cells by the nervous system, and this results in the colour change taking place more slowly than happens in fish. A vividly coloured skin usually indicates that the species is toxic and is a warning sign to predators.[65]

Skeletal system and locomotion

 
Skull diagram of Xenotosuchus, a temnospondyl

Amphibians have a skeletal system that is structurally homologous to other tetrapods, though with a number of variations. They all have four limbs except for the legless caecilians and a few species of salamander with reduced or no limbs. The bones are hollow and lightweight. The musculoskeletal system is strong to enable it to support the head and body. The bones are fully ossified and the vertebrae interlock with each other by means of overlapping processes. The pectoral girdle is supported by muscle, and the well-developed pelvic girdle is attached to the backbone by a pair of sacral ribs. The ilium slopes forward and the body is held closer to the ground than is the case in mammals.[66]

 
Skeleton of the Surinam horned frog
(Ceratophrys cornuta)

In most amphibians, there are four digits on the fore foot and five on the hind foot, but no claws on either. Some salamanders have fewer digits and the amphiumas are eel-like in appearance with tiny, stubby legs. The sirens are aquatic salamanders with stumpy forelimbs and no hind limbs. The caecilians are limbless. They burrow in the manner of earthworms with zones of muscle contractions moving along the body. On the surface of the ground or in water they move by undulating their body from side to side.[67]

In frogs, the hind legs are larger than the fore legs, especially so in those species that principally move by jumping or swimming. In the walkers and runners the hind limbs are not so large, and the burrowers mostly have short limbs and broad bodies. The feet have adaptations for the way of life, with webbing between the toes for swimming, broad adhesive toe pads for climbing, and keratinised tubercles on the hind feet for digging (frogs usually dig backwards into the soil). In most salamanders, the limbs are short and more or less the same length and project at right angles from the body. Locomotion on land is by walking and the tail often swings from side to side or is used as a prop, particularly when climbing. In their normal gait, only one leg is advanced at a time in the manner adopted by their ancestors, the lobe-finned fish.[66] Some salamanders in the genus Aneides and certain plethodontids climb trees and have long limbs, large toepads and prehensile tails.[57] In aquatic salamanders and in frog tadpoles, the tail has dorsal and ventral fins and is moved from side to side as a means of propulsion. Adult frogs do not have tails and caecilians have only very short ones.[67]

 
Didactic model of an amphibian heart.

Salamanders use their tails in defence and some are prepared to jettison them to save their lives in a process known as autotomy. Certain species in the Plethodontidae have a weak zone at the base of the tail and use this strategy readily. The tail often continues to twitch after separation which may distract the attacker and allow the salamander to escape. Both tails and limbs can be regenerated.[68] Adult frogs are unable to regrow limbs but tadpoles can do so.[67]

Circulatory system

 
Juvenile amphibian circulatory systems are single loop systems which resemble fish.
  1. Internal gills where the blood is reoxygenated
  2. Point where the blood is depleted of oxygen and returns to the heart via veins
  3. Two chambered heart
Red indicates oxygenated blood, and blue represents oxygen depleted blood.

Amphibians have a juvenile stage and an adult stage, and the circulatory systems of the two are distinct. In the juvenile (or tadpole) stage, the circulation is similar to that of a fish; the two-chambered heart pumps the blood through the gills where it is oxygenated, and is spread around the body and back to the heart in a single loop. In the adult stage, amphibians (especially frogs) lose their gills and develop lungs. They have a heart that consists of a single ventricle and two atria. When the ventricle starts contracting, deoxygenated blood is pumped through the pulmonary artery to the lungs. Continued contraction then pumps oxygenated blood around the rest of the body. Mixing of the two bloodstreams is minimized by the anatomy of the chambers.[69]

Nervous and sensory systems

The nervous system is basically the same as in other vertebrates, with a central brain, a spinal cord, and nerves throughout the body. The amphibian brain is relatively simple but broadly the same structurally as in reptiles, birds and mammals. Their brains are elongated, except in caecilians, and contain the usual motor and sensory areas of tetrapods.[70] The pineal body, known to regulate sleep patterns in humans, is thought to produce the hormones involved in hibernation and aestivation in amphibians.[71]

Tadpoles retain the lateral line system of their ancestral fishes, but this is lost in terrestrial adult amphibians. Some caecilians possess electroreceptors that allow them to locate objects around them when submerged in water. The ears are well developed in frogs. There is no external ear, but the large circular eardrum lies on the surface of the head just behind the eye. This vibrates and sound is transmitted through a single bone, the stapes, to the inner ear. Only high-frequency sounds like mating calls are heard in this way, but low-frequency noises can be detected through another mechanism.[66] There is a patch of specialized haircells, called papilla amphibiorum, in the inner ear capable of detecting deeper sounds. Another feature, unique to frogs and salamanders, is the columella-operculum complex adjoining the auditory capsule which is involved in the transmission of both airborne and seismic signals.[72] The ears of salamanders and caecilians are less highly developed than those of frogs as they do not normally communicate with each other through the medium of sound.[73]

The eyes of tadpoles lack lids, but at metamorphosis, the cornea becomes more dome-shaped, the lens becomes flatter, and eyelids and associated glands and ducts develop.[66] The adult eyes are an improvement on invertebrate eyes and were a first step in the development of more advanced vertebrate eyes. They allow colour vision and depth of focus. In the retinas are green rods, which are receptive to a wide range of wavelengths.[73]

Digestive and excretory systems

 
Dissected frog:
  1. Right atrium
  2. Liver
  3. Aorta
  4. Egg mass
  5. Colon
  6. Left atrium
  7. Ventricle
  8. Stomach
  9. Left lung
  10. Spleen
  11. Small intestine
  12. Cloaca

Many amphibians catch their prey by flicking out an elongated tongue with a sticky tip and drawing it back into the mouth before seizing the item with their jaws. Some use inertial feeding to help them swallow the prey, repeatedly thrusting their head forward sharply causing the food to move backwards in their mouth by inertia. Most amphibians swallow their prey whole without much chewing so they possess voluminous stomachs. The short oesophagus is lined with cilia that help to move the food to the stomach and mucus produced by glands in the mouth and pharynx eases its passage. The enzyme chitinase produced in the stomach helps digest the chitinous cuticle of arthropod prey.[74]

Amphibians possess a pancreas, liver and gall bladder. The liver is usually large with two lobes. Its size is determined by its function as a glycogen and fat storage unit, and may change with the seasons as these reserves are built or used up. Adipose tissue is another important means of storing energy and this occurs in the abdomen (in internal structures called fat bodies), under the skin and, in some salamanders, in the tail.[75]

There are two kidneys located dorsally, near the roof of the body cavity. Their job is to filter the blood of metabolic waste and transport the urine via ureters to the urinary bladder where it is stored before being passed out periodically through the cloacal vent. Larvae and most aquatic adult amphibians excrete the nitrogen as ammonia in large quantities of dilute urine, while terrestrial species, with a greater need to conserve water, excrete the less toxic product urea. Some tree frogs with limited access to water excrete most of their metabolic waste as uric acid.[76]

Respiratory system

 
The axolotl (Ambystoma mexicanum) retains its larval form with gills into adulthood

The lungs in amphibians are primitive compared to those of amniotes, possessing few internal septa and large alveoli, and consequently having a comparatively slow diffusion rate for oxygen entering the blood. Ventilation is accomplished by buccal pumping.[77] Most amphibians, however, are able to exchange gases with the water or air via their skin. To enable sufficient cutaneous respiration, the surface of their highly vascularised skin must remain moist to allow the oxygen to diffuse at a sufficiently high rate.[74] Because oxygen concentration in the water increases at both low temperatures and high flow rates, aquatic amphibians in these situations can rely primarily on cutaneous respiration, as in the Titicaca water frog and the hellbender salamander. In air, where oxygen is more concentrated, some small species can rely solely on cutaneous gas exchange, most famously the plethodontid salamanders, which have neither lungs nor gills. Many aquatic salamanders and all tadpoles have gills in their larval stage, with some (such as the axolotl) retaining gills as aquatic adults.[74]

Reproduction

 
Male orange-thighed frog (Litoria xanthomera) grasping the female during amplexus

For the purpose of reproduction most amphibians require fresh water although some lay their eggs on land and have developed various means of keeping them moist. A few (e.g. Fejervarya raja) can inhabit brackish water, but there are no true marine amphibians.[78] There are reports, however, of particular amphibian populations unexpectedly invading marine waters. Such was the case with the Black Sea invasion of the natural hybrid Pelophylax esculentus reported in 2010.[79]

Several hundred frog species in adaptive radiations (e.g., Eleutherodactylus, the Pacific Platymantis, the Australo-Papuan microhylids, and many other tropical frogs), however, do not need any water for breeding in the wild. They reproduce via direct development, an ecological and evolutionary adaptation that has allowed them to be completely independent from free-standing water. Almost all of these frogs live in wet tropical rainforests and their eggs hatch directly into miniature versions of the adult, passing through the tadpole stage within the egg. Reproductive success of many amphibians is dependent not only on the quantity of rainfall, but the seasonal timing.[80]

In the tropics, many amphibians breed continuously or at any time of year. In temperate regions, breeding is mostly seasonal, usually in the spring, and is triggered by increasing day length, rising temperatures or rainfall. Experiments have shown the importance of temperature, but the trigger event, especially in arid regions, is often a storm. In anurans, males usually arrive at the breeding sites before females and the vocal chorus they produce may stimulate ovulation in females and the endocrine activity of males that are not yet reproductively active.[81]

In caecilians, fertilisation is internal, the male extruding an intromittent organ, the phallodeum, and inserting it into the female cloaca. The paired Müllerian glands inside the male cloaca secrete a fluid which resembles that produced by mammalian prostate glands and which may transport and nourish the sperm. Fertilisation probably takes place in the oviduct.[82]

The majority of salamanders also engage in internal fertilisation. In most of these, the male deposits a spermatophore, a small packet of sperm on top of a gelatinous cone, on the substrate either on land or in the water. The female takes up the sperm packet by grasping it with the lips of the cloaca and pushing it into the vent. The spermatozoa move to the spermatheca in the roof of the cloaca where they remain until ovulation which may be many months later. Courtship rituals and methods of transfer of the spermatophore vary between species. In some, the spermatophore may be placed directly into the female cloaca while in others, the female may be guided to the spermatophore or restrained with an embrace called amplexus. Certain primitive salamanders in the families Sirenidae, Hynobiidae and Cryptobranchidae practice external fertilisation in a similar manner to frogs, with the female laying the eggs in water and the male releasing sperm onto the egg mass.[82]

With a few exceptions, frogs use external fertilisation. The male grasps the female tightly with his forelimbs either behind the arms or in front of the back legs, or in the case of Epipedobates tricolor, around the neck. They remain in amplexus with their cloacae positioned close together while the female lays the eggs and the male covers them with sperm. Roughened nuptial pads on the male's hands aid in retaining grip. Often the male collects and retains the egg mass, forming a sort of basket with the hind feet. An exception is the granular poison frog (Oophaga granulifera) where the male and female place their cloacae in close proximity while facing in opposite directions and then release eggs and sperm simultaneously. The tailed frog (Ascaphus truei) exhibits internal fertilisation. The "tail" is only possessed by the male and is an extension of the cloaca and used to inseminate the female. This frog lives in fast-flowing streams and internal fertilisation prevents the sperm from being washed away before fertilisation occurs.[83] The sperm may be retained in storage tubes attached to the oviduct until the following spring.[84]

Most frogs can be classified as either prolonged or explosive breeders. Typically, prolonged breeders congregate at a breeding site, the males usually arriving first, calling and setting up territories. Other satellite males remain quietly nearby, waiting for their opportunity to take over a territory. The females arrive sporadically, mate selection takes place and eggs are laid. The females depart and territories may change hands. More females appear and in due course, the breeding season comes to an end. Explosive breeders on the other hand are found where temporary pools appear in dry regions after rainfall. These frogs are typically fossorial species that emerge after heavy rains and congregate at a breeding site. They are attracted there by the calling of the first male to find a suitable place, perhaps a pool that forms in the same place each rainy season. The assembled frogs may call in unison and frenzied activity ensues, the males scrambling to mate with the usually smaller number of females.[83]

 
Sexual selection has been studied in the red back salamander

There is a direct competition between males to win the attention of the females in salamanders and newts, with elaborate courtship displays to keep the female's attention long enough to get her interested in choosing him to mate with.[85] Some species store sperm through long breeding seasons, as the extra time may allow for interactions with rival sperm.[86]

Life cycle

Most amphibians go through metamorphosis, a process of significant morphological change after birth. In typical amphibian development, eggs are laid in water and larvae are adapted to an aquatic lifestyle. Frogs, toads and salamanders all hatch from the egg as larvae with external gills. Metamorphosis in amphibians is regulated by thyroxine concentration in the blood, which stimulates metamorphosis, and prolactin, which counteracts thyroxine's effect. Specific events are dependent on threshold values for different tissues.[87] Because most embryonic development is outside the parental body, it is subject to many adaptations due to specific environmental circumstances. For this reason tadpoles can have horny ridges instead of Teeth, whisker-like skin extensions or fins. They also make use of a sensory lateral line organ similar to that of fish. After metamorphosis, these organs become redundant and will be reabsorbed by controlled cell death, called apoptosis. The variety of adaptations to specific environmental circumstances among amphibians is wide, with many discoveries still being made.[88]

Eggs

 
Frogspawn, a mass of eggs surrounded by jelly
 
Amphibian egg:
  1. Jelly capsule
  2. Vitelline membrane
  3. Perivitelline fluid
  4. Yolk plug
  5. Embryo

In the egg, the embryo is suspended in perivitelline fluid and surrounded by semi-permeable gelatinous capsules, with the yolk mass providing nutrients. As the larvae hatch, the capules are dissolved by enzymes secreted from gland at the tip of the snout.[73] The eggs of some salamanders and frogs contain unicellular green algae. These penetrate the jelly envelope after the eggs are laid and may increase the supply of oxygen to the embryo through photosynthesis. They seem to both speed up the development of the larvae and reduce mortality.[89] In the wood frog (Rana sylvatica), the interior of the globular egg cluster has been found to be up to 6 °C (11 °F) warmer than its surroundings, which is an advantage in its cool northern habitat.[90]

The eggs may be deposited singly, in cluster or in long strands. Sites for laying eggs include water, mud, burrows, debris and on plants or under logs or stones.[91] The greenhouse frog (Eleutherodactylus planirostris) lays eggs in small groups in the soil where they develop in about two weeks directly into juvenile frogs without an intervening larval stage.[92] The tungara frog (Physalaemus pustulosus) builds a floating nest from foam to protect its eggs. First a raft is built, then eggs are laid in the centre, and finally a foam cap is overlaid. The foam has anti-microbial properties. It contains no detergents but is created by whipping up proteins and lectins secreted by the female.[93][94]

Larvae

 
Early stages in the development of the embryos of the common frog (Rana temporaria)

The eggs of amphibians are typically laid in water and hatch into free-living larvae that complete their development in water and later transform into either aquatic or terrestrial adults. In many species of frog and in most lungless salamanders (Plethodontidae), direct development takes place, the larvae growing within the eggs and emerging as miniature adults. Many caecilians and some other amphibians lay their eggs on land, and the newly hatched larvae wriggle or are transported to water bodies. Some caecilians, the alpine salamander (Salamandra atra) and some of the African live-bearing toads (Nectophrynoides spp.) are viviparous. Their larvae feed on glandular secretions and develop within the female's oviduct, often for long periods. Other amphibians, but not caecilians, are ovoviviparous. The eggs are retained in or on the parent's body, but the larvae subsist on the yolks of their eggs and receive no nourishment from the adult. The larvae emerge at varying stages of their growth, either before or after metamorphosis, according to their species.[95] The toad genus Nectophrynoides exhibits all of these developmental patterns among its dozen or so members.[11] Amphibian larvae are known as tadpoles. They have thick, rounded bodies with powerful muscular tails.[76]

Frogs

Unlike in other amphibians, frog tadpoles do not resemble adults.[96] The free-living larvae are normally fully aquatic, but the tadpoles of some species (such as Nannophrys ceylonensis) are semi-terrestrial and live among wet rocks.[97] Tadpoles have cartilaginous skeletons, gills for respiration (external gills at first, internal gills later), lateral line systems and large tails that they use for swimming.[98] Newly hatched tadpoles soon develop gill pouches that cover the gills. The lungs develop early and are used as accessory breathing organs, the tadpoles rising to the water surface to gulp air. Some species complete their development inside the egg and hatch directly into small frogs. These larvae do not have gills but instead have specialised areas of skin through which respiration takes place. While tadpoles do not have true teeth, in most species, the jaws have long, parallel rows of small keratinized structures called keradonts surrounded by a horny beak.[99] Front legs are formed under the gill sac and hind legs become visible a few days later.

Iodine and T4 (over stimulate the spectacular apoptosis [programmed cell death] of the cells of the larval gills, tail and fins) also stimulate the evolution of nervous systems transforming the aquatic, vegetarian tadpole into the terrestrial, carnivorous frog with better neurological, visuospatial, olfactory and cognitive abilities for hunting.[100][101]

In fact, tadpoles developing in ponds and streams are typically herbivorous. Pond tadpoles tend to have deep bodies, large caudal fins and small mouths; they swim in the quiet waters feeding on growing or loose fragments of vegetation. Stream dwellers mostly have larger mouths, shallow bodies and caudal fins; they attach themselves to plants and stones and feed on the surface films of algae and bacteria.[102] They also feed on diatoms, filtered from the water through the gills, and stir up the sediment at bottom of the pond, ingesting edible fragments. They have a relatively long, spiral-shaped gut to enable them to digest this diet.[102] Some species are carnivorous at the tadpole stage, eating insects, smaller tadpoles and fish. Young of the Cuban tree frog (Osteopilus septentrionalis) can occasionally be cannibalistic, the younger tadpoles attacking a larger, more developed tadpole when it is undergoing metamorphosis.[103]

 
Successive stages in the development of common toad (Bufo bufo) tadpoles, finishing with metamorphosis

At metamorphosis, rapid changes in the body take place as the lifestyle of the frog changes completely. The spiral‐shaped mouth with horny tooth ridges is reabsorbed together with the spiral gut. The animal develops a large jaw, and its gills disappear along with its gill sac. Eyes and legs grow quickly, and a tongue is formed. There are associated changes in the neural networks such as development of stereoscopic vision and loss of the lateral line system. All this can happen in about a day. A few days later, the tail is reabsorbed, due to the higher thyroxine concentration required for this to take place.[102]

Salamanders

 
Larva of the long-toed salamander
(Ambystoma macrodactylum)
 
Larva of the long-toed salamander
(Ambystoma macrodactylum)
 
Larvae of the alpine newt
(Ichthyosaura alpestris)

At hatching, a typical salamander larva has eyes without lids, teeth in both upper and lower jaws, three pairs of feathery external gills, and a long tail with dorsal and ventral fins. The forelimbs may be partially developed and the hind limbs are rudimentary in pond-living species but may be rather more developed in species that reproduce in moving water. Pond-type larvae often have a pair of balancers, rod-like structures on either side of the head that may prevent the gills from becoming clogged up with sediment.[104][105] Both of these are able to breed.[106] Some have larvae that never fully develop into the adult form, a condition known as neoteny.[107] Neoteny occurs when the animal's growth rate is very low and is usually linked to adverse conditions such as low water temperatures that may change the response of the tissues to the hormone thyroxine.[108] as well as lack of food. There are fifteen species of obligate neotenic salamanders, including species of Necturus, Proteus and Amphiuma, and many examples of facultative ones, such as the northwestern salamander (Ambystoma gracile) and the tiger salamander (A. tigrinum) that adopt this strategy under appropriate environmental circumstances.[107]

Lungless salamanders in the family Plethodontidae are terrestrial and lay a small number of unpigmented eggs in a cluster among damp leaf litter. Each egg has a large yolk sac and the larva feeds on this while it develops inside the egg, emerging fully formed as a juvenile salamander. The female salamander often broods the eggs. In the genus Ensatinas, the female has been observed to coil around them and press her throat area against them, effectively massaging them with a mucous secretion.[109]

In newts and salamanders, metamorphosis is less dramatic than in frogs. This is because the larvae are already carnivorous and continue to feed as predators when they are adults so few changes are needed to their digestive systems. Their lungs are functional early, but the larvae do not make as much use of them as do tadpoles. Their gills are never covered by gill sacs and are reabsorbed just before the animals leave the water. Other changes include the reduction in size or loss of tail fins, the closure of gill slits, thickening of the skin, the development of eyelids, and certain changes in dentition and tongue structure. Salamanders are at their most vulnerable at metamorphosis as swimming speeds are reduced and transforming tails are encumbrances on land.[110] Adult salamanders often have an aquatic phase in spring and summer, and a land phase in winter. For adaptation to a water phase, prolactin is the required hormone, and for adaptation to the land phase, thyroxine. External gills do not return in subsequent aquatic phases because these are completely absorbed upon leaving the water for the first time.[104]

Caecilians

 
The caecilian Ichthyophis glutinosus with eggs and developing embryo

Most terrestrial caecilians that lay eggs do so in burrows or moist places on land near bodies of water. The development of the young of Ichthyophis glutinosus, a species from Sri Lanka, has been much studied. The eel-like larvae hatch out of the eggs and make their way to water. They have three pairs of external red feathery gills, a blunt head with two rudimentary eyes, a lateral line system and a short tail with fins. They swim by undulating their body from side to side. They are mostly active at night, soon lose their gills and make sorties onto land. Metamorphosis is gradual. By the age of about ten months they have developed a pointed head with sensory tentacles near the mouth and lost their eyes, lateral line systems and tails. The skin thickens, embedded scales develop and the body divides into segments. By this time, the caecilian has constructed a burrow and is living on land.[111]

 
The ringed caecilian (Siphonops annulatus) resembles an earthworm

In the majority of species of caecilians, the young are produced by viviparity. Typhlonectes compressicauda, a species from South America, is typical of these. Up to nine larvae can develop in the oviduct at any one time. They are elongated and have paired sac-like gills, small eyes and specialised scraping teeth. At first, they feed on the yolks of the eggs, but as this source of nourishment declines they begin to rasp at the ciliated epithelial cells that line the oviduct. This stimulates the secretion of fluids rich in lipids and mucoproteins on which they feed along with scrapings from the oviduct wall. They may increase their length sixfold and be two-fifths as long as their mother before being born. By this time they have undergone metamorphosis, lost their eyes and gills, developed a thicker skin and mouth tentacles, and reabsorbed their teeth. A permanent set of teeth grow through soon after birth.[112][113]

