fbpx
Wikipedia

3D printing

3D printing or additive manufacturing is the construction of a three-dimensional object from a CAD model or a digital 3D model.[1][2] It can be done in a variety of processes in which material is deposited, joined or solidified under computer control,[3] with material being added together (such as plastics, liquids or powder grains being fused), typically layer by layer.

A three-dimensional printer
Timelapse of a three-dimensional printer in action

In the 1980s, 3D printing techniques were considered suitable only for the production of functional or aesthetic prototypes, and a more appropriate term for it at the time was rapid prototyping.[4] As of 2019, the precision, repeatability, and material range of 3D printing have increased to the point that some 3D printing processes are considered viable as an industrial-production technology, whereby the term additive manufacturing can be used synonymously with 3D printing.[5] One of the key advantages of 3D printing[6] is the ability to produce very complex shapes or geometries that would be otherwise infeasible to construct by hand, including hollow parts or parts with internal truss structures to reduce weight. Fused deposition modeling (FDM), which uses a continuous filament of a thermoplastic material, is the most common 3D printing process in use as of 2020.[7]

Terminology

The umbrella term additive manufacturing (AM) gained popularity in the 2000s,[8] inspired by the theme of material being added together (in any of various ways). In contrast, the term subtractive manufacturing appeared as a retronym for the large family of machining processes with material removal as their common process. The term 3D printing still referred only to the polymer technologies in most minds, and the term AM was more likely to be used in metalworking and end-use part production contexts than among polymer, inkjet, or stereolithography enthusiasts.

By the early 2010s, the terms 3D printing and additive manufacturing evolved senses in which they were alternate umbrella terms for additive technologies, one being used in popular language by consumer-maker communities and the media, and the other used more formally by industrial end-use part producers, machine manufacturers, and global technical standards organizations. Until recently, the term 3D printing has been associated with machines low in price or in capability.[9] 3D printing and additive manufacturing reflect that the technologies share the theme of material addition or joining throughout a 3D work envelope under automated control. Peter Zelinski, the editor-in-chief of Additive Manufacturing magazine, pointed out in 2017 that the terms are still often synonymous in casual usage,[10] but some manufacturing industry experts are trying to make a distinction whereby additive manufacturing comprises 3D printing plus other technologies or other aspects of a manufacturing process.[10]

Other terms that have been used as synonyms or hypernyms have included desktop manufacturing, rapid manufacturing (as the logical production-level successor to rapid prototyping), and on-demand manufacturing (which echoes on-demand printing in the 2D sense of printing). The fact that the application of the adjectives rapid and on-demand to the noun manufacturing was novel in the 2000s reveals the long-prevailing mental model of the previous industrial era during which almost all production manufacturing had involved long lead times for laborious tooling development. Today, the term subtractive has not replaced the term machining, instead complementing it when a term that covers any removal method is needed. Agile tooling is the use of modular means to design tooling that is produced by additive manufacturing or 3D printing methods to enable quick prototyping and responses to tooling and fixture needs. Agile tooling uses a cost-effective and high-quality method to quickly respond to customer and market needs, and it can be used in hydro-forming, stamping, injection molding and other manufacturing processes.

History

1940s and 1950s

The general concept of and procedure to be used in 3D-printing was first described by Murray Leinster in his 1945 short story “Things Pass By”: "But this constructor is both efficient and flexible. I feed magnetronic plastics — the stuff they make houses and ships of nowadays — into this moving arm. It makes drawings in the air following drawings it scans with photo-cells. But plastic comes out of the end of the drawing arm and hardens as it comes ... following drawings only" [11]

It was also described by Raymond F. Jones in his story, "Tools of the Trade," published in the November 1950 issue of Astounding Science Fiction magazine. He referred to it as a "molecular spray" in that story.

1970s

In 1971, Johannes F Gottwald patented the Liquid Metal Recorder, U.S. Patent 3596285A, a continuous inkjet metal material device to form a removable metal fabrication on a reusable surface for immediate use or salvaged for printing again by remelting. This appears to be the first patent describing 3D printing with rapid prototyping and controlled on-demand manufacturing of patterns.

The patent states:

As used herein the term printing is not intended in a limited sense but includes writing or other symbols, character or pattern formation with an ink. The term ink as used in is intended to include not only dye or pigment-containing materials, but any flowable substance or composition suited for application to the surface for forming symbols, characters, or patterns of intelligence by marking. The preferred ink is of a hot melt type. The range of commercially available ink compositions which could meet the requirements of the invention are not known at the present time. However, satisfactory printing according to the invention has been achieved with the conductive metal alloy as ink.

But in terms of material requirements for such large and continuous displays, if consumed at theretofore known rates, but increased in proportion to increase in size, the high cost would severely limit any widespread enjoyment of a process or apparatus satisfying the foregoing objects.

It is therefore an additional object of the invention to minimize use to materials in a process of the indicated class.

It is a further object of the invention that materials employed in such a process be salvaged for reuse.

According to another aspect of the invention, a combination for writing and the like comprises a carrier for displaying an intelligence pattern and an arrangement for removing the pattern from the carrier.

In 1974, David E. H. Jones laid out the concept of 3D printing in his regular column Ariadne in the journal New Scientist.[12][13]

1980s

Early additive manufacturing equipment and materials were developed in the 1980s.[14]

In April 1980, Hideo Kodama of Nagoya Municipal Industrial Research Institute invented two additive methods for fabricating three-dimensional plastic models with photo-hardening thermoset polymer, where the UV exposure area is controlled by a mask pattern or a scanning fiber transmitter.[15] He filed a patent for this XYZ plotter, which was published on 10 November 1981. (JP S56-144478).[16] His research results as journal papers were published in April and November in 1981.[17][18] However, there was no reaction to the series of his publications. His device was not highly evaluated in the laboratory and his boss did not show any interest. His research budget was just 60,000 yen or $545 a year. Acquiring the patent rights for the XYZ plotter was abandoned, and the project was terminated.

A US 4323756 patent, method of fabricating articles by sequential deposition, granted on 6 April 1982 to Raytheon Technologies Corp describes using hundreds or thousands of "layers" of powdered metal and a laser energy source and represents an early reference to forming "layers" and the fabrication of articles on a substrate.

On 2 July 1984, American entrepreneur Bill Masters filed a patent for his computer automated manufacturing process and system (US 4665492).[19] This filing is on record at the USPTO as the first 3D printing patent in history; it was the first of three patents belonging to Masters that laid the foundation for the 3D printing systems used today.[20][21]

On 16 July 1984, Alain Le Méhauté, Olivier de Witte, and Jean Claude André filed their patent for the stereolithography process.[22] The application of the French inventors was abandoned by the French General Electric Company (now Alcatel-Alsthom) and CILAS (The Laser Consortium).[23] The claimed reason was "for lack of business perspective".[24]

In 1983, Robert Howard started R.H. Research, later named Howtek, Inc. in Feb 1984 to develop a color inkjet 2D printer, Pixelmaster, commercialized in 1986, using Thermoplastic (hot-melt) plastic ink.[25] A team was put together, 6 members[25] from Exxon Office Systems, Danbury Systems Division, an inkjet printer startup and some members of Howtek, Inc group who became popular figures in the 3D printing industry. One Howtek member, Richard Helinski (patent US5136515A, Method and Means for constructing three-dimensional articles by particle deposition, application 11/07/1989 granted 8/04/1992) formed a New Hampshire company C.A.D-Cast, Inc, name later changed to Visual Impact Corporation (VIC) on 8/22/1991. A prototype of the VIC 3D printer for this company is available with a video presentation showing a 3D model printed with a single nozzle inkjet. Another employee Herbert Menhennett formed a New Hampshire company HM Research in 1991 and introduced the Howtek, Inc, inkjet technology and thermoplastic materials to Royden Sanders of SDI and Bill Masters of Ballistic Particle Manufacturing (BPM) where he worked for a number of years. Both BPM 3D printers and SPI 3D printers use Howtek, Inc style Inkjets and Howtek, Inc style materials. Royden Sanders licensed the Helinksi patent prior to manufacturing the Modelmaker 6 Pro at Sanders prototype, Inc (SPI) in 1993. James K. McMahon who was hired by Howtek, Inc to help develop the inkjet, later worked at Sanders Prototype and now operates Layer Grown Model Technology, a 3D service provider specializing in Howtek single nozzle inkjet and SDI printer support. James K. McMahon worked with Steven Zoltan, 1972 drop-on-demand inkjet inventor, at Exxon and has a patent in 1978 that expanded the understanding of the single nozzle design inkjets (Alpha jets) and help perfect the Howtek, Inc hot-melt inkjets. This Howtek hot-melt thermoplastic technology is popular with metal investment casting, especially in the 3D printing jewelry industry.[26] Sanders (SDI) first Modelmaker 6Pro customer was Hitchner Corporations, Metal Casting Technology, Inc in Milford, NH a mile from the SDI facility in late 1993-1995 casting golf clubs and auto engine parts.

On 8 August 1984 a patent, US4575330, assigned to UVP, Inc., later assigned to Chuck Hull of 3D Systems Corporation[27] was filed, his own patent for a stereolithography fabrication system, in which individual laminae or layers are added by curing photopolymers with impinging radiation, particle bombardment, chemical reaction or just ultraviolet light lasers. Hull defined the process as a "system for generating three-dimensional objects by creating a cross-sectional pattern of the object to be formed".[28][29] Hull's contribution was the STL (Stereolithography) file format and the digital slicing and infill strategies common to many processes today. In 1986, Charles "Chuck" Hull was granted a patent for this system, and his company, 3D Systems Corporation was formed and it released the first commercial 3D printer, the SLA-1,[30] later in 1987 or 1988.

The technology used by most 3D printers to date—especially hobbyist and consumer-oriented models—is fused deposition modeling, a special application of plastic extrusion, developed in 1988 by S. Scott Crump and commercialized by his company Stratasys, which marketed its first FDM machine in 1992.[26]

Owning a 3D printer in the 1980s cost upwards of $300,000 ($650,000 in 2016 dollars).[31]

1990s

AM processes for metal sintering or melting (such as selective laser sintering, direct metal laser sintering, and selective laser melting) usually went by their own individual names in the 1980s and 1990s. At the time, all metalworking was done by processes that are now called non-additive (casting, fabrication, stamping, and machining); although plenty of automation was applied to those technologies (such as by robot welding and CNC), the idea of a tool or head moving through a 3D work envelope transforming a mass of raw material into a desired shape with a toolpath was associated in metalworking only with processes that removed metal (rather than adding it), such as CNC milling, CNC EDM, and many others. But the automated techniques that added metal, which would later be called additive manufacturing, were beginning to challenge that assumption. By the mid-1990s, new techniques for material deposition were developed at Stanford and Carnegie Mellon University, including microcasting[32] and sprayed materials.[33] Sacrificial and support materials had also become more common, enabling new object geometries.[34]

The term 3D printing originally referred to a powder bed process employing standard and custom inkjet print heads, developed at MIT by Emanuel Sachs in 1993 and commercialized by Soligen Technologies, Extrude Hone Corporation, and Z Corporation.[citation needed]

The year 1993 also saw the start of an inkjet 3D printer company initially named Sanders Prototype, Inc and later named Solidscape, introducing a high-precision polymer jet fabrication system with soluble support structures, (categorized as a "dot-on-dot" technique).[26]

In 1995 the Fraunhofer Society developed the selective laser melting process.

2000s

The Fused Deposition Modeling (FDM) printing process patents expired in 2009.[35] This opened the door for a new wave of companies, many born from the RepRap community, to start developing commercial FDM 3D printers.

2010s

As the various additive processes matured, it became clear that soon metal removal would no longer be the only metalworking process done through a tool or head moving through a 3D work envelope, transforming a mass of raw material into a desired shape layer by layer. The 2010s were the first decade in which metal end use parts such as engine brackets[36] and large nuts[37] would be grown (either before or instead of machining) in job production rather than obligately being machined from bar stock or plate. It is still the case that casting, fabrication, stamping, and machining are more prevalent than additive manufacturing in metalworking, but AM is now beginning to make significant inroads, and with the advantages of design for additive manufacturing, it is clear to engineers that much more is to come.

One place that AM is making a significant inroad is in the aviation industry. With nearly 3.8 billion air travelers in 2016,[38] the demand for fuel efficient and easily produced jet engines has never been higher. For large OEMs (original equipment manufacturers) like Pratt and Whitney (PW) and General Electric (GE) this means looking towards AM as a way to reduce cost, reduce the number of nonconforming parts, reduce weight in the engines to increase fuel efficiency and find new, highly complex shapes that would not be feasible with the antiquated manufacturing methods. One example of AM integration with aerospace was in 2016 when Airbus was delivered the first of GE's LEAP engines. This engine has integrated 3D printed fuel nozzles giving them a reduction in parts from 20 to 1, a 25% weight reduction and reduced assembly times.[39] A fuel nozzle is the perfect in road for additive manufacturing in a jet engine since it allows for optimized design of the complex internals and it is a low stress, non-rotating part. Similarly, in 2015, PW delivered their first AM parts in the PurePower PW1500G to Bombardier. Sticking to low stress, non-rotating parts, PW selected the compressor stators and synch ring brackets [40] to roll out this new manufacturing technology for the first time. While AM is still playing a small role in the total number of parts in the jet engine manufacturing process, the return on investment can already be seen by the reduction in parts, the rapid production capabilities and the "optimized design in terms of performance and cost".[41]

As technology matured, several authors had begun to speculate that 3D printing could aid in sustainable development in the developing world.[42]

In 2012, Filabot developed a system for closing the loop[43] with plastic and allows for any FDM or FFF 3D printer to be able to print with a wider range of plastics.

In 2014, Benjamin S. Cook and Manos M. Tentzeris demonstrate the first multi-material, vertically integrated printed electronics additive manufacturing platform (VIPRE) which enabled 3D printing of functional electronics operating up to 40 GHz.[44]

As the price of printers started to drop people interested in this technology had more access and freedom to make what they wanted. As of 2014 the price for commercial printers was still high with the cost being over $2,000.[45]

The term "3D printing" originally referred to a process that deposits a binder material onto a powder bed with inkjet printer heads layer by layer. More recently, the popular vernacular has started using the term to encompass a wider variety of additive-manufacturing techniques such as electron-beam additive manufacturing and selective laser melting. The United States and global technical standards use the official term additive manufacturing for this broader sense.

The most-commonly used 3D printing process (46% as of 2018) is a material extrusion technique called fused deposition modeling, or FDM.[7] While FDM technology was invented after the other two most popular technologies, stereolithography (SLA) and selective laser sintering (SLS), FDM is typically the most inexpensive of the three by a large margin,[citation needed] which lends to the popularity of the process.

2020s

As of 2020, 3D printers have reached the level of quality and price that allows most people to enter the world of 3D printing. In 2020 decent quality printers can be found for less than US$200 for entry level machines. These more affordable printers are usually fused deposition modeling (FDM) printers.[46]

In November 2021 a British patient named Steve Verze received the world's first fully 3D-printed prosthetic eye from the Moorfields Eye Hospital in London.[47][48]

Benefits of 3D printing

Additive manufacturing or 3D printing has rapidly gained importance in the field of engineering due to its many benefits. Some of these benefits include enabling faster prototyping, reducing manufacturing costs, increasing product customization, and improving product quality.[49]

Furthermore, the capabilities of 3D printing have extended beyond traditional manufacturing, with applications in renewable energy systems.[50] 3D printing technology can be used to produce battery energy storage systems, which are essential for sustainable energy generation and distribution.

Another benefit of 3D printing is the technology's ability to produce complex geometries with high precision and accuracy.[51] This is particularly relevant in the field of microwave engineering, where 3D printing can be used to produce components with unique properties that are difficult to achieve using traditional manufacturing methods.

General principles

Modeling

 
CAD model used for 3D printing
 
3D models can be generated from 2D pictures taken at a 3D photo booth.

3D printable models may be created with a computer-aided design (CAD) package, via a 3D scanner, or by a plain digital camera and photogrammetry software. 3D printed models created with CAD result in relatively fewer errors than other methods. Errors in 3D printable models can be identified and corrected before printing.[52] The manual modeling process of preparing geometric data for 3D computer graphics is similar to plastic arts such as sculpting. 3D scanning is a process of collecting digital data on the shape and appearance of a real object, creating a digital model based on it.

CAD models can be saved in the stereolithography file format (STL), a de facto CAD file format for additive manufacturing that stores data based on triangulations of the surface of CAD models. STL is not tailored for additive manufacturing because it generates large file sizes of topology optimized parts and lattice structures due to the large number of surfaces involved. A newer CAD file format, the Additive Manufacturing File format (AMF) was introduced in 2011 to solve this problem. It stores information using curved triangulations.[53]

Printing

Before printing a 3D model from an STL file, it must first be examined for errors. Most CAD applications produce errors in output STL files,[54][55] of the following types:

  1. holes
  2. faces normals
  3. self-intersections
  4. noise shells
  5. manifold errors[56]
  6. overhang issues [57]

A step in the STL generation known as "repair" fixes such problems in the original model.[58][59] Generally STLs that have been produced from a model obtained through 3D scanning often have more of these errors [60] as 3D scanning is often achieved by point to point acquisition/mapping. 3D reconstruction often includes errors.[61]

Once completed, the STL file needs to be processed by a piece of software called a "slicer", which converts the model into a series of thin layers and produces a G-code file containing instructions tailored to a specific type of 3D printer (FDM printers).[62] This G-code file can then be printed with 3D printing client software (which loads the G-code, and uses it to instruct the 3D printer during the 3D printing process).