The ringed caecilian (Siphonops annulatus) has developed a unique adaptation for the purposes of reproduction. The progeny feed on a skin layer that is specially developed by the adult in a phenomenon known as maternal dermatophagy. The brood feed as a batch for about seven minutes at intervals of approximately three days which gives the skin an opportunity to regenerate. Meanwhile, they have been observed to ingest fluid exuded from the maternal cloaca.[114]

Parental care

 
Male common rocket frog (Colostethus panamensis) carrying tadpoles on his back

The care of offspring among amphibians has been little studied but, in general, the larger the number of eggs in a batch, the less likely it is that any degree of parental care takes place. Nevertheless, it is estimated that in up to 20% of amphibian species, one or both adults play some role in the care of the young.[115] Those species that breed in smaller water bodies or other specialised habitats tend to have complex patterns of behaviour in the care of their young.[116]

Many woodland salamanders lay clutches of eggs under dead logs or stones on land. The black mountain salamander (Desmognathus welteri) does this, the mother brooding the eggs and guarding them from predation as the embryos feed on the yolks of their eggs. When fully developed, they break their way out of the egg capsules and disperse as juvenile salamanders.[117] The male hellbender, a primitive salamander, excavates an underwater nest and encourages females to lay there. The male then guards the site for the two or three months before the eggs hatch, using body undulations to fan the eggs and increase their supply of oxygen.[56]

 
Male common midwife toad (Alytes obstetricans) carrying eggs

The male Colostethus subpunctatus, a tiny frog, protects the egg cluster which is hidden under a stone or log. When the eggs hatch, the male transports the tadpoles on his back, stuck there by a mucous secretion, to a temporary pool where he dips himself into the water and the tadpoles drop off.[118] The male midwife toad (Alytes obstetricans) winds egg strings round his thighs and carries the eggs around for up to eight weeks. He keeps them moist and when they are ready to hatch, he visits a pond or ditch and releases the tadpoles.[119] The female gastric-brooding frog (Rheobatrachus spp.) reared larvae in her stomach after swallowing either the eggs or hatchlings; however, this stage was never observed before the species became extinct. The tadpoles secrete a hormone that inhibits digestion in the mother whilst they develop by consuming their very large yolk supply.[120] The pouched frog (Assa darlingtoni) lays eggs on the ground. When they hatch, the male carries the tadpoles around in brood pouches on his hind legs.[121] The aquatic Surinam toad (Pipa pipa) raises its young in pores on its back where they remain until metamorphosis.[122] The granular poison frog (Oophaga granulifera) is typical of a number of tree frogs in the poison dart frog family Dendrobatidae. Its eggs are laid on the forest floor and when they hatch, the tadpoles are carried one by one on the back of an adult to a suitable water-filled crevice such as the axil of a leaf or the rosette of a bromeliad. The female visits the nursery sites regularly and deposits unfertilised eggs in the water and these are consumed by the tadpoles.[123]

Genetics and genomics

Amphibians are notable among vertebrates for their diversity of chromosomes and genomes. The karyotypes (chromosomes) have been determined for at least 1,193 (14.5%) of the ≈8,200 known (diploid) species, including 963 anurans, 209 salamanders, and 21 caecilians. Generally, the karyotypes of diploid amphibians are characterized by 20–26 bi-armed chromosomes. Amphibians have also very large genomes compared to other taxa of vertebrates and corresponding variation in genome size (C-value: picograms of DNA in haploid nuclei). The genome sizes range from 0.95 to 11.5 pg in frogs, from 13.89 to 120.56 pg in salamanders, and from 2.94 to 11.78 pg in caecilians.[124]

The large genome sizes have prevented whole-genome sequencing of amphibians although a number of genomes have been published recently. The 1.7GB draft genome of Xenopus tropicalis was the first to be reported for amphibians in 2010.[124] Compared to some salamanders this frog genome is tiny. For instance, the genome of the Mexican axolotl turned out to be 32 Gb, which is more than 10 times larger than the human genome (3GB).[125]

Feeding and diet

 
Northwestern salamander
(Ambystoma gracile) eating a worm

With a few exceptions, adult amphibians are predators, feeding on virtually anything that moves that they can swallow. The diet mostly consists of small prey that do not move too fast such as beetles, caterpillars, earthworms and spiders. The sirens (Siren spp.) often ingest aquatic plant material with the invertebrates on which they feed[126] and a Brazilian tree frog (Xenohyla truncata) includes a large quantity of fruit in its diet.[127] The Mexican burrowing toad (Rhinophrynus dorsalis) has a specially adapted tongue for picking up ants and termites. It projects it with the tip foremost whereas other frogs flick out the rear part first, their tongues being hinged at the front.[128]

Food is mostly selected by sight, even in conditions of dim light. Movement of the prey triggers a feeding response. Frogs have been caught on fish hooks baited with red flannel and green frogs (Rana clamitans) have been found with stomachs full of elm seeds that they had seen floating past.[129] Toads, salamanders and caecilians also use smell to detect prey. This response is mostly secondary because salamanders have been observed to remain stationary near odoriferous prey but only feed if it moves. Cave-dwelling amphibians normally hunt by smell. Some salamanders seem to have learned to recognize immobile prey when it has no smell, even in complete darkness.[130]

Amphibians usually swallow food whole but may chew it lightly first to subdue it.[45] They typically have small hinged pedicellate teeth, a feature unique to amphibians. The base and crown of these are composed of dentine separated by an uncalcified layer and they are replaced at intervals. Salamanders, caecilians and some frogs have one or two rows of teeth in both jaws, but some frogs (Rana spp.) lack teeth in the lower jaw, and toads (Bufo spp.) have no teeth. In many amphibians there are also vomerine teeth attached to a facial bone in the roof of the mouth.[131]

 
Edible frog (Pelophylax esculentus) exhibiting cannibalism

The tiger salamander (Ambystoma tigrinum) is typical of the frogs and salamanders that hide under cover ready to ambush unwary invertebrates. Others amphibians, such as the Bufo spp. toads, actively search for prey, while the Argentine horned frog (Ceratophrys ornata) lures inquisitive prey closer by raising its hind feet over its back and vibrating its yellow toes.[132] Among leaf litter frogs in Panama, frogs that actively hunt prey have narrow mouths and are slim, often brightly coloured and toxic, while ambushers have wide mouths and are broad and well-camouflaged.[133] Caecilians do not flick their tongues, but catch their prey by grabbing it with their slightly backward-pointing teeth. The struggles of the prey and further jaw movements work it inwards and the caecilian usually retreats into its burrow. The subdued prey is gulped down whole.[134]

When they are newly hatched, frog larvae feed on the yolk of the egg. When this is exhausted some move on to feed on bacteria, algal crusts, detritus and raspings from submerged plants. Water is drawn in through their mouths, which are usually at the bottom of their heads, and passes through branchial food traps between their mouths and their gills where fine particles are trapped in mucus and filtered out. Others have specialised mouthparts consisting of a horny beak edged by several rows of labial teeth. They scrape and bite food of many kinds as well as stirring up the bottom sediment, filtering out larger particles with the papillae around their mouths. Some, such as the spadefoot toads, have strong biting jaws and are carnivorous or even cannibalistic.[135]

Audio showing Brazilian torrent frog males executing advertisement, peep, and squeal calls.

Vocalization

 
Male treefrog (Dendropsophus microcephalus) inflating his air sac as he calls

The calls made by caecilians and salamanders are limited to occasional soft squeaks, grunts or hisses and have not been much studied. A clicking sound sometimes produced by caecilians may be a means of orientation, as in bats, or a form of communication. Most salamanders are considered voiceless, but the California giant salamander (Dicamptodon ensatus) has vocal cords and can produce a rattling or barking sound. Some species of salamander emit a quiet squeak or yelp if attacked.[136]

 
American toad, (Anaxyrus americanus) singing

Frogs are much more vocal, especially during the breeding season when they use their voices to attract mates. The presence of a particular species in an area may be more easily discerned by its characteristic call than by a fleeting glimpse of the animal itself. In most species, the sound is produced by expelling air from the lungs over the vocal cords into an air sac or sacs in the throat or at the corner of the mouth. This may distend like a balloon and acts as a resonator, helping to transfer the sound to the atmosphere, or the water at times when the animal is submerged.[136] The main vocalisation is the male's loud advertisement call which seeks to both encourage a female to approach and discourage other males from intruding on its territory. This call is modified to a quieter courtship call on the approach of a female or to a more aggressive version if a male intruder draws near. Calling carries the risk of attracting predators and involves the expenditure of much energy.[137] Other calls include those given by a female in response to the advertisement call and a release call given by a male or female during unwanted attempts at amplexus. When a frog is attacked, a distress or fright call is emitted, often resembling a scream.[138] The usually nocturnal Cuban tree frog (Osteopilus septentrionalis) produces a rain call when there is rainfall during daylight hours.[139]

Territorial behaviour

Little is known of the territorial behaviour of caecilians, but some frogs and salamanders defend home ranges. These are usually feeding, breeding or sheltering sites. Males normally exhibit such behaviour though in some species, females and even juveniles are also involved. Although in many frog species, females are larger than males, this is not the case in most species where males are actively involved in territorial defence. Some of these have specific adaptations such as enlarged teeth for biting or spines on the chest, arms or thumbs.[140]

 
The red back salamander (Plethodon cinereus) defends a territory against intruders.

In salamanders, defence of a territory involves adopting an aggressive posture and if necessary attacking the intruder. This may involve snapping, chasing and sometimes biting, occasionally causing the loss of a tail. The behaviour of red back salamanders (Plethodon cinereus) has been much studied. 91% of marked individuals that were later recaptured were within a metre (yard) of their original daytime retreat under a log or rock.[141] A similar proportion, when moved experimentally a distance of 30 metres (98 ft), found their way back to their home base.[141] The salamanders left odour marks around their territories which averaged 0.16 to 0.33 square metres (1.7 to 3.6 sq ft) in size and were sometimes inhabited by a male and female pair.[142] These deterred the intrusion of others and delineated the boundaries between neighbouring areas. Much of their behaviour seemed stereotyped and did not involve any actual contact between individuals. An aggressive posture involved raising the body off the ground and glaring at the opponent who often turned away submissively. If the intruder persisted, a biting lunge was usually launched at either the tail region or the naso-labial grooves. Damage to either of these areas can reduce the fitness of the rival, either because of the need to regenerate tissue or because it impairs its ability to detect food.[141]

In frogs, male territorial behaviour is often observed at breeding locations; calling is both an announcement of ownership of part of this resource and an advertisement call to potential mates. In general, a deeper voice represents a heavier and more powerful individual, and this may be sufficient to prevent intrusion by smaller males. Much energy is used in the vocalization and it takes a toll on the territory holder who may be displaced by a fitter rival if he tires. There is a tendency for males to tolerate the holders of neighbouring territories while vigorously attacking unknown intruders. Holders of territories have a "home advantage" and usually come off better in an encounter between two similar-sized frogs. If threats are insufficient, chest to chest tussles may take place. Fighting methods include pushing and shoving, deflating the opponent's vocal sac, seizing him by the head, jumping on his back, biting, chasing, splashing, and ducking him under the water.[143]

Defence mechanisms

 
Cane toad (Rhinella marina) with poison glands behind the eyes

Amphibians have soft bodies with thin skins, and lack claws, defensive armour, or spines. Nevertheless, they have evolved various defence mechanisms to keep themselves alive. The first line of defence in salamanders and frogs is the mucous secretion that they produce. This keeps their skin moist and makes them slippery and difficult to grip. The secretion is often sticky and distasteful or toxic.[144] Snakes have been observed yawning and gaping when trying to swallow African clawed frogs (Xenopus laevis), which gives the frogs an opportunity to escape.[144][145] Caecilians have been little studied in this respect, but the Cayenne caecilian (Typhlonectes compressicauda) produces toxic mucus that has killed predatory fish in a feeding experiment in Brazil.[146] In some salamanders, the skin is poisonous. The rough-skinned newt (Taricha granulosa) from North America and other members of its genus contain the neurotoxin tetrodotoxin (TTX), the most toxic non-protein substance known and almost identical to that produced by pufferfish. Handling the newts does not cause harm, but ingestion of even the most minute amounts of the skin is deadly. In feeding trials, fish, frogs, reptiles, birds and mammals were all found to be susceptible.[147][148] The only predators with some tolerance to the poison are certain populations of common garter snake (Thamnophis sirtalis). In locations where both snake and salamander co-exist, the snakes have developed immunity through genetic changes and they feed on the amphibians with impunity.[149] Coevolution occurs with the newt increasing its toxic capabilities at the same rate as the snake further develops its immunity.[148] Some frogs and toads are toxic, the main poison glands being at the side of the neck and under the warts on the back. These regions are presented to the attacking animal and their secretions may be foul-tasting or cause various physical or neurological symptoms. Altogether, over 200 toxins have been isolated from the limited number of amphibian species that have been investigated.[150]

 
The fire salamander (Salamandra salamandra), a toxic species, wears warning colours.
 
Perhaps the most poisonous animal in the world, the golden poison frog (Phyllobates terribilis) is endemic to Colombia.[151]

Poisonous species often use bright colouring to warn potential predators of their toxicity. These warning colours tend to be red or yellow combined with black, with the fire salamander (Salamandra salamandra) being an example. Once a predator has sampled one of these, it is likely to remember the colouration next time it encounters a similar animal. In some species, such as the fire-bellied toad (Bombina spp.), the warning colouration is on the belly and these animals adopt a defensive pose when attacked, exhibiting their bright colours to the predator. The frog Allobates zaparo is not poisonous, but mimics the appearance of other toxic species in its locality, a strategy that may deceive predators.[152]

Many amphibians are nocturnal and hide during the day, thereby avoiding diurnal predators that hunt by sight. Other amphibians use camouflage to avoid being detected. They have various colourings such as mottled browns, greys and olives to blend into the background. Some salamanders adopt defensive poses when faced by a potential predator such as the North American northern short-tailed shrew (Blarina brevicauda). Their bodies writhe and they raise and lash their tails which makes it difficult for the predator to avoid contact with their poison-producing granular glands.[153] A few salamanders will autotomise their tails when attacked, sacrificing this part of their anatomy to enable them to escape. The tail may have a constriction at its base to allow it to be easily detached. The tail is regenerated later, but the energy cost to the animal of replacing it is significant.[68] Some frogs and toads inflate themselves to make themselves look large and fierce, and some spadefoot toads (Pelobates spp) scream and leap towards the attacker.[45] Giant salamanders of the genus Andrias, as well as Ceratophrine and Pyxicephalus frogs possess sharp teeth and are capable of drawing blood with a defensive bite. The blackbelly salamander (Desmognathus quadramaculatus) can bite an attacking common garter snake (Thamnophis sirtalis) two or three times its size on the head and often manages to escape.[154]

Cognition

In amphibians, there is evidence of habituation, associative learning through both classical and instrumental learning, and discrimination abilities.[155]

In one experiment, when offered live fruit flies (Drosophila virilis), salamanders chose the larger of 1 vs 2 and 2 vs 3. Frogs can distinguish between low numbers (1 vs 2, 2 vs 3, but not 3 vs 4) and large numbers (3 vs 6, 4 vs 8, but not 4 vs 6) of prey. This is irrespective of other characteristics, i.e. surface area, volume, weight and movement, although discrimination among large numbers may be based on surface area.[156]

Conservation

 
The extinct golden toad (Bufo periglenes), last seen in 1989

Dramatic declines in amphibian populations, including population crashes and mass localized extinction, have been noted since the late 1980s from locations all over the world, and amphibian declines are thus perceived to be one of the most critical threats to global biodiversity.[157] In 2004, the International Union for Conservation of Nature (IUCN) reported stating that currently birds,[158] mammals, and amphibians extinction rates were at minimum 48 times greater than natural extinction rates—possibly 1,024 times higher. In 2006, there were believed to be 4,035 species of amphibians that depended on water at some stage during their life cycle. Of these, 1,356 (33.6%) were considered to be threatened and this figure is likely to be an underestimate because it excludes 1,427 species for which there was insufficient data to assess their status.[159] A number of causes are believed to be involved, including habitat destruction and modification, over-exploitation, pollution, introduced species, global warming, endocrine-disrupting pollutants, destruction of the ozone layer (ultraviolet radiation has shown to be especially damaging to the skin, eyes, and eggs of amphibians), and diseases like chytridiomycosis. However, many of the causes of amphibian declines are still poorly understood, and are a topic of ongoing discussion.[160]

 
The Hula painted frog (Discoglossus nigriventer) was believed to be extinct but was rediscovered in 2011.

Food webs and predation

Any decline in amphibian numbers will affect the patterns of predation. The loss of carnivorous species near the top of the food chain will upset the delicate ecosystem balance and may cause dramatic increases in opportunistic species.

Predators that feed on amphibians are affected by their decline. The western terrestrial garter snake (Thamnophis elegans) in California is largely aquatic and depends heavily on two species of frog that are decreasing in numbers, the Yosemite toad (Bufo canorus) and the mountain yellow-legged frog (Rana muscosa), putting the snake's future at risk. If the snake were to become scarce, this would affect birds of prey and other predators that feed on it.[161] Meanwhile, in the ponds and lakes, fewer frogs means fewer tadpoles. These normally play an important role in controlling the growth of algae and also forage on detritus that accumulates as sediment on the bottom. A reduction in the number of tadpoles may lead to an overgrowth of algae, resulting in depletion of oxygen in the water when the algae later die and decompose. Aquatic invertebrates and fish might then die and there would be unpredictable ecological consequences.[162]

Pollution and pesticides

The decline in amphibian and reptile populations has led to an awareness of the effects of pesticides on reptiles and amphibians.[163] In the past, the argument that amphibians or reptiles were more susceptible to any chemical contamination than any land aquatic vertebrate was not supported by research until recently.[163] Amphibians and reptiles have complex life cycles, live in different climate and ecological zones, and are more vulnerable to chemical exposure. Certain pesticides, such as organophosphates, neonicotinoids, and carbamates, react via cholinesterase inhibition. Cholinesterase is an enzyme that causes the hydrolysis of acetylcholine, an excitatory neurotransmitter that is abundant in the nervous system. AChE inhibitors are either reversible or irreversible, and carbamates are safer than organophosphorus insecticides, which are more likely to cause cholinergic poisoning. Reptile exposure to an AChE inhibitory pesticide may result in disruption of neural function in reptiles. The buildup of these inhibitory effects on motor performance, such as food consumption and other activities.

Conservation and protection strategies

The Amphibian Specialist Group of the IUCN is spearheading efforts to implement a comprehensive global strategy for amphibian conservation.[164] Amphibian Ark is an organization that was formed to implement the ex-situ conservation recommendations of this plan, and they have been working with zoos and aquaria around the world, encouraging them to create assurance colonies of threatened amphibians.[164] One such project is the Panama Amphibian Rescue and Conservation Project that built on existing conservation efforts in Panama to create a country-wide response to the threat of chytridiomycosis.[165]

Another measure would be to stop exploitation of frogs for human consumption. In the Middle East, a growing appetite for eating frog legs and the consequent gathering of them for food was already linked to an increase in mosquitoes and thus has direct consequences for human health.[166]