Printer resolution describes layer thickness and X–Y resolution in dots per inch (dpi) or micrometers (μm). Typical layer thickness is around 100 μm (250 DPI), although some machines can print layers as thin as 16 μm (1,600 DPI).[63] X–Y resolution is comparable to that of laser printers. The particles (3D dots) are around 0.01 to 0.1 μm (2,540,000 to 250,000 DPI) in diameter.[64] For that printer resolution, specifying a mesh resolution of 0.01–0.03 mm and a chord length ≤ 0.016 mm generates an optimal STL output file for a given model input file.[65] Specifying higher resolution results in larger files without increase in print quality.

3:31 Timelapse of an 80-minute video of an object being made out of PLA using molten polymer deposition

Construction of a model with contemporary methods can take anywhere from several hours to several days, depending on the method used and the size and complexity of the model. Additive systems can typically reduce this time to a few hours, although it varies widely depending on the type of machine used and the size and number of models being produced simultaneously.

Finishing

Though the printer-produced resolution and surface finish are sufficient for some applications, post-processing and finishing methods allow for benefits such as greater dimensional accuracy, smoother surfaces, other modifications such as coloration.

Surface finish of a 3D printed part can improved using subtractive methods such as sanding and bead blasting. When smoothing parts that require dimensional accuracy, it is important to take into account the volume of the material being removed.[66]

Some printable polymers, such as acrylonitrile butadiene styrene (ABS), allow the surface finish to be smoothed and improved using chemical vapor processes[67] based on acetone or similar solvents.

Some additive manufacturing techniques can benefit from annealing annealing as a post-processing step. Annealing a 3D printed part allows for better internal layer bonding due to recrystalization of the part and allows for an increase in mechanical properties, some of which are fracture toughness,[68] flexural strength,[69] impact resistance,[70] and heat resistance.[70] Annealing a component may not be suitable for applications where dimensional accuracy is required, as it can introduce warpage or shrinkage due to heating and cooling.[71]

Additive/Subtractive Hybrid Manufacturing (ASHM) is a method that involves producing a 3D printed part and using machining (subtractive manufacturing) to remove material.[72] Machining operations can be completed after each layer, or after the entire 3D print has been completed depending on the application requirements. These hybrid methods allow for 3D printed parts to achieve better surface finishes and dimensional accuracy.[73]

The layered structure of traditional additive manufacturing processes leads to a stair-stepping effect on part surfaces which are curved or tilted in respect to the building platform. The effect strongly depends on the layer height used, as well as the orientation of a part surface inside the building process.[74] This effect can be minimized using "variable layer heights" or "adaptive layer heights". These methods decreased the layer height in places where higher quality is needed.[75]

Painting a 3D printed part offers a range of finishes and appearances that may not be achievable through most 3D printing techniques. The process typically involves several steps such as surface preparation, priming, and painting.[76] These steps help prepare the surface of the part and ensuring the paint adheres properly.

Some additive manufacturing techniques are capable of using multiple materials simultaneously. These techniques are able to print in multiple colors and color combinations simultaneously, and can produce parts that may not necessarily require painting.

Some printing techniques require internal supports to be built to support overhanging features during construction. These supports must be mechanically removed or dissolved if using a water-soluble support material such as PVA using after completing a print.

Some commercial metal 3D printers involve cutting the metal component off the metal substrate after deposition. A new process for the GMAW 3D printing allows for substrate surface modifications to remove aluminium[77] or steel.[78]

Materials

 
Detail of the Stoofbrug [nl] in Amsterdam, the world's first 3D-printed metal bridge[79]

Traditionally, 3D printing focused on polymers for printing, due to the ease of manufacturing and handling polymeric materials. However, the method has rapidly evolved to not only print various polymers[80] but also metals[81][82] and ceramics,[83] making 3D printing a versatile option for manufacturing. Layer-by-layer fabrication of three-dimensional physical models is a modern concept that "stems from the ever-growing CAD industry, more specifically the solid modeling side of CAD. Before solid modeling was introduced in the late 1980s, three-dimensional models were created with wire frames and surfaces."[84] but in all cases the layers of materials are controlled by the printer and the material properties. The three-dimensional material layer is controlled by deposition rate as set by the printer operator and stored in a computer file. The earliest printed patented material was a Hot melt type ink for printing patterns using a heated metal alloy. See 1970s history above.

Charles Hull filed the first patent on August 8, 1984, to use a UV-cured acrylic resin using a UV masked light source at UVP Corp to build a simple model. The SLA-1 was the first SL product announced by 3D Systems at Autofact Exposition, Detroit, November 1978 in Detroit. The SLA-1 Beta shipped in Jan 1988 to Baxter Healthcare, Pratt and Whitney, General Motors and AMP. The first production SLA-1 shipped to Precision Castparts in April 1988. The UV resin material changed over quickly to an epoxy-based material resin. In both cases, SLA-1 models needed UV oven curing after being rinsed in a solvent cleaner to remove uncured boundary resin. A Post Cure Apparatus (PCA) was sold with all systems. The early resin printers required a blade to move fresh resin over the model on each layer. The layer thickness was 0.006 inches and the HeCd Laser model of the SLA-1 was 12 watts and swept across the surface at 30 in per second. UVP was acquired by 3D Systems in Jan 1990.[85]

A review in the history shows a number of materials (resins, plastic powder, plastic filament and hot-melt plastic ink) were used in the 1980s for patents in the rapid prototyping field. Masked lamp UV-cured resin was also introduced by Cubital's Itzchak Pomerantz in the Soldier 5600, Carl Deckard's (DTM) laser sintered thermoplastic powders, and adhesive-laser cut paper (LOM) stacked to form objects by Michael Feygin before 3D Systems made its first announcement. Scott Crump was also working with extruded "melted" plastic filament modeling (FDM) and Drop deposition had been patented by William E Masters a week after Charles Hull's patent in 1984, but he had to discover Thermoplastic Inkjets introduced by Visual Impact Corporation 3D printer in 1992 using inkjets from Howtek, Inc., before he formed BPM to bring out his own 3D printer product in 1994.[85]

Multi-material 3D printing

 
A multi-material 3DBenchy.

Efforts to achieve multi-material 3D printing range from enhanced FDM-like processes like VoxelJet, to novel voxel-based printing technologies like layered assembly.[86]

A drawback of many existing 3D printing technologies is that they only allow one material to be printed at a time, limiting many potential applications which require the integration of different materials in the same object. Multi-material 3D printing solves this problem by allowing objects of complex and heterogeneous arrangements of materials to be manufactured using a single printer. Here, a material must be specified for each voxel (or 3D printing pixel element) inside the final object volume.

The process can be fraught with complications, however, due to the isolated and monolithic algorithms. Some commercial devices have sought to solve these issues, such as building a Spec2Fab translator, but the progress is still very limited.[87] Nonetheless, in the medical industry, a concept of 3D printed pills and vaccines has been presented.[88] With this new concept, multiple medications can be combined, which will decrease many risks. With more and more applications of multi-material 3D printing, the costs of daily life and high technology development will become inevitably lower.

Metallographic materials of 3D printing is also being researched.[89] By classifying each material, CIMP-3D can systematically perform 3D printing with multiple materials.[90]

4D printing

Using 3D printing and multi-material structures in additive manufacturing has allowed for the design and creation of what is called 4D printing. 4D printing is an additive manufacturing process in which the printed object changes shape with time, temperature, or some other type of stimulation. 4D printing allows for the creation of dynamic structures with adjustable shapes, properties or functionality. The smart/stimulus responsive materials that are created using 4D printing can be activated to create calculated responses such as self-assembly, self-repair, multi-functionality, reconfiguration and shape shifting. This allows for customized printing of shape changing and shape-memory materials.[91]

4D printing has the potential to find new applications and uses for materials (plastics, composites, metals, etc.) and will create new alloys and composites that were not viable before. The versatility of this technology and materials can lead to advances in multiple fields of industry, including space, commercial and the medical field. The repeatability, precision, and material range for 4D printing must increase to allow the process to become more practical throughout these industries. 

To become a viable industrial production option, there are a couple of challenges that 4D printing must overcome. The challenges of 4D printing include the fact that the microstructures of these printed smart materials must be close to or better than the parts obtained through traditional machining processes. New and customizable materials need to be developed that have the ability to consistently respond to varying external stimuli and change to their desired shape. There is also a need to design new software for the various technique types of 4D printing. The 4D printing software will need to take into consideration the base smart material, printing technique, and structural and geometric requirements of the design.[92]

Processes and printers

ISO/ASTM52900-15 defines seven categories of additive manufacturing (AM) processes within its meaning.[93][94] They are:

The main differences between processes are in the way layers are deposited to create parts and in the materials that are used. Each method has its own advantages and drawbacks, which is why some companies offer a choice of powder and polymer for the material used to build the object.[95] Others sometimes use standard, off-the-shelf business paper as the build material to produce a durable prototype. The main considerations in choosing a machine are generally speed, costs of the 3D printer, of the printed prototype, choice and cost of the materials, and color capabilities.[96] Printers that work directly with metals are generally expensive. However less expensive printers can be used to make a mold, which is then used to make metal parts.[97]

Material Jetting

The first process where three-dimensional material is deposited to form an object was done with material jetting[26] or as it was originally called particle deposition. Particle deposition by inkjet first started with continuous inkjet technology (CIT) (1950s) and later with drop-on-demand inkjet technology (1970s) using hot-melt inks. Wax inks were the first three-dimensional materials jetted and later low temperature alloy metal was jetted with CIT. Wax and thermoplastic hot-melts were jetted next by DOD. Objects were very small and started with text characters and numerals for signage. An object must have form and can be handled. Wax characters tumbled off paper documents and inspired a liquid metal recorder patent to make metal characters for signage in 1971. Thermoplastic color inks (CMYK) printed with layers of each color to form the first digitally formed layered objects in 1984. The idea of investment casting with Solid-Ink jetted images or patterns in 1984 led to the first patent to form articles from particle deposition in 1989, issued in 1992.

Material Extrusion

 
Schematic representation of the 3D printing technique known as fused filament fabrication; a filament a) of plastic material is fed through a heated moving head b) that melts and extrudes it depositing it, layer after layer, in the desired shape c). A moving platform e) lowers after each layer is deposited. For this kind of technology additional vertical support structures d) are needed to sustain overhanging parts

Some methods melt or soften the material to produce the layers. In fused filament fabrication, also known as fused deposition modeling (FDM), the model or part is produced by extruding small beads or streams of material which harden immediately to form layers. A filament of thermoplastic, metal wire, or other material is fed into an extrusion nozzle head (3D printer extruder), which heats the material and turns the flow on and off. FDM is somewhat restricted in the variation of shapes that may be fabricated. Another technique fuses parts of the layer and then moves upward in the working area, adding another layer of granules and repeating the process until the piece has built up. This process uses the unfused media to support overhangs and thin walls in the part being produced, which reduces the need for temporary auxiliary supports for the piece.[98] Recently, FFF/FDM has expanded to 3-D print directly from pellets to avoid the conversion to filament. This process is called fused particle fabrication (FPF) (or fused granular fabrication (FGF) and has the potential to use more recycled materials.[99]

Powder Bed Fusion

Powder Bed Fusion techniques, or PBF, include several processes such as DMLS, SLS, SLM, MJF and EBM. Powder Bed Fusion processes can be used with an array of materials and their flexibility allows for geometrically complex structures,[100] making it a go to choice for many 3D printing projects. These techniques include selective laser sintering, with both metals and polymers, and direct metal laser sintering.[101] Selective laser melting does not use sintering for the fusion of powder granules but will completely melt the powder using a high-energy laser to create fully dense materials in a layer-wise method that has mechanical properties similar to those of conventional manufactured metals. Electron beam melting is a similar type of additive manufacturing technology for metal parts (e.g. titanium alloys). EBM manufactures parts by melting metal powder layer by layer with an electron beam in a high vacuum.[102][103] Another method consists of an inkjet 3D printing system, which creates the model one layer at a time by spreading a layer of powder (plaster, or resins) and printing a binder in the cross-section of the part using an inkjet-like process. With laminated object manufacturing, thin layers are cut to shape and joined. In addition to the previously mentioned methods, HP has developed the Multi Jet Fusion (MJF) which is a powder base technique, though no lasers are involved. An inkjet array applies fusing and detailing agents which are then combined by heating to create a solid layer.[104]

Binder jetting

The binder jetting 3D printing technique is the deposition of a binding adhesive agent onto layers of material, usually powdered. The materials can be ceramic-based or metal. This method is also known as inkjet 3D printing system. To produce the piece, the printer builds the model using a head that moves over the platform base and deposits, one layer at a time, by spreading a layer of powder (plaster, or resins) and printing a binder in the cross-section of the part using an inkjet-like process. This is repeated until every layer has been printed. This technology allows the printing of full color prototypes, overhangs, and elastomer parts. The strength of bonded powder prints can be enhanced with wax or thermoset polymer impregnation.[105]

 
Schematic representation of stereolithography; a light-emitting device a) (laser or DLP) selectively illuminate the transparent bottom c) of a tank b) filled with a liquid photo-polymerizing resin; the solidified resin d) is progressively dragged up by a lifting platform e)

Stereolithography

Other methods cure liquid materials using different sophisticated technologies, such as stereolithography. Photopolymerization is primarily used in stereolithography to produce a solid part from a liquid. Inkjet printer systems like the Objet PolyJet system spray photopolymer materials onto a build tray in ultra-thin layers (between 16 and 30 μm) until the part is completed.[106] Each photopolymer layer is cured with UV light after it is jetted, producing fully cured models that can be handled and used immediately, without post-curing. Ultra-small features can be made with the 3D micro-fabrication technique used in multiphoton photopolymerisation. Due to the nonlinear nature of photo excitation, the gel is cured to a solid only in the places where the laser was focused while the remaining gel is then washed away. Feature sizes of under 100 nm are easily produced, as well as complex structures with moving and interlocked parts.[107] Yet another approach uses a synthetic resin that is solidified using LEDs.[108]

In Mask-image-projection-based stereolithography, a 3D digital model is sliced by a set of horizontal planes. Each slice is converted into a two-dimensional mask image. The mask image is then projected onto a photocurable liquid resin surface and light is projected onto the resin to cure it in the shape of the layer.[109] Continuous liquid interface production begins with a pool of liquid photopolymer resin. Part of the pool bottom is transparent to ultraviolet light (the "window"), which causes the resin to solidify. The object rises slowly enough to allow resin to flow under and maintain contact with the bottom of the object.[110] In powder-fed directed-energy deposition, a high-power laser is used to melt metal powder supplied to the focus of the laser beam. The powder fed directed energy process is similar to Selective Laser Sintering, but the metal powder is applied only where material is being added to the part at that moment.[111][112]

Computed Axial Lithography

Computed axial lithography is a method for 3D printing based on computerised tomography scans to create prints in photo-curable resin. It was developed by a collaboration between the University of California, Berkeley with Lawrence Livermore National Laboratory.[113][114][115] Unlike other methods of 3D printing it does not build models through depositing layers of material like fused deposition modelling and stereolithography, instead it creates objects using a series of 2D images projected onto a cylinder of resin.[113][115] It is notable for its ability to build an object much more quickly than other methods using resins and the ability to embed objects within the prints.[114]

Liquid Additive Manufacturing

Liquid additive manufacturing (LAM) is a 3D printing technique which deposits a liquid or high viscose material (e.g. liquid silicone rubber) onto a build surface to create an object which then is vulcanised using heat to harden the object.[116][117][118] The process was originally created by Adrian Bowyer and was then built upon by German RepRap.[116][119][120]

A technique called programmable tooling uses 3D printing to create a temporary mold, which is then filled via a conventional injection molding process and then immediately dissolved.[121]

Lamination

In some printers, paper can be used as the build material, resulting in a lower cost to print. During the 1990s some companies marketed printers that cut cross-sections out of special adhesive coated paper using a carbon dioxide laser and then laminated them together.

In 2005 Mcor Technologies Ltd developed a different process using ordinary sheets of office paper, a tungsten carbide blade to cut the shape, and selective deposition of adhesive and pressure to bond the prototype.[122]

Directed Energy Deposition (DED)

Powder-fed directed-energy deposition

In powder-fed directed-energy deposition, a high-power laser is used to melt metal powder supplied to the focus of the laser beam. The laser beam typically travels through the center of the deposition head and is focused to a small spot by one or more lenses. The build occurs on an X-Y table which is driven by a tool path created from a digital model to fabricate an object layer by layer. The deposition head is moved up vertically as each layer is completed. Some systems even make use of 5-axis[123][124] or 6-axis systems[125] (i.e. articulated arms) capable of delivering material on the substrate (a printing bed, or a pre-existing part[126]) with few to no spatial access restrictions. Metal powder is delivered and distributed around the circumference of the head or can be split by an internal manifold and delivered through nozzles arranged in various configurations around the deposition head. A hermetically sealed chamber filled with inert gas or a local inert shroud gas (sometimes both combined) are often used to shield the melt pool from atmospheric oxygen, to limit oxidation and better control the material properties. The powder-fed directed-energy process is similar to Selective Laser Sintering, but the metal powder is projected only where material is being added to the part at that moment. The laser beam is used to heat up and create a "melt pool" on the substrate, in which the new powder is injected quasi-simultaneously. The process supports a wide range of materials including titanium, stainless steel, aluminium, tungsten, and other specialty materials as well as composites and functionally graded material. The process can not only fully build new metal parts but can also add material to existing parts for example for coatings, repair, and hybrid manufacturing applications. Laser engineered net shaping (LENS), which was developed by Sandia National Labs, is one example of the powder-fed directed-energy deposition process for 3D printing or restoring metal parts.[127][128]

Metal wire processes

Laser-based wire-feed systems, such as Laser Metal Deposition-wire (LMD-w), feed wire through a nozzle that is melted by a laser using inert gas shielding in either an open environment (gas surrounding the laser), or in a sealed chamber. Electron beam freeform fabrication uses an electron beam heat source inside a vacuum chamber.

It is also possible to use conventional gas metal arc welding attached to a 3D stage to 3-D print metals such as steel, bronze and aluminium.[129][130] Low-cost open source RepRap-style 3-D printers have been outfitted with Arduino-based sensors and demonstrated reasonable metallurgical properties from conventional welding wire as feedstock.[131]

Selective Powder Deposition (SPD)

In selective powder deposition, build and support powders are selectively deposited into a crucible, such that the build powder takes the shape of the desired object and support powder fills the rest of the volume in the crucible. Then an infill material is applied, such that it comes in contact with the build powder. Then the crucible is fired up in a kiln at the temperature above the melting point of the infill, but below the melting points of the powders. When the infill melts, it soaks the build powder. But it doesn't soak the support powder, because the support powder is chosen to be such that it is not wettable by the infill. If at the firing temperature, the atoms of the infill material and the build powder are mutually defusable, such as in case of copper powder and zinc infill, then the resulting material will be a uniform mixture of those atoms, in this case, bronze. But if the atoms are not mutually defusable, such as in case of tungsten and copper at 1100 °C, then the resulting material will be a composite. To prevent shape distortion, the firing temperature must be below the solidus temperature of the resulting alloy.[132]

Cryogenic 3D Printing

Cryogenic 3D printing is a collection of techniques which forms solid structures by freezing liquid materials while they are deposited. As each liquid layer is applied, it is cooled by the low temperature of the previous layer and printing environment which results in solidification. Unlike other 3D printing techniques, Cryogenic 3D printing requires a controlled printing environment. The ambient temperature must be below the material's freezing point to ensure the structure remains solid during manufacturing and the humidity must remain low to prevent frost formation between the application of layers.[133] Materials typically include water and water-based solutions, such as brine, slurry, and hydrogels.[134][135] Cryogenic 3D printing techniques include Rapid Freezing Prototype (RFP),[134] Low-Temperature Deposition Manufacturing (LDM),[136] and Freeze-form Extrusion Fabrication (FEF).[137]

Applications

 
The Audi RSQ was made with rapid prototyping industrial KUKA robots

3D printing or additive manufacturing has been used in manufacturing, medical, industry and sociocultural sectors (e.g. Cultural Heritage) to create successful commercial technology.[138] More recently, 3D printing has also been used in the humanitarian and development sector to produce a range of medical items, prosthetics, spares and repairs.[139] The earliest application of additive manufacturing was on the toolroom end of the manufacturing spectrum. For example, rapid prototyping was one of the earliest additive variants, and its mission was to reduce the lead time and cost of developing prototypes of new parts and devices, which was earlier only done with subtractive toolroom methods such as CNC milling, turning, and precision grinding.[140] In the 2010s, additive manufacturing entered production to a much greater extent.

Food industry

Additive manufacturing of food is being developed by squeezing out food, layer by layer, into three-dimensional objects. A large variety of foods are appropriate candidates, such as chocolate and candy, and flat foods such as crackers, pasta,[141] and pizza.[142][143] NASA is looking into the technology in order to create 3D printed food to limit food waste and to make food that is designed to fit an astronaut's dietary needs.[144] In 2018, Italian bioengineer Giuseppe Scionti developed a technology allowing the production of fibrous plant-based meat analogues using a custom 3D bioprinter, mimicking meat texture and nutritional values.[145][146]

Fashion industry

 
3D printed necklace

3D printing has entered the world of clothing, with fashion designers experimenting with 3D-printed bikinis, shoes, and dresses.[147] In commercial production, Nike used 3D printing to prototype and manufacture the 2012 Vapor Laser Talon football shoe for players of American football, and New Balance has 3D manufactured custom-fit shoes for athletes.[147][148] 3D printing has come to the point where companies are printing consumer grade eyewear with on-demand custom fit and styling (although they cannot print the lenses). On-demand customization of glasses is possible with rapid prototyping.[149]

Vanessa Friedman, fashion director and chief fashion critic at The New York Times, says 3D printing will have a significant value for fashion companies down the road, especially if it transforms into a print-it-yourself tool for shoppers. "There's real sense that this is not going to happen anytime soon," she says, "but it will happen, and it will create dramatic change in how we think both about intellectual property and how things are in the supply chain". She adds: "Certainly some of the fabrications that brands can use will be dramatically changed by technology."[150]

Transportation industry

 
A 3D printed jet engine model

In cars, trucks, and aircraft, Additive Manufacturing is beginning to transform both (1) unibody and fuselage design and production and (2) powertrain design and production. For example, General Electric uses high-end 3D printers to build parts for turbines.[151] Many of these systems are used for rapid prototyping, before mass production methods are employed. Other prominent examples include:

Firearm industry

AM's impact on firearms involves two dimensions: new manufacturing methods for established companies, and new possibilities for the making of do-it-yourself firearms. In 2012, the US-based group Defense Distributed disclosed plans to design a working plastic 3D printed firearm "that could be downloaded and reproduced by anybody with a 3D printer."[160][161] After Defense Distributed released their plans, questions were raised regarding the effects that 3D printing and widespread consumer-level CNC machining[162][163] may have on gun control effectiveness.[164][165][166][167] Moreover, armour design strategies can be enhanced by taking inspiration from nature and prototyping those designs easily possible using additive manufacturing.[168]

Health sector

Surgical uses of 3D printing-centric therapies have a history beginning in the mid-1990s with anatomical modeling for bony reconstructive surgery planning. Patient-matched implants were a natural extension of this work, leading to truly personalized implants that fit one unique individual.[169] Virtual planning of surgery and guidance using 3D printed, personalized instruments have been applied to many areas of surgery including total joint replacement and craniomaxillofacial reconstruction with great success.[170][171] One example of this is the bioresorbable trachial splint to treat newborns with tracheobronchomalacia[172] developed at the University of Michigan. The use of additive manufacturing for serialized production of orthopedic implants (metals) is also increasing due to the ability to efficiently create porous surface structures that facilitate osseointegration. The hearing aid and dental industries are expected to be the biggest area of future development using the custom 3D printing technology.[173]

3D printing is not just limited to inorganic materials; there have been a number of biomedical advancements made possible by 3D printing. As of 2012, 3D bio-printing technology has been studied by biotechnology firms and academia for possible use in tissue engineering applications in which organs and body parts are built using inkjet printing techniques. In this process, layers of living cells are deposited onto a gel medium or sugar matrix and slowly built up to form three-dimensional structures including vascular systems.[174] 3D printing has been considered as a method of implanting stem cells capable of generating new tissues and organs in living humans.[175] In 2018, 3D printing technology was used for the first time to create a matrix for cell immobilization in fermentation. Propionic acid production by Propionibacterium acidipropionici immobilized on 3D-printed nylon beads was chosen as a model study. It was shown that those 3D-printed beads were capable of promoting high density cell attachment and propionic acid production, which could be adapted to other fermentation bioprocesses.[176]

3D printing has also been employed by researchers in the pharmaceutical field. During the last few years there's been a surge in academic interest regarding drug delivery with the aid of AM techniques. This technology offers a unique way for materials to be utilized in novel formulations.[177] AM manufacturing allows for the usage of materials and compounds in the development of formulations, in ways that are not possible with conventional/traditional techniques in the pharmaceutical field, e.g. tableting, cast-molding, etc. Moreover, one of the major advantages of 3D printing, especially in the case of fused deposition modelling (FDM), is the personalization of the dosage form that can be achieved, thus, targeting the patient's specific needs.[178] In the not-so-distant future, 3D printers are expected to reach hospitals and pharmacies in order to provide on demand production of personalized formulations according to the patients' needs.[179]

Medical equipment

During the COVID-19 pandemic 3d printers were used to supplement the strained supply of PPE through volunteers using their personally owned printers to produce various pieces of personal protective equipment (i.e. frames for face shields).

Education sector

3D printing, and open source 3D printers in particular, are the latest technology making inroads into the classroom.[180][181][182] Higher education has proven to be a major buyer of desktop and professional 3D printers which industry experts generally view as a positive indicator.[183] Some authors have claimed that 3D printers offer an unprecedented "revolution" in STEM education.[184][185] The evidence for such claims comes from both the low-cost ability for rapid prototyping in the classroom by students, but also the fabrication of low-cost high-quality scientific equipment from open hardware designs forming open-source labs.[186] Additionally, Libraries around the world have also become locations to house smaller 3D printers for educational and community access.[187] Future applications for 3D printing might include creating open-source scientific equipment.[186][188]

 
3D printed sculpture of an Egyptian pharaoh shown at Threeding

Replicating archeological artifacts

In the 2010s, 3D printing became intensively used in the cultural heritage field for preservation, restoration and dissemination purposes.[189] Many Europeans and North American Museums have purchased 3D printers and actively recreate missing pieces of their relics[190] and archaeological monuments such as Tiwanaku in Bolivia.[191] The Metropolitan Museum of Art and the British Museum have started using their 3D printers to create museum souvenirs that are available in the museum shops.[192] Other museums, like the National Museum of Military History and Varna Historical Museum, have gone further and sell through the online platform Threeding digital models of their artifacts, created using Artec 3D scanners, in 3D printing friendly file format, which everyone can 3D print at home.[193]

Replicating historic buildings

 
The Stoofbrug [nl] in Amsterdam, the world's first 3D-printed metal bridge[79]

The application of 3D printing for the representation of architectural assets has many challenges. In 2018, the structure of Iran National Bank was traditionally surveyed and modeled in computer graphics software (specifically, Cinema4D) and was optimized for 3D printing. The team tested the technique for the construction of the part and it was successful. After testing the procedure, the modellers reconstructed the structure in Cinema4D and exported the front part of the model to Netfabb. The entrance of the building was chosen due to the 3D printing limitations and the budget of the project for producing the maquette. 3D printing was only one of the capabilities enabled by the produced 3D model of the bank, but due to the project's limited scope, the team did not continue modelling for the virtual representation or other applications.[194] In 2021, Parsinejad et al. comprehensively compared the hand surveying method for 3D reconstruction ready for 3D printing with digital recording (adoption of photogrammetry method).[194]

Soft actuators

3D printed soft actuators is a growing application of 3D printing technology which has found its place in the 3D printing applications. These soft actuators are being developed to deal with soft structures and organs especially in biomedical sectors and where the interaction between human and robot is inevitable. The majority of the existing soft actuators are fabricated by conventional methods that require manual fabrication of devices, post processing/assembly, and lengthy iterations until maturity of the fabrication is achieved. Instead of the tedious and time-consuming aspects of the current fabrication processes, researchers are exploring an appropriate manufacturing approach for effective fabrication of soft actuators. Thus, 3D printed soft actuators are introduced to revolutionize the design and fabrication of soft actuators with custom geometrical, functional, and control properties in a faster and inexpensive approach. They also enable incorporation of all actuator components into a single structure eliminating the need to use external joints, adhesives, and fasteners.

Circuit boards

Circuit board manufacturing involves multiple steps which include imaging, drilling, plating, soldermask coating, nomenclature printing and surface finishes. These steps include many chemicals such as harsh solvents and acids. 3D printing circuit boards remove the need for many of these steps while still producing complex designs.[195] Polymer ink is used to create the layers of the build while silver polymer is used for creating the traces and holes used to allow electricity to flow.[196] Current circuit board manufacturing can be a tedious process depending on the design. Specified materials are gathered and sent into inner layer processing where images are printed, developed and etched. The etches cores are typically punched to add lamination tooling. The cores are then prepared for lamination. The stack-up, the buildup of a circuit board, is built and sent into lamination where the layers are bonded. The boards are then measured and drilled. Many steps may differ from this stage however for simple designs, the material goes through a plating process to plate the holes and surface. The outer image is then printed, developed and etched. After the image is defined, the material must get coated with soldermask for later soldering. Nomenclature is then added so components can be identified later. Then the surface finish is added. The boards are routed out of panel form into their singular or array form and then electrically tested. Aside from the paperwork which must be completed which proves the boards meet specifications, the boards are then packed and shipped. The benefits of 3D printing would be that the final outline is defined from the beginning, no imaging, punching or lamination is required and electrical connections are made with the silver polymer which eliminates drilling and plating. The final paperwork would also be greatly reduced due to the lack of materials required to build the circuit board. Complex designs which may take weeks to complete through normal processing can be 3D printed, greatly reducing manufacturing time.

 
A 3D selfie in 1:20 scale printed using gypsum-based printing

Hobbyists

In 2005, academic journals had begun to report on the possible artistic applications of 3D printing technology.[197] Off the shelf machines were increasingly capable of producing practical household applications, for example, ornamental objects. Some practical examples include a working clock[198] and gears printed for home woodworking machines among other purposes.[199] Web sites associated with home 3D printing tended to include backscratchers, coat hooks, door knobs, etc.[200] As of 2017, domestic 3D printing was reaching a consumer audience beyond hobbyists and enthusiasts. Several projects and companies are making efforts to develop affordable 3D printers for home desktop use. Much of this work has been driven by and targeted at DIY/maker/enthusiast/early adopter communities, with additional ties to the academic and hacker communities.

Sped on by decreases in price and increases in quality, As of 2019 an estimated 2 million people worldwide have purchased a 3D printer for hobby use.[201]

Legal aspects

Intellectual property

3D printing has existed for decades within certain manufacturing industries where many legal regimes, including patents, industrial design rights, copyrights, and trademarks may apply. However, there is not much jurisprudence to say how these laws will apply if 3D printers become mainstream and individuals or hobbyist communities begin manufacturing items for personal use, for non-profit distribution, or for sale.

Any of the mentioned legal regimes may prohibit the distribution of the designs used in 3D printing, or the distribution or sale of the printed item. To be allowed to do these things, where an active intellectual property was involved, a person would have to contact the owner and ask for a licence, which may come with conditions and a price. However, many patent, design and copyright laws contain a standard limitation or exception for "private", "non-commercial" use of inventions, designs or works of art protected under intellectual property (IP). That standard limitation or exception may leave such private, non-commercial uses outside the scope of IP rights.

Patents cover inventions including processes, machines, manufacturing, and compositions of matter and have a finite duration which varies between countries, but generally 20 years from the date of application. Therefore, if a type of wheel is patented, printing, using, or selling such a wheel could be an infringement of the patent.[202]

Copyright covers an expression[203] in a tangible, fixed medium and often lasts for the life of the author plus 70 years thereafter.[204] For example, a sculptor retains copyright over a statue, such that other people cannot then legally distribute designs to print an identical or similar statue without paying royalties, waiting for the copyright to expire, or working within a fair use exception.

When a feature has both artistic (copyrightable) and functional (patentable) merits, when the question has appeared in US court, the courts have often held the feature is not copyrightable unless it can be separated from the functional aspects of the item.[204] In other countries the law and the courts may apply a different approach allowing, for example, the design of a useful device to be registered (as a whole) as an industrial design on the understanding that, in case of unauthorized copying, only the non-functional features may be claimed under design law whereas any technical features could only be claimed if covered by a valid patent.

Gun legislation and administration

The US Department of Homeland Security and the Joint Regional Intelligence Center released a memo stating that "significant advances in three-dimensional (3D) printing capabilities, availability of free digital 3D printable files for firearms components, and difficulty regulating file sharing may present public safety risks from unqualified gun seekers who obtain or manufacture 3D printed guns" and that "proposed legislation to ban 3D printing of weapons may deter, but cannot completely prevent, their production. Even if the practice is prohibited by new legislation, online distribution of these 3D printable files will be as difficult to control as any other illegally traded music, movie or software files."[205]

Attempting to restrict the distribution of gun plans via the Internet has been likened to the futility of preventing the widespread distribution of DeCSS, which enabled DVD ripping.[206][207][208][209] After the US government had Defense Distributed take down the plans, they were still widely available via the Pirate Bay and other file sharing sites.[210] Downloads of the plans from the UK, Germany, Spain, and Brazil were heavy.[211][212] Some US legislators have proposed regulations on 3D printers to prevent them from being used for printing guns.[213][214] 3D printing advocates have suggested that such regulations would be futile, could cripple the 3D printing industry, and could infringe on free speech rights, with early pioneer of 3D printing professor Hod Lipson suggesting that gunpowder could be controlled instead.[215][216][217][218][219][220]

Internationally, where gun controls are generally stricter than in the United States, some commentators have said the impact may be more strongly felt since alternative firearms are not as easily obtainable.[221] Officials in the United Kingdom have noted that producing a 3D printed gun would be illegal under their gun control laws.[222] Europol stated that criminals have access to other sources of weapons but noted that as technology improves, the risks of an effect would increase.[223][224]

Aerospace regulation

In the United States, the FAA has anticipated a desire to use additive manufacturing techniques and has been considering how best to regulate this process.[225] The FAA has jurisdiction over such fabrication because all aircraft parts must be made under FAA production approval or under other FAA regulatory categories.[226] In December 2016, the FAA approved the production of a 3D printed fuel nozzle for the GE LEAP engine.[227] Aviation attorney Jason Dickstein has suggested that additive manufacturing is merely a production method, and should be regulated like any other production method.[228][229] He has suggested that the FAA's focus should be on guidance to explain compliance, rather than on changing the existing rules, and that existing regulations and guidance permit a company "to develop a robust quality system that adequately reflects regulatory needs for quality assurance".[228]

Health and safety

A video on research done on printer emissions

Research on the health and safety concerns of 3D printing is new and in development due to the recent proliferation of 3D printing devices. In 2017, the European Agency for Safety and Health at Work has published a discussion paper on the processes and materials involved in 3D printing, potential implications of this technology for occupational safety and health and avenues for controlling potential hazards.[230]

Noise levels

Noise level is measured in decibels (dB), and can vary greatly in home-printers from 15 dB to 75 dB.[231] Some main sources of noise in filament printers are fans, motors and bearings, while in resin printers the fans usually are responsible for most of the noise.[231] Some methods for dampening the noise from a printer may be to install vibration isolation, use larger diameter fans, perform regular maintenance and lubrication, or using a soundproofing enclosure.[231]

Impact

Additive manufacturing, starting with today's infancy period, requires manufacturing firms to be flexible, ever-improving users of all available technologies to remain competitive. Advocates of additive manufacturing also predict that this arc of technological development will counter globalization, as end users will do much of their own manufacturing rather than engage in trade to buy products from other people and corporations.[14] The real integration of the newer additive technologies into commercial production, however, is more a matter of complementing traditional subtractive methods rather than displacing them entirely.[232]

The futurologist Jeremy Rifkin[233] claimed that 3D printing signals the beginning of a third industrial revolution,[234] succeeding the production line assembly that dominated manufacturing starting in the late 19th century.