See also

References

  1. ^ "Amphibia". paleobiodb.org. Retrieved May 24, 2022.
  2. ^ a b Blackburn, D. C.; Wake, D. B. (2011). "Class Amphibia Gray, 1825. In: Zhang, Z.-Q. (Ed.) Animal biodiversity: An outline of higher-level classification and survey of taxonomic richness" (PDF). Zootaxa. 3148: 39–55. doi:10.11646/zootaxa.3148.1.8. Archived (PDF) from the original on May 18, 2016. Retrieved November 29, 2012.
  3. ^ Jennifer Y. Lamb; Matthew P. Davis (February 27, 2020). "Salamanders and other amphibians are aglow with biofluorescence". Scientific Reports. 10 (1): 2821. doi:10.1038/S41598-020-59528-9. ISSN 2045-2322. PMC 7046780. PMID 32108141. Wikidata Q89930490.
  4. ^ a b Atkins, Jade B.; Reisz, Robert R.; Maddin, Hillary C. (March 22, 2019). "Braincase simplification and the origin of lissamphibians". PLOS ONE. 14 (3): e0213694. Bibcode:2019PLoSO..1413694A. doi:10.1371/journal.pone.0213694. ISSN 1932-6203. PMC 6430379. PMID 30901341. ...there has been a growing consensus that lissamphibians are a monophyletic assemblage derived from within Temnospondyli, and more specifically from within the amphibamid dissorophoids.
  5. ^ "Back to school: temno superlatives". Bryan Gee, PhD. Retrieved June 29, 2022.
  6. ^ Skeat, Walter W. (1897). A Concise Etymological Dictionary of the English Language. Clarendon Press. p. 39.
  7. ^ Baird, Donald (May 1965). "Paleozoic lepospondyl amphibians". Integrative and Comparative Biology. 5 (2): 287–294. doi:10.1093/icb/5.2.287.
  8. ^ a b c "Species by number". AmphibiaWeb. from the original on January 12, 2021. Retrieved January 11, 2021.
  9. ^ Frost, Darrel (2013). "American Museum of Natural History: Amphibian Species of the World 5.6, an Online Reference". The American Museum of Natural History. from the original on June 14, 2012. Retrieved October 24, 2013.
  10. ^ "Amphibiaweb". from the original on November 25, 2019. Retrieved April 1, 2019.
  11. ^ a b Crump, Martha L. (2009). (PDF). Amphibian Ecology and Conservation. A Handbook of Techniques: 3–20. Archived from the original (PDF) on July 15, 2011.
  12. ^ Speer, B. W.; Waggoner, Ben (1995). "Amphibia: Systematics". University of California Museum of Paleontology. from the original on March 7, 2013. Retrieved December 13, 2012.
  13. ^ a b c Stebbins & Cohen 1995, p. 3.
  14. ^ a b c Anderson, J.; Reisz, R.; Scott, D.; Fröbisch, N.; Sumida, S. (2008). "A stem batrachian from the Early Permian of Texas and the origin of frogs and salamanders". Nature. 453 (7194): 515–518. Bibcode:2008Natur.453..515A. doi:10.1038/nature06865. PMID 18497824. S2CID 205212809. from the original on July 14, 2021. Retrieved November 10, 2016.
  15. ^ Roček, Z. (2000). "14. Mesozoic Amphibians" (PDF). In Heatwole, H.; Carroll, R. L. (eds.). Amphibian Biology: Paleontology: The Evolutionary History of Amphibians. Vol. 4. Surrey Beatty & Sons. pp. 1295–1331. ISBN 978-0-949324-87-0. (PDF) from the original on July 18, 2011. Retrieved September 29, 2012.
  16. ^ Jenkins, Farish A. Jr.; Walsh, Denis M.; Carroll, Robert L. (2007). "Anatomy of Eocaecilia micropodia, a limbed caecilian of the Early Jurassic". Bulletin of the Museum of Comparative Zoology. 158 (6): 285–365. doi:10.3099/0027-4100(2007)158[285:AOEMAL]2.0.CO;2. S2CID 86379456.
  17. ^ Gaoa, Ke-Qin; Shubin, Neil H. (2012). "Late Jurassic salamandroid from western Liaoning, China". Proceedings of the National Academy of Sciences of the United States of America. 109 (15): 5767–5772. Bibcode:2012PNAS..109.5767G. doi:10.1073/pnas.1009828109. PMC 3326464. PMID 22411790.
  18. ^ Cannatella, David (2008). "Salientia". Tree of Life Web Project. from the original on April 22, 2019. Retrieved August 31, 2012.
  19. ^ a b c "Evolution of amphibians". University of Waikato: Plant and animal evolution. from the original on June 27, 2016. Retrieved September 30, 2012.
  20. ^ a b c Carroll, Robert L. (1977). Hallam, Anthony (ed.). Patterns of Evolution, as Illustrated by the Fossil Record. Elsevier. pp. 405–420. ISBN 978-0-444-41142-6. from the original on April 14, 2021. Retrieved October 15, 2020.
  21. ^ a b Clack, Jennifer A. (2006). "Ichthyostega". Tree of Life Web Project. from the original on June 14, 2020. Retrieved September 29, 2012.
  22. ^ Lombard, R. E.; Bolt, J. R. (1979). "Evolution of the tetrapod ear: an analysis and reinterpretation". Biological Journal of the Linnean Society. 11 (1): 19–76. doi:10.1111/j.1095-8312.1979.tb00027.x. from the original on October 4, 2018. Retrieved November 10, 2016.
  23. ^ a b c Spoczynska, J. O. I. (1971). Fossils: A Study in Evolution. Frederick Muller Ltd. pp. 120–125. ISBN 978-0-584-10093-8.
  24. ^ Sahney, S.; Benton, M.J. & Ferry, P.A. (2010). "Links between global taxonomic diversity, ecological diversity and the expansion of vertebrates on land". Biology Letters. 6 (4): 544–547. doi:10.1098/rsbl.2009.1024. PMC 2936204. PMID 20106856.
  25. ^ Sahney, S.; Benton, M.J. (2008). "Recovery from the most profound mass extinction of all time". Proceedings of the Royal Society B: Biological Sciences. 275 (1636): 759–65. doi:10.1098/rspb.2007.1370. PMC 2596898. PMID 18198148.
  26. ^ San Mauro, D. (2010). "A multilocus timescale for the origin of extant amphibians". Molecular Phylogenetics and Evolution. 56 (2): 554–561. doi:10.1016/j.ympev.2010.04.019. PMID 20399871. from the original on December 12, 2019. Retrieved November 10, 2016.
  27. ^ San Mauro, Diego; Vences, Miguel; Alcobendas, Marina; Zardoya, Rafael; Meyer, Axel (2005). "Initial diversification of living amphibians predated the breakup of Pangaea". The American Naturalist. 165 (5): 590–599. doi:10.1086/429523. PMID 15795855. S2CID 17021360. from the original on February 7, 2017. Retrieved November 10, 2016.
  28. ^ "Tiny fossils reveal backstory of the most mysterious amphibian alive". ScienceDaily. from the original on November 5, 2019. Retrieved June 28, 2017.
  29. ^ a b c d Dorit, Walker & Barnes 1991, pp. 843–859.
  30. ^ Laurin, Michel (2011). "Terrestrial Vertebrates". Tree of Life Web Project. from the original on March 1, 2011. Retrieved September 16, 2012.
  31. ^ Laurin, Michel; Gauthier, Jacques A. (2012). "Amniota". Tree of Life Web Project. from the original on June 1, 2020. Retrieved September 16, 2012.
  32. ^ Sumich, James L.; Morrissey, John F. (2004). Introduction to the Biology of Marine Life. Jones & Bartlett Learning. p. 171. ISBN 978-0-7637-3313-1. from the original on April 14, 2021. Retrieved October 15, 2020.
  33. ^ Brad Shaffer; Oscar Flores-Villela; Gabriela Parra-Olea; David Wake (2004). "Ambystoma andersoni". IUCN Red List of Threatened Species. Version 2013.2. International Union for Conservation of Nature
  34. ^ Wells, Kentwood D. (February 15, 2010). The Ecology and Behavior of Amphibians. University of Chicago Press. ISBN 9780226893334. from the original on June 25, 2020. Retrieved June 19, 2020 – via Google Books.
  35. ^ Levy, Daniel L.; Heald, Rebecca (January 20, 2016). "Biological Scaling Problems and Solutions in Amphibians". Cold Spring Harbor Perspectives in Biology. 8 (1): a019166. doi:10.1101/cshperspect.a019166. PMC 4691792. PMID 26261280.
  36. ^ Schoch, Rainer R. (March 19, 2014). Amphibian Evolution: The Life of Early Land Vertebrates. John Wiley & Sons. ISBN 9781118759134. from the original on July 25, 2020. Retrieved July 21, 2020 – via Google Books.
  37. ^ Michel Laurin (2004). "The evolution of body size, Cope's rule and the origin of amniotes". Systematic Biology. 53 (4): 594–622. doi:10.1080/10635150490445706. PMID 15371249. from the original on July 14, 2021. Retrieved July 21, 2020.
  38. ^ Rittmeyer, Eric N.; Allison, Allen; Gründler, Michael C.; Thompson, Derrick K.; Austin, Christopher C. (2012). "Ecological guild evolution and the discovery of the world's smallest vertebrate". PLOS ONE. 7 (1): e29797. Bibcode:2012PLoSO...729797R. doi:10.1371/journal.pone.0029797. PMC 3256195. PMID 22253785.
  39. ^ a b Nguyen, Brent; Cavagnaro, John (July 2012). "Amphibian Facts". AmphibiaWeb. from the original on January 23, 2014. Retrieved November 9, 2012.
  40. ^ Price, L. I. (1948). "Um anfibio Labirinthodonte da formacao Pedra de Fogo, Estado do Maranhao". Boletim. Ministerio da Agricultura, Departamento Nacional da Producao ineral Divisao de Geologia e Mineralogia. 24: 7–32.
  41. ^ Stebbins & Cohen 1995, pp. 24–25.
  42. ^ Cannatella, David; Graybeal, Anna (2008). "Bufonidae, True Toads". Tree of Life Web Project. from the original on June 14, 2020. Retrieved December 1, 2012.
  43. ^ "Frog fun facts". American Museum of Natural History. January 12, 2010. from the original on February 24, 2013. Retrieved August 29, 2012.
  44. ^ Challenger, David (January 12, 2012). . CNN. Archived from the original on April 20, 2012. Retrieved August 29, 2012.
  45. ^ a b c d e f g Arnold, Nicholas; Ovenden, Denys (2002). Reptiles and Amphibians of Britain and Europe. Harper Collins Publishers. pp. 13–18. ISBN 978-0-00-219318-4.
  46. ^ Faivovich, J.; Haddad, C. F. B.; Garcia, P. C. A.; Frost, D. R.; Campbell, J. A.; Wheeler, W. C. (2005). "Systematic review of the frog family Hylidae, with special reference to Hylinae: Phylogenetic analysis and revision". Bulletin of the American Museum of Natural History. 294: 1–240. CiteSeerX 10.1.1.470.2967. doi:10.1206/0003-0090(2005)294[0001:SROTFF]2.0.CO;2. S2CID 83925199.
  47. ^ a b Ford, L. S.; Cannatella, D. C. (1993). "The major clades of frogs". Herpetological Monographs. 7: 94–117. doi:10.2307/1466954. JSTOR 1466954. Retrieved November 10, 2016.[dead link]
  48. ^ San Mauro, Diego; Vences, Miguel; Alcobendas, Marina; Zardoya, Rafael; Meyer, Axel (2005). "Initial diversification of living amphibians predated the breakup of Pangaea". American Naturalist. 165 (5): 590–599. doi:10.1086/429523. PMID 15795855. S2CID 17021360. from the original on February 7, 2017. Retrieved November 10, 2016.
  49. ^ Baum, David (2008). "Trait Evolution on a Phylogenetic Tree: Relatedness, Similarity, and the Myth of Evolutionary Advancement". Nature Education. from the original on March 8, 2014. Retrieved December 1, 2012.
  50. ^ Sparreboom, Max (February 7, 2000). "Andrias davidianus Chinese giant salamander". AmphibiaWeb. from the original on December 26, 2012. Retrieved December 1, 2012.
  51. ^ Wake, David B. (November 8, 2000). "Thorius pennatulus". AmphibiaWeb. from the original on May 15, 2012. Retrieved August 25, 2012.
  52. ^ Elmer, K. R.; Bonett, R. M.; Wake, D. B.; Lougheed, S. C. (March 4, 2013). "Early Miocene origin and cryptic diversification of South American salamanders". BMC Evolutionary Biology. 13 (1): 59. doi:10.1186/1471-2148-13-59. PMC 3602097. PMID 23497060.
  53. ^ Larson, A.; Dimmick, W. (1993). "Phylogenetic relationships of the salamander families: an analysis of the congruence among morphological and molecular characters". Herpetological Monographs. 7 (7): 77–93. doi:10.2307/1466953. JSTOR 1466953.
  54. ^ Dorit, Walker & Barnes 1991, p. 852.
  55. ^ Heying, Heather (2003). "Cryptobranchidae". Animal Diversity Web. University of Michigan. from the original on October 21, 2012. Retrieved August 25, 2012.
  56. ^ a b Mayasich, J.; Grandmaison, D.; Phillips, C. (June 1, 2003). "Eastern Hellbender Status Assessment Report" (PDF). U.S. Fish and Wildlife Service. (PDF) from the original on September 4, 2012. Retrieved August 25, 2012.
  57. ^ a b c Wake, David B. "Caudata". Encyclopædia Britannica. from the original on May 16, 2013. Retrieved August 25, 2012.
  58. ^ Cogger, H. G. (1998). Zweifel, R. G (ed.). Encyclopedia of Reptiles and Amphibians. Academic Press. pp. 69–70. ISBN 978-0-12-178560-4.
  59. ^ Stebbins & Cohen 1995, p. 4.
  60. ^ Dorit, Walker & Barnes 1991, p. 858.
  61. ^ Duellman, William E. "Gymnophiona". Encyclopædia Britannica. from the original on January 14, 2012. Retrieved September 30, 2012.
  62. ^ Zylberberg, Louise; Wake, Marvalee H. (1990). "Structure of the scales of Dermophis and Microcaecilia (Amphibia: Gymnophiona), and a comparison to dermal ossifications of other vertebrates". Journal of Morphology. 206 (1): 25–43. doi:10.1002/jmor.1052060104. PMID 29865751. S2CID 46929507. from the original on December 16, 2017. Retrieved November 10, 2016.
  63. ^ Biodiversity Institute of Ontario; Hebert, Paul D. N. (October 12, 2008). "Amphibian morphology and reproduction". Encyclopedia of Earth. from the original on February 1, 2008. Retrieved August 15, 2012.
  64. ^ Stebbins & Cohen 1995, pp. 10–11.
  65. ^ Spearman, R. I. C. (1973). The Integument: A Textbook of Skin Biology. Cambridge University Press. p. 81. ISBN 978-0-521-20048-6. Amphibian skin colour.
  66. ^ a b c d Dorit, Walker & Barnes 1991, p. 846.
  67. ^ a b c Stebbins & Cohen 1995, pp. 26–36.
  68. ^ a b Beneski, John T. Jr. (September 1989). "Adaptive significance of tail autotomy in the salamander, Ensatina". Journal of Herpetology. 23 (3): 322–324. doi:10.2307/1564465. JSTOR 1564465.
  69. ^ Dorit, Walker & Barnes 1991, p. 306.
  70. ^ González, A.; López, J. M.; Morona, R.; Morona, N. (2020). "The Organization of the Central Nervous System of Amphibians". In Hass, J. H. (ed.). Evolutionary Neuroscience. p. 127. ISBN 978-0-12-820584-6.
  71. ^ Stebbins & Cohen 1995, p. 100.
  72. ^ Stebbins & Cohen 1995, p. 69.
  73. ^ a b c Duellman, William E.; Zug, George R. (2012). "Amphibian". Encyclopædia Britannica. from the original on March 8, 2012. Retrieved March 27, 2012.
  74. ^ a b c Dorit, Walker & Barnes 1991, p. 847.
  75. ^ Stebbins & Cohen 1995, p. 66.
  76. ^ a b Dorit, Walker & Barnes 1991, p. 849.
  77. ^ Brainerd, E. L. (1999). "New perspectives on the evolution of lung ventilation mechanisms in vertebrates". Experimental Biology Online. 4 (2): 1–28. doi:10.1007/s00898-999-0002-1. S2CID 35368264.
  78. ^ Hopkins Gareth R.; Brodie Edmund D. Jr (2015). "Occurrence of Amphibians in Saline Habitats: A Review and Evolutionary Perspective". Herpetological Monographs. 29 (1): 1–27. doi:10.1655/HERPMONOGRAPHS-D-14-00006. S2CID 83659304.
  79. ^ Natchev, Nikolay; Tzankov, Nikolay; Geme, Richard (2011). (PDF). Herpetology Notes. 4: 347–351. Archived from the original (PDF) on September 24, 2015. Retrieved August 17, 2012.
  80. ^ Hogan, C. Michael (July 31, 2010). . Encyclopedia of Earth. National Council for Science and the Environment. Archived from the original on June 8, 2013. Retrieved September 30, 2012.
  81. ^ Stebbins & Cohen 1995, pp. 140–141.
  82. ^ a b Duellman, Willia E.; Trueb, Linda (1994). Biology of Amphibians. JHU Press. pp. 77–79. ISBN 978-0-8018-4780-6. from the original on February 3, 2021. Retrieved October 15, 2020.
  83. ^ a b Stebbins & Cohen 1995, pp. 154–162.
  84. ^ Adams, Michael J.; Pearl, Christopher A. (2005). "Ascaphus truei". AmphibiaWeb. from the original on November 4, 2012. Retrieved November 23, 2012.
  85. ^ Romano, Antonio; Bruni, Giacomo (2011). "Courtship behaviour, mating season and male sexual interference in Salamandrina perspicillata". Amphibia-Reptilia. 32 (1): 63–76. doi:10.1163/017353710X541878.
  86. ^ Adams, Erika M.; Jones, A. G.; Arnold, S. J. (2005). "Multiple paternity in a natural population of a salamander with long-term sperm storage". Molecular Ecology. 14 (6): 1803–1810. doi:10.1111/j.1365-294X.2005.02539.x. PMID 15836651. S2CID 18899524. from the original on October 4, 2018. Retrieved November 10, 2016.
  87. ^ Kikuyama, Sakae; Kawamura, Kousuke; Tanaka, Shigeyasu; Yamamoto, Kakutoshi (1993). "Aspects of amphibian metamorphosis: Hormonal control". International Review of Cytology: A Survey of Cell Biology. Academic Press. pp. 105–126. ISBN 978-0-12-364548-7. from the original on April 14, 2021. Retrieved October 15, 2020.
  88. ^ Newman, Robert A. (1992). "Adaptive plasticity in amphibian metamorphosis". BioScience. 42 (9): 671–678. doi:10.2307/1312173. JSTOR 1312173.
  89. ^ Gilbert, Perry W. (1942). "Observations on the eggs of Ambystoma maculatum with especial reference to the green algae found within the egg envelopes". Ecology. 23 (2): 215–227. doi:10.2307/1931088. JSTOR 1931088.
  90. ^ Waldman, Bruce; Ryan, Michael J. (1983). "Thermal advantages of communal egg mass deposition in wood frogs (Rana sylvatica)". Journal of Herpetology. 17 (1): 70–72. doi:10.2307/1563783. JSTOR 1563783. from the original on July 14, 2021. Retrieved November 10, 2016.
  91. ^ Alder, Kraig; Trueb (2002). "Amphibians". In Halliday, Tim; Adler, Kraig (eds.). The Firefly Encyclopedia of Reptiles and Amphibians. Firefly Books. p. 17. ISBN 978-1-55297-613-5.
  92. ^ Meshaka, Walter E. Jr. "Eleutherodactylus planirostris". AmphibiaWeb. from the original on June 9, 2013. Retrieved December 12, 2012.
  93. ^ Dalgetty, Laura; Kennedy, Malcolm W. (2010). "Building a home from foam: túngara frog foam nest architecture and three-phase construction process". Biology Letters. 6 (3): 293–296. doi:10.1098/rsbl.2009.0934. PMC 2880057. PMID 20106853.
  94. ^ "Proteins of frog foam nests". School of Life Sciences, University of Glasgow. from the original on June 3, 2013. Retrieved August 24, 2012.
  95. ^ Stebbins & Cohen 1995, pp. 6–9.
  96. ^ Vitt, Laurie J.; Caldwell, Janalee P. (2013). Herpetology: An Introductory Biology of Amphibians and Reptiles. Academic Press. p. 42. ISBN 978-0123869197.
  97. ^ Janzen, Peter (May 10, 2005). "Nannophrys ceylonensis". AmphibiaWeb. from the original on June 7, 2022. Retrieved July 20, 2012.
  98. ^ Duellman, W. E.; Zug, G. R. "Anura: From tadpole to adult". Encyclopædia Britannica. from the original on November 2, 2012. Retrieved July 13, 2012.
  99. ^ Stebbins & Cohen 1995, pp. 179–181.
  100. ^ Venturi, Sebastiano (2011). "Evolutionary Significance of Iodine". Current Chemical Biology. 5 (3): 155–162. doi:10.2174/187231311796765012. ISSN 1872-3136. from the original on December 9, 2019. Retrieved November 10, 2016.
  101. ^ Venturi, Sebastiano (2014). "Iodine, PUFAs and Iodolipids in Health and Disease: An Evolutionary Perspective". Human Evolution. 29 (1–3): 185–205. ISSN 0393-9375.
  102. ^ a b c Duellman, William E.; Zug, George R. (2012). "Anura". Encyclopædia Britannica. from the original on November 2, 2012. Retrieved March 26, 2012.
  103. ^ Crump, Martha L. (1986). "Cannibalism by younger tadpoles: another hazard of metamorphosis". Copeia. 1986 (4): 1007–1009. doi:10.2307/1445301. JSTOR 1445301.
  104. ^ a b Wake, David B. (2012). "Caudata". Encyclopædia Britannica. from the original on May 16, 2013. Retrieved March 26, 2012.
  105. ^ Valentine, Barry D.; Dennis, David M. (1964). "A comparison of the gill-arch system and fins of three genera of larval salamanders, Rhyacotriton, Gyrinophilus, and Ambystoma". Copeia. 1964 (1): 196–201. doi:10.2307/1440850. JSTOR 1440850.
  106. ^ Shaffer, H. Bradley (2005). "Ambystoma gracile". AmphibiaWeb. from the original on December 26, 2012. Retrieved November 21, 2012.
  107. ^ a b Duellman, William E.; Trueb, Linda (1994). Biology of Amphibians. JHU Press. pp. 191–192. ISBN 978-0-8018-4780-6. from the original on January 26, 2021. Retrieved October 15, 2020.
  108. ^ Kiyonaga, Robin R. "Metamorphosis vs. neoteny (paedomorphosis) in salamanders (Caudata)". from the original on August 20, 2012. Retrieved November 21, 2012.
  109. ^ Stebbins & Cohen 1995, p. 196.
  110. ^ Shaffer, H. Bradley; Austin, C. C.; Huey, R. B. (1991). (PDF). Physiological Zoology. 64 (1): 212–231. doi:10.1086/physzool.64.1.30158520. JSTOR 30158520. S2CID 87191067. Archived from the original (PDF) on February 10, 2020.
  111. ^ Breckenridge, W. R.; Nathanael, S.; Pereira, L. (1987). "Some aspects of the biology and development of Ichthyophis glutinosus". Journal of Zoology. 211 (3): 437–449. doi:10.1111/jzo.1987.211.3.437.
  112. ^ Wake, Marvalee H. (1977). "Fetal maintenance and its evolutionary significance in the Amphibia: Gymnophiona". Journal of Herpetology. 11 (4): 379–386. doi:10.2307/1562719. JSTOR 1562719. from the original on October 4, 2018. Retrieved November 10, 2016.
  113. ^ Duellman, William E. (2012). "Gymnophiona". Encyclopædia Britannica. from the original on January 14, 2012. Retrieved March 26, 2012.
  114. ^ Wilkinson, Mark; Kupfer, Alexander; Marques-Porto, Rafael; Jeffkins, Hilary; Antoniazzi, Marta M.; Jared, Carlos (2008). "One hundred million years of skin feeding? Extended parental care in a Neotropical caecilian (Amphibia: Gymnophiona)". Biology Letters. 4 (4): 358–361. doi:10.1098/rsbl.2008.0217. PMC 2610157. PMID 18547909.
  115. ^ Crump, Martha L. (1996). "Parental care among the Amphibia". Parental Care: Evolution, Mechanisms, and Adaptive Significance. Advances in the Study of Behavior. Vol. 25. pp. 109–144. doi:10.1016/S0065-3454(08)60331-9. ISBN 978-0-12-004525-9.
  116. ^ Brown, J. L.; Morales, V.; Summers, K. (2010). "A key ecological trait drove the evolution of biparental care and monogamy in an amphibian". American Naturalist. 175 (4): 436–446. doi:10.1086/650727. PMID 20180700. S2CID 20270737. from the original on July 29, 2020. Retrieved November 10, 2016.
  117. ^ Dorit, Walker & Barnes 1991, pp. 853–854.
  118. ^ Fandiño, María Claudia; Lüddecke, Horst; Amézquita, Adolfo (1997). "Vocalisation and larval transportation of male Colostethus subpunctatus (Anura: Dendrobatidae)". Amphibia-Reptilia. 18 (1): 39–48. doi:10.1163/156853897X00297.
  119. ^ van der Meijden, Arie (January 18, 2010). "Alytes obstetricans". AmphibiaWeb. from the original on December 25, 2012. Retrieved November 29, 2012.
  120. ^ Semeyn, E. (2002). "Rheobatrachus silus". Animal Diversity Web. University of Michigan Museum of Zoology. from the original on July 6, 2012. Retrieved August 5, 2012.
  121. ^ Hero, Jean-Marc; Clarke, John; Meyer, Ed (2004). "Assa darlingtoni". IUCN Red List of Threatened Species. 2004. Retrieved October 2, 2019.
  122. ^ La Marca, Enrique; Azevedo-Ramos, Claudia; Silvano, Débora; Coloma, Luis A.; Ron, Santiago; Hardy, Jerry; Beier, Manfred (2010). "Pipa pipa (Suriname Toad)". IUCN Red List of Threatened Species. 2010. Retrieved October 2, 2019.
  123. ^ van Wijngaarden, René; Bolaños, Federico (1992). "Parental care in Dendrobates granuliferus (Anura: Dendrobatidae), with a description of the tadpole". Journal of Herpetology. 26 (1): 102–105. doi:10.2307/1565037. JSTOR 1565037. from the original on October 4, 2018. Retrieved November 10, 2016.
  124. ^ a b Uno, Yoshinobu (2021). "Inference of evolution of vertebrate genomes and chromosomes from genomic and cytogenetic analyses using amphibians". Chromosome Science. 24 (1–2): 3–12. doi:10.11352/scr.24.3. from the original on September 6, 2021. Retrieved September 6, 2021.
  125. ^ Nowoshilow, Sergej; Schloissnig, Siegfried; Fei, Ji-Feng; Dahl, Andreas; Pang, Andy W. C.; Pippel, Martin; Winkler, Sylke; Hastie, Alex R.; Young, George; Roscito, Juliana G.; Falcon, Francisco (2018). "The axolotl genome and the evolution of key tissue formation regulators". Nature. 554 (7690): 50–55. Bibcode:2018Natur.554...50N. doi:10.1038/nature25458. ISSN 0028-0836. PMID 29364872.
  126. ^ Gabbard, Jesse (2000). "Siren intermedia: Lesser Siren". Animal Diversity Web. University of Michigan Museum of Zoology. from the original on January 2, 2010. Retrieved August 11, 2012.
  127. ^ Da Silva, H. R.; De Britto-Pereira, M. C. (2006). "How much fruit do fruit-eating frogs eat? An investigation on the diet of Xenohyla truncata (Lissamphibia: Anura: Hylidae)". Journal of Zoology. 270 (4): 692–698. doi:10.1111/j.1469-7998.2006.00192.x. from the original on June 23, 2019. Retrieved November 10, 2016.
  128. ^ Trueb, Linda; Gans, Carl (1983). "Feeding specializations of the Mexican burrowing toad, Rhinophrynus dorsalis (Anura: Rhinophrynidae)" (PDF). Journal of Zoology. 199 (2): 189–208. doi:10.1111/j.1469-7998.1983.tb02090.x. hdl:2027.42/74489. (PDF) from the original on July 27, 2020. Retrieved August 27, 2019.
  129. ^ Hamilton, W. J. Jr. (1948). "The food and feeding behavior of the green frog, Rana clamitans Latreille, in New York State". Copeia. American Society of Ichthyologists and Herpetologists. 1948 (3): 203–207. doi:10.2307/1438455. JSTOR 1438455.
  130. ^ Stebbins & Cohen 1995, p. 56.
  131. ^ Stebbins & Cohen 1995, pp. 57–58.
  132. ^ Radcliffe, Charles W.; Chiszar, David; Estep, Karen; Murphy, James B.; Smith, Hobart M. (1986). "Observations on pedal luring and pedal movements in Leptodactylid frogs". Journal of Herpetology. 20 (3): 300–306. doi:10.2307/1564496. JSTOR 1564496.
  133. ^ Toft, Catherine A. (1981). "Feeding ecology of Panamanian litter anurans: patterns in diet and foraging mode". Journal of Herpetology. 15 (2): 139–144. doi:10.2307/1563372. JSTOR 1563372. from the original on July 30, 2020. Retrieved November 10, 2016.
  134. ^ Bemis, W. E.; Schwenk, K.; Wake, M. H. (1983). "Morphology and function of the feeding apparatus in Dermophis mexicanus (Amphibia: Gymnophiona)". Zoological Journal of the Linnean Society. 77 (1): 75–96. doi:10.1111/j.1096-3642.1983.tb01722.x. from the original on July 30, 2020. Retrieved November 10, 2016.
  135. ^ Stebbins & Cohen 1995, pp. 181–185.
  136. ^ a b Stebbins & Cohen 1995, pp. 76–77.
  137. ^ Sullivan, Brian K. (1992). "Sexual selection and calling behavior in the American toad (Bufo americanus)". Copeia. 1992 (1): 1–7. doi:10.2307/1446530. JSTOR 1446530.
  138. ^ Toledo, L. F.; Haddad, C. F. B. (2007). "Capitulo 4" (PDF). When frogs scream! A review of anuran defensive vocalizations (Thesis). Instituto de Biociências, São Paulo. (PDF) from the original on September 4, 2012. Retrieved August 13, 2012.
  139. ^ Johnson, Steve A. (2010). "The Cuban Treefrog (Osteopilus septentrionalis) in Florida". EDIS. University of Florida. from the original on August 20, 2012. Retrieved August 13, 2012.
  140. ^ Shine, Richard (1979). "Sexual selection and sexual dimorphism in the Amphibia". Copeia. 1979 (2): 297–306. doi:10.2307/1443418. JSTOR 1443418.
  141. ^ a b c Gergits, W. F.; Jaeger, R. G. (1990). "Site attachment by the red-backed salamander, Plethodon cinereus". Journal of Herpetology. 24 (1): 91–93. doi:10.2307/1564297. JSTOR 1564297.
  142. ^ Casper, Gary S. "Plethodon cinereus". AmphibiaWeb. from the original on June 9, 2013. Retrieved September 25, 2012.
  143. ^ Wells, K. D. (1977). "Territoriality and male mating success in the green frog (Rana clamitans)". Ecology. 58 (4): 750–762. doi:10.2307/1936211. JSTOR 1936211.
  144. ^ a b Barthalmus, G. T.; Zielinski W. J. (1988). "Xenopus skin mucus induces oral dyskinesias that promote escape from snakes". Pharmacology Biochemistry and Behavior. 30 (4): 957–959. doi:10.1016/0091-3057(88)90126-8. PMID 3227042. S2CID 25434883.
  145. ^ Crayon, John J. "Xenopus laevis". AmphibiaWeb. from the original on October 9, 2014. Retrieved October 8, 2012.
  146. ^ Moodie, G. E. E. (1978). "Observations on the life history of the caecilian Typhlonectes compressicaudus (Dumeril and Bibron) in the Amazon basin". Canadian Journal of Zoology. 56 (4): 1005–1008. doi:10.1139/z78-141. from the original on July 5, 2020. Retrieved November 10, 2016.
  147. ^ Brodie, Edmund D. Jr. (1968). "Investigations on the skin toxin of the adult rough-skinned newt, Taricha granulosa". Copeia. 1968 (2): 307–313. doi:10.2307/1441757. JSTOR 1441757.
  148. ^ a b Hanifin, Charles T.; Yotsu-Yamashita, Mari; Yasumoto, Takeshi; Brodie, Edmund D.; Brodie, Edmund D. Jr. (1999). "Toxicity of dangerous prey: variation of tetrodotoxin levels within and among populations of the newt Taricha granulosa". Journal of Chemical Ecology. 25 (9): 2161–2175. doi:10.1023/A:1021049125805. S2CID 543221. from the original on July 5, 2020. Retrieved November 10, 2016.
  149. ^ Geffeney, Shana L.; Fujimoto, Esther; Brodie, Edmund D.; Brodie, Edmund D. Jr.; Ruben, Peter C. (2005). "Evolutionary diversification of TTX-resistant sodium channels in a predator–prey interaction". Nature. 434 (7034): 759–763. Bibcode:2005Natur.434..759G. doi:10.1038/nature03444. PMID 15815629. S2CID 4426708.
  150. ^ Stebbins & Cohen 1995, p. 110.
  151. ^ Patocka, Jiri; Wulff, Kräuff; Palomeque, MaríaVictoria (1999). "Dart Poison Frogs and Their Toxins". ASA Newsletter. 5 (75). ISSN 1057-9419. from the original on March 23, 2014. Retrieved January 29, 2013.
  152. ^ Darst, Catherine R.; Cummings, Molly E. (March 9, 2006). "Predator learning favours mimicry of a less-toxic model in poison frogs". Nature. 440 (7081): 208–211. Bibcode:2006Natur.440..208D. doi:10.1038/nature04297. PMID 16525472.
  153. ^ Brodie, Edmund D. Jr.; Nowak, Robert T.; Harvey, William R. (1979). "Antipredator secretions and behavior of selected salamanders against shrews". Copeia. 1979 (2): 270–274. doi:10.2307/1443413. JSTOR 1443413.
  154. ^ Brodie, E. D. Jr. (1978). "Biting and vocalisation as antipredator mechanisms in terrestrial salamanders". Copeia. 1978 (1): 127–129. doi:10.2307/1443832. JSTOR 1443832.
  155. ^ Hloch, A. (2010). What Does a Salamander Remember After Winter? (PDF). University of Vienna. Fakultät für Lebenswissenschaften. (PDF) from the original on October 4, 2018. Retrieved November 15, 2015.
  156. ^ Stancher, G.; Rugani, R.; Regolin, L.; Vallortigara, G. (2015). "Numerical discrimination by frogs (Bombina orientalis)". Animal Cognition. 18 (1): 219–229. doi:10.1007/s10071-014-0791-7. PMID 25108417. S2CID 16499583. from the original on July 14, 2021. Retrieved November 10, 2016.
  157. ^ McCallum, M. L. (2007). "Amphibian decline or extinction? Current declines dwarf background extinction rate". Journal of Herpetology. 41 (3): 483–491. doi:10.1670/0022-1511(2007)41[483:ADOECD]2.0.CO;2. S2CID 30162903.
  158. ^ "What does it mean to be human?". Smithsonian National Museum of Natural History. from the original on November 22, 2013. Retrieved November 19, 2013.
  159. ^ Hoekstra, J. M.; Molnar, J. L.; Jennings, M.; Revenga, C.; Spalding, M. D.; Boucher, T. M.; Robertson, J. C.; Heibel, T. J.; Ellison, K. (2010). "Number of Globally Threatened Amphibian Species by Freshwater Ecoregion". The Atlas of Global Conservation: Changes, Challenges, and Opportunities to Make a Difference. The Nature Conservancy. from the original on October 27, 2012. Retrieved September 5, 2012.
  160. ^ "Amphibian Specialist Group". IUCN SSC Amphibian Specialist Group. from the original on February 22, 2011. Retrieved March 30, 2012.
  161. ^ Jennings, W. Bryan; Bradford, David F.; Johnson, Dale F. (1992). "Dependence of the garter snake Thamnophis elegans on amphibians in the Sierra Nevada of California". Journal of Herpetology. 26 (4): 503–505. doi:10.2307/1565132. JSTOR 1565132. from the original on October 4, 2018. Retrieved November 10, 2016.
  162. ^ Stebbins & Cohen 1995, p. 249.
  163. ^ a b Hall, J.R.; Henry, F.P.P. (1992). "Review: Assessing Effects of Pesticide on Amphibians and Reptiles: Status and needs". Herpetological Journal. 2: 65–71.
  164. ^ a b . IUCN. Archived from the original on April 27, 2012. Retrieved March 30, 2012.
  165. ^ . Amphibian Ark. Archived from the original on June 14, 2010. Retrieved March 30, 2012.
  166. ^ Regier, Henry A.; Baskerville, Gordon, L. (1996). "Sustainability Issues for Resource Managers". Sustainable redevelopment of regional ecosystems degraded by exploitive development. DIANE Publishing. pp. 36–38. ISBN 978-0-7881-4699-2. from the original on April 14, 2021. Retrieved October 15, 2020.