Social change

 
Street sign in Windhoek, Namibia, advertising 3D printing, July 2018

Since the 1950s, a number of writers and social commentators have speculated in some depth about the social and cultural changes that might result from the advent of commercially affordable additive manufacturing technology.[235] In recent years, 3D printing is creating significant impact in the humanitarian and development sector. Its potential to facilitate distributed manufacturing is resulting in supply chain and logistics benefits, by reducing the need for transportation, warehousing and wastage. Furthermore, social and economic development is being advanced through the creation of local production economies.[139]

Others have suggested that as more and more 3D printers start to enter people's homes, the conventional relationship between the home and the workplace might get further eroded.[236] Likewise, it has also been suggested that, as it becomes easier for businesses to transmit designs for new objects around the globe, so the need for high-speed freight services might also become less.[237] Finally, given the ease with which certain objects can now be replicated, it remains to be seen whether changes will be made to current copyright legislation so as to protect intellectual property rights with the new technology widely available.

As 3D printers became more accessible to consumers, online social platforms have developed to support the community.[238] This includes websites that allow users to access information such as how to build a 3D printer, as well as social forums that discuss how to improve 3D print quality and discuss 3D printing news, as well as social media websites that are dedicated to share 3D models.[239][240][241] RepRap is a wiki based website that was created to hold all information on 3D printing, and has developed into a community that aims to bring 3D printing to everyone. Furthermore, there are other sites such as Pinshape, Thingiverse and MyMiniFactory, which were created initially to allow users to post 3D files for anyone to print, allowing for decreased transaction cost of sharing 3D files. These websites have allowed greater social interaction between users, creating communities dedicated to 3D printing.

Some call attention to the conjunction of commons-based peer production with 3D printing and other low-cost manufacturing techniques.[242][243][244] The self-reinforced fantasy of a system of eternal growth can be overcome with the development of economies of scope, and here, society can play an important role contributing to the raising of the whole productive structure to a higher plateau of more sustainable and customized productivity.[242] Further, it is true that many issues, problems, and threats arise due to the democratization of the means of production, and especially regarding the physical ones.[242] For instance, the recyclability of advanced nanomaterials is still questioned; weapons manufacturing could become easier; not to mention the implications for counterfeiting[245] and on intellectual property.[246] It might be maintained that in contrast to the industrial paradigm whose competitive dynamics were about economies of scale, commons-based peer production 3D printing could develop economies of scope. While the advantages of scale rest on cheap global transportation, the economies of scope share infrastructure costs (intangible and tangible productive resources), taking advantage of the capabilities of the fabrication tools.[242] And following Neil Gershenfeld[247] in that "some of the least developed parts of the world need some of the most advanced technologies", commons-based peer production and 3D printing may offer the necessary tools for thinking globally but acting locally in response to certain needs.

Larry Summers wrote about the "devastating consequences" of 3D printing and other technologies (robots, artificial intelligence, etc.) for those who perform routine tasks. In his view, "already there are more American men on disability insurance than doing production work in manufacturing. And the trends are all in the wrong direction, particularly for the less skilled, as the capacity of capital embodying artificial intelligence to replace white-collar as well as blue-collar work will increase rapidly in the years ahead." Summers recommends more vigorous cooperative efforts to address the "myriad devices" (e.g., tax havens, bank secrecy, money laundering, and regulatory arbitrage) enabling the holders of great wealth to "a paying" income and estate taxes, and to make it more difficult to accumulate great fortunes without requiring "great social contributions" in return, including: more vigorous enforcement of anti-monopoly laws, reductions in "excessive" protection for intellectual property, greater encouragement of profit-sharing schemes that may benefit workers and give them a stake in wealth accumulation, strengthening of collective bargaining arrangements, improvements in corporate governance, strengthening of financial regulation to eliminate subsidies to financial activity, easing of land-use restrictions that may cause the real estate of the rich to keep rising in value, better training for young people and retraining for displaced workers, and increased public and private investment in infrastructure development—e.g., in energy production and transportation.[248]

Michael Spence wrote that "Now comes a ... powerful, wave of digital technology that is replacing labor in increasingly complex tasks. This process of labor substitution and disintermediation has been underway for some time in service sectors—think of ATMs, online banking, enterprise resource planning, customer relationship management, mobile payment systems, and much more. This revolution is spreading to the production of goods, where robots and 3D printing are displacing labor." In his view, the vast majority of the cost of digital technologies comes at the start, in the design of hardware (e.g. 3D printers) and, more important, in creating the software that enables machines to carry out various tasks. "Once this is achieved, the marginal cost of the hardware is relatively low (and declines as scale rises), and the marginal cost of replicating the software is essentially zero. With a huge potential global market to amortize the upfront fixed costs of design and testing, the incentives to invest [in digital technologies] are compelling."[249]

Spence believes that, unlike prior digital technologies, which drove firms to deploy underutilized pools of valuable labor around the world, the motivating force in the current wave of digital technologies "is cost reduction via the replacement of labor". For example, as the cost of 3D printing technology declines, it is "easy to imagine" that production may become "extremely" local and customized. Moreover, production may occur in response to actual demand, not anticipated or forecast demand. Spence believes that labor, no matter how inexpensive, will become a less important asset for growth and employment expansion, with labor-intensive, process-oriented manufacturing becoming less effective, and that re-localization will appear in both developed and developing countries. In his view, production will not disappear, but it will be less labor-intensive, and all countries will eventually need to rebuild their growth models around digital technologies and the human capital supporting their deployment and expansion. Spence writes that "the world we are entering is one in which the most powerful global flows will be ideas and digital capital, not goods, services, and traditional capital. Adapting to this will require shifts in mindsets, policies, investments (especially in human capital), and quite possibly models of employment and distribution."[249]

Naomi Wu regards the usage of 3D printing in the Chinese classroom (where rote memorization is standard) to teach design principles and creativity as the most exciting recent development of the technology, and more generally regards 3D printing as being the next desktop publishing revolution.[250]

Environmental change

The growth of additive manufacturing could have a large impact on the environment. As opposed to traditional manufacturing, for instance, in which pieces are cut from larger blocks of material, additive manufacturing creates products layer-by-layer and prints only relevant parts, wasting much less material and thus wasting less energy in producing the raw materials needed.[251] By making only the bare structural necessities of products, additive manufacturing also could make a profound contribution to lightweighting, reducing the energy consumption and greenhouse gas emissions of vehicles and other forms of transportation.[252] A case study on an airplane component made using additive manufacturing, for example, found that the component's use saves 63% of relevant energy and carbon dioxide emissions over the course of the product's lifetime.[253] In addition, previous life-cycle assessment of additive manufacturing has estimated that adopting the technology could further lower carbon dioxide emissions since 3D printing creates localized production, and products would not need to be transported long distances to reach their final destination.[254]

Continuing to adopt additive manufacturing does pose some environmental downsides, however. Despite additive manufacturing reducing waste from the subtractive manufacturing process by up to 90%, the additive manufacturing process creates other forms of waste such as non-recyclable material (metal) powders. Additive manufacturing has not yet reached its theoretical material efficiency potential of 97%, but it may get closer as the technology continues to increase productivity.[255]

Some large FDM printers which melt high-density polyethylene (HDPE) pellets may also accept sufficiently clean recycled material such as chipped milk bottles. In addition these printers can use shredded material coming from faulty builds or unsuccessful prototype versions thus reducing overall project wastage and materials handling and storage. The concept has been explored in the RecycleBot.

See also

References

  1. ^ "3D printing scales up". The Economist. 5 September 2013.
  2. ^ Ngo, Tuan D.; Kashani, Alireza; Imbalzano, Gabriele; Nguyen, Kate T. Q.; Hui, David (2018). "Additive manufacturing (3D printing): A review of materials, methods, applications and challenges". Composites Part B: Engineering. 143: 172–196. doi:10.1016/j.compositesb.2018.02.012. S2CID 139464688.
  3. ^ Excell, Jon (23 May 2010). . The Engineer. Archived from the original on 19 September 2015. Retrieved 30 October 2013.
  4. ^ "Learning Course: Additive Manufacturing – Additive Fertigung". tmg-muenchen.de.
  5. ^ Lam, Hugo K.S.; Ding, Li; Cheng, T.C.E.; Zhou, Honggeng (1 January 2019). "The impact of 3D printing implementation on stock returns: A contingent dynamic capabilities perspective". International Journal of Operations & Production Management. 39 (6/7/8): 935–961. doi:10.1108/IJOPM-01-2019-0075. ISSN 0144-3577. S2CID 211386031.
  6. ^ . explainedideas.com. Archived from the original on 20 August 2022. Retrieved 11 August 2022.
  7. ^ a b "Most used 3D printing technologies 2017–2018 | Statistic". Statista. Retrieved 2 December 2018.
  8. ^ "Google Ngram Viewer". books.google.com.
  9. ^ "ISO/ASTM 52900:2015 – Additive manufacturing – General principles – Terminology". iso.org. Retrieved 15 June 2017.
  10. ^ a b Zelinski, Peter (4 August 2017), "Additive manufacturing and 3D printing are two different things", Additive Manufacturing, retrieved 11 August 2017.
  11. ^ M. Leinster, Things Pass By, in The Earth In Peril (D. Wollheim ed.). Ace Books 1957, USA, List of Ace SF double titles D-205, p.25, story copyright 1945, by Standard Magazines Inc.
  12. ^ "Ariadne". New Scientist. 64 (917): 80. 3 October 1974. ISSN 0262-4079.
  13. ^ Ellam, Richard (26 February 2019). "3D printing: you read it here first". New Scientist. Retrieved 23 August 2019.
  14. ^ a b Jane Bird (8 August 2012). "Exploring the 3D printing opportunity". Financial Times. Retrieved 30 August 2012.
  15. ^ Hideo Kodama, " Background of my invention of 3D printer and its spread," Patent Magazine of Japan Patent Attorneys Association, vo.67, no.13, pp.109-118, November 2014.
  16. ^ JP-S56-144478, "JP Patent: S56-144478 - 3D figure production device", issued 10 November 1981 
  17. ^ Hideo Kodama, "A Scheme for Three-Dimensional Display by Automatic Fabrication of Three-Dimensional Model," IEICE Transactions on Electronics (Japanese Edition), vol. J64-C, No. 4, pp. 237–41, April 1981
  18. ^ Hideo Kodama, "Automatic method for fabricating a three-dimensional plastic model with photo-hardening polymer," Review of Scientific Instruments, Vol. 52, No. 11, pp. 1770–73, November 1981
  19. ^ 4665492, Masters, William E., "United States Patent: 4665492 - Computer automated manufacturing process and system", issued 12 May 1987 
  20. ^ . Upstate Business Journal. 11 April 2013. Archived from the original on 20 December 2019. Retrieved 20 December 2019.
  21. ^ Wang, Ben (27 January 1999). Concurrent Design of Products, Manufacturing Processes and Systems. CRC Press. ISBN 978-90-5699-628-4.
  22. ^ Jean-Claude, Andre. "Disdpositif pour realiser un modele de piece industrielle". National De La Propriete Industrielle.
  23. ^ Mendoza, Hannah Rose (15 May 2015). "Alain Le Méhauté, The Man Who Submitted Patent For SLA 3D Printing Before Chuck Hull". 3dprint.com.
  24. ^ Moussion, Alexandre (2014). "Interview d'Alain Le Méhauté, l'un des pères de l'impression (Interview of Alain Le Mehaute, one of the 3D printinf technologies fathers) 3D". Primante 3D.
  25. ^ a b Howard, Robert (2009). Connecting the dots: my life and inventions, from X-rays to death rays. New York, NY: Welcome Rain. pp. 195–197. ISBN 978-1-56649-957-6. OCLC 455879561.
  26. ^ a b c d Barnatt, Christopher (2013). 3D printing: the next industrial revolution. [Nottingham, England?]: ExplainingTheFuture.com. ISBN 978-1-4841-8176-8. OCLC 854672031.
  27. ^ . PCMag.com. Archived from the original on 18 October 2013. Retrieved 30 October 2013.
  28. ^ Apparatus for Production of Three-Dimensional Objects by Stereolithography (8 August 1984)
  29. ^ Freedman, David H (2012). "Layer By Layer". Technology Review. 115 (1): 50–53.
  30. ^ "History of 3D Printing: When Was 3D Printing Invented?". All3DP. 10 December 2018. Retrieved 22 November 2019.
  31. ^ "The Evolution of 3D Printing: Past, Present and Future". 3D Printing Industry. 1 August 2016. Retrieved 24 February 2021.
  32. ^ Amon, C. H.; Beuth, J. L.; Weiss, L. E.; Merz, R.; Prinz, F. B. (1998). . Journal of Manufacturing Science and Engineering. 120 (3): 656–665. doi:10.1115/1.2830171. Archived from the original (PDF) on 20 December 2014. Retrieved 20 December 2014.
  33. ^ Beck, J.E.; Fritz, B.; Siewiorek, Daniel; Weiss, Lee (1992). (PDF). Proceedings of the 1992 Solid Freeform Fabrication Symposium. Archived from the original (PDF) on 24 December 2014. Retrieved 20 December 2014.
  34. ^ Prinz, F. B.; Merz, R.; Weiss, Lee (1997). Ikawa, N. (ed.). Building Parts You Could Not Build Before. Proceedings of the 8th International Conference on Production Engineering. London, UK: Chapman & Hall. pp. 40–44.
  35. ^ Schoffer, Filemon (15 May 2016). "How expiring patents are ushering in the next generation of 3D printing". TechCrunch. Retrieved 18 August 2023.
  36. ^ GrabCAD, GE jet engine bracket challenge
  37. ^ Zelinski, Peter (2 June 2014), , Modern Machine Shop, archived from the original on 15 November 2020, retrieved 7 June 2014
  38. ^ "As Billions More Fly, Here's How Aviation Could Evolve". National Geographic. 22 June 2017. Retrieved 20 November 2020.
  39. ^ "Aviation and Aerospace Industry". GE Additive. Retrieved 20 November 2020.
  40. ^ "Pratt & Whitney to Deliver First Entry Into Service Engine Parts Using Additive Manufacturing". Additive Manufacturing. 6 April 2015. Retrieved 20 December 2020.
  41. ^ Han, Pinlina (2017). "Additive Design and Manufacturing of Jet Engine Parts". Engineering. 3 (5): 648–652. doi:10.1016/j.eng.2017.05.017.
  42. ^ b. Mtaho, Adam; r.Ishengoma, Fredrick (2014). "3D Printing: Developing Countries Perspectives". International Journal of Computer Applications. 104 (11): 30. arXiv:1410.5349. Bibcode:2014IJCA..104k..30R. doi:10.5120/18249-9329. S2CID 5381455.
  43. ^ "Filabot: Plastic Filament Maker". Kickstarter. 24 May 2012. Retrieved 1 December 2018.
  44. ^ Cook, Benjamin Stassen (26 March 2014). "VIPRE 3D Printed Electronics". Retrieved 2 April 2019.
  45. ^ "3D Printer Price: How Much Does a 3D Printer Cost?". 3D Insider. 22 June 2017. Retrieved 24 February 2021.
  46. ^ "How Much Does a 3D Printer Cost? Calculate the ROI Now". Formlabs. Retrieved 24 February 2021.
  47. ^ "Patient receives the world's first fully 3D-printed prosthetic eye". Engadget. Retrieved 4 December 2021.
  48. ^ "Vsak dan prvi - 24ur.com". www.24ur.com. Retrieved 4 December 2021.
  49. ^ P. Sivasankaran and B. Radjaram, "3D Printing and Its Importance in Engineering - A Review," 2020 International Conference on System, Computation, Automation and Networking (ICSCAN), Pondicherry, India, 2020, pp. 1-3, doi: 10.1109/ICSCAN49426.2020.9262378.
  50. ^ K. J. A. Al Ahbabi, M. M. S. Alrashdi and W. K. Ahmed, "The Capabilities of 3D Printing Technology in the Production of Battery Energy Storage System," 2021 6th International Conference on Renewable Energy: Generation and Applications (ICREGA), Al Ain, United Arab Emirates, 2021, pp. 211-216, doi: 10.1109/ICREGA50506.2021.9388302.
  51. ^ F. Auricchio, "The magic world of 3D printing," 2017 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), Pavia, Italy, 2017, pp. 1-1, doi: 10.1109/IMWS-AMP.2017.8247328.
  52. ^ Jacobs, Paul Francis (1 January 1992). Rapid Prototyping & Manufacturing: Fundamentals of Stereolithography. Society of Manufacturing Engineers. ISBN 978-0-87263-425-1.
  53. ^ Azman, Abdul Hadi; Vignat, Frédéric; Villeneuve, François (29 April 2018). "Cad Tools and File Format Performance Evaluation in Designing Lattice Structures for Additive Manufacturing". Jurnal Teknologi. 80 (4). doi:10.11113/jt.v80.12058. ISSN 2180-3722.
  54. ^ "3D solid repair software – Fix STL polygon mesh files – LimitState:FIX". Print.limitstate.com. Retrieved 4 January 2016.
  55. ^ . yellowgurl.com. Archived from the original on 16 September 2016. Retrieved 9 August 2016.
  56. ^ . Modelrepair.azurewebsites.net. Archived from the original on 4 March 2016. Retrieved 4 January 2016.
  57. ^ "3D Printing Overhang: How to 3D Print Overhangs". All3DP. 16 June 2021. Retrieved 11 October 2021.
  58. ^ "Magics, the Most Powerful 3D Printing Software | Software for additive manufacturing". Software.materialise.com. Retrieved 4 January 2016.
  59. ^ . Netfabb.com. 15 May 2009. Archived from the original on 30 December 2015. Retrieved 4 January 2016.
  60. ^ "How to repair a 3D scan for printing". Anamarva.com. Retrieved 4 January 2016.
  61. ^ Fausto Bernardini, Holly E. Rushmeier (2002). "The 3D Model Acquisition Pipeline GAS" (PDF). Computer Graphics Forum. 21 (2): 149–72. doi:10.1111/1467-8659.00574. S2CID 15779281.
  62. ^ Satyanarayana, B.; Prakash, Kode Jaya (2015). "Component Replication Using 3D Printing Technology". Procedia Materials Science. Elsevier BV. 10: 263–269. doi:10.1016/j.mspro.2015.06.049. ISSN 2211-8128.
  63. ^ . Objet Printer Solutions. Archived from the original on 7 November 2011. Retrieved 31 January 2012.
  64. ^ Lee, Handol; Kwak, Dong-Bin; Choi, Chi Young; Ahn, Kang-Ho (2023). "Accurate measurements of particle emissions from a three-dimensional printer using a chamber test with a mixer-installed sampling system". Scientific Reports. 13 (1): 6495. Bibcode:2023NatSR..13.6495L. doi:10.1038/s41598-023-33538-9. PMC 10119104. PMID 37081153. 6495.
  65. ^ "Design Guide: Preparing a File for 3D Printing" (PDF). Xometry.
  66. ^ "How to Smooth 3D-Printed Parts". Machine Design. 29 April 2014.
  67. ^ Kraft, Caleb. "Smoothing Out Your 3D Prints With Acetone Vapor". Make. Retrieved 5 January 2016.
  68. ^ Hart, Kevin R.; Dunn, Ryan M.; Sietins, Jennifer M.; Hofmeister Mock, Clara M.; Mackay, Michael E.; Wetzel, Eric D. (2018). "Increased fracture toughness of additively manufactured amorphous thermoplastics via thermal annealing". Polymer. 144: 192–204. doi:10.1016/j.polymer.2018.04.024. ISSN 0032-3861.
  69. ^ Valvez, S.; Silva, A.P.; Reis, P.N.B.; Berto, F. (2022). "Annealing effect on mechanical properties of 3D printed composites". Procedia Structural Integrity. 37: 738–745. doi:10.1016/j.prostr.2022.02.004. ISSN 2452-3216.
  70. ^ a b Benwood, C.; Anstey, A.; Andrzejewski, J.; Misra, M.; Mohanty, A. K. (2018). "Improving the Impact Strength and Heat Resistance of 3D Printed Models: Structure, Property, and Processing Correlationships during Fused Deposition Modeling (FDM) of Poly(Lactic Acid)". ACS Omega. 3 (4): 4400–4411. doi:10.1021/acsomega.8b00129. PMC 6641607. PMID 31458666.
  71. ^ Wijnbergen, D.C.; van der Stelt, M.; Verhamme, L.M. (2021). "The effect of annealing on deformation and mechanical strength of tough PLA and its application in 3D printed prosthetic sockets". Rapid Prototyping Journal. 27 (11): 81–89. doi:10.1108/RPJ-04-2021-0090. S2CID 244259184.
  72. ^ Wei Du; Qian Bai; Bi Zhang (2016). "A Novel Method for Additive/Subtractive Hybrid Manufacturing of Metallic Parts". Procedia Manufacturing. 5: 1018–1030. doi:10.1016/j.promfg.2016.08.067. ISSN 2351-9789.
  73. ^ Li F, Chen S, Shi J, Tian H (2018). "Investigation on Surface Quality in a Hybrid Manufacturing System Combining Wire and Arc Additive Manufacturing and Machining". In Chen S, Zhang Y, Feng Z (eds.). Transactions on Intelligent Welding Manufacturing. Springer. pp. 127–137. doi:10.1007/978-981-10-7043-3_9. ISBN 978-981-10-7042-6.
  74. ^ Delfs, P.; T̈ows, M.; Schmid, H.-J. (October 2016). "Optimized build orientation of additive manufactured parts for improved surface quality and build time". Additive Manufacturing. 12: 314–320. doi:10.1016/j.addma.2016.06.003. ISSN 2214-8604.
  75. ^ O'Connell, Jackson (29 April 2022). "Cura Adaptive Layers – Simply Explained". All3DP. Retrieved 29 March 2023.
  76. ^ Boissonneault, Tess (15 August 2022). "Your Guide to Painting PLA 3D Prints". Wevolver. Retrieved 29 March 2023.
  77. ^ Haselhuhn, Amberlee S.; Gooding, Eli J.; Glover, Alexandra G.; Anzalone, Gerald C.; Wijnen, Bas; Sanders, Paul G.; Pearce, Joshua M. (2014). "Substrate Release Mechanisms for Gas Metal Arc Weld 3D Aluminum Metal Printing". 3D Printing and Additive Manufacturing. 1 (4): 204. doi:10.1089/3dp.2014.0015. S2CID 135499443.
  78. ^ Haselhuhn, Amberlee S.; Wijnen, Bas; Anzalone, Gerald C.; Sanders, Paul G.; Pearce, Joshua M. (2015). "In situ formation of substrate release mechanisms for gas metal arc weld metal 3-D printing". Journal of Materials Processing Technology. 226: 50. doi:10.1016/j.jmatprotec.2015.06.038.
  79. ^ a b Huet, Natalie (16 July 2021). "Amsterdam unveils the world's first 3D-printed steel bridge". euronews.
  80. ^ Wang, Xin; Jiang, Man; Zhou, Zuowan; Gou, Jihua; Hui, David (2017). "3D printing of polymer matrix composites: A review and prospective". Composites Part B: Engineering. 110: 442–458. doi:10.1016/j.compositesb.2016.11.034.
  81. ^ Rose, L. (2011). On the degradation of porous stainless steel (Thesis). University of British Columbia. pp. 104–143. doi:10.14288/1.0071732.
  82. ^ Zadi-Maad, Ahmad; Rohbib, Rohbib; Irawan, A (2018). "Additive manufacturing for steels: a review". IOP Conference Series: Materials Science and Engineering. 285 (1): 012028. Bibcode:2018MS&E..285a2028Z. doi:10.1088/1757-899X/285/1/012028.
  83. ^ Galante, Raquel; G. Figueiredo-Pina, Celio; Serro, Ana Paula (2019). "Additive manufacturing of ceramics for dental applications". Dental Materials. 35 (6): 825–846. doi:10.1016/j.dental.2019.02.026. PMID 30948230. S2CID 96434269.
  84. ^ Cooper, Kenneth G. (2001). Rapid prototyping technology: selection and application. New York: Marcel Dekker. pp. 39–41. ISBN 0-8247-0261-1. OCLC 45873626.
  85. ^ a b Burns, Marshall (1993). Automated fabrication: improving productivity in manufacturing. Englewood Cliffs, N.J.: PTR Prentice Hall. pp. 8, 15, 49, 95, 97. ISBN 0-13-119462-3. OCLC 27810960.
  86. ^ Mici, Joni; Ko, Jang Won; West, Jared; Jaquith, Jeffrey; Lipson, Hod (2019). "Parallel electrostatic grippers for layered assembly". Additive Manufacturing. 27: 451–460. doi:10.1016/j.addma.2019.03.032. S2CID 141154762.
  87. ^ Spec2Fab: A reducer-tuner model for translating specifications to 3D prints. Spec2Fab. CiteSeerX 10.1.1.396.2985.
  88. ^ Researchers Turn to Multi-Material 3D Printing to Develop Responsive, Versatile Smart Composites. Researchers Turn to Multi-Material 3D Printing to Develop Responsive, Versatile Smart Composites.
  89. ^ CIMP-3D. CIMP-3d (in Chinese).
  90. ^ CIMP-3D. CIMP-3d.
  91. ^ Momeni, Farhang, Xun Liu, and Jun Ni. "A review of 4D printing." Materials & design 122 (2017): 42-79.
  92. ^ Joshi, Siddharth, et al. "4D printing of materials for the future: Opportunities and challenges." Applied Materials Today 18 (2020): 100490.
  93. ^ "Additive manufacturing – General Principles – Overview of process categories and feedstock". ISO/ASTM International Standard (17296–2:2015(E)). 2015.
  94. ^ "Standard Terminology for Additive Manufacturing – General Principles – Terminology". ASTM International – Standards Worldwide. 1 December 2015. Retrieved 23 August 2019.
  95. ^ Sherman, Lilli Manolis (15 November 2007). "A whole new dimension – Rich homes can afford 3D printers". The Economist.
  96. ^ Wohlers, Terry. . Archived from the original on 4 November 2020. Retrieved 6 January 2007.
  97. ^ 3ders.org (25 September 2012). "Casting aluminium parts directly from 3D printed PLA parts". 3ders.org. Retrieved 30 October 2013.[permanent dead link]
  98. ^ . THRE3D.com. Archived from the original on 3 February 2014. Retrieved 3 February 2014.
  99. ^ Woern, Aubrey; Byard, Dennis; Oakley, Robert; Fiedler, Matthew; Snabes, Samantha (12 August 2018). "Fused Particle Fabrication 3-D Printing: Recycled Materials' Optimization and Mechanical Properties". Materials. 11 (8): 1413. Bibcode:2018Mate...11.1413W. doi:10.3390/ma11081413. PMC 6120030. PMID 30103532.
  100. ^ "Powder bed fusion - DMLS, SLS, SLM, MJF, EBM". make.3dexperience.3ds.com.
  101. ^ "Aluminium-powder DMLS-printed part finishes race first". Machine Design. 3 March 2014.
  102. ^ Hiemenz, Joe. "Rapid prototypes move to metal components (EE Times, 3/9/2007)".
  103. ^ . SMU.edu. Archived from the original on 20 July 2018. Retrieved 18 July 2017.
  104. ^ "Material extrusion - FDM". make.3dexperience.3ds.com.
  105. ^ "3DEXPERIENCE Platform". make.3dexperience.3ds.com.
  106. ^ Cameron Coward (7 April 2015). 3D Printing. DK Publishing. p. 74. ISBN 978-1-61564-745-3.
  107. ^ Johnson, R. Colin. "Cheaper avenue to 65 nm? (EE Times, 3/30/2007)".
  108. ^ . TU Wien. 12 September 2011. Archived from the original on 20 September 2011. Retrieved 15 September 2011.
  109. ^ "3D-printing multi-material objects in minutes instead of hours". Kurzweil Accelerating Intelligence. 22 November 2013.
  110. ^ St. Fleur, Nicholas (17 March 2015). "3-D Printing Just Got 100 Times Faster". The Atlantic. Retrieved 19 March 2015.
  111. ^ Beese, Allison M.; Carroll, Beth E. (2015). "Review of Mechanical Properties of Ti-6Al-4V Made by Laser-Based Additive Manufacturing Using Powder Feedstock". JOM. 68 (3): 724. Bibcode:2016JOM....68c.724B. doi:10.1007/s11837-015-1759-z. S2CID 138250882.
  112. ^ Gibson, Ian; Rosen, David; Stucker, Brent (2015). Additive Manufacturing Technologies (PDF). doi:10.1007/978-1-4939-2113-3. ISBN 978-1-4939-2112-6.
  113. ^ a b Kelly, Brett E.; Bhattacharya, Indrasen; Heidari, Hossein; Shusteff, Maxim; Spadaccini, Christopher M.; Taylor, Hayden K. (31 January 2019). "Volumetric additive manufacturing via tomographic reconstruction". Science. 363 (6431): 1075–1079. Bibcode:2019Sci...363.1075K. doi:10.1126/science.aau7114. ISSN 0036-8075. PMID 30705152. S2CID 72336143.
  114. ^ a b "Star Trek–like replicator creates entire objects in minutes". Science. 31 January 2019. Retrieved 31 January 2019.
  115. ^ a b Kelly, Brett; Bhattacharya, Indrasen; Shusteff, Maxim; Panas, Robert M.; Taylor, Hayden K.; Spadaccini, Christopher M. (16 May 2017). "Computed Axial Lithography (CAL): Toward Single Step 3D Printing of Arbitrary Geometries". arXiv:1705.05893 [cs.GR].
  116. ^ a b "German RepRap introduces L280, first Liquid Additive Manufacturing (LAM) production-ready 3D printer". 3ders.org. Retrieved 13 April 2019.
  117. ^ Davies, Sam (2 November 2018). "German RepRap to present series-ready Liquid Additive Manufacturing system at Formnext". TCT Magazine. Retrieved 13 April 2019.
  118. ^ "German RepRap presenting Liquid Additive Manufacturing technology at RAPID+TCT". TCT Magazine. 10 May 2017. Retrieved 13 April 2019.
  119. ^ Scott, Clare (2 November 2018). "German RepRap to Present Liquid Additive Manufacturing and L280 3D Printer at Formnext". 3DPrint.com | The Voice of 3D Printing / Additive Manufacturing. Retrieved 13 April 2019.
  120. ^ "German RepRap develops new polyurethane material for Liquid Additive Manufacturing". TCT Magazine. 2 August 2017. Retrieved 13 April 2019.
  121. ^ "Essentium to acquire collider to advance DLP 3D printing technology". Make Parts Fast. 20 July 2021.
  122. ^ "3D Printer Uses Standard Paper". www.rapidtoday.com.
  123. ^ Yang, Y.; Gong, Y.; Qu, S. (2019). "Additive/subtractive hybrid manufacturing of 316L stainless steel powder: Densification, microhardness and residual stress". J Mech Sci Technol. 33 (12): 5797–5807. doi:10.1007/s12206-019-1126-z. S2CID 214298577.
  124. ^ Boisselier, D.; Sankaré, S.; Engel, T. (2014). "Improvement of the Laser Direct Metal Deposition Process in 5-axis Configuration". Physics Procedia. 56 (8th International Conference on Laser Assisted Net Shape Engineering LANE 2014): 239–249. Bibcode:2014PhPro..56..239B. doi:10.1016/j.phpro.2014.08.168. S2CID 109491084.
  125. ^ Li, L.; Haghighi, A.; Yang, Y. (2018). "A novel 6-axis hybrid additive-subtractive manufacturing process: Design and case studies". Journal of Manufacturing Processes. 33: 150–160. doi:10.1016/j.jmapro.2018.05.008. S2CID 139579311.
  126. ^ "Saving with Feature Additions". BeAM Machines. 17 July 2020. Retrieved 29 April 2022.
  127. ^ Beese, Allison M.; Carroll, Beth E. (21 December 2015). "Review of Mechanical Properties of Ti-6Al-4V Made by Laser-Based Additive Manufacturing Using Powder Feedstock". JOM. 68 (3): 724–734. Bibcode:2016JOM....68c.724B. doi:10.1007/s11837-015-1759-z. ISSN 1047-4838. S2CID 138250882.
  128. ^ Gibson, Ian; Rosen, David; Stucker, Brent (2015). "Chapter 10". Additive Manufacturing Technologies - Springer (PDF). doi:10.1007/978-1-4939-2113-3. ISBN 978-1-4939-2112-6. S2CID 114833020.