Cited texts

Further reading

  • Carroll, Robert L. (1988). Vertebrate Paleontology and Evolution. W. H. Freeman. ISBN 978-0-7167-1822-2.
  • Carroll, Robert L. (2009). The Rise of Amphibians: 365 Million Years of Evolution. Johns Hopkins University Press. ISBN 978-0-8018-9140-3.
  • Duellman, William E.; Linda Trueb (1994). Biology of Amphibians. Johns Hopkins University Press. ISBN 978-0-8018-4780-6.
  • Frost, Darrel R.; Grant, Taran; Faivovich, Julián; Bain, Raoul H.; Haas, Alexander; Haddad, Célio F.B.; De Sá, Rafael O.; Channing, Alan; Wilkinson, Mark; Donnellan, Stephen C.; Raxworthy, Christopher J.; Campbell, Jonathan A.; Blotto, Boris L.; Moler, Paul; Drewes, Robert C.; Nussbaum, Ronald A.; Lynch, John D.; Green, David M.; Wheeler, Ward C. (2006). "The Amphibian Tree of Life". Bulletin of the American Museum of Natural History. 297: 1–291. doi:10.1206/0003-0090(2006)297[0001:TATOL]2.0.CO;2. hdl:2246/5781. S2CID 86140137.
  • Pounds, J. Alan; Bustamante, Martín R.; Coloma, Luis A.; Consuegra, Jamie A.; Fogden, Michael P. L.; Foster, Pru N.; La Marca, Enrique; Masters, Karen L.; Merino-Viteri, Andrés; Puschendorf, Robert; Ron, Santiago R.; Sánchez-Azofeifa, G. Arturo; Still, Christopher J.; Young, Bruce E. (2006). "Widespread amphibian extinctions from epidemic disease driven by global warming". Nature. 439 (7073): 161–167. Bibcode:2006Natur.439..161A. doi:10.1038/nature04246. PMID 16407945. S2CID 4430672.
  • Stuart, Simon N.; Chanson, Janice S.; Cox, Neil A.; Young, Bruce E.; Rodrigues, Ana S. L.; Fischman, Debra L.; Waller, Robert W. (2004). "Status and trends of amphibian declines and extinctions worldwide". Science. 306 (5702): 1783–1786. Bibcode:2004Sci...306.1783S. CiteSeerX 10.1.1.225.9620. doi:10.1126/science.1103538. PMID 15486254. S2CID 86238651.
  • Stuart, S. N.; Hoffmann, M.; Chanson, J. S.; Cox, N. A.; Berridge, R. J.; Ramani, P.; Young, B. E., eds. (2008). . Published by Lynx Edicions, in association with IUCN-The World Conservation Union, Conservation International and NatureServe. ISBN 978-84-96553-41-5. Archived from the original on October 30, 2014. Retrieved October 30, 2014.

External links

  • Amphibians – AnimalSpot.net
  •  : available in vector, image and PDF formats
  • Amphibian Specialist Group
  • Amphibian Ark
  • AmphibiaWeb
  • Global Amphibian Assessment April 12, 2011, at the Wayback Machine
  • Amphibian vocalisations on Archival Sound Recordings