  129. ^ Surovi, Nowrin Akter; Hussain, Shaista; Soh, Gim Song (2022). A Study of Machine Learning Framework for Enabling Early Defect Detection in Wire Arc Additive Manufacturing Processes. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Vol. 86229. pp. V03AT03A002.
  130. ^ Nilsiam, Yuenyong; Haselhuhn, Amberlee; Wijnen, Bas; Sanders, Paul; Pearce, Joshua M. (2015). "Integrated Voltage – Current Monitoring and Control of Gas Metal Arc Weld Magnetic Ball-Jointed Open Source 3-D Printer". Machines. 3 (4): 339–51. doi:10.3390/machines3040339.
  131. ^ Pinar, A.; Wijnen, B.; Anzalone, G. C.; Havens, T. C.; Sanders, P. G.; Pearce, J. M. (2015). "Low-cost Open-Source Voltage and Current Monitor for Gas Metal Arc Weld 3-D Printing". Journal of Sensors. 2015: 1–8. doi:10.1155/2015/876714.
  132. ^ Magalhães, Samuel; Sardinha, Manuel; Vicente, Carlos; Leite, Marco; Ribeiro, Relógio; Vaz, Maria; Reis, Luís (23 August 2021). "Validation of a low-cost selective powder deposition process through the characterization of tin bronze specimens". The Journal of Materials: Design and Applications. 235 (12): 2681–2691. doi:10.1177/14644207211031941. S2CID 238738655.
  133. ^ Li, Zongan; Xu, Mengjia; Wang, Jiahang; Zhang, Feng (October 2022). "Recent Advances in Cryogenic 3D Printing Technologies". Advanced Engineering Materials. 24 (10): 2200245. doi:10.1002/adem.202200245. ISSN 1438-1656. S2CID 248488161.
  134. ^ a b Zhang, Wei; Leu, Ming C; Ji, Zhiming; Yan, Yongnian (1 June 1999). "Rapid freezing prototyping with water". Materials & Design. 20 (2): 139–145. doi:10.1016/S0261-3069(99)00020-5. ISSN 0261-3069.
  135. ^ Tan, Zhengchu; Parisi, Cristian; Di Silvio, Lucy; Dini, Daniele; Forte, Antonio Elia (24 November 2017). "Cryogenic 3D Printing of Super Soft Hydrogels". Scientific Reports. 7 (1): 16293. Bibcode:2017NatSR...716293T. doi:10.1038/s41598-017-16668-9. ISSN 2045-2322. PMC 5701203. PMID 29176756.
  136. ^ Xiong, Zhuo; Yan, Yongnian; Wang, Shenguo; Zhang, Renji; Zhang, Chao (7 June 2002). "Fabrication of porous scaffolds for bone tissue engineering via low-temperature deposition". Scripta Materialia. 46 (11): 771–776. doi:10.1016/S1359-6462(02)00071-4. ISSN 1359-6462.
  137. ^ Huang, Tieshu; Mason, Michael S.; Hilmas, Gregory E.; Leu, Ming C. (1 June 2006). "Freeze-form extrusion fabrication of ceramic parts". Virtual and Physical Prototyping. 1 (2): 93–100. doi:10.1080/17452750600649609. ISSN 1745-2759. S2CID 135763440.
  138. ^ Taufik, Mohammad; Jain, Prashant K. (10 December 2016). . Proceedings of International Conference on: Advanced Production and Industrial Engineering -ICAPIE 2016: 380–386. Archived from the original on 1 October 2020. Retrieved 31 May 2017.
  139. ^ a b Corsini, Lucia; Aranda-Jan, Clara B.; Moultrie, James (2019). "Using digital fabrication tools to provide humanitarian and development aid in low-resource settings". Technology in Society. 58: 101117. doi:10.1016/j.techsoc.2019.02.003. ISSN 0160-791X.
  140. ^ Vincent (January–February 2011). "Origins: A 3D Vision Spawns Stratasys, Inc". Today's Machining World. Vol. 7, no. 1. pp. 24–25.
  141. ^ Wong, Venessa (28 January 2014). "A Guide to All the Food That's Fit to 3D Print (So Far)". Bloomberg.com.
  142. ^ "Did BeeHex Just Hit "Print" to Make Pizza at Home?". 27 May 2016. Retrieved 28 May 2016.
  143. ^ . Archived from the original on 2 May 2020. Retrieved 27 January 2015.
  144. ^ "3D Printed Food System for Long Duration Space Missions". sbir.gsfc.nasa.gov. Retrieved 24 April 2019.
  145. ^ Bejerano, Pablo G. (28 September 2018). "Barcelona researcher develops 3D printer that makes 'steaks'". El País. ISSN 1134-6582. Retrieved 21 June 2019.
  146. ^ Lidia Montes; Ruqayyah Moynihan. "A researcher has developed a plant-based meat substitute that's made with a 3D printer". Business Insider. Retrieved 21 June 2019.
  147. ^ a b . Resins Online. 17 June 2013. Archived from the original on 1 November 2013. Retrieved 30 October 2013.
  148. ^ Michael Fitzgerald (28 May 2013). "With 3-D Printing, the Shoe Really Fits". MIT Sloan Management Review. Retrieved 30 October 2013.
  149. ^ Sharma, Rakesh (10 September 2013). "3D Custom Eyewear The Next Focal Point For 3D Printing". Forbes.com. Retrieved 10 September 2013.
  150. ^ Alvarez, Edgar. "Fashion and technology will inevitably become one". Engagdet.
  151. ^ . Council on Foreign Relations. 23 October 2013. Archived from the original on 28 October 2013. Retrieved 30 October 2013.
  152. ^ "Koenigsegg One:1 Comes With 3D Printed Parts". Business Insider. Retrieved 14 May 2014.
  153. ^ "Conheça o Urbee, primeiro carro a ser fabricado com uma impressora 3D". tecmundo.com.br. 3 November 2010.
  154. ^ Eternity, Max (23 November 2014). "The Urbee 3D-Printed Car: Coast to Coast on 10 Gallons?".
  155. ^ 3D Printed Car Creator Discusses Future of the Urbee on YouTube
  156. ^ "Local Motors shows Strati, the world's first 3D-printed car". 13 January 2015.
  157. ^ Simmons, Dan (6 May 2015). "Airbus had 1,000 parts 3D printed to meet deadline". BBC. Retrieved 27 November 2015.
  158. ^ Zitun, Yoav (27 July 2015). "The 3D printer revolution comes to the IAF". Ynetnews. Ynet News. Retrieved 29 September 2015.
  159. ^ Zelinski, Peter (31 March 2017), "GE team secretly printed a helicopter engine, replacing 900 parts with 16", Modern Machine Shop, retrieved 9 April 2017.
  160. ^ Greenberg, Andy (23 August 2012). "'Wiki Weapon Project' Aims To Create A Gun Anyone Can 3D-Print at Home". Forbes. Retrieved 27 August 2012.
  161. ^ Poeter, Damon (24 August 2012). "Could a "Printable Gun" Change the World?". PC Magazine. Retrieved 27 August 2012.
  162. ^ Samsel, Aaron (23 May 2013). . Guns.com. Archived from the original on 4 October 2018. Retrieved 30 October 2013.
  163. ^ "The Third Wave, CNC, Stereolithography, and the end of gun control". Popehat. 6 October 2011. Retrieved 30 October 2013.
  164. ^ Rosenwald, Michael S. (25 February 2013). "Weapons made with 3-D printers could test gun-control efforts". Washington Post.
  165. ^ "Making guns at home: Ready, print, fire". The Economist. 16 February 2013. Retrieved 30 October 2013.
  166. ^ Rayner, Alex (6 May 2013). "3D-printable guns are just the start, says Cody Wilson". The Guardian. London.
  167. ^ Manjoo, Farhad (8 May 2013). "3-D-printed gun: Yes, it will be possible to make weapons with 3-D printers. No, that doesn't make gun control futile". Slate.com. Retrieved 30 October 2013.
  168. ^ Islam, Muhammed Kamrul; Hazell, Paul J.; Escobedo, Juan P.; Wang, Hongxu (July 2021). "Biomimetic armour design strategies for additive manufacturing: A review". Materials & Design. 205: 109730. doi:10.1016/j.matdes.2021.109730.
  169. ^ Eppley, B. L.; Sadove, A. M. (1 November 1998). "Computer-generated patient models for reconstruction of cranial and facial deformities". J Craniofac Surg. 9 (6): 548–556. doi:10.1097/00001665-199811000-00011. PMID 10029769.
  170. ^ Poukens, Jules (1 February 2008). "A classification of cranial implants based on the degree of difficulty in computer design and manufacture". The International Journal of Medical Robotics and Computer Assisted Surgery. 4 (1): 46–50. doi:10.1002/rcs.171. PMID 18240335. S2CID 26121479.
  171. ^ Perry, Keith (12 March 2014). "Man makes surgical history after having his shattered face rebuilt using 3D printed parts". The Daily Telegraph. London. Archived from the original on 11 January 2022. Retrieved 12 March 2014.
  172. ^ Zopf, David A.; Hollister, Scott J.; Nelson, Marc E.; Ohye, Richard G.; Green, Glenn E. (2013). "Bioresorbable Airway Splint Created with a Three-Dimensional Printer". New England Journal of Medicine. 368 (21): 2043–5. doi:10.1056/NEJMc1206319. PMID 23697530.
  173. ^ Moore, Calen (11 February 2014). "Surgeons have implanted a 3-D-printed pelvis into a U.K. cancer patient". fiercemedicaldevices.com. Retrieved 4 March 2014.
  174. ^ "3D-printed sugar network to help grow artificial liver". BBC News. 2 July 2012.
  175. ^ "RFA-HD-15-023: Use of 3-D Printers for the Production of Medical Devices (R43/R44)". NIH grants. Retrieved 30 September 2015.
  176. ^ Belgrano, Fabricio dos Santos; Diegel, Olaf; Pereira, Nei; Hatti-Kaul, Rajni (2018). "Cell immobilization on 3D-printed matrices: A model study on propionic acid fermentation". Bioresource Technology. 249: 777–782. doi:10.1016/j.biortech.2017.10.087. PMID 29136932.
  177. ^ Melocchi, Alice; Uboldi, Marco; Cerea, Matteo; Foppoli, Anastasia; Maroni, Alessandra; Moutaharrik, Saliha; Palugan, Luca; Zema, Lucia; Gazzaniga, Andrea (1 October 2020). "A Graphical Review on the Escalation of Fused Deposition Modeling (FDM) 3D Printing in the Pharmaceutical Field". Journal of Pharmaceutical Sciences. 109 (10): 2943–2957. doi:10.1016/j.xphs.2020.07.011. hdl:2434/828138. ISSN 0022-3549. PMID 32679215. S2CID 220630295.
  178. ^ Afsana; Jain, Vineet; Haider, Nafis; Jain, Keerti (20 March 2019). "3D Printing in Personalized Drug Delivery". Current Pharmaceutical Design. 24 (42): 5062–5071. doi:10.2174/1381612825666190215122208. PMID 30767736. S2CID 73421860.
  179. ^ Trenfield, Sarah J; Awad, Atheer; Madla, Christine M; Hatton, Grace B; Firth, Jack; Goyanes, Alvaro; Gaisford, Simon; Basit, Abdul W (3 October 2019). "Shaping the future: recent advances of 3D printing in drug delivery and healthcare" (PDF). Expert Opinion on Drug Delivery. 16 (10): 1081–1094. doi:10.1080/17425247.2019.1660318. ISSN 1742-5247. PMID 31478752. S2CID 201805196.
  180. ^ Schelly, C., Anzalone, G., Wijnen, B., & Pearce, J. M. (2015). "Open-source 3-D printing Technologies for education: Bringing Additive Manufacturing to the Classroom." Journal of Visual Languages & Computing.
  181. ^ Grujović, N., Radović, M., Kanjevac, V., Borota, J., Grujović, G., & Divac, D. (September 2011). "3D printing technology in education environment." In 34th International Conference on Production Engineering (pp. 29–30).
  182. ^ Mercuri, Rebecca; Meredith, Kevin (2014). "An educational venture into 3D Printing". 2014 IEEE Integrated STEM Education Conference. pp. 1–6. doi:10.1109/ISECon.2014.6891037. ISBN 978-1-4799-3229-0. S2CID 16555348.
  183. ^ "Despite Market Woes, 3D Printing Has a Future Thanks to Higher Education – Bold". 2 December 2015.
  184. ^ Oppliger, Douglas E.; Anzalone, Gerald; Pearce, Joshua M.; Irwin, John L. (15 June 2014). "The RepRap 3-D Printer Revolution in STEM Education". 2014 ASEE Annual Conference & Exposition: 24.1242.1–24.1242.13. ISSN 2153-5868.
  185. ^ Gillen, Andrew (2016). "Teacher's Toolkit: The New Standard in Technology Education: 3-D Design Class". Science Scope. 039 (9). doi:10.2505/4/ss16_039_09_8. ISSN 0887-2376.
  186. ^ a b Zhang, Chenlong; Anzalone, Nicholas C.; Faria, Rodrigo P.; Pearce, Joshua M. (2013). "Open-Source 3D-Printable Optics Equipment". PLOS ONE. 8 (3): e59840. Bibcode:2013PLoSO...859840Z. doi:10.1371/journal.pone.0059840. PMC 3609802. PMID 23544104.
  187. ^ . Library Journal. 2 April 2015. Archived from the original on 2 April 2015. Retrieved 23 August 2019.
  188. ^ Pearce, Joshua M. (14 September 2012). "Building Research Equipment with Free, Open-Source Hardware". Science. 337 (6100): 1303–1304. Bibcode:2012Sci...337.1303P. doi:10.1126/science.1228183. ISSN 0036-8075. PMID 22984059. S2CID 44722829.
  189. ^ Scopigno, R.; Cignoni, P.; Pietroni, N.; Callieri, M.; Dellepiane, M. (2017). "Digital Fabrication Techniques for Cultural Heritage: A Survey]" (PDF). Computer Graphics Forum. 36 (1): 6–21. doi:10.1111/cgf.12781. S2CID 26690232.
  190. ^ . Archived from the original on 17 November 2015.
  191. ^ Vranich, Alexei (December 2018). "Reconstructing ancient architecture at Tiwanaku, Bolivia: the potential and promise of 3D printing". Heritage Science. 6 (1): 65. doi:10.1186/s40494-018-0231-0. S2CID 139309556.
  192. ^ "British Museum releases 3D printer scans of artefacts". Independent.co.uk. 4 November 2014. from the original on 7 November 2014.
  193. ^ "Threeding Uses Artec 3D Scanning Technology to Catalog 3D Models for Bulgaria's National Museum of Military History". 3dprint.com. 20 February 2015.
  194. ^ a b Parsinejad, H.; Choi, I.; Yari, M. (2021). "Production of Iranian Architectural Assets for Representation in Museums: Theme of Museum-Based Digital Twin". Body, Space and Technology. 20 (1): 61–74. doi:10.16995/bst.364.
  195. ^ . 20 June 2018. Archived from the original on 24 April 2019. Retrieved 24 April 2019.
  196. ^ Dimension, Nano. "Additive Manufacturing Inks & Materials for Custom 3D Printing Solutions". nano-di.com.
  197. ^ Séquin, Carlo H. (2005). "Rapid prototyping". Communications of the ACM. 48 (6): 66–73. doi:10.1145/1064830.1064860. S2CID 2216664. INIST:16817711.
  198. ^ ewilhelm. "3D printed clock and gears". Instructables.com. Retrieved 30 October 2013.
  199. ^ . 3d-printer-kit.com. 23 January 2012. Archived from the original on 2 November 2013. Retrieved 30 October 2013.
  200. ^ ""backscratcher" 3D Models to Print – yeggi". yeggi.com.
  201. ^ Congressional Research Service. "3D Printing: Overview, Impacts, and the Federal Role" (August 2, 2019) Fas.org
  202. ^ "3D Printing Technology Insight Report, 2014, patent activity involving 3D-Printing from 1990–2013" (PDF). Retrieved 10 June 2014.
  203. ^ Thompson, Clive (30 May 2012). "3-D Printing's Legal Morass". Wired.
  204. ^ a b Weinberg, Michael (January 2013). (PDF). Institute for Emerging Innovation. Archived from the original (PDF) on 24 November 2020. Retrieved 30 October 2013.
  205. ^ "Homeland Security bulletin warns 3D-printed guns may be "impossible" to stop". Fox News. 23 May 2013. Retrieved 30 October 2013.
  206. ^ "Controlled by Guns". Quiet Babylon. 7 May 2013. Retrieved 30 October 2013.
  207. ^ . Joncamfield.com. Archived from the original on 28 November 2020. Retrieved 30 October 2013.
  208. ^ "State Dept Censors 3D Gun Plans, Citing "National Security"". News.antiwar.com. 10 May 2013. Retrieved 30 October 2013.
  209. ^ "Wishful Thinking Is Control Freaks' Last Defense Against 3D-Printed Guns". Reason.com. 8 May 2013. Retrieved 30 October 2013.
  210. ^ Lennard, Natasha (10 May 2013). "The Pirate Bay steps in to distribute 3-D gun designs". Salon.com. from the original on 11 May 2013. Retrieved 30 October 2013.
  211. ^ . neurope.eu. Archived from the original on 30 October 2013. Retrieved 30 October 2013.
  212. ^ Economía, E. F. E. (9 May 2013). "España y EE.UU. lideran las descargas de los planos de la pistola de impresión casera". El País. ElPais.com. Retrieved 30 October 2013.
  213. ^ "Sen. Leland Yee Proposes Regulating Guns From 3-D Printers". CBS Sacramento. 8 May 2013. Retrieved 30 October 2013.
  214. ^ "Schumer Announces Support For Measure To Make 3D Printed Guns Illegal". 5 May 2013.
  215. ^ . Makezine.com. 30 June 2011. Archived from the original on 30 March 2013. Retrieved 30 October 2013.
  216. ^ Ball, James (10 May 2013). "US government attempts to stifle 3D-printer gun designs will ultimately fail". The Guardian. London.
  217. ^ Gadgets (18 January 2013). "Like It Or Not, 3D Printing Will Probably Be Legislated". TechCrunch. Retrieved 30 October 2013.
  218. ^ Beckhusen, Robert (15 February 2013). "3-D Printing Pioneer Wants Government to Restrict Gunpowder, Not Printable Guns". Wired. Retrieved 30 October 2013.
  219. ^ Bump, Philip (10 May 2013). "How Defense Distributed Already Upended the World". The Atlantic Wire. from the original on 7 June 2013. Retrieved 30 October 2013.
  220. ^ . European Plastics News. Archived from the original on 29 October 2013. Retrieved 30 October 2013.
  221. ^ Cochrane, Peter (21 May 2013). "Peter Cochrane's Blog: Beyond 3D Printed Guns". TechRepublic. Retrieved 30 October 2013.
  222. ^ Gilani, Nadia (6 May 2013). "Gun factory fears as 3D blueprints put online by Defense Distributed". Metro.co.uk. Retrieved 30 October 2013.
  223. ^ "Liberator: First 3D-printed gun sparks gun control controversy". Digitaljournal.com. 6 May 2013. Retrieved 30 October 2013.
  224. ^ . International Business Times UK. 7 May 2013. Archived from the original on 29 October 2013. Retrieved 30 October 2013.
  225. ^ "FAA prepares guidance for wave of 3D-printed aerospace parts". SpaceNews.com. 20 October 2017.
  226. ^ . ecfr.gov. Archived from the original on 4 August 2018. Retrieved 4 August 2018.
  227. ^ "FAA to launch eight-year additive manufacturing road map". 3D Printing Industry. 21 October 2017.
  228. ^ a b "2017 – Edition 4 – May 5, 2017 – ARSA". arsa.org.
  229. ^ "Embracing Drones and 3D Printing in the Regulatory Framework". MRO Network. 10 January 2018.
  230. ^ EU-OSHA, European Agency for Safety and Health (7 June 2017). "3D Printing and monitoring of workers: a new industrial revolution?". osha.europa.eu. Retrieved 31 October 2017.
  231. ^ a b c "How Loud Are 3D Printers and Making Them Quiet". 21 July 2020.
  232. ^ Albert, Mark (17 January 2011). "Subtractive plus additive equals more than (– + + = >)". Modern Machine Shop. Vol. 83, no. 9. p. 14.
  233. ^ . The third industrial revolution.com. Archived from the original on 25 February 2017. Retrieved 4 January 2016.
  234. ^ "A third industrial revolution". The Economist. 21 April 2012. Retrieved 4 January 2016.
  235. ^ Hollow, Matthew. Confronting a New 'Era of Duplication'? 3D Printing, Replicating Technology and the Search for Authenticity in George O. Smith's Venus Equilateral Series (Thesis). Durham University. Retrieved 21 July 2013.
  236. ^ Ratto, Matt; Ree, Robert (2012). "Materializing information: 3D printing and social change". First Monday. 17 (7). doi:10.5210/fm.v17i7.3968.
  237. ^ (PDF). Archived from the original (PDF) on 15 January 2014. Retrieved 11 January 2014.
  238. ^ Ree, Robert; Ratto, Matt (27 June 2012). "Materializing information: 3D printing and social change". First Monday. 17 (7). Retrieved 30 March 2014.
  239. ^ "RepRap Options". Retrieved 30 March 2014.
  240. ^ "3D Printing". Retrieved 30 March 2014.
  241. ^ "Thingiverse". Retrieved 30 March 2014.
  242. ^ a b c d Kostakis, Vasilis (12 January 2013). "At the Turning Point of the Current Techno-Economic Paradigm: Commons-Based Peer Production, Desktop Manufacturing and the Role of Civil Society in the Perezian Framework". TripleC: Communication, Capitalism & Critique. 11 (1): 173–190. doi:10.31269/triplec.v11i1.463. ISSN 1726-670X.
  243. ^ Kostakis, Vasilis; Papachristou, Marios (2014). "Commons-based peer production and digital fabrication: The case of a Rep Rap-based, Lego-built 3D printing-milling machine". Telematics and Informatics. 31 (3): 434–43. doi:10.1016/j.tele.2013.09.006. S2CID 2297267.
  244. ^ Kostakis, Vasilis; Fountouklis, Michail; Drechsler, Wolfgang (2013). "Peer Production and Desktop Manufacturing". Science, Technology, & Human Values. 38 (6): 773–800. doi:10.1177/0162243913493676. JSTOR 43671156. S2CID 43962759.
  245. ^ Garrett, Thomas Campbell, Christopher Williams, Olga Ivanova, and Banning (17 October 2011). "Could 3D Printing Change the World?". Atlantic Council. Retrieved 23 August 2019.{{cite web}}: CS1 maint: multiple names: authors list (link)
  246. ^ Haufe, Patrick; Bowyer, Adrian; Bradshaw, Simon (2010). "The intellectual property implications of low-cost 3D printing". SCRIPTed. 7 (1): 5–31. ISSN 1744-2567.
  247. ^ Gershenfeld, Neil (2008). Fab: The Coming Revolution on Your Desktop—from Personal Computers to Personal Fabrication. Basic Books. pp. 13–14. ISBN 978-0-7867-2204-4.
  248. ^ "The Inequality Puzzle". Democracy Journal. 14 May 2014.
  249. ^ a b Spence, Michael (22 May 2014). "Labor's Digital Displacement | by Michael Spence". Project Syndicate.
  250. ^ Andre, Helene (29 November 2017). . Women in 3D Printing. Archived from the original on 4 December 2017. Retrieved 3 December 2017.
  251. ^ Hardcastle, Jessica Lyons (24 November 2015). "Is 3D Printing the Future of Sustainable Manufacturing?". Environmental Leader. Retrieved 21 January 2019.
  252. ^ Simpson, Timothy W. (31 January 2018). "Lightweighting with Lattices". Additive Manufacturing. Retrieved 21 January 2019.
  253. ^ Reeves, P. (2012). "Example of Econolyst Research-Understanding the Benefits of AM on CO2" (PDF). The Econolyst. Retrieved 21 January 2019.
  254. ^ Gelber, Malte; Uiterkamp, Anton J.M. Schoot; Visser, Cindy (October 2015). "A Global Sustainability Perspective of 3D Printing Technologies". Energy Policy. 74 (1): 158–167. doi:10.1016/j.enpol.2014.08.033.
  255. ^ Peng, Tao; Kellens, Karel; Tang, Renzhong; Chen, Chao; Chen, Gang (May 2018). "Sustainability of additive manufacturing: An overview on its energy demand and environmental impact". Additive Manufacturing. 21 (1): 694–704. doi:10.1016/j.addma.2018.04.022.

Further reading

  • Lipson, Hod (11 February 2013). Fabricated: the new world of 3D printing. Kurman, Melba. Indianapolis, Indiana. ISBN 978-1-118-35063-8. OCLC 806199735.{{cite book}}: CS1 maint: location missing publisher (link)
  • Tran, Jasper (2017). Reconstructionism, IP and 3D Printing (Thesis). SSRN 2842345.
  • Tran, Jasper (2016). "Press Clause and 3D Printing". Northwestern Journal of Technology and Intellectual Property. 14: 75–80. SSRN 2614606.
  • Tran, Jasper (2016). "3D-Printed Food". Minnesota Journal of Law, Science and Technology. 17: 855–80. SSRN 2710071.
  • Tran, Jasper (2015). "To Bioprint or Not to Bioprint". North Carolina Journal of Law and Technology. 17: 123–78. SSRN 2562952.
  • Tran, Jasper (2015). "Patenting Bioprinting". Harvard Journal of Law and Technology Digest. SSRN 2603693.
  • Tran, Jasper (2015). "The Law and 3D Printing". John Marshall Journal of Information Technology and Privacy Law. 31: 505–20.
  • Lindenfeld, Eric; et al. (2015). "Strict Liability and 3D-Printed Medical Devices". Yale Journal of Law and Technology. SSRN 2697245.
  • Dickel, Sascha; Schrape, Jan-Felix (2016). "Materializing Digital Futures". The Decentralized and Networked Future of Value Creation. Progress in IS. pp. 163–78. doi:10.1007/978-3-319-31686-4_9. ISBN 978-3-319-31684-0. S2CID 148483485.
  • "Results of Make Magazine's 2015 3D Printer Shootout". Retrieved 1 June 2015.
  • "Evaluation Protocol for Make Magazine's 2015 3D Printer Shootout". makezine.com. Retrieved 1 June 2015.
  • "Heat Beds in 3D Printing – Advantages and Equipment". Boots Industries. Retrieved 7 September 2015.
  • Stephens, B.; Azimi, P.; El Orch, Z.; Ramos, T. (2013). "Ultrafine particle emissions from desktop 3D printers". Atmospheric Environment. 79: 334–339. Bibcode:2013AtmEn..79..334S. doi:10.1016/j.atmosenv.2013.06.050.
  • Easton, Thomas A. (November 2008). "The 3D Trainwreck: How 3D Printing Will Shake Up Manufacturing". Analog. 128 (11): 50–63.
  • Wright, Paul K. (2001). 21st Century Manufacturing. New Jersey: Prentice-Hall Inc.
  • "3D printing: a new industrial revolution – Safety and health at work – EU-OSHA". osha.europa.eu. Retrieved 28 July 2017.