amphibian, amphibia, redirects, here, series, amphibia, series, other, uses, amphibia, disambiguation, other, uses, disambiguation, four, limbed, ectothermic, vertebrates, class, amphibia, living, amphibians, belong, group, lissamphibia, they, inhabit, wide, v. Amphibia redirects here For the TV series see Amphibia TV series For other uses see Amphibia disambiguation For other uses see Amphibian disambiguation Amphibians are four limbed and ectothermic vertebrates of the class Amphibia All living amphibians belong to the group Lissamphibia They inhabit a wide variety of habitats with most species living within terrestrial fossorial arboreal or freshwater aquatic ecosystems Thus amphibians typically start out as larvae living in water but some species have developed behavioural adaptations to bypass this AmphibiansTemporal range Early Carboniferous present 350 0 Ma 1 PreꞒ Ꞓ O S D C P T J K Pg NLeft to Right Leaf green tree frog Seymouria Eastern newt Mexican burrowing caecilianScientific classificationKingdom AnimaliaPhylum ChordataClade BatrachomorphaClass AmphibiaGray 1825 2 Subclasses Lepospondyli Temnospondyli Lissamphibia modern amphibians Anura frogs Caudata salamanders Gymnophiona caecilians AlbanerpetontidaeMany amphibians like this Ceratophrys cranwelli exhibit biofluorescence 3 The young generally undergo metamorphosis from larva with gills to an adult air breathing form with lungs Amphibians use their skin as a secondary respiratory surface and some small terrestrial salamanders and frogs lack lungs and rely entirely on their skin They are superficially similar to reptiles like lizards but along with mammals and birds reptiles are amniotes and do not require water bodies in which to breed With their complex reproductive needs and permeable skins amphibians are often ecological indicators in recent decades there has been a dramatic decline in amphibian populations for many species around the globe The earliest amphibians evolved in the Devonian period from sarcopterygian fish with lungs and bony limbed fins features that were helpful in adapting to dry land They diversified and became dominant during the Carboniferous and Permian periods but were later displaced by reptiles and other vertebrates The origin of modern amphibians belonging to Lissamphibia which first appeared during the Early Triassic around 250 million years ago has long been contentious However the emerging consensus is that they likely originated from temnospondyls the most diverse group of prehistoric amphibians during the Permian period 4 The three modern orders of amphibians are Anura the frogs Urodela the salamanders and Apoda the caecilians A fourth group the Albanerpetontidae became extinct around 2 million years ago The number of known amphibian species is approximately 8 000 of which nearly 90 are frogs The smallest amphibian and vertebrate in the world is a frog from New Guinea Paedophryne amauensis with a length of just 7 7 mm 0 30 in The largest living amphibian is the 1 8 m 5 ft 11 in South China giant salamander Andrias sligoi but this is dwarfed by prehistoric temnospondyls such as Mastodonsaurus which could reach up to 6 metres in length 5 The study of amphibians is called batrachology while the study of both reptiles and amphibians is called herpetology Contents 1 Classification 2 Evolutionary history 3 Characteristics 3 1 Anura 3 2 Caudata 3 3 Gymnophiona 4 Anatomy and physiology 4 1 Skin 4 2 Skeletal system and locomotion 4 3 Circulatory system 4 4 Nervous and sensory systems 4 5 Digestive and excretory systems 4 6 Respiratory system 5 Reproduction 6 Life cycle 6 1 Eggs 6 2 Larvae 6 2 1 Frogs 6 2 2 Salamanders 6 2 3 Caecilians 6 3 Parental care 7 Genetics and genomics 8 Feeding and diet 9 Vocalization 10 Territorial behaviour 11 Defence mechanisms 12 Cognition 13 Conservation 13 1 Food webs and predation 13 2 Pollution and pesticides 13 3 Conservation and protection strategies 14 See also 15 References 15 1 Cited texts 16 Further reading 17 External linksClassificationSee also List of amphibians The world s smallest known vertebrate Paedophryne amauensis sitting on a U S dime The dime is 17 9 mm in diameter for scale The word amphibian is derived from the Ancient Greek term ἀmfibios amphibios which means both kinds of life ἀmfi meaning of both kinds and bios meaning life The term was initially used as a general adjective for animals that could live on land or in water including seals and otters 6 Traditionally the class Amphibia includes all tetrapod vertebrates that are not amniotes Amphibia in its widest sense sensu lato was divided into three subclasses two of which are extinct 7 Subclass Lepospondyli small Paleozoic group which are more closely related to amniotes than Lissamphibia Subclass Temnospondyli diverse Paleozoic and early Mesozoic grade Subclass Lissamphibia all modern amphibians including frogs toads salamanders newts and caecilians Salientia frogs toads and relatives Jurassic to present 7 360 current species in 53 families 8 Caudata salamanders newts and relatives Jurassic to present 764 current species in 9 families 8 Gymnophiona caecilians and relatives Jurassic to present 215 current species in 10 families 8 Allocaudata Albanerpetontidae Middle Jurassic Early Pleistocene Triadobatrachus massinoti a proto frog from the Early Triassic of Madagascar The actual number of species in each group depends on the taxonomic classification followed The two most common systems are the classification adopted by the website AmphibiaWeb University of California Berkeley and the classification by herpetologist Darrel Frost and the American Museum of Natural History available as the online reference database Amphibian Species of the World 9 The numbers of species cited above follows Frost and the total number of known amphibian species as of March 31 2019 is exactly 8 000 10 of which nearly 90 are frogs 11 With the phylogenetic classification the taxon Labyrinthodontia has been discarded as it is a polyparaphyletic group without unique defining features apart from shared primitive characteristics Classification varies according to the preferred phylogeny of the author and whether they use a stem based or a node based classification Traditionally amphibians as a class are defined as all tetrapods with a larval stage while the group that includes the common ancestors of all living amphibians frogs salamanders and caecilians and all their descendants is called Lissamphibia The phylogeny of Paleozoic amphibians is uncertain and Lissamphibia may possibly fall within extinct groups like the Temnospondyli traditionally placed in the subclass Labyrinthodontia or the Lepospondyli and in some analyses even in the amniotes This means that advocates of phylogenetic nomenclature have removed a large number of basal Devonian and Carboniferous amphibian type tetrapod groups that were formerly placed in Amphibia in Linnaean taxonomy and included them elsewhere under cladistic taxonomy 2 If the common ancestor of amphibians and amniotes is included in Amphibia it becomes a paraphyletic group 12 All modern amphibians are included in the subclass Lissamphibia which is usually considered a clade a group of species that have evolved from a common ancestor The three modern orders are Anura the frogs Caudata or Urodela the salamanders and Gymnophiona or Apoda the caecilians 13 It has been suggested that salamanders arose separately from a Temnospondyl like ancestor and even that caecilians are the sister group of the advanced reptiliomorph amphibians and thus of amniotes 14 Although the fossils of several older proto frogs with primitive characteristics are known the oldest true frog is Prosalirus bitis from the Early Jurassic Kayenta Formation of Arizona It is anatomically very similar to modern frogs 15 The oldest known caecilian is another Early Jurassic species Eocaecilia micropodia also from Arizona 16 The earliest salamander is Beiyanerpeton jianpingensis from the Late Jurassic of northeastern China 17 Authorities disagree as to whether Salientia is a superorder that includes the order Anura or whether Anura is a sub order of the order Salientia The Lissamphibia are traditionally divided into three orders but an extinct salamander like family the Albanerpetontidae is now considered part of Lissamphibia alongside the superorder Salientia Furthermore Salientia includes all three recent orders plus the Triassic proto frog Triadobatrachus 18 Evolutionary historyMain article Evolution of tetrapods See also List of prehistoric amphibians Restoration of Eusthenopteron a fully aquatic lobe finned fish Restoration of Tiktaalik an advanced tetrapodomorph fish The first major groups of amphibians developed in the Devonian period around 370 million years ago from lobe finned fish which were similar to the modern coelacanth and lungfish 19 These ancient lobe finned fish had evolved multi jointed leg like fins with digits that enabled them to crawl along the sea bottom Some fish had developed primitive lungs that help them breathe air when the stagnant pools of the Devonian swamps were low in oxygen They could also use their strong fins to hoist themselves out of the water and onto dry land if circumstances so required Eventually their bony fins would evolve into limbs and they would become the ancestors to all tetrapods including modern amphibians reptiles birds and mammals Despite being able to crawl on land many of these prehistoric tetrapodomorph fish still spent most of their time in the water They had started to develop lungs but still breathed predominantly with gills 20 Many examples of species showing transitional features have been discovered Ichthyostega was one of the first primitive amphibians with nostrils and more efficient lungs It had four sturdy limbs a neck a tail with fins and a skull very similar to that of the lobe finned fish Eusthenopteron 19 Amphibians evolved adaptations that allowed them to stay out of the water for longer periods Their lungs improved and their skeletons became heavier and stronger better able to support the weight of their bodies on land They developed hands and feet with five or more digits 21 the skin became more capable of retaining body fluids and resisting desiccation 20 The fish s hyomandibula bone in the hyoid region behind the gills diminished in size and became the stapes of the amphibian ear an adaptation necessary for hearing on dry land 22 An affinity between the amphibians and the teleost fish is the multi folded structure of the teeth and the paired supra occipital bones at the back of the head neither of these features being found elsewhere in the animal kingdom 23 The Permian lepospondyl Diplocaulus was largely aquatic At the end of the Devonian period 360 million years ago the seas rivers and lakes were teeming with life while the land was the realm of early plants and devoid of vertebrates 23 though some such as Ichthyostega may have sometimes hauled themselves out of the water It is thought they may have propelled themselves with their forelimbs dragging their hindquarters in a similar manner to that used by the elephant seal 21 In the early Carboniferous 360 to 345 million years ago the climate became wet and warm Extensive swamps developed with mosses ferns horsetails and calamites Air breathing arthropods evolved and invaded the land where they provided food for the carnivorous amphibians that began to adapt to the terrestrial environment There were no other tetrapods on the land and the amphibians were at the top of the food chain occupying the ecological position currently held by the crocodile Though equipped with limbs and the ability to breathe air most still had a long tapering body and strong tail 23 They were the top land predators sometimes reaching several metres in length preying on the large insects of the period and the many types of fish in the water They still needed to return to water to lay their shell less eggs and even most modern amphibians have a fully aquatic larval stage with gills like their fish ancestors It was the development of the amniotic egg which prevents the developing embryo from drying out that enabled the reptiles to reproduce on land and which led to their dominance in the period that followed 19 After the Carboniferous rainforest collapse amphibian dominance gave way to reptiles 24 and amphibians were further devastated by the Permian Triassic extinction event 25 During the Triassic Period 250 to 200 million years ago the reptiles continued to out compete the amphibians leading to a reduction in both the amphibians size and their importance in the biosphere According to the fossil record Lissamphibia which includes all modern amphibians and is the only surviving lineage may have branched off from the extinct groups Temnospondyli and Lepospondyli at some period between the Late Carboniferous and the Early Triassic The relative scarcity of fossil evidence precludes precise dating 20 but the most recent molecular study based on multilocus sequence typing suggests a Late Carboniferous Early Permian origin for extant amphibians 26 The temnospondyl Eryops had sturdy limbs to support its body on land The origins and evolutionary relationships between the three main groups of amphibians is a matter of debate A 2005 molecular phylogeny based on rDNA analysis suggests that salamanders and caecilians are more closely related to each other than they are to frogs It also appears that the divergence of the three groups took place in the Paleozoic or early Mesozoic around 250 million years ago before the breakup of the supercontinent Pangaea and soon after their divergence from the lobe finned fish The briefness of this period and the swiftness with which radiation took place would help account for the relative scarcity of primitive amphibian fossils 27 There are large gaps in the fossil record the discovery of the dissorophoid temnospondyl Gerobatrachus from the Early Permian in Texas in 2008 provided a missing link with many of the characteristics of modern frogs 14 Molecular analysis suggests that the frog salamander divergence took place considerably earlier than the palaeontological evidence indicates 14 One study suggested suggested that the last common ancestor of all modern amphibians lived about 315 million years ago and that stereospondyl temnospondyls are the closest relatives to the caecilians 28 However most studies support a single monophyletic origin of all modern amphibians within the dissorophoid temnospondyls 4 As they evolved from lunged fish amphibians had to make certain adaptations for living on land including the need to develop new means of locomotion In the water the sideways thrusts of their tails had propelled them forward but on land quite different mechanisms were required Their vertebral columns limbs limb girdles and musculature needed to be strong enough to raise them off the ground for locomotion and feeding Terrestrial adults discarded their lateral line systems and adapted their sensory systems to receive stimuli via the medium of the air They needed to develop new methods to regulate their body heat to cope with fluctuations in ambient temperature They developed behaviours suitable for reproduction in a terrestrial environment Their skins were exposed to harmful ultraviolet rays that had previously been absorbed by the water The skin changed to become more protective and prevent excessive water loss 29 CharacteristicsThe superclass Tetrapoda is divided into four classes of vertebrate animals with four limbs 30 Reptiles birds and mammals are amniotes the eggs of which are either laid or carried by the female and are surrounded by several membranes some of which are impervious 31 Lacking these membranes amphibians require water bodies for reproduction although some species have developed various strategies for protecting or bypassing the vulnerable aquatic larval stage 29 They are not found in the sea with the exception of one or two frogs that live in brackish water in mangrove swamps 32 the Anderson s salamander meanwhile occurs in brackish or salt water lakes 33 On land amphibians are restricted to moist habitats because of the need to keep their skin damp 29 Modern amphibians have a simplified anatomy compared to their ancestors due to paedomorphosis caused by two evolutionary trends miniaturization and an unusually large genome which result in a slower growth and development rate compared to other vertebrates 34 35 Another reason for their size is associated with their rapid metamorphosis which seems to have evolved only in the ancestors of lissamphibia in all other known lines the development was much more gradual Because a remodeling of the feeding apparatus means they don t eat during the metamorphosis the metamorphosis has to go faster the smaller the individual is so it happens at an early stage when the larvae are still small The largest species of salamanders don t go through a metamorphosis 36 Amphibians that lay eggs on land often go through the whole metamorphosis inside the egg An anamniotic terrestrial egg is less than 1 cm in diameter due to diffusion problems a size which puts a limit on the amount of posthatching growth 37 The smallest amphibian and vertebrate in the world is a microhylid frog from New Guinea Paedophryne amauensis first discovered in 2012 It has an average length of 7 7 mm 0 30 in and is part of a genus that contains four of the world s ten smallest frog species 38 The largest living amphibian is the 1 8 m 5 ft 11 in Chinese giant salamander Andrias davidianus 39 but this is a great deal smaller than the largest amphibian that ever existed the extinct 9 m 30 ft Prionosuchus a crocodile like temnospondyl dating to 270 million years ago from the middle Permian of Brazil 40 The largest frog is the African Goliath frog Conraua goliath which can reach 32 cm 13 in and weigh 3 kg 6 6 lb 39 Amphibians are ectothermic cold blooded vertebrates that do not maintain their body temperature through internal physiological processes Their metabolic rate is low and as a result their food and energy requirements are limited In the adult state they have tear ducts and movable eyelids and most species have ears that can detect airborne or ground vibrations They have muscular tongues which in many species can be protruded Modern amphibians have fully ossified vertebrae with articular processes Their ribs are usually short and may be fused to the vertebrae Their skulls are mostly broad and short and are often incompletely ossified Their skin contains little keratin and lacks scales apart from a few fish like scales in certain caecilians The skin contains many mucous glands and in some species poison glands a type of granular gland The hearts of amphibians have three chambers two atria and one ventricle They have a urinary bladder and nitrogenous waste products are excreted primarily as urea Most amphibians lay their eggs in water and have aquatic larvae that undergo metamorphosis to become terrestrial adults Amphibians breathe by means of a pump action in which air is first drawn into the buccopharyngeal region through the nostrils These are then closed and the air is forced into the lungs by contraction of the throat 41 They supplement this with gas exchange through the skin 29 Anura Red eyed tree frog Agalychnis callidryas with limbs and feet specialised for climbing The order Anura from the Ancient Greek a n meaning without and oura meaning tail comprises the frogs and toads They usually have long hind limbs that fold underneath them shorter forelimbs webbed toes with no claws no tails large eyes and glandular moist skin 13 Members of this order with smooth skins are commonly referred to as frogs while those with warty skins are known as toads The difference is not a formal one taxonomically and there are numerous exceptions to this rule Members of the family Bufonidae are known as the true toads 42 Frogs range in size from the 30 centimetre 12 in Goliath frog Conraua goliath of West Africa 43 to the 7 7 millimetre 0 30 in Paedophryne amauensis first described in Papua New Guinea in 2012 which is also the smallest known vertebrate 44 Although most species are associated with water and damp habitats some are specialised to live in trees or in deserts They are found worldwide except for polar areas 45 Anura is divided into three suborders that are broadly accepted by the scientific community but the relationships between some families remain unclear Future molecular studies should provide further insights into their evolutionary relationships 46 The suborder Archaeobatrachia contains four families of primitive frogs These are Ascaphidae Bombinatoridae Discoglossidae and Leiopelmatidae which have few derived features and are probably paraphyletic with regard to other frog lineages 47 The six families in the more evolutionarily advanced suborder Mesobatrachia are the fossorial Megophryidae Pelobatidae Pelodytidae Scaphiopodidae and Rhinophrynidae and the obligatorily aquatic Pipidae These have certain characteristics that are intermediate between the two other suborders 47 Neobatrachia is by far the largest suborder and includes the remaining families of modern frogs including most common species Ninety six percent of the over 5 000 extant species of frog are neobatrachians 48 Caudata Japanese giant salamander Andrias japonicus a primitive salamander The order Caudata from the Latin cauda meaning tail consists of the salamanders elongated low slung animals that mostly resemble lizards in form This is a symplesiomorphic trait and they are no more closely related to lizards than they are to mammals 49 Salamanders lack claws have scale free skins either smooth or covered with tubercles and tails that are usually flattened from side to side and often finned They range in size from the Chinese giant salamander Andrias davidianus which has been reported to grow to a length of 1 8 metres 5 ft 11 in 50 to the diminutive Thorius pennatulus from Mexico which seldom exceeds 20 mm 0 8 in in length 51 Salamanders have a mostly Laurasian distribution being present in much of the Holarctic region of the northern hemisphere The family Plethodontidae is also found in Central America and South America north of the Amazon basin 45 South America was apparently invaded from Central America by about the start of the Miocene 23 million years ago 52 Urodela is a name sometimes used for all the extant species of salamanders 53 Members of several salamander families have become paedomorphic and either fail to complete their metamorphosis or retain some larval characteristics as adults 54 Most salamanders are under 15 cm 6 in long They may be terrestrial or aquatic and many spend part of the year in each habitat When on land they mostly spend the day hidden under stones or logs or in dense vegetation emerging in the evening and night to forage for worms insects and other invertebrates 45 Danube crested newt Triturus dobrogicus an advanced salamander The suborder Cryptobranchoidea contains the primitive salamanders A number of fossil cryptobranchids have been found but there are only three living species the Chinese giant salamander Andrias davidianus the Japanese giant salamander Andrias japonicus and the hellbender Cryptobranchus alleganiensis from North America These large amphibians retain several larval characteristics in their adult state gills slits are present and the eyes are unlidded A unique feature is their ability to feed by suction depressing either the left side of their lower jaw or the right 55 The males excavate nests persuade females to lay their egg strings inside them and guard them As well as breathing with lungs they respire through the many folds in their thin skin which has capillaries close to the surface 56 The suborder Salamandroidea contains the advanced salamanders They differ from the cryptobranchids by having fused prearticular bones in the lower jaw and by using internal fertilisation In salamandrids the male deposits a bundle of sperm the spermatophore and the female picks it up and inserts it into her cloaca where the sperm is stored until the eggs are laid 57 The largest family in this group is Plethodontidae the lungless salamanders which includes 60 of all salamander species The family Salamandridae includes the true salamanders and the name newt is given to members of its subfamily Pleurodelinae 13 The third suborder Sirenoidea contains the four species of sirens which are in a single family Sirenidae Members of this order are eel like aquatic salamanders with much reduced forelimbs and no hind limbs Some of their features are primitive while others are derived 58 Fertilisation is likely to be external as sirenids lack the cloacal glands used by male salamandrids to produce spermatophores and the females lack spermathecae for sperm storage Despite this the eggs are laid singly a behaviour not conducive for external fertilisation 57 Gymnophiona The limbless South American caecilian Siphonops paulensis The order Gymnophiona from the Greek gymnos meaning naked and ophis meaning serpent or Apoda comprises the caecilians These are long cylindrical limbless animals with a snake or worm like form The adults vary in length from 8 to 75 centimetres 3 to 30 inches with the exception of Thomson s caecilian Caecilia thompsoni which can reach 150 centimetres 4 9 feet A caecilian s skin has a large number of transverse folds and in some species contains tiny embedded dermal scales It has rudimentary eyes covered in skin which are probably limited to discerning differences in light intensity It also has a pair of short tentacles near the eye that can be extended and which have tactile and olfactory functions Most caecilians live underground in burrows in damp soil in rotten wood and under plant debris but some are aquatic 59 Most species lay their eggs underground and when the larvae hatch they make their way to adjacent bodies of water Others brood their eggs and the larvae undergo metamorphosis before the eggs hatch A few species give birth to live young nourishing them with glandular secretions while they are in the oviduct 60 Caecilians have a mostly Gondwanan distribution being found in tropical regions of Africa Asia and Central and South America 61 Anatomy and physiologySkin The bright colours of the common reed frog Hyperolius viridiflavus are typical of a toxic species The integumentary structure contains some typical characteristics common to terrestrial vertebrates such as the presence of highly cornified outer layers renewed periodically through a moulting process controlled by the pituitary and thyroid glands Local thickenings often called warts are common such as those found on toads The outside of the skin is shed periodically mostly in one piece in contrast to mammals and birds where it is shed in flakes Amphibians often eat the sloughed skin 45 Caecilians are unique among amphibians in having mineralized dermal scales embedded in the dermis between the furrows in the skin The similarity of these to the scales of bony fish is largely superficial Lizards and some frogs have somewhat similar osteoderms forming bony deposits in the dermis but this is an example of convergent evolution with similar structures having arisen independently in diverse vertebrate lineages 62 Cross section of frog skin Mucous glandChromatophoreGranular poison glandConnective tissueStratum corneumTransition zoneEpidermisDermis Amphibian skin is permeable to water Gas exchange can take place through the skin cutaneous respiration and this allows adult amphibians to respire without rising to the surface of water and to hibernate at the bottom of ponds 45 To compensate for their thin and delicate skin amphibians have evolved mucous glands principally on their heads backs and tails The secretions produced by these help keep the skin moist In addition most species of amphibian have granular glands that secrete distasteful or poisonous substances Some amphibian toxins can be lethal to humans while others have little effect 63 The main poison producing glands the parotoids produce the neurotoxin bufotoxin and are located behind the ears of toads along the backs of frogs behind the eyes of salamanders and on the upper surface of caecilians 64 The skin colour of amphibians is produced by three layers of pigment cells called chromatophores These three cell layers consist of the melanophores occupying the deepest layer the guanophores forming an intermediate layer and containing many granules producing a blue green colour and the lipophores yellow the most superficial layer The colour change displayed by many species is initiated by hormones secreted by the pituitary gland Unlike bony fish there is no direct control of the pigment cells by the nervous system and this results in the colour change taking place more slowly than happens in fish A vividly coloured skin usually indicates that the species is toxic and is a warning sign to predators 65 Skeletal system and locomotion Skull diagram of Xenotosuchus a temnospondyl Amphibians have a skeletal system that is structurally homologous to other tetrapods though with a number of variations They all have four limbs except for the legless caecilians and a few species of salamander with reduced or no limbs The bones are hollow and lightweight The musculoskeletal system is strong to enable it to support the head and body The bones are fully ossified and the vertebrae interlock with each other by means of overlapping processes The pectoral girdle is supported by muscle and the well developed pelvic girdle is attached to the backbone by a pair of sacral ribs The ilium slopes forward and the body is held closer to the ground than is the case in mammals 66 Skeleton of the Surinam horned frog Ceratophrys cornuta In most amphibians there are four digits on the fore foot and five on the hind foot but no claws on either Some salamanders have fewer digits and the amphiumas are eel like in appearance with tiny stubby legs The sirens are aquatic salamanders with stumpy forelimbs and no hind limbs The caecilians are limbless They burrow in the manner of earthworms with zones of muscle contractions moving along the body On the surface of the ground or in water they move by undulating their body from side to side 67 In frogs the hind legs are larger than the fore legs especially so in those species that principally move by jumping or swimming In the walkers and runners the hind limbs are not so large and the burrowers mostly have short limbs and broad bodies The feet have adaptations for the way of life with webbing between the toes for swimming broad adhesive toe pads for climbing and keratinised tubercles on the hind feet for digging frogs usually dig backwards into the soil In most salamanders the limbs are short and more or less the same length and project at right angles from the body Locomotion on land is by walking and the tail often swings from side to side or is used as a prop particularly when climbing In their normal gait only one leg is advanced at a time in the manner adopted by their ancestors the lobe finned fish 66 Some salamanders in the genus Aneides and certain plethodontids climb trees and have long limbs large toepads and prehensile tails 57 In aquatic salamanders and in frog tadpoles the tail has dorsal and ventral fins and is moved from side to side as a means of propulsion Adult frogs do not have tails and caecilians have only very short ones 67 Didactic model of an amphibian heart Salamanders use their tails in defence and some are prepared to jettison them to save their lives in a process known as autotomy Certain species in the Plethodontidae have a weak zone at the base of the tail and use this strategy readily The tail often continues to twitch after separation which may distract the attacker and allow the salamander to escape Both tails and limbs can be regenerated 68 Adult frogs are unable to regrow limbs but tadpoles can do so 67 Circulatory system Juvenile amphibian circulatory systems are single loop systems which resemble fish Internal gills where the blood is reoxygenatedPoint where the blood is depleted of oxygen and returns to the heart via veinsTwo chambered heart Red indicates oxygenated blood and blue represents oxygen depleted blood Amphibians have a juvenile stage and an adult stage and the circulatory systems of the two are distinct In the juvenile or tadpole stage the circulation is similar to that of a fish the two chambered heart pumps the blood through the gills where it is oxygenated and is spread around the body and back to the heart in a single loop In the adult stage amphibians especially frogs lose their gills and develop lungs They have a heart that consists of a single ventricle and two atria When the ventricle starts contracting deoxygenated blood is pumped through the pulmonary artery to the lungs Continued contraction then pumps oxygenated blood around the rest of the body Mixing of the two bloodstreams is minimized by the anatomy of the chambers 69 Nervous and sensory systems See also Pain in amphibians The nervous system is basically the same as in other vertebrates with a central brain a spinal cord and nerves throughout the body The amphibian brain is relatively simple but broadly the same structurally as in reptiles birds and mammals Their brains are elongated except in caecilians and contain the usual motor and sensory areas of tetrapods 70 The pineal body known to regulate sleep patterns in humans is thought to produce the hormones involved in hibernation and aestivation in amphibians 71 Tadpoles retain the lateral line system of their ancestral fishes but this is lost in terrestrial adult amphibians Some caecilians possess electroreceptors that allow them to locate objects around them when submerged in water The ears are well developed in frogs There is no external ear but the large circular eardrum lies on the surface of the head just behind the eye This vibrates and sound is transmitted through a single bone the stapes to the inner ear Only high frequency sounds like mating calls are heard in this way but low frequency noises can be detected through another mechanism 66 There is a patch of specialized haircells called papilla amphibiorum in the inner ear capable of detecting deeper sounds Another feature unique to frogs and salamanders is the columella operculum complex adjoining the auditory capsule which is involved in the transmission of both airborne and seismic signals 72 The ears of salamanders and caecilians are less highly developed than those of frogs as they do not normally communicate with each other through the medium of sound 73 The eyes of tadpoles lack lids but at metamorphosis the cornea becomes more dome shaped the lens becomes flatter and eyelids and associated glands and ducts develop 66 The adult eyes are an improvement on invertebrate eyes and were a first step in the development of more advanced vertebrate eyes They allow colour vision and depth of focus In the retinas are green rods which are receptive to a wide range of wavelengths 73 Digestive and excretory systems Dissected frog Right atriumLiverAortaEgg massColonLeft atriumVentricleStomachLeft lungSpleenSmall intestineCloaca Many amphibians catch their prey by flicking out an elongated tongue with a sticky tip and drawing it back into the mouth before seizing the item with their jaws Some use inertial feeding to help them swallow the prey repeatedly thrusting their head forward sharply causing the food to move backwards in their mouth by inertia Most amphibians swallow their prey whole without much chewing so they possess voluminous stomachs The short oesophagus is lined with cilia that help to move the food to the stomach and mucus produced by glands in the mouth and pharynx eases its passage The enzyme chitinase produced in the stomach helps digest the chitinous cuticle of arthropod prey 74 Amphibians possess a pancreas liver and gall bladder The liver is usually large with two lobes Its size is determined by its function as a glycogen and fat storage unit and may change with the seasons as these reserves are built or used up Adipose tissue is another important means of storing energy and this occurs in the abdomen in internal structures called fat bodies under the skin and in some salamanders in the tail 75 There are two kidneys located dorsally near the roof of the body cavity Their job is to filter the blood of metabolic waste and transport the urine via ureters to the urinary bladder where it is stored before being passed out periodically through the cloacal vent Larvae and most aquatic adult amphibians excrete the nitrogen as ammonia in large quantities of dilute urine while terrestrial species with a greater need to conserve water excrete the less toxic product urea Some tree frogs with limited access to water excrete most of their metabolic waste as uric acid 76 Respiratory system The axolotl Ambystoma mexicanum retains its larval form with gills into adulthood The lungs in amphibians are primitive compared to those of amniotes possessing few internal septa and large alveoli and consequently having a comparatively slow diffusion rate for oxygen entering the blood Ventilation is accomplished by buccal pumping 77 Most amphibians however are able to exchange gases with the water or air via their skin To enable sufficient cutaneous respiration the surface of their highly vascularised skin must remain moist to allow the oxygen to diffuse at a sufficiently high rate 74 Because oxygen concentration in the water increases at both low temperatures and high flow rates aquatic amphibians in these situations can rely primarily on cutaneous respiration as in the Titicaca water frog and the hellbender salamander In air where oxygen is more concentrated some small species can rely solely on cutaneous gas exchange most famously the plethodontid salamanders which have neither lungs nor gills Many aquatic salamanders and all tadpoles have gills in their larval stage with some such as the axolotl retaining gills as aquatic adults 74 ReproductionSee also Sexual selection in amphibians Male orange thighed frog Litoria xanthomera grasping the female during amplexus For the purpose of reproduction most amphibians require fresh water although some lay their eggs on land and have developed various means of keeping them moist A few e g Fejervarya raja can inhabit brackish water but there are no true marine amphibians 78 There are reports however of particular amphibian populations unexpectedly invading marine waters Such was the case with the Black Sea invasion of the natural hybrid Pelophylax esculentus reported in 2010 79 Several hundred frog species in adaptive radiations e g Eleutherodactylus the Pacific Platymantis the Australo Papuan microhylids and many other tropical frogs however do not need any water for breeding in the wild They reproduce via direct development an ecological and evolutionary adaptation that has allowed them to be completely independent from free standing water Almost all of these frogs live in wet tropical rainforests and their eggs hatch directly into miniature versions of the adult passing through the tadpole stage within the egg Reproductive success of many amphibians is dependent not only on the quantity of rainfall but the seasonal timing 80 In the tropics many amphibians breed continuously or at any time of year In temperate regions breeding is mostly seasonal usually in the spring and is triggered by increasing day length rising temperatures or rainfall Experiments have shown the importance of temperature but the trigger event especially in arid regions is often a storm In anurans males usually arrive at the breeding sites before females and the vocal chorus they produce may stimulate ovulation in females and the endocrine activity of males that are not yet reproductively active 81 In caecilians fertilisation is internal the male extruding an intromittent organ the phallodeum and inserting it into the female cloaca The paired Mullerian glands inside the male cloaca secrete a fluid which resembles that produced by mammalian prostate glands and which may transport and nourish the sperm Fertilisation probably takes place in the oviduct 82 The majority of salamanders also engage in internal fertilisation In most of these the male deposits a spermatophore a small packet of sperm on top of a gelatinous cone on the substrate either on land or in the water The female takes up the sperm packet by grasping it with the lips of the cloaca and pushing it into the vent The spermatozoa move to the spermatheca in the roof of the cloaca where they remain until ovulation which may be many months later Courtship rituals and methods of transfer of the spermatophore vary between species In some the spermatophore may be placed directly into the female cloaca while in others the female may be guided to the spermatophore or restrained with an embrace called amplexus Certain primitive salamanders in the families Sirenidae Hynobiidae and Cryptobranchidae practice external fertilisation in a similar manner to frogs with the female laying the eggs in water and the male releasing sperm onto the egg mass 82 With a few exceptions frogs use external fertilisation The male grasps the female tightly with his forelimbs either behind the arms or in front of the back legs or in the case of Epipedobates tricolor around the neck They remain in amplexus with their cloacae positioned close together while the female lays the eggs and the male covers them with sperm Roughened nuptial pads on the male s hands aid in retaining grip Often the male collects and retains the egg mass forming a sort of basket with the hind feet An exception is the granular poison frog Oophaga granulifera where the male and female place their cloacae in close proximity while facing in opposite directions and then release eggs and sperm simultaneously The tailed frog Ascaphus truei exhibits internal fertilisation The tail is only possessed by the male and is an extension of the cloaca and used to inseminate the female This frog lives in fast flowing streams and internal fertilisation prevents the sperm from being washed away before fertilisation occurs 83 The sperm may be retained in storage tubes attached to the oviduct until the following spring 84 Most frogs can be classified as either prolonged or explosive breeders Typically prolonged breeders congregate at a breeding site the males usually arriving first calling and setting up territories Other satellite males remain quietly nearby waiting for their opportunity to take over a territory The females arrive sporadically mate selection takes place and eggs are laid The females depart and territories may change hands More females appear and in due course the breeding season comes to an end Explosive breeders on the other hand are found where temporary pools appear in dry regions after rainfall These frogs are typically fossorial species that emerge after heavy rains and congregate at a breeding site They are attracted there by the calling of the first male to find a suitable place perhaps a pool that forms in the same place each rainy season The assembled frogs may call in unison and frenzied activity ensues the males scrambling to mate with the usually smaller number of females 83 Sexual selection has been studied in the red back salamander There is a direct competition between males to win the attention of the females in salamanders and newts with elaborate courtship displays to keep the female s attention long enough to get her interested in choosing him to mate with 85 Some species store sperm through long breeding seasons as the extra time may allow for interactions with rival sperm 86 Life cycleMost amphibians go through metamorphosis a process of significant morphological change after birth In typical amphibian development eggs are laid in water and larvae are adapted to an aquatic lifestyle Frogs toads and salamanders all hatch from the egg as larvae with external gills Metamorphosis in amphibians is regulated by thyroxine concentration in the blood which stimulates metamorphosis and prolactin which counteracts thyroxine s effect Specific events are dependent on threshold values for different tissues 87 Because most embryonic development is outside the parental body it is subject to many adaptations due to specific environmental circumstances For this reason tadpoles can have horny ridges instead of Teeth whisker like skin extensions or fins They also make use of a sensory lateral line organ similar to that of fish After metamorphosis these organs become redundant and will be reabsorbed by controlled cell death called apoptosis The variety of adaptations to specific environmental circumstances among amphibians is wide with many discoveries still being made 88 Eggs Frogspawn a mass of eggs surrounded by jelly Amphibian egg Jelly capsuleVitelline membranePerivitelline fluidYolk plugEmbryo In the egg the embryo is suspended in perivitelline fluid and surrounded by semi permeable gelatinous capsules with the yolk mass providing nutrients As the larvae hatch the capules are dissolved by enzymes secreted from gland at the tip of the snout 73 The eggs of some salamanders and frogs contain unicellular green algae These penetrate the jelly envelope after the eggs are laid and may increase the supply of oxygen to the embryo through photosynthesis They seem to both speed up the development of the larvae and reduce mortality 89 In the wood frog Rana sylvatica the interior of the globular egg cluster has been found to be up to 6 C 11 F warmer than its surroundings which is an advantage in its cool northern habitat 90 The eggs may be deposited singly in cluster or in long strands Sites for laying eggs include water mud burrows debris and on plants or under logs or stones 91 The greenhouse frog Eleutherodactylus planirostris lays eggs in small groups in the soil where they develop in about two weeks directly into juvenile frogs without an intervening larval stage 92 The tungara frog Physalaemus pustulosus builds a floating nest from foam to protect its eggs First a raft is built then eggs are laid in the centre and finally a foam cap is overlaid The foam has anti microbial properties It contains no detergents but is created by whipping up proteins and lectins secreted by the female 93 94 Larvae Early stages in the development of the embryos of the common frog Rana temporaria The eggs of amphibians are typically laid in water and hatch into free living larvae that complete their development in water and later transform into either aquatic or terrestrial adults In many species of frog and in most lungless salamanders Plethodontidae direct development takes place the larvae growing within the eggs and emerging as miniature adults Many caecilians and some other amphibians lay their eggs on land and the newly hatched larvae wriggle or are transported to water bodies Some caecilians the alpine salamander Salamandra atra and some of the African live bearing toads Nectophrynoides spp are viviparous Their larvae feed on glandular secretions and develop within the female s oviduct often for long periods Other amphibians but not caecilians are ovoviviparous The eggs are retained in or on the parent s body but the larvae subsist on the yolks of their eggs and receive no nourishment from the adult The larvae emerge at varying stages of their growth either before or after metamorphosis according to their species 95 The toad genus Nectophrynoides exhibits all of these developmental patterns among its dozen or so members 11 Amphibian larvae are known as tadpoles They have thick rounded bodies with powerful muscular tails 76 Frogs Unlike in other amphibians frog tadpoles do not resemble adults 96 The free living larvae are normally fully aquatic but the tadpoles of some species such as Nannophrys ceylonensis are semi terrestrial and live among wet rocks 97 Tadpoles have cartilaginous skeletons gills for respiration external gills at first internal gills later lateral line systems and large tails that they use for swimming 98 Newly hatched tadpoles soon develop gill pouches that cover the gills The lungs develop early and are used as accessory breathing organs the tadpoles rising to the water surface to gulp air Some species complete their development inside the egg and hatch directly into small frogs These larvae do not have gills but instead have specialised areas of skin through which respiration takes place While tadpoles do not have true teeth in most species the jaws have long parallel rows of small keratinized structures called keradonts surrounded by a horny beak 99 Front legs are formed under the gill sac and hind legs become visible a few days later Iodine and T4 over stimulate the spectacular apoptosis programmed cell death of the cells of the larval gills tail and fins also stimulate the evolution of nervous systems transforming the aquatic vegetarian tadpole into the terrestrial carnivorous frog with better neurological visuospatial olfactory and cognitive abilities for hunting 100 101 In fact tadpoles developing in ponds and streams are typically herbivorous Pond tadpoles tend to have deep bodies large caudal fins and small mouths they swim in the quiet waters feeding on growing or loose fragments of vegetation Stream dwellers mostly have larger mouths shallow bodies and caudal fins they attach themselves to plants and stones and feed on the surface films of algae and bacteria 102 They also feed on diatoms filtered from the water through the gills and stir up the sediment at bottom of the pond ingesting edible fragments They have a relatively long spiral shaped gut to enable them to digest this diet 102 Some species are carnivorous at the tadpole stage eating insects smaller tadpoles and fish Young of the Cuban tree frog Osteopilus septentrionalis can occasionally be cannibalistic the younger tadpoles attacking a larger more developed tadpole when it is undergoing metamorphosis 103 Successive stages in the development of common toad Bufo bufo tadpoles finishing with metamorphosis At metamorphosis rapid changes in the body take place as the lifestyle of the frog changes completely The spiral shaped mouth with horny tooth ridges is reabsorbed together with the spiral gut The animal develops a large jaw and its gills disappear along with its gill sac Eyes and legs grow quickly and a tongue is formed There are associated changes in the neural networks such as development of stereoscopic vision and loss of the lateral line system All this can happen in about a day A few days later the tail is reabsorbed due to the higher thyroxine concentration required for this to take place 102 Salamanders Larva of the long toed salamander Ambystoma macrodactylum Larva of the long toed salamander Ambystoma macrodactylum Larvae of the alpine newt Ichthyosaura alpestris At hatching a typical salamander larva has eyes without lids teeth in both upper and lower jaws three pairs of feathery external gills and a long tail with dorsal and ventral fins The forelimbs may be partially developed and the hind limbs are rudimentary in pond living species but may be rather more developed in species that reproduce in moving water Pond type larvae often have a pair of balancers rod like structures on either side of the head that may prevent the gills from becoming clogged up with sediment 104 105 Both of these are able to breed 106 Some have larvae that never fully develop into the adult form a condition known as neoteny 107 Neoteny occurs when the animal s growth rate is very low and is usually linked to adverse conditions such as low water temperatures that may change the response of the tissues to the hormone thyroxine 108 as well as lack of food There are fifteen species of obligate neotenic salamanders including species of Necturus Proteus and Amphiuma and many examples of facultative ones such as the northwestern salamander Ambystoma gracile and the tiger salamander A tigrinum that adopt this strategy under appropriate environmental circumstances 107 Lungless salamanders in the family Plethodontidae are terrestrial and lay a small number of unpigmented eggs in a cluster among damp leaf litter Each egg has a large yolk sac and the larva feeds on this while it develops inside the egg emerging fully formed as a juvenile salamander The female salamander often broods the eggs In the genus Ensatinas the female has been observed to coil around them and press her throat area against them effectively massaging them with a mucous secretion 109 In newts and salamanders metamorphosis is less dramatic than in frogs This is because the larvae are already carnivorous and continue to feed as predators when they are adults so few changes are needed to their digestive systems Their lungs are functional early but the larvae do not make as much use of them as do tadpoles Their gills are never covered by gill sacs and are reabsorbed just before the animals leave the water Other changes include the reduction in size or loss of tail fins the closure of gill slits thickening of the skin the development of eyelids and certain changes in dentition and tongue structure Salamanders are at their most vulnerable at metamorphosis as swimming speeds are reduced and transforming tails are encumbrances on land 110 Adult salamanders often have an aquatic phase in spring and summer and a land phase in winter For adaptation to a water phase prolactin is the required hormone and for adaptation to the land phase thyroxine External gills do not return in subsequent aquatic phases because these are completely absorbed upon leaving the water for the first time 104 Caecilians The caecilian Ichthyophis glutinosus with eggs and developing embryo Most terrestrial caecilians that lay eggs do so in burrows or moist places on land near bodies of water The development of the young of Ichthyophis glutinosus a species from Sri Lanka has been much studied The eel like larvae hatch out of the eggs and make their way to water They have three pairs of external red feathery gills a blunt head with two rudimentary eyes a lateral line system and a short tail with fins They swim by undulating their body from side to side They are mostly active at night soon lose their gills and make sorties onto land Metamorphosis is gradual By the age of about ten months they have developed a pointed head with sensory tentacles near the mouth and lost their eyes lateral line systems and tails The skin thickens embedded scales develop and the body divides into segments By this time the caecilian has constructed a burrow and is living on land 111 The ringed caecilian Siphonops annulatus resembles an earthworm In the majority of species of