External links

  • Rapid prototyping websites at Curlie


printing, methods, transferring, image, onto, surface, printing, methods, generating, autostereoscopic, lenticular, images, lenticular, printing, holography, additive, manufacturing, construction, three, dimensional, object, from, model, digital, model, done, . For methods of transferring an image onto a 3D surface see pad printing For methods of generating autostereoscopic lenticular images see lenticular printing and holography 3D printing or additive manufacturing is the construction of a three dimensional object from a CAD model or a digital 3D model 1 2 It can be done in a variety of processes in which material is deposited joined or solidified under computer control 3 with material being added together such as plastics liquids or powder grains being fused typically layer by layer A three dimensional printerTimelapse of a three dimensional printer in actionIn the 1980s 3D printing techniques were considered suitable only for the production of functional or aesthetic prototypes and a more appropriate term for it at the time was rapid prototyping 4 As of 2019 update the precision repeatability and material range of 3D printing have increased to the point that some 3D printing processes are considered viable as an industrial production technology whereby the term additive manufacturing can be used synonymously with 3D printing 5 One of the key advantages of 3D printing 6 is the ability to produce very complex shapes or geometries that would be otherwise infeasible to construct by hand including hollow parts or parts with internal truss structures to reduce weight Fused deposition modeling FDM which uses a continuous filament of a thermoplastic material is the most common 3D printing process in use as of 2020 update 7 Contents 1 Terminology 2 History 2 1 1940s and 1950s 2 2 1970s 2 3 1980s 2 4 1990s 2 5 2000s 2 6 2010s 2 7 2020s 3 Benefits of 3D printing 4 General principles 4 1 Modeling 4 2 Printing 4 3 Finishing 4 4 Materials 4 5 Multi material 3D printing 4 6 4D printing 5 Processes and printers 5 1 Material Jetting 5 2 Material Extrusion 5 3 Powder Bed Fusion 5 4 Binder jetting 5 5 Stereolithography 5 6 Computed Axial Lithography 5 7 Liquid Additive Manufacturing 5 8 Lamination 5 9 Directed Energy Deposition DED 5 9 1 Powder fed directed energy deposition 5 9 2 Metal wire processes 5 10 Selective Powder Deposition SPD 5 11 Cryogenic 3D Printing 6 Applications 6 1 Food industry 6 2 Fashion industry 6 3 Transportation industry 6 4 Firearm industry 6 5 Health sector 6 6 Medical equipment 6 7 Education sector 6 8 Replicating archeological artifacts 6 9 Replicating historic buildings 6 10 Soft actuators 6 11 Circuit boards 6 12 Hobbyists 7 Legal aspects 7 1 Intellectual property 7 2 Gun legislation and administration 7 3 Aerospace regulation 8 Health and safety 8 1 Noise levels 9 Impact 9 1 Social change 9 2 Environmental change 10 See also 11 References 12 Further reading 13 External linksTerminologyThe umbrella term additive manufacturing AM gained popularity in the 2000s 8 inspired by the theme of material being added together in any of various ways In contrast the term subtractive manufacturing appeared as a retronym for the large family of machining processes with material removal as their common process The term 3D printing still referred only to the polymer technologies in most minds and the term AM was more likely to be used in metalworking and end use part production contexts than among polymer inkjet or stereolithography enthusiasts By the early 2010s the terms 3D printing and additive manufacturing evolved senses in which they were alternate umbrella terms for additive technologies one being used in popular language by consumer maker communities and the media and the other used more formally by industrial end use part producers machine manufacturers and global technical standards organizations Until recently the term 3D printing has been associated with machines low in price or in capability 9 3D printing and additive manufacturing reflect that the technologies share the theme of material addition or joining throughout a 3D work envelope under automated control Peter Zelinski the editor in chief of Additive Manufacturing magazine pointed out in 2017 that the terms are still often synonymous in casual usage 10 but some manufacturing industry experts are trying to make a distinction whereby additive manufacturing comprises 3D printing plus other technologies or other aspects of a manufacturing process 10 Other terms that have been used as synonyms or hypernyms have included desktop manufacturing rapid manufacturing as the logical production level successor to rapid prototyping and on demand manufacturing which echoes on demand printing in the 2D sense of printing The fact that the application of the adjectives rapid and on demand to the noun manufacturing was novel in the 2000s reveals the long prevailing mental model of the previous industrial era during which almost all production manufacturing had involved long lead times for laborious tooling development Today the term subtractive has not replaced the term machining instead complementing it when a term that covers any removal method is needed Agile tooling is the use of modular means to design tooling that is produced by additive manufacturing or 3D printing methods to enable quick prototyping and responses to tooling and fixture needs Agile tooling uses a cost effective and high quality method to quickly respond to customer and market needs and it can be used in hydro forming stamping injection molding and other manufacturing processes History1940s and 1950s The general concept of and procedure to be used in 3D printing was first described by Murray Leinster in his 1945 short story Things Pass By But this constructor is both efficient and flexible I feed magnetronic plastics the stuff they make houses and ships of nowadays into this moving arm It makes drawings in the air following drawings it scans with photo cells But plastic comes out of the end of the drawing arm and hardens as it comes following drawings only 11 It was also described by Raymond F Jones in his story Tools of the Trade published in the November 1950 issue of Astounding Science Fiction magazine He referred to it as a molecular spray in that story 1970s In 1971 Johannes F Gottwald patented the Liquid Metal Recorder U S Patent 3596285A a continuous inkjet metal material device to form a removable metal fabrication on a reusable surface for immediate use or salvaged for printing again by remelting This appears to be the first patent describing 3D printing with rapid prototyping and controlled on demand manufacturing of patterns The patent states As used herein the term printing is not intended in a limited sense but includes writing or other symbols character or pattern formation with an ink The term ink as used in is intended to include not only dye or pigment containing materials but any flowable substance or composition suited for application to the surface for forming symbols characters or patterns of intelligence by marking The preferred ink is of a hot melt type The range of commercially available ink compositions which could meet the requirements of the invention are not known at the present time However satisfactory printing according to the invention has been achieved with the conductive metal alloy as ink But in terms of material requirements for such large and continuous displays if consumed at theretofore known rates but increased in proportion to increase in size the high cost would severely limit any widespread enjoyment of a process or apparatus satisfying the foregoing objects It is therefore an additional object of the invention to minimize use to materials in a process of the indicated class It is a further object of the invention that materials employed in such a process be salvaged for reuse According to another aspect of the invention a combination for writing and the like comprises a carrier for displaying an intelligence pattern and an arrangement for removing the pattern from the carrier In 1974 David E H Jones laid out the concept of 3D printing in his regular column Ariadne in the journal New Scientist 12 13 1980s Early additive manufacturing equipment and materials were developed in the 1980s 14 In April 1980 Hideo Kodama of Nagoya Municipal Industrial Research Institute invented two additive methods for fabricating three dimensional plastic models with photo hardening thermoset polymer where the UV exposure area is controlled by a mask pattern or a scanning fiber transmitter 15 He filed a patent for this XYZ plotter which was published on 10 November 1981 JP S56 144478 16 His research results as journal papers were published in April and November in 1981 17 18 However there was no reaction to the series of his publications His device was not highly evaluated in the laboratory and his boss did not show any interest His research budget was just 60 000 yen or 545 a year Acquiring the patent rights for the XYZ plotter was abandoned and the project was terminated A US 4323756 patent method of fabricating articles by sequential deposition granted on 6 April 1982 to Raytheon Technologies Corp describes using hundreds or thousands of layers of powdered metal and a laser energy source and represents an early reference to forming layers and the fabrication of articles on a substrate On 2 July 1984 American entrepreneur Bill Masters filed a patent for his computer automated manufacturing process and system US 4665492 19 This filing is on record at the USPTO as the first 3D printing patent in history it was the first of three patents belonging to Masters that laid the foundation for the 3D printing systems used today 20 21 On 16 July 1984 Alain Le Mehaute Olivier de Witte and Jean Claude Andre filed their patent for the stereolithography process 22 The application of the French inventors was abandoned by the French General Electric Company now Alcatel Alsthom and CILAS The Laser Consortium 23 The claimed reason was for lack of business perspective 24 In 1983 Robert Howard started R H Research later named Howtek Inc in Feb 1984 to develop a color inkjet 2D printer Pixelmaster commercialized in 1986 using Thermoplastic hot melt plastic ink 25 A team was put together 6 members 25 from Exxon Office Systems Danbury Systems Division an inkjet printer startup and some members of Howtek Inc group who became popular figures in the 3D printing industry One Howtek member Richard Helinski patent US5136515A Method and Means for constructing three dimensional articles by particle deposition application 11 07 1989 granted 8 04 1992 formed a New Hampshire company C A D Cast Inc name later changed to Visual Impact Corporation VIC on 8 22 1991 A prototype of the VIC 3D printer for this company is available with a video presentation showing a 3D model printed with a single nozzle inkjet Another employee Herbert Menhennett formed a New Hampshire company HM Research in 1991 and introduced the Howtek Inc inkjet technology and thermoplastic materials to Royden Sanders of SDI and Bill Masters of Ballistic Particle Manufacturing BPM where he worked for a number of years Both BPM 3D printers and SPI 3D printers use Howtek Inc style Inkjets and Howtek Inc style materials Royden Sanders licensed the Helinksi patent prior to manufacturing the Modelmaker 6 Pro at Sanders prototype Inc SPI in 1993 James K McMahon who was hired by Howtek Inc to help develop the inkjet later worked at Sanders Prototype and now operates Layer Grown Model Technology a 3D service provider specializing in Howtek single nozzle inkjet and SDI printer support James K McMahon worked with Steven Zoltan 1972 drop on demand inkjet inventor at Exxon and has a patent in 1978 that expanded the understanding of the single nozzle design inkjets Alpha jets and help perfect the Howtek Inc hot melt inkjets This Howtek hot melt thermoplastic technology is popular with metal investment casting especially in the 3D printing jewelry industry 26 Sanders SDI first Modelmaker 6Pro customer was Hitchner Corporations Metal Casting Technology Inc in Milford NH a mile from the SDI facility in late 1993 1995 casting golf clubs and auto engine parts On 8 August 1984 a patent US4575330 assigned to UVP Inc later assigned to Chuck Hull of 3D Systems Corporation 27 was filed his own patent for a stereolithography fabrication system in which individual laminae or layers are added by curing photopolymers with impinging radiation particle bombardment chemical reaction or just ultraviolet light lasers Hull defined the process as a system for generating three dimensional objects by creating a cross sectional pattern of the object to be formed 28 29 Hull s contribution was the STL Stereolithography file format and the digital slicing and infill strategies common to many processes today In 1986 Charles Chuck Hull was granted a patent for this system and his company 3D Systems Corporation was formed and it released the first commercial 3D printer the SLA 1 30 later in 1987 or 1988 The technology used by most 3D printers to date especially hobbyist and consumer oriented models is fused deposition modeling a special application of plastic extrusion developed in 1988 by S Scott Crump and commercialized by his company Stratasys which marketed its first FDM machine in 1992 26 Owning a 3D printer in the 1980s cost upwards of 300 000 650 000 in 2016 dollars 31 1990s AM processes for metal sintering or melting such as selective laser sintering direct metal laser sintering and selective laser melting usually went by their own individual names in the 1980s and 1990s At the time all metalworking was done by processes that are now called non additive casting fabrication stamping and machining although plenty of automation was applied to those technologies such as by robot welding and CNC the idea of a tool or head moving through a 3D work envelope transforming a mass of raw material into a desired shape with a toolpath was associated in metalworking only with processes that removed metal rather than adding it such as CNC milling CNC EDM and many others But the automated techniques that added metal which would later be called additive manufacturing were beginning to challenge that assumption By the mid 1990s new techniques for material deposition were developed at Stanford and Carnegie Mellon University including microcasting 32 and sprayed materials 33 Sacrificial and support materials had also become more common enabling new object geometries 34 The term 3D printing originally referred to a powder bed process employing standard and custom inkjet print heads developed at MIT by Emanuel Sachs in 1993 and commercialized by Soligen Technologies Extrude Hone Corporation and Z Corporation citation needed The year 1993 also saw the start of an inkjet 3D printer company initially named Sanders Prototype Inc and later named Solidscape introducing a high precision polymer jet fabrication system with soluble support structures categorized as a dot on dot technique 26 In 1995 the Fraunhofer Society developed the selective laser melting process 2000s The Fused Deposition Modeling FDM printing process patents expired in 2009 35 This opened the door for a new wave of companies many born from the RepRap community to start developing commercial FDM 3D printers 2010s As the various additive processes matured it became clear that soon metal removal would no longer be the only metalworking process done through a tool or head moving through a 3D work envelope transforming a mass of raw material into a desired shape layer by layer The 2010s were the first decade in which metal end use parts such as engine brackets 36 and large nuts 37 would be grown either before or instead of machining in job production rather than obligately being machined from bar stock or plate It is still the case that casting fabrication stamping and machining are more prevalent than additive manufacturing in metalworking but AM is now beginning to make significant inroads and with the advantages of design for additive manufacturing it is clear to engineers that much more is to come One place that AM is making a significant inroad is in the aviation industry With nearly 3 8 billion air travelers in 2016 38 the demand for fuel efficient and easily produced jet engines has never been higher For large OEMs original equipment manufacturers like Pratt and Whitney PW and General Electric GE this means looking towards AM as a way to reduce cost reduce the number of nonconforming parts reduce weight in the engines to increase fuel efficiency and find new highly complex shapes that would not be feasible with the antiquated manufacturing methods One example of AM integration with aerospace was in 2016 when Airbus was delivered the first of GE s LEAP engines This engine has integrated 3D printed fuel nozzles giving them a reduction in parts from 20 to 1 a 25 weight reduction and reduced assembly times 39 A fuel nozzle is the perfect in road for additive manufacturing in a jet engine since it allows for optimized design of the complex internals and it is a low stress non rotating part Similarly in 2015 PW delivered their first AM parts in the PurePower PW1500G to Bombardier Sticking to low stress non rotating parts PW selected the compressor stators and synch ring brackets 40 to roll out this new manufacturing technology for the first time While AM is still playing a small role in the total number of parts in the jet engine manufacturing process the return on investment can already be seen by the reduction in parts the rapid production capabilities and the optimized design in terms of performance and cost 41 As technology matured several authors had begun to speculate that 3D printing could aid in sustainable development in the developing world 42 In 2012 Filabot developed a system for closing the loop 43 with plastic and allows for any FDM or FFF 3D printer to be able to print with a wider range of plastics In 2014 Benjamin S Cook and Manos M Tentzeris demonstrate the first multi material vertically integrated printed electronics additive manufacturing platform VIPRE which enabled 3D printing of functional electronics operating up to 40 GHz 44 As the price of printers started to drop people interested in this technology had more access and freedom to make what they wanted As of 2014 the price for commercial printers was still high with the cost being over 2 000 45 The term 3D printing originally referred to a process that deposits a binder material onto a powder bed with inkjet printer heads layer by layer More recently the popular vernacular has started using the term to encompass a wider variety of additive manufacturing techniques such as electron beam additive manufacturing and selective laser melting The United States and global technical standards use the official term additive manufacturing for this broader sense The most commonly used 3D printing process 46 as of 2018 update is a material extrusion technique called fused deposition modeling or FDM 7 While FDM technology was invented after the other two most popular technologies stereolithography SLA and selective laser sintering SLS FDM is typically the most inexpensive of the three by a large margin citation needed which lends to the popularity of the process 2020s As of 2020 3D printers have reached the level of quality and price that allows most people to enter the world of 3D printing In 2020 decent quality printers can be found for less than US 200 for entry level machines These more affordable printers are usually fused deposition modeling FDM printers 46 In November 2021 a British patient named Steve Verze received the world s first fully 3D printed prosthetic eye from the Moorfields Eye Hospital in London 47 48 Benefits of 3D printingAdditive manufacturing or 3D printing has rapidly gained importance in the field of engineering due to its many benefits Some of these benefits include enabling faster prototyping reducing manufacturing costs increasing product customization and improving product quality 49 Furthermore the capabilities of 3D printing have extended beyond traditional manufacturing with applications in renewable energy systems 50 3D printing technology can be used to produce battery energy storage systems which are essential for sustainable energy generation and distribution Another benefit of 3D printing is the technology s ability to produce complex geometries with high precision and accuracy 51 This is particularly relevant in the field of microwave engineering where 3D printing can be used to produce components with unique properties that are difficult to achieve using traditional manufacturing methods General principlesModeling Main article 3D modeling CAD model used for 3D printing 3D models can be generated from 2D pictures taken at a 3D photo booth 3D printable models may be created with a computer aided design CAD package via a 3D scanner or by a plain digital camera and photogrammetry software 3D printed models created with CAD result in relatively fewer errors than other methods Errors in 3D printable models can be identified and corrected before printing 52 The manual modeling process of preparing geometric data for 3D computer graphics is similar to plastic arts such as sculpting 3D scanning is a process of collecting digital data on the shape and appearance of a real object creating a digital model based on it CAD models can be saved in the stereolithography file format STL a de facto CAD file format for additive manufacturing that stores data based on triangulations of the surface of CAD models STL is not tailored for additive manufacturing because it generates large file sizes of topology optimized parts and lattice structures due to the large number of surfaces involved A newer CAD file format the Additive Manufacturing File format AMF was introduced in 2011 to solve this problem It stores information using curved triangulations 53 Printing Before printing a 3D model from an STL file it must first be examined for errors Most CAD applications produce errors in output STL files 54 55 of the following types holes faces normals self intersections noise shells manifold errors 56 overhang issues 57 A step in the STL generation known as repair fixes such problems in the original model 58 59 Generally STLs that have been produced from a model obtained through 3D scanning often have more of these errors 60 as 3D scanning is often achieved by point to point acquisition mapping 3D reconstruction often includes errors 61 Once completed the STL file needs to be processed by a piece of software called a slicer which converts the model into a series of thin layers and produces a G code file containing instructions tailored to a specific type of 3D printer FDM printers 62 This G code file can then be printed with 3D printing client software which loads the G code and uses it to instruct the 3D printer during the 3D printing process Printer resolution describes layer thickness and X Y resolution in dots per inch dpi or micrometers mm Typical layer thickness is around 100 mm 250 DPI although some machines can print layers as thin as 16 mm 1 600 DPI 63 X Y resolution is comparable to that of laser printers The particles 3D dots are around 0 01 to 0 1 mm 2 540 000 to 250 000 DPI in diameter 64 For that printer resolution specifying a mesh resolution of 0 01 0 03 mm and a chord length 0 016 mm generates an optimal STL output file for a given model input file 65 Specifying higher resolution results in larger files without increase in print quality source source source source source source source source 3 31 Timelapse of an 80 minute video of an object being made out of PLA using molten polymer depositionConstruction of a model with contemporary methods can take anywhere from several hours to several days depending on the method used and the size and complexity of the model Additive systems can typically reduce this time to a few hours although it varies widely depending on the type of machine used and the size and number of models being produced simultaneously Finishing Though the printer produced resolution and surface finish are sufficient for some applications post processing and finishing methods allow for benefits such as greater dimensional accuracy smoother surfaces other modifications such as coloration Surface finish of a 3D printed part can improved using subtractive methods such as sanding and bead blasting When smoothing parts that require dimensional accuracy it is important to take into account the volume of the material being removed 66 Some printable polymers such as acrylonitrile butadiene styrene ABS allow the surface finish to be smoothed and improved using chemical vapor processes 67 based on acetone or similar solvents Some additive manufacturing techniques can benefit from annealing annealing as a post processing step Annealing a 3D printed part allows for better internal layer bonding due to recrystalization of the part and allows for an increase in mechanical properties some of which are fracture toughness 68 flexural strength 69 impact resistance 70 and heat resistance 70 Annealing a component may not be suitable for applications where dimensional accuracy is required as it can introduce warpage or shrinkage due to heating and cooling 71 Additive Subtractive Hybrid Manufacturing ASHM is a method that involves producing a 3D printed part and using machining subtractive manufacturing to remove material 72 Machining operations can be completed after each layer or after the entire 3D print has been completed depending on the application requirements These hybrid methods allow for 3D printed parts to achieve better surface finishes and dimensional accuracy 73 The layered structure of traditional additive manufacturing processes leads to a stair stepping effect on part surfaces which are curved or tilted in respect to the building platform The effect strongly depends on the layer height used as well as the orientation of a part surface inside the building process 74 This effect can be minimized using variable layer heights or adaptive layer heights These methods decreased the layer height in places where higher quality is needed 75 Painting a 3D printed part offers a range of finishes and appearances that may not be achievable through most 3D printing techniques The process typically involves several steps such as surface preparation priming and painting 76 These steps help prepare the surface of the part and ensuring the paint adheres properly Some additive manufacturing techniques are capable of using multiple materials simultaneously These techniques are able to print in multiple colors and color combinations simultaneously and can produce parts that may not necessarily require painting Some printing techniques require internal supports to be built to support overhanging features during construction These supports must be mechanically removed or dissolved if using a water soluble support material such as PVA using after completing a print Some commercial metal 3D printers involve cutting the metal component off the metal substrate after deposition A new process for the GMAW 3D printing allows for substrate surface modifications to remove aluminium 77 or steel 78 Materials Detail of the Stoofbrug nl in Amsterdam the world s first 3D printed metal bridge 79 Traditionally 3D printing focused on polymers for printing due to the ease of manufacturing and handling polymeric materials However the method has rapidly evolved to not only print various polymers 80 but also metals 81 82 and ceramics 83 making 3D printing a versatile option for manufacturing Layer by layer fabrication of three dimensional physical models is a modern concept that stems from the ever growing CAD industry more specifically the solid modeling side of CAD Before solid modeling was introduced in the late 1980s three dimensional models were created with wire frames and surfaces 84 but in all cases the layers of materials are controlled by the printer and the material properties The three dimensional material layer is controlled by deposition rate as set by the printer operator and stored in a computer file The earliest printed patented material was a Hot melt type ink for printing patterns using a heated metal alloy See 1970s history above Charles Hull filed the first patent on August 8 1984 to use a UV cured acrylic resin using a UV masked light source at UVP Corp to build a simple model The SLA 1 was the first SL product announced by 3D Systems at Autofact Exposition Detroit November 1978 in Detroit The SLA 1 Beta shipped in Jan 1988 to Baxter Healthcare Pratt and Whitney General Motors and AMP The first production SLA 1 shipped to Precision Castparts in April 1988 The UV resin material changed over quickly to an epoxy based material resin In both cases SLA 1 models needed UV oven curing after being rinsed in a solvent cleaner to remove uncured boundary resin A Post Cure Apparatus PCA was sold with all systems The early resin printers required a blade to move fresh resin over the model on each layer The layer thickness was 0 006 inches and the HeCd Laser model of the SLA 1 was 12 watts and swept across the surface at 30 in per second UVP was acquired by 3D Systems in Jan 1990 85 A review in the history shows a number of materials resins plastic powder plastic filament and hot melt plastic ink were used in the 1980s for patents in the rapid prototyping field Masked lamp UV cured resin was also introduced by Cubital s Itzchak Pomerantz in the Soldier 5600 Carl Deckard s DTM laser sintered thermoplastic powders and adhesive laser cut paper LOM stacked to form objects by Michael Feygin before 3D Systems made its first announcement Scott Crump was also working with extruded melted plastic filament modeling FDM and Drop deposition had been patented by William E Masters a week after Charles Hull s patent in 1984 but he had to discover Thermoplastic Inkjets introduced by Visual Impact Corporation 3D printer in 1992 using inkjets from Howtek Inc before he formed BPM to bring out his own 3D printer product in 1994 85 Multi material 3D printing Main article Multi material 3D printing A multi material 3DBenchy Efforts to achieve multi material 3D printing range from enhanced FDM like processes like VoxelJet to novel voxel based printing technologies like layered assembly 86 A drawback of many existing 3D printing technologies is that they only allow one material to be printed at a time limiting many potential applications which require the integration of different materials in the same object Multi material 3D printing solves this problem by allowing objects of complex and heterogeneous arrangements of materials to be manufactured using a single printer Here a material must be specified for each voxel or 3D printing pixel element inside the final object volume The process can be fraught with complications however due to the isolated and monolithic algorithms Some commercial devices have sought to solve these issues such as building a Spec2Fab translator but the progress is still very limited 87 Nonetheless in the medical industry a concept of 3D printed pills and vaccines has been presented 88 With this new concept multiple medications can be combined which will decrease many risks With more and more applications of multi material 3D printing the costs of daily life and high technology development will become inevitably lower Metallographic materials of 3D printing is also being researched 89 By classifying each material CIMP 3D can systematically perform 3D printing with multiple materials 90 4D printing Main article 4D printing Using 3D printing and multi material structures in additive manufacturing has allowed for the design and creation of what is called 4D printing 4D printing is an additive manufacturing process in which the printed object changes shape with time temperature or some other type of stimulation 4D printing allows for the creation of dynamic structures with adjustable shapes properties or functionality The smart stimulus responsive materials that are created using 4D printing can be activated to create calculated responses such as self assembly self repair multi functionality reconfiguration and shape shifting This allows for customized printing of shape changing and shape memory materials 91 4D printing has the potential to find new applications and uses for materials plastics composites metals etc and will create new alloys and composites that were not viable before The versatility of this technology and materials can lead to advances in multiple fields of industry including space commercial and the medical field The repeatability precision and material range for 4D printing must increase to allow the process to become more practical throughout these industries To become a viable industrial production option there are a couple of challenges that 4D printing must overcome The challenges of 4D printing include the fact that the microstructures of these printed smart materials must be close to or better than the parts obtained through traditional machining processes New and customizable materials need to be developed that have the ability to consistently respond to varying external stimuli and change to their desired shape There is also a need to design new software for the various technique types of 4D printing The 4D printing software will need to take into consideration the base smart material printing technique and structural and geometric requirements of the design 92 Processes and printersMain article 3D printing processes This section should include only a brief summary of 3D printing processes See Wikipedia Summary style for information on how to properly incorporate