caecilians the young are produced by viviparity Typhlonectes compressicauda a species from South America is typical of these Up to nine larvae can develop in the oviduct at any one time They are elongated and have paired sac like gills small eyes and specialised scraping teeth At first they feed on the yolks of the eggs but as this source of nourishment declines they begin to rasp at the ciliated epithelial cells that line the oviduct This stimulates the secretion of fluids rich in lipids and mucoproteins on which they feed along with scrapings from the oviduct wall They may increase their length sixfold and be two fifths as long as their mother before being born By this time they have undergone metamorphosis lost their eyes and gills developed a thicker skin and mouth tentacles and reabsorbed their teeth A permanent set of teeth grow through soon after birth 112 113 The ringed caecilian Siphonops annulatus has developed a unique adaptation for the purposes of reproduction The progeny feed on a skin layer that is specially developed by the adult in a phenomenon known as maternal dermatophagy The brood feed as a batch for about seven minutes at intervals of approximately three days which gives the skin an opportunity to regenerate Meanwhile they have been observed to ingest fluid exuded from the maternal cloaca 114 Parental care Male common rocket frog Colostethus panamensis carrying tadpoles on his back The care of offspring among amphibians has been little studied but in general the larger the number of eggs in a batch the less likely it is that any degree of parental care takes place Nevertheless it is estimated that in up to 20 of amphibian species one or both adults play some role in the care of the young 115 Those species that breed in smaller water bodies or other specialised habitats tend to have complex patterns of behaviour in the care of their young 116 Many woodland salamanders lay clutches of eggs under dead logs or stones on land The black mountain salamander Desmognathus welteri does this the mother brooding the eggs and guarding them from predation as the embryos feed on the yolks of their eggs When fully developed they break their way out of the egg capsules and disperse as juvenile salamanders 117 The male hellbender a primitive salamander excavates an underwater nest and encourages females to lay there The male then guards the site for the two or three months before the eggs hatch using body undulations to fan the eggs and increase their supply of oxygen 56 Male common midwife toad Alytes obstetricans carrying eggs The male Colostethus subpunctatus a tiny frog protects the egg cluster which is hidden under a stone or log When the eggs hatch the male transports the tadpoles on his back stuck there by a mucous secretion to a temporary pool where he dips himself into the water and the tadpoles drop off 118 The male midwife toad Alytes obstetricans winds egg strings round his thighs and carries the eggs around for up to eight weeks He keeps them moist and when they are ready to hatch he visits a pond or ditch and releases the tadpoles 119 The female gastric brooding frog Rheobatrachus spp reared larvae in her stomach after swallowing either the eggs or hatchlings however this stage was never observed before the species became extinct The tadpoles secrete a hormone that inhibits digestion in the mother whilst they develop by consuming their very large yolk supply 120 The pouched frog Assa darlingtoni lays eggs on the ground When they hatch the male carries the tadpoles around in brood pouches on his hind legs 121 The aquatic Surinam toad Pipa pipa raises its young in pores on its back where they remain until metamorphosis 122 The granular poison frog Oophaga granulifera is typical of a number of tree frogs in the poison dart frog family Dendrobatidae Its eggs are laid on the forest floor and when they hatch the tadpoles are carried one by one on the back of an adult to a suitable water filled crevice such as the axil of a leaf or the rosette of a bromeliad The female visits the nursery sites regularly and deposits unfertilised eggs in the water and these are consumed by the tadpoles 123 Genetics and genomicsAmphibians are notable among vertebrates for their diversity of chromosomes and genomes The karyotypes chromosomes have been determined for at least 1 193 14 5 of the 8 200 known diploid species including 963 anurans 209 salamanders and 21 caecilians Generally the karyotypes of diploid amphibians are characterized by 20 26 bi armed chromosomes Amphibians have also very large genomes compared to other taxa of vertebrates and corresponding variation in genome size C value picograms of DNA in haploid nuclei The genome sizes range from 0 95 to 11 5 pg in frogs from 13 89 to 120 56 pg in salamanders and from 2 94 to 11 78 pg in caecilians 124 The large genome sizes have prevented whole genome sequencing of amphibians although a number of genomes have been published recently The 1 7GB draft genome of Xenopus tropicalis was the first to be reported for amphibians in 2010 124 Compared to some salamanders this frog genome is tiny For instance the genome of the Mexican axolotl turned out to be 32 Gb which is more than 10 times larger than the human genome 3GB 125 Feeding and diet Northwestern salamander Ambystoma gracile eating a worm With a few exceptions adult amphibians are predators feeding on virtually anything that moves that they can swallow The diet mostly consists of small prey that do not move too fast such as beetles caterpillars earthworms and spiders The sirens Siren spp often ingest aquatic plant material with the invertebrates on which they feed 126 and a Brazilian tree frog Xenohyla truncata includes a large quantity of fruit in its diet 127 The Mexican burrowing toad Rhinophrynus dorsalis has a specially adapted tongue for picking up ants and termites It projects it with the tip foremost whereas other frogs flick out the rear part first their tongues being hinged at the front 128 Food is mostly selected by sight even in conditions of dim light Movement of the prey triggers a feeding response Frogs have been caught on fish hooks baited with red flannel and green frogs Rana clamitans have been found with stomachs full of elm seeds that they had seen floating past 129 Toads salamanders and caecilians also use smell to detect prey This response is mostly secondary because salamanders have been observed to remain stationary near odoriferous prey but only feed if it moves Cave dwelling amphibians normally hunt by smell Some salamanders seem to have learned to recognize immobile prey when it has no smell even in complete darkness 130 Amphibians usually swallow food whole but may chew it lightly first to subdue it 45 They typically have small hinged pedicellate teeth a feature unique to amphibians The base and crown of these are composed of dentine separated by an uncalcified layer and they are replaced at intervals Salamanders caecilians and some frogs have one or two rows of teeth in both jaws but some frogs Rana spp lack teeth in the lower jaw and toads Bufo spp have no teeth In many amphibians there are also vomerine teeth attached to a facial bone in the roof of the mouth 131 Edible frog Pelophylax esculentus exhibiting cannibalism The tiger salamander Ambystoma tigrinum is typical of the frogs and salamanders that hide under cover ready to ambush unwary invertebrates Others amphibians such as the Bufo spp toads actively search for prey while the Argentine horned frog Ceratophrys ornata lures inquisitive prey closer by raising its hind feet over its back and vibrating its yellow toes 132 Among leaf litter frogs in Panama frogs that actively hunt prey have narrow mouths and are slim often brightly coloured and toxic while ambushers have wide mouths and are broad and well camouflaged 133 Caecilians do not flick their tongues but catch their prey by grabbing it with their slightly backward pointing teeth The struggles of the prey and further jaw movements work it inwards and the caecilian usually retreats into its burrow The subdued prey is gulped down whole 134 When they are newly hatched frog larvae feed on the yolk of the egg When this is exhausted some move on to feed on bacteria algal crusts detritus and raspings from submerged plants Water is drawn in through their mouths which are usually at the bottom of their heads and passes through branchial food traps between their mouths and their gills where fine particles are trapped in mucus and filtered out Others have specialised mouthparts consisting of a horny beak edged by several rows of labial teeth They scrape and bite food of many kinds as well as stirring up the bottom sediment filtering out larger particles with the papillae around their mouths Some such as the spadefoot toads have strong biting jaws and are carnivorous or even cannibalistic 135 source source Audio showing Brazilian torrent frog males executing advertisement peep and squeal calls Vocalization Male treefrog Dendropsophus microcephalus inflating his air sac as he calls The calls made by caecilians and salamanders are limited to occasional soft squeaks grunts or hisses and have not been much studied A clicking sound sometimes produced by caecilians may be a means of orientation as in bats or a form of communication Most salamanders are considered voiceless but the California giant salamander Dicamptodon ensatus has vocal cords and can produce a rattling or barking sound Some species of salamander emit a quiet squeak or yelp if attacked 136 American toad Anaxyrus americanus singing Frogs are much more vocal especially during the breeding season when they use their voices to attract mates The presence of a particular species in an area may be more easily discerned by its characteristic call than by a fleeting glimpse of the animal itself In most species the sound is produced by expelling air from the lungs over the vocal cords into an air sac or sacs in the throat or at the corner of the mouth This may distend like a balloon and acts as a resonator helping to transfer the sound to the atmosphere or the water at times when the animal is submerged 136 The main vocalisation is the male s loud advertisement call which seeks to both encourage a female to approach and discourage other males from intruding on its territory This call is modified to a quieter courtship call on the approach of a female or to a more aggressive version if a male intruder draws near Calling carries the risk of attracting predators and involves the expenditure of much energy 137 Other calls include those given by a female in response to the advertisement call and a release call given by a male or female during unwanted attempts at amplexus When a frog is attacked a distress or fright call is emitted often resembling a scream 138 The usually nocturnal Cuban tree frog Osteopilus septentrionalis produces a rain call when there is rainfall during daylight hours 139 Territorial behaviourLittle is known of the territorial behaviour of caecilians but some frogs and salamanders defend home ranges These are usually feeding breeding or sheltering sites Males normally exhibit such behaviour though in some species females and even juveniles are also involved Although in many frog species females are larger than males this is not the case in most species where males are actively involved in territorial defence Some of these have specific adaptations such as enlarged teeth for biting or spines on the chest arms or thumbs 140 The red back salamander Plethodon cinereus defends a territory against intruders In salamanders defence of a territory involves adopting an aggressive posture and if necessary attacking the intruder This may involve snapping chasing and sometimes biting occasionally causing the loss of a tail The behaviour of red back salamanders Plethodon cinereus has been much studied 91 of marked individuals that were later recaptured were within a metre yard of their original daytime retreat under a log or rock 141 A similar proportion when moved experimentally a distance of 30 metres 98 ft found their way back to their home base 141 The salamanders left odour marks around their territories which averaged 0 16 to 0 33 square metres 1 7 to 3 6 sq ft in size and were sometimes inhabited by a male and female pair 142 These deterred the intrusion of others and delineated the boundaries between neighbouring areas Much of their behaviour seemed stereotyped and did not involve any actual contact between individuals An aggressive posture involved raising the body off the ground and glaring at the opponent who often turned away submissively If the intruder persisted a biting lunge was usually launched at either the tail region or the naso labial grooves Damage to either of these areas can reduce the fitness of the rival either because of the need to regenerate tissue or because it impairs its ability to detect food 141 In frogs male territorial behaviour is often observed at breeding locations calling is both an announcement of ownership of part of this resource and an advertisement call to potential mates In general a deeper voice represents a heavier and more powerful individual and this may be sufficient to prevent intrusion by smaller males Much energy is used in the vocalization and it takes a toll on the territory holder who may be displaced by a fitter rival if he tires There is a tendency for males to tolerate the holders of neighbouring territories while vigorously attacking unknown intruders Holders of territories have a home advantage and usually come off better in an encounter between two similar sized frogs If threats are insufficient chest to chest tussles may take place Fighting methods include pushing and shoving deflating the opponent s vocal sac seizing him by the head jumping on his back biting chasing splashing and ducking him under the water 143 Defence mechanisms Cane toad Rhinella marina with poison glands behind the eyes Amphibians have soft bodies with thin skins and lack claws defensive armour or spines Nevertheless they have evolved various defence mechanisms to keep themselves alive The first line of defence in salamanders and frogs is the mucous secretion that they produce This keeps their skin moist and makes them slippery and difficult to grip The secretion is often sticky and distasteful or toxic 144 Snakes have been observed yawning and gaping when trying to swallow African clawed frogs Xenopus laevis which gives the frogs an opportunity to escape 144 145 Caecilians have been little studied in this respect but the Cayenne caecilian Typhlonectes compressicauda produces toxic mucus that has killed predatory fish in a feeding experiment in Brazil 146 In some salamanders the skin is poisonous The rough skinned newt Taricha granulosa from North America and other members of its genus contain the neurotoxin tetrodotoxin TTX the most toxic non protein substance known and almost identical to that produced by pufferfish Handling the newts does not cause harm but ingestion of even the most minute amounts of the skin is deadly In feeding trials fish frogs reptiles birds and mammals were all found to be susceptible 147 148 The only predators with some tolerance to the poison are certain populations of common garter snake Thamnophis sirtalis In locations where both snake and salamander co exist the snakes have developed immunity through genetic changes and they feed on the amphibians with impunity 149 Coevolution occurs with the newt increasing its toxic capabilities at the same rate as the snake further develops its immunity 148 Some frogs and toads are toxic the main poison glands being at the side of the neck and under the warts on the back These regions are presented to the attacking animal and their secretions may be foul tasting or cause various physical or neurological symptoms Altogether over 200 toxins have been isolated from the limited number of amphibian species that have been investigated 150 The fire salamander Salamandra salamandra a toxic species wears warning colours Perhaps the most poisonous animal in the world the golden poison frog Phyllobates terribilis is endemic to Colombia 151 Poisonous species often use bright colouring to warn potential predators of their toxicity These warning colours tend to be red or yellow combined with black with the fire salamander Salamandra salamandra being an example Once a predator has sampled one of these it is likely to remember the colouration next time it encounters a similar animal In some species such as the fire bellied toad Bombina spp the warning colouration is on the belly and these animals adopt a defensive pose when attacked exhibiting their bright colours to the predator The frog Allobates zaparo is not poisonous but mimics the appearance of other toxic species in its locality a strategy that may deceive predators 152 Many amphibians are nocturnal and hide during the day thereby avoiding diurnal predators that hunt by sight Other amphibians use camouflage to avoid being detected They have various colourings such as mottled browns greys and olives to blend into the background Some salamanders adopt defensive poses when faced by a potential predator such as the North American northern short tailed shrew Blarina brevicauda Their bodies writhe and they raise and lash their tails which makes it difficult for the predator to avoid contact with their poison producing granular glands 153 A few salamanders will autotomise their tails when attacked sacrificing this part of their anatomy to enable them to escape The tail may have a constriction at its base to allow it to be easily detached The tail is regenerated later but the energy cost to the animal of replacing it is significant 68 Some frogs and toads inflate themselves to make themselves look large and fierce and some spadefoot toads Pelobates spp scream and leap towards the attacker 45 Giant salamanders of the genus Andrias as well as Ceratophrine and Pyxicephalus frogs possess sharp teeth and are capable of drawing blood with a defensive bite The blackbelly salamander Desmognathus quadramaculatus can bite an attacking common garter snake Thamnophis sirtalis two or three times its size on the head and often manages to escape 154 CognitionIn amphibians there is evidence of habituation associative learning through both classical and instrumental learning and discrimination abilities 155 In one experiment when offered live fruit flies Drosophila virilis salamanders chose the larger of 1 vs 2 and 2 vs 3 Frogs can distinguish between low numbers 1 vs 2 2 vs 3 but not 3 vs 4 and large numbers 3 vs 6 4 vs 8 but not 4 vs 6 of prey This is irrespective of other characteristics i e surface area volume weight and movement although discrimination among large numbers may be based on surface area 156 ConservationMain article Decline in amphibian populations The extinct golden toad Bufo periglenes last seen in 1989 Dramatic declines in amphibian populations including population crashes and mass localized extinction have been noted since the late 1980s from locations all over the world and amphibian declines are thus perceived to be one of the most critical threats to global biodiversity 157 In 2004 the International Union for Conservation of Nature IUCN reported stating that currently birds 158 mammals and amphibians extinction rates were at minimum 48 times greater than natural extinction rates possibly 1 024 times higher In 2006 there were believed to be 4 035 species of amphibians that depended on water at some stage during their life cycle Of these 1 356 33 6 were considered to be threatened and this figure is likely to be an underestimate because it excludes 1 427 species for which there was insufficient data to assess their status 159 A number of causes are believed to be involved including habitat destruction and modification over exploitation pollution introduced species global warming endocrine disrupting pollutants destruction of the ozone layer ultraviolet radiation has shown to be especially damaging to the skin eyes and eggs of amphibians and diseases like chytridiomycosis However many of the causes of amphibian declines are still poorly understood and are a topic of ongoing discussion 160 The Hula painted frog Discoglossus nigriventer was believed to be extinct but was rediscovered in 2011 Food webs and predation Any decline in amphibian numbers will affect the patterns of predation The loss of carnivorous species near the top of the food chain will upset the delicate ecosystem balance and may cause dramatic increases in opportunistic species Predators that feed on amphibians are affected by their decline The western terrestrial garter snake Thamnophis elegans in California is largely aquatic and depends heavily on two species of frog that are decreasing in numbers the Yosemite toad Bufo canorus and the mountain yellow legged frog Rana muscosa putting the snake s future at risk If the snake were to become scarce this would affect birds of prey and other predators that feed on it 161 Meanwhile in the ponds and lakes fewer frogs means fewer tadpoles These normally play an important role in controlling the growth of algae and also forage on detritus that accumulates as sediment on the bottom A reduction in the number of tadpoles may lead to an overgrowth of algae resulting in depletion of oxygen in the water when the algae later die and decompose Aquatic invertebrates and fish might then die and there would be unpredictable ecological consequences 162 Pollution and pesticides The decline in amphibian and reptile populations has led to an awareness of the effects of pesticides on reptiles and amphibians 163 In the past the argument that amphibians or reptiles were more susceptible to any chemical contamination than any land aquatic vertebrate was not supported by research until recently 163 Amphibians and reptiles have complex life cycles live in different climate and ecological zones and are more vulnerable to chemical exposure Certain pesticides such as organophosphates neonicotinoids and carbamates react via cholinesterase inhibition Cholinesterase is an enzyme that causes the hydrolysis of acetylcholine an excitatory neurotransmitter that is abundant in the nervous system AChE inhibitors are either reversible or irreversible and carbamates are safer than organophosphorus insecticides which are more likely to cause cholinergic poisoning Reptile exposure to an AChE inhibitory pesticide may result in disruption of neural function in reptiles The buildup of these inhibitory effects on motor performance such as food consumption and other activities Conservation and protection strategies The Amphibian Specialist Group of the IUCN is spearheading efforts to implement a comprehensive global strategy for amphibian conservation 164 Amphibian Ark is an organization that was formed to implement the ex situ conservation recommendations of this plan and they have been working with zoos and aquaria around the world encouraging them to create assurance colonies of threatened amphibians 164 One such project is the Panama Amphibian Rescue and Conservation Project that built on existing conservation efforts in Panama to create a country wide response to the threat of chytridiomycosis 165 Another measure would be to stop exploitation of frogs for human consumption In the Middle East a growing appetite for eating frog legs and the consequent gathering of them for food was already linked to an increase in mosquitoes and thus has direct consequences for human health 166 See also Amphibians portalCultural depictions of amphibians List of amphibians List of amphibian genera List of threatened reptiles and amphibians of the United StatesReferences Amphibia paleobiodb org Retrieved May 24 2022 a b Blackburn D C Wake D B 2011 Class Amphibia Gray 1825 In Zhang Z Q Ed Animal biodiversity An outline of higher level classification and survey of taxonomic richness PDF Zootaxa 3148 39 55 doi 10 11646 zootaxa 3148 1 8 Archived PDF from the original on May 18 2016 Retrieved November 29 2012 Jennifer Y Lamb Matthew P Davis February 27 2020 Salamanders and other amphibians are aglow with biofluorescence Scientific Reports 10 1 2821 doi 10 1038 S41598 020 59528 9 ISSN 2045 2322 PMC 7046780 PMID 32108141 Wikidata Q89930490 a b Atkins Jade B Reisz Robert R Maddin Hillary C March 22 2019 Braincase simplification and the origin of lissamphibians PLOS ONE 14 3 e0213694 Bibcode 2019PLoSO 1413694A doi 10 1371 journal pone 0213694 ISSN 1932 6203 PMC 6430379 PMID 30901341 there has been a growing consensus that lissamphibians are a monophyletic assemblage derived from within Temnospondyli and more specifically from within the amphibamid dissorophoids Back to school temno superlatives Bryan Gee PhD Retrieved June 29 2022 Skeat Walter W 1897 A Concise Etymological Dictionary of the English Language Clarendon Press p 39 Baird Donald May 1965 Paleozoic lepospondyl amphibians Integrative and Comparative Biology 5 2 287 294 doi 10 1093 icb 5 2 287 a b c Species by number AmphibiaWeb Archived from the original on January 12 2021 Retrieved January 11 2021 Frost Darrel 2013 American Museum of Natural History Amphibian Species of the World 5 6 an Online Reference The American Museum of Natural History Archived from the original on June 14 2012 Retrieved October 24 2013 Amphibiaweb Archived from the original on November 25 2019 Retrieved April 1 2019 a b Crump Martha L 2009 Amphibian diversity and life history PDF Amphibian Ecology and Conservation A Handbook of Techniques 3 20 Archived from the original PDF on July 15 2011 Speer B W Waggoner Ben 1995 Amphibia Systematics University of California Museum of Paleontology Archived from the original on March 7 2013 Retrieved December 13 2012 a b c Stebbins amp Cohen 1995 p 3 a b c Anderson J Reisz R Scott D Frobisch N Sumida S 2008 A stem batrachian from the Early Permian of Texas and the origin of frogs and salamanders Nature 453 7194 515 518 Bibcode 2008Natur 453 515A doi 10 1038 nature06865 PMID 18497824 S2CID 205212809 Archived from the original on July 14 2021 Retrieved November 10 2016 Rocek Z 2000 14 Mesozoic Amphibians PDF In Heatwole H Carroll R L eds Amphibian Biology Paleontology The Evolutionary History of Amphibians Vol 4 Surrey Beatty amp Sons pp 1295 1331 ISBN 978 0 949324 87 0 Archived PDF from the original on July 18 2011 Retrieved September 29 2012 Jenkins Farish A Jr Walsh Denis M Carroll Robert L 2007 Anatomy of Eocaecilia micropodia a limbed caecilian of the Early Jurassic Bulletin of the Museum of Comparative Zoology 158 6 285 365 doi 10 3099 0027 4100 2007 158 285 AOEMAL 2 0 CO 2 S2CID 86379456 Gaoa Ke Qin Shubin Neil H 2012 Late Jurassic salamandroid from western Liaoning China Proceedings of the National Academy of Sciences of the United States of America 109 15 5767 5772 Bibcode 2012PNAS 109 5767G doi 10 1073 pnas 1009828109 PMC 3326464 PMID 22411790 Cannatella David 2008 Salientia Tree of Life Web Project Archived from the original on April 22 2019 Retrieved August 31 2012 a b c Evolution of amphibians University of Waikato Plant and animal evolution Archived from the original on June 27 2016 Retrieved September 30 2012 a b c Carroll Robert L 1977 Hallam Anthony ed Patterns of Evolution as Illustrated by the Fossil Record Elsevier pp 405 420 ISBN 978 0 444 41142 6 Archived from the original on April 14 2021 Retrieved October 15 2020 a b Clack Jennifer A 2006 Ichthyostega Tree of Life Web Project Archived from the original on June 14 2020 Retrieved September 29 2012 Lombard R E Bolt J R 1979 Evolution of the tetrapod ear an analysis and reinterpretation Biological Journal of the Linnean Society 11 1 19 76 doi 10 1111 j 1095 8312 1979 tb00027 x Archived from the original on October 4 2018 Retrieved November 10 2016 a b c Spoczynska J O I 1971 Fossils A Study in Evolution Frederick Muller Ltd pp 120 125 ISBN 978 0 584 10093 8 Sahney S Benton M J amp Ferry P A 2010 Links between global taxonomic diversity ecological diversity and the expansion of vertebrates on land Biology Letters 6 4 544 547 doi 10 1098 rsbl 2009 1024 PMC 2936204 PMID 20106856 Sahney S Benton M J 2008 Recovery from the most profound mass extinction of all time Proceedings of the Royal Society B Biological Sciences 275 1636 759 65 doi 10 1098 rspb 2007 1370 PMC 2596898 PMID 18198148 San Mauro D 2010 A multilocus timescale for the origin of extant amphibians Molecular Phylogenetics and Evolution 56 2 554 561 doi 10 1016 j ympev 2010 04 019 PMID 20399871 Archived from the original on December 12 2019 Retrieved November 10 2016 San Mauro Diego Vences Miguel Alcobendas Marina Zardoya Rafael Meyer Axel 2005 Initial diversification of living amphibians predated the breakup of Pangaea The American Naturalist 165 5 590 599 doi 10 1086 429523 PMID 15795855 S2CID 17021360 Archived from the original on February 7 2017 Retrieved November 10 2016 Tiny fossils reveal backstory of the most mysterious amphibian alive ScienceDaily Archived from the original on November 5 2019 Retrieved June 28 2017 a b c d Dorit Walker amp Barnes 1991 pp 843 859 Laurin Michel 2011 Terrestrial Vertebrates Tree of Life Web Project Archived from the original on March 1 2011 Retrieved September 16 2012 Laurin Michel Gauthier Jacques A 2012 Amniota Tree of Life Web Project Archived from the original on June 1 2020 Retrieved September 16 2012 Sumich James L Morrissey John F 2004 Introduction to the Biology of Marine Life Jones amp Bartlett Learning p 171 ISBN 978 0 7637 3313 1 Archived from the original on April 14 2021 Retrieved October 15 2020 Brad Shaffer Oscar Flores Villela Gabriela Parra Olea David Wake 2004 Ambystoma andersoni IUCN Red List of Threatened Species Version 2013 2 International Union for Conservation of Nature Wells Kentwood D February 15 2010 The Ecology and Behavior of Amphibians University of Chicago Press ISBN 9780226893334 Archived from the original on June 25 2020 Retrieved June 19 2020 via Google Books Levy Daniel L Heald Rebecca January 20 2016 Biological Scaling Problems and Solutions in Amphibians Cold Spring Harbor Perspectives in Biology 8 1 a019166 doi 10 1101 cshperspect a019166 PMC 4691792 PMID 26261280 Schoch Rainer R March 19 2014 Amphibian Evolution The Life of Early Land Vertebrates John Wiley amp Sons ISBN 9781118759134 Archived from the original on July 25 2020 Retrieved July 21 2020 via Google Books Michel Laurin 2004 The evolution of body size Cope s rule and the origin of amniotes Systematic Biology 53 4 594 622 doi 10 1080 10635150490445706 PMID 15371249 Archived from the original on July 14 2021 Retrieved July 21 2020 Rittmeyer Eric N Allison Allen Grundler Michael C Thompson Derrick K Austin Christopher C 2012 Ecological guild evolution and the discovery of the world s smallest vertebrate PLOS ONE 7 1 e29797 Bibcode 2012PLoSO 729797R doi 10 1371 journal pone 0029797 PMC 3256195 PMID 22253785 a b Nguyen Brent Cavagnaro John July 2012 Amphibian Facts AmphibiaWeb Archived from the original on January 23 2014 Retrieved November 9 2012 Price L I 1948 Um anfibio Labirinthodonte da formacao Pedra de Fogo Estado do Maranhao Boletim Ministerio da Agricultura Departamento Nacional da Producao ineral Divisao de Geologia e Mineralogia 24 7 32 Stebbins amp Cohen 1995 pp 24 25 Cannatella David Graybeal Anna 2008 Bufonidae True Toads Tree of Life Web Project Archived from the original on June 14 2020 Retrieved December 1 2012 Frog fun facts American Museum of Natural History January 12 2010 Archived from the original on February 24 2013 Retrieved August 29 2012 Challenger David January 12 2012 World s smallest frog discovered in Papua New Guinea CNN Archived from the original on April 20 2012 Retrieved August 29 2012 a b c d e f g Arnold Nicholas Ovenden Denys 2002 Reptiles and Amphibians of Britain and Europe Harper Collins Publishers pp 13 18 ISBN 978 0 00 219318 4 Faivovich J Haddad C F B Garcia P C A Frost D R Campbell J A Wheeler W C 2005 Systematic review of the frog family Hylidae with special reference to Hylinae Phylogenetic analysis and revision Bulletin of the American Museum of Natural History 294 1 240 CiteSeerX 10 1 1 470 2967 doi 10 1206 0003 0090 2005 294 0001 SROTFF 2 0 CO 2 S2CID 83925199 a b Ford L S Cannatella D C 1993 The major clades of frogs Herpetological Monographs 7 94 117 doi 10 2307 1466954 JSTOR 1466954 Retrieved November 10 2016 dead link San Mauro Diego Vences Miguel Alcobendas Marina Zardoya Rafael Meyer Axel 2005 Initial diversification of living amphibians predated the breakup of Pangaea American Naturalist 165 5 590 599 doi 10 1086 429523 PMID 15795855 S2CID 17021360 Archived from the original on February 7 2017 Retrieved November 10 2016 Baum David 2008 Trait Evolution on a Phylogenetic Tree Relatedness Similarity and the Myth of Evolutionary Advancement Nature Education Archived from the original on March 8 2014 Retrieved December 1 2012 Sparreboom Max February 7 2000 Andrias davidianus Chinese giant salamander AmphibiaWeb Archived from the original on December 26 2012 Retrieved December 1 2012 Wake David B November 8 2000 Thorius pennatulus AmphibiaWeb Archived from the original on May 15 2012 Retrieved August 25 2012 Elmer K R Bonett R M Wake D B Lougheed S C March 4 2013 Early Miocene origin and cryptic diversification of South American salamanders BMC Evolutionary Biology 13 1 59 doi 10 1186 1471 2148 13 59 PMC 3602097 PMID 23497060 Larson A Dimmick W 1993 Phylogenetic relationships of the salamander families an analysis of the congruence among morphological and molecular characters Herpetological Monographs 7 7 77 93 doi 10 2307 1466953 JSTOR 1466953 Dorit Walker amp Barnes 1991 p 852 Heying Heather 2003 Cryptobranchidae Animal Diversity Web University of Michigan Archived from the original on October 21 2012 Retrieved August 25 2012 a b Mayasich J Grandmaison D Phillips C June 1 2003 Eastern Hellbender Status Assessment Report PDF U S Fish and Wildlife Service Archived PDF from the original on September 4 2012 Retrieved August 25 2012 a b c Wake David B Caudata Encyclopaedia Britannica Archived from the original on May 16 2013 Retrieved August 25 2012 Cogger H G 1998 Zweifel R G ed Encyclopedia of Reptiles and Amphibians Academic Press pp 69 70 ISBN 978 0 12 178560 4 Stebbins amp Cohen 1995 p 4 Dorit Walker amp Barnes 1991 p 858 Duellman William E Gymnophiona Encyclopaedia Britannica Archived from the original on January 14 2012 Retrieved September 30 2012 Zylberberg Louise Wake Marvalee H 1990 Structure of the scales of Dermophis and Microcaecilia Amphibia Gymnophiona and a comparison to dermal ossifications of other vertebrates Journal of Morphology 206 1 25 43 doi 10 1002 jmor 1052060104 PMID 29865751 S2CID 46929507 Archived from the original on December 16 2017 Retrieved November 10 2016 Biodiversity Institute of Ontario Hebert Paul D N October 12 2008 Amphibian morphology and reproduction Encyclopedia of Earth Archived from the original on February 1 2008 Retrieved August 15 2012 Stebbins amp Cohen 1995 pp 10 11 Spearman R I C 1973 The Integument A Textbook of Skin Biology Cambridge University Press p 81 ISBN 978 0 521 20048 6 Amphibian skin colour a b c d Dorit Walker amp Barnes 1991 p 846 a b c Stebbins amp Cohen 1995 pp 26 36 a b Beneski John T Jr September 1989 Adaptive significance of tail autotomy in the salamander Ensatina Journal of Herpetology 23 3 322 324 doi 10 2307 1564465 JSTOR 1564465 Dorit Walker amp Barnes 1991 p 306 Gonzalez A Lopez J M Morona R Morona N 2020 The Organization of the Central Nervous System of Amphibians In Hass J H ed Evolutionary Neuroscience p 127 ISBN 978 0 12 820584 6 Stebbins amp Cohen 1995 p 100 Stebbins amp Cohen 1995 p 69 a b c Duellman William E Zug George R 2012 Amphibian Encyclopaedia Britannica Archived from the original on March 8 2012 Retrieved March 27 2012 a b c Dorit Walker amp Barnes 1991 p 847 Stebbins amp Cohen 1995 p 66 a b Dorit Walker amp Barnes 1991 p 849 Brainerd E L 1999 New perspectives on the evolution of lung ventilation mechanisms in vertebrates Experimental Biology Online 4 2 1 28 doi 10 1007 s00898 999 0002 1 S2CID 35368264 Hopkins Gareth R Brodie Edmund D Jr 2015 Occurrence of Amphibians in Saline Habitats A Review and Evolutionary Perspective Herpetological Monographs 29 1 1 27 doi 10 1655 HERPMONOGRAPHS D 14 00006 S2CID 83659304 Natchev Nikolay Tzankov Nikolay Geme Richard 2011 Green frog invasion in the Black Sea habitat ecology of the Pelophylax esculentus complex Anura Amphibia population in the region of Shablenska Tuzla lagoon in Bulgaria PDF Herpetology Notes 4 347 351 Archived from the original PDF on September 24 2015 Retrieved August 17 2012 Hogan C Michael July 31 2010 Abiotic factor Encyclopedia of Earth National Council for Science and the Environment Archived from the original on June 8 2013 Retrieved September 30 2012 Stebbins amp Cohen 1995 pp 140 141 a b Duellman Willia E Trueb Linda 1994 Biology of Amphibians JHU Press pp 77 79 ISBN 978 0 8018 4780 6 Archived from the original on February 3 2021 Retrieved October 15 2020 a b Stebbins amp Cohen 1995 pp 154 162 Adams Michael J Pearl Christopher A 2005 Ascaphus truei AmphibiaWeb Archived from the original on November 4 2012 Retrieved November 23 2012 Romano Antonio Bruni Giacomo 2011 Courtship behaviour mating season and male sexual interference in Salamandrina perspicillata Amphibia Reptilia 32 1 63 76 doi 10 1163 017353710X541878 Adams Erika M Jones A G Arnold S J 2005 Multiple paternity in a natural population of a salamander with long term sperm storage Molecular Ecology 14 6 1803 1810 doi 10 1111 j 1365 294X 2005 02539 x PMID 15836651 S2CID 18899524 Archived from the original on October 4 2018 Retrieved November 10 2016 Kikuyama Sakae Kawamura Kousuke Tanaka Shigeyasu Yamamoto Kakutoshi 1993 Aspects of amphibian metamorphosis Hormonal control International Review of Cytology A Survey of Cell Biology Academic Press pp 105 126 ISBN 978 0 12 364548 7 Archived from the original on April 14 2021 Retrieved October 15 2020 Newman Robert A 1992 Adaptive plasticity in amphibian metamorphosis BioScience 42 9 671 678 doi 10 2307 1312173 JSTOR 1312173 Gilbert Perry W 1942 Observations on the eggs of Ambystoma maculatum with especial reference to the green algae found within the egg envelopes Ecology 23 2 215 227 doi 10 2307 1931088 JSTOR 1931088 Waldman Bruce Ryan Michael J 1983 Thermal advantages of communal egg mass deposition in wood frogs Rana sylvatica Journal of Herpetology 17 1 70 72 doi 10 2307 1563783 JSTOR 1563783 Archived from the original on July 14 2021 Retrieved November 10 2016 Alder Kraig Trueb 2002 Amphibians In Halliday Tim Adler Kraig eds The Firefly Encyclopedia of Reptiles and Amphibians Firefly Books p 17 ISBN 978 1 55297 613 5 Meshaka Walter E Jr Eleutherodactylus planirostris AmphibiaWeb Archived from the original on June 9 2013 Retrieved December 12 2012 Dalgetty Laura Kennedy Malcolm W 2010 Building a home from foam tungara frog foam nest architecture and three phase construction process Biology Letters 6 3 293 296 doi 10 1098 rsbl 2009 0934 PMC 2880057 PMID 20106853 Proteins of frog foam nests School of Life Sciences University of Glasgow Archived from the original on June 3 2013 Retrieved August 24 2012 Stebbins amp Cohen 1995 pp 6 9 Vitt Laurie J Caldwell Janalee P 2013 Herpetology An Introductory Biology of Amphibians and Reptiles Academic Press p 42 ISBN 978 0123869197 Janzen Peter May 10 2005 Nannophrys ceylonensis AmphibiaWeb Archived from the original on June 7 2022 Retrieved July 20 2012 Duellman W E Zug G R Anura From tadpole to adult Encyclopaedia Britannica Archived from the original on November 2 2012 Retrieved July 13 2012 Stebbins amp Cohen 1995 pp 179 181 Venturi Sebastiano 2011 Evolutionary Significance of Iodine Current Chemical Biology 5 3 155 162 doi 10 2174 187231311796765012 ISSN 1872 3136 Archived from the original on December 9 2019 Retrieved November 10 2016 Venturi Sebastiano 2014 Iodine PUFAs and Iodolipids in Health and Disease An Evolutionary Perspective Human Evolution 29 1 3 185 205 ISSN 0393 9375 a b c Duellman William E Zug George R 2012 Anura Encyclopaedia Britannica Archived from the original on November 2 2012 Retrieved March 26 2012 Crump Martha L 1986 Cannibalism by younger tadpoles another hazard of metamorphosis Copeia 1986 4 1007 1009 doi 10 2307 1445301 JSTOR 1445301 a b Wake David B 2012 Caudata Encyclopaedia Britannica Archived from the original on May 16 2013 Retrieved March 26 2012 Valentine Barry D Dennis David M 1964 A comparison of the gill arch system and fins of three genera of larval salamanders Rhyacotriton Gyrinophilus and Ambystoma Copeia 1964 1 196 201 doi 10 2307 1440850 JSTOR 1440850 Shaffer H Bradley 2005 Ambystoma gracile AmphibiaWeb Archived from the original on December 26 2012 Retrieved November 21 2012 a b Duellman William E Trueb Linda 1994 Biology of Amphibians JHU Press pp 191 192 ISBN 978 0 8018 4780 6 Archived from the original on January 26 2021 Retrieved October 15 2020 Kiyonaga Robin R Metamorphosis vs neoteny paedomorphosis in salamanders Caudata Archived from the original on August 20 2012 Retrieved November 21 2012 Stebbins amp Cohen 1995 p 196 Shaffer H Bradley Austin C C Huey R B 1991 The consequences of metamorphosis on salamander Ambystoma locomotor performance PDF Physiological Zoology 64 1 212 231 doi 10 1086 physzool 64 1 30158520 JSTOR 30158520 S2CID 87191067 Archived from the original PDF on February 10 2020 Breckenridge W R Nathanael S Pereira L 1987 Some aspects of the biology and development of Ichthyophis glutinosus Journal of Zoology 211 3 437 449 doi 10 1111 jzo 1987 211 3 437 Wake Marvalee H 1977 Fetal maintenance and its evolutionary significance in the Amphibia Gymnophiona Journal of Herpetology 11 4 379 386 doi 10 2307 1562719 JSTOR 1562719 Archived from the original on October 4 2018 Retrieved November 10 2016 Duellman William E 2012 Gymnophiona Encyclopaedia Britannica Archived from the original on January 14 2012 Retrieved March 26 2012 Wilkinson Mark Kupfer Alexander Marques Porto Rafael Jeffkins Hilary Antoniazzi Marta M Jared Carlos 2008 One hundred million years of skin feeding Extended parental care in a Neotropical caecilian Amphibia Gymnophiona Biology Letters 4 4 358 361 doi 10 1098 rsbl 2008 0217 PMC 2610157 PMID 18547909 Crump Martha L 1996 Parental care among the Amphibia Parental Care Evolution Mechanisms and Adaptive Significance Advances in the Study of Behavior Vol 25 pp 109 144 doi 10 1016 S0065 3454 08 60331 9 ISBN 978 0 12 004525 9 Brown J L Morales V Summers K 2010 A key ecological trait drove the evolution of biparental care and monogamy in an amphibian American Naturalist 175 4 436 446 doi 10 1086 650727 PMID 20180700 S2CID 20270737 Archived from the original on July 29 2020 Retrieved November 10 2016 Dorit Walker amp Barnes 1991 pp 853 854 Fandino Maria Claudia Luddecke Horst Amezquita Adolfo 1997 Vocalisation and larval transportation of male Colostethus subpunctatus Anura Dendrobatidae Amphibia Reptilia 18 1 39 48 doi 10 1163 156853897X00297 van der Meijden Arie January 18 2010 Alytes obstetricans AmphibiaWeb Archived from the original on December 25 2012 Retrieved November 29 2012 Semeyn E 2002 Rheobatrachus silus Animal Diversity Web University of Michigan Museum of Zoology Archived from the original on July 6 2012 Retrieved August 5 2012 Hero Jean Marc Clarke John Meyer Ed 2004 Assa darlingtoni IUCN Red List of Threatened Species 2004 Retrieved October 2 2019 La Marca Enrique Azevedo Ramos Claudia Silvano Debora Coloma Luis A Ron Santiago Hardy Jerry Beier Manfred 2010 Pipa pipa Suriname Toad IUCN Red List of Threatened Species 2010 Retrieved October 2 2019 van Wijngaarden Rene Bolanos Federico 1992 Parental care in Dendrobates granuliferus Anura Dendrobatidae with a description of the tadpole Journal of Herpetology 26 1 102 105 doi 10 2307 1565037 JSTOR 1565037 Archived from the original on October 4 2018 Retrieved November 10 2016 a b Uno Yoshinobu 2021 Inference of evolution of vertebrate genomes and chromosomes from genomic and cytogenetic analyses using amphibians Chromosome Science 24 1 2 3 12 doi 10 11352 scr 24 3 Archived from the original on September 6 2021 Retrieved September 6 2021 Nowoshilow Sergej Schloissnig Siegfried Fei Ji Feng Dahl Andreas Pang Andy W C Pippel Martin Winkler Sylke Hastie Alex R Young George Roscito Juliana G Falcon Francisco 2018 The axolotl genome and the evolution of key tissue formation regulators Nature 554 7690 50 55 Bibcode 2018Natur 554 50N doi 10 1038 nature25458 ISSN 0028 0836 PMID 29364872 Gabbard Jesse 2000 Siren intermedia Lesser Siren Animal Diversity Web University of Michigan Museum of Zoology Archived from the original on January 2 2010 Retrieved August 11 2012 Da Silva H R De Britto Pereira M C 2006 How much fruit do fruit eating frogs eat An investigation on the diet of Xenohyla truncata Lissamphibia Anura Hylidae Journal of Zoology 270 4 692 698 doi 10 1111 j 1469 7998 2006 00192 x Archived from the original on June 23 2019 Retrieved November 10 2016 Trueb Linda Gans Carl 1983 Feeding specializations of the Mexican burrowing toad Rhinophrynus dorsalis Anura Rhinophrynidae PDF Journal of Zoology 199 2 189 208 doi 10 1111 j 1469 7998 1983 tb02090 x hdl 2027 42 74489 Archived PDF from the original on July 27 2020 Retrieved August 27 2019 Hamilton W J Jr 1948 The food and feeding behavior of the green frog Rana clamitans Latreille in New York State Copeia American Society of Ichthyologists and Herpetologists 1948 3 203 207 doi 10 2307 1438455 JSTOR 1438455 Stebbins amp Cohen 1995 p 56 Stebbins amp Cohen 1995 pp 57 58 Radcliffe Charles W Chiszar David Estep Karen Murphy James B Smith Hobart M 1986 Observations on pedal luring and pedal movements in Leptodactylid frogs Journal of Herpetology 20 3 300 306 doi 10 2307 1564496 JSTOR 1564496 Toft Catherine A 1981 Feeding ecology of Panamanian litter anurans patterns in diet and foraging mode Journal of Herpetology 15 2 139 144 doi 10 2307 1563372 JSTOR 1563372 Archived from the original on July 30 2020 Retrieved November 10 2016 Bemis W E Schwenk K Wake M H 1983 Morphology and function of the feeding apparatus in Dermophis mexicanus Amphibia Gymnophiona Zoological Journal of the Linnean Society 77 1 75 96 doi 10 1111 j 1096 3642 1983 tb01722 x Archived from the original on July 30 2020 Retrieved November 10 2016 Stebbins amp Cohen 1995 pp 181 185 a b Stebbins amp Cohen 1995 pp 76 77 Sullivan Brian K 1992 Sexual selection and calling behavior in the American toad Bufo americanus Copeia 1992 1 1 7 doi 10 2307 1446530 JSTOR 1446530 Toledo L F Haddad C F B 2007 Capitulo 4 PDF When frogs scream A review of anuran defensive vocalizations Thesis Instituto de Biociencias Sao Paulo Archived PDF from the original on September 4 2012 Retrieved August 13 2012 Johnson Steve A 2010 The Cuban Treefrog Osteopilus septentrionalis in Florida EDIS University of Florida Archived from the original on August 20 2012 Retrieved August 13 2012 Shine Richard 1979 Sexual selection and sexual dimorphism in the Amphibia Copeia 1979 2 297 306 doi 10 2307 1443418 JSTOR 1443418 a b c Gergits W F Jaeger R G 1990 Site attachment by the red backed salamander Plethodon cinereus Journal of Herpetology 24 1 91 93 doi 10 2307 1564297 JSTOR 1564297 Casper Gary S Plethodon cinereus AmphibiaWeb Archived from the original on June 9 2013 Retrieved September 25 2012 Wells K D 1977 Territoriality and male mating success in the green frog Rana clamitans Ecology 58 4 750 762 doi 10 2307 1936211 JSTOR 1936211 a b Barthalmus G T Zielinski W J 1988 Xenopus skin mucus induces oral dyskinesias that promote escape from snakes Pharmacology Biochemistry and Behavior 30 4 957 959 doi 10 1016 0091 3057 88 90126 8 PMID 3227042 S2CID 25434883 Crayon John J Xenopus laevis AmphibiaWeb Archived from the original on October 9 2014 Retrieved October 8 2012 Moodie G E E 1978 Observations on the life history of the caecilian Typhlonectes compressicaudus Dumeril and Bibron in the Amazon basin Canadian Journal of Zoology 56 4 1005 1008 doi 10 1139 z78 141 Archived from the original on July 5 2020 Retrieved November 10 2016 Brodie Edmund D Jr 1968 Investigations on the skin toxin of the adult rough skinned newt Taricha granulosa Copeia 1968 2 307 313 doi 10 2307 1441757 JSTOR 1441757 a b Hanifin Charles T Yotsu Yamashita Mari Yasumoto Takeshi Brodie Edmund D Brodie Edmund D Jr 1999 Toxicity of dangerous prey variation of tetrodotoxin levels within and among populations of the newt Taricha granulosa Journal of Chemical Ecology 25 9 2161 2175 doi 10 1023 A 1021049125805 S2CID 543221 Archived from the original on July 5 2020 Retrieved November 10 2016 Geffeney Shana L Fujimoto Esther Brodie Edmund D Brodie Edmund D Jr Ruben Peter C 2005 Evolutionary diversification of TTX resistant sodium channels in a predator prey interaction Nature 434 7034 759 763 Bibcode 2005Natur 434 759G doi 10 1038 nature03444 PMID 15815629 S2CID 4426708 Stebbins amp Cohen 1995 p 110 Patocka Jiri Wulff Krauff Palomeque MariaVictoria 1999 Dart Poison Frogs and Their Toxins ASA Newsletter 5 75 ISSN 1057 9419 Archived from the original on March 23 2014 Retrieved January 29 2013 Darst Catherine R Cummings Molly E March 9 2006 Predator learning favours mimicry of a less toxic model in poison frogs Nature 440 7081 208 211 Bibcode 2006Natur 440 208D doi 10 1038 nature04297 PMID 16525472 Brodie Edmund D Jr Nowak Robert T Harvey William R 1979 Antipredator secretions and behavior of selected salamanders against shrews Copeia 1979 2 270 274 doi 10 2307 1443413 JSTOR 1443413 Brodie E D Jr 1978 Biting and vocalisation as antipredator mechanisms in terrestrial salamanders Copeia 1978 1 127 129 doi 10 2307 1443832 JSTOR 1443832 Hloch A 2010 What Does a Salamander Remember After Winter PDF University of Vienna Fakultat fur Lebenswissenschaften Archived PDF from the original on October 4 2018 Retrieved November 15 2015 Stancher G Rugani R Regolin L Vallortigara G 2015 Numerical discrimination by frogs Bombina orientalis Animal Cognition 18 1 219 229 doi 10 1007 s10071 014 0791 7 PMID 25108417 S2CID 16499583 Archived from the original on July 14 2021 Retrieved November 10 2016 McCallum M L 2007 Amphibian decline or extinction Current declines dwarf background extinction rate Journal of Herpetology 41 3 483 491 doi 10 1670 0022 1511 2007 41 483 ADOECD 2 0 CO 2 S2CID 30162903 What does it mean to be human Smithsonian National Museum of Natural History Archived from the original on November 22 2013 Retrieved November 19 2013 Hoekstra J M Molnar J L Jennings M Revenga C Spalding M D Boucher T M Robertson J C Heibel T J Ellison K 2010 Number of Globally Threatened Amphibian Species by Freshwater Ecoregion The Atlas of Global Conservation Changes Challenges and Opportunities to Make a Difference The Nature Conservancy Archived from the original on October 27 2012 Retrieved September 5 2012 Amphibian Specialist Group IUCN SSC Amphibian Specialist Group Archived from the original on February 22 2011 Retrieved March 30 2012 Jennings W Bryan Bradford David F Johnson Dale F 1992 Dependence of the garter snake Thamnophis elegans on amphibians in the Sierra Nevada of California Journal of Herpetology 26 4 503 505 doi 10 2307 1565132 JSTOR 1565132 Archived from the original on October 4 2018 Retrieved November 10 2016 Stebbins amp Cohen 1995 p 249 a b Hall J R Henry F P P 1992 Review Assessing Effects of Pesticide on Amphibians and Reptiles Status and needs Herpetological Journal 2 65 71 a b Amphibian Conservation Action Plan IUCN Archived from the original on April 27 2012 Retrieved March 30 2012 Panama Amphibian Rescue and Conservation Project Amphibian Ark Archived from the original on June 14 2010 Retrieved March 30 2012 Regier Henry A Baskerville Gordon L 1996 Sustainability Issues for Resource Managers Sustainable redevelopment of regional ecosystems degraded by exploitive development DIANE Publishing pp 36 38 ISBN 978 0 7881 4699 2 Archived from the original on April 14 2021 Retrieved October 15 2020 Cited texts Dorit R L Walker W F Barnes R D 1991 Zoology Saunders College Publishing ISBN 978 0 03 030504 7 Stebbins Robert C Cohen Nathan W 1995 A Natural History of Amphibians Princeton University Press ISBN 978 0 691 03281 8 Further readingCarroll Robert L 1988 Vertebrate Paleontology and Evolution W H Freeman ISBN 978 0 7167 1822 2 Carroll Robert L 2009 The Rise of Amphibians 365 Million Years of Evolution Johns Hopkins University Press ISBN 978 0 8018 9140 3 Duellman William E Linda Trueb 1994 Biology of Amphibians Johns Hopkins University Press ISBN 978 0 8018 4780 6 Frost Darrel R Grant Taran Faivovich Julian Bain Raoul H Haas Alexander Haddad Celio F B De Sa Rafael O Channing Alan Wilkinson Mark Donnellan Stephen C Raxworthy Christopher J Campbell Jonathan A Blotto Boris L Moler Paul Drewes Robert C Nussbaum Ronald A Lynch John D Green David M Wheeler Ward C 2006 The Amphibian Tree of Life Bulletin of the American Museum of Natural History 297 1 291 doi 10 1206 0003 0090 2006 297 0001 TATOL 2 0 CO 2 hdl 2246 5781 S2CID 86140137 Pounds J Alan Bustamante Martin R Coloma Luis A Consuegra Jamie A Fogden Michael P L Foster Pru N La Marca Enrique Masters Karen L Merino Viteri Andres Puschendorf Robert Ron Santiago R Sanchez Azofeifa G Arturo Still Christopher J Young Bruce E 2006 Widespread amphibian extinctions from epidemic disease driven by global warming Nature 439 7073 161 167 Bibcode 2006Natur 439 161A doi 10 1038 nature04246 PMID 16407945 S2CID 4430672 Stuart Simon N Chanson Janice S Cox Neil A Young Bruce E Rodrigues Ana S L Fischman Debra L Waller Robert W 2004 Status and trends of amphibian declines and extinctions worldwide Science 306 5702 1783 1786 Bibcode 2004Sci 306 1783S CiteSeerX 10 1 1 225 9620 doi 10 1126 science 1103538 PMID 15486254 S2CID 86238651 Stuart S N Hoffmann M Chanson J S Cox N A Berridge R J Ramani P Young B E eds 2008 Threatened Amphibians of the World Published by Lynx Edicions in association with IUCN The World Conservation Union Conservation International and NatureServe ISBN 978 84 96553 41 5 Archived from the original on October 30 2014 Retrieved October 30 2014 External links Wikimedia Commons has media related to Amphibia Wikispecies has information related to Amphibia The Wikibook Dichotomous Key has a page on the topic of Amphibia Amphibians AnimalSpot net ArcheoZooTheque Amphibians skeletons drawings available in vector image and PDF formats Amphibian Specialist Group Amphibian Ark AmphibiaWeb Global Amphibian Assessment Archived April 12 2011 at the Wayback Machine Amphibian vocalisations on Archival Sound Recordings Retrieved from https en wikipedia org w index php title Amphibian amp oldid 1133408804, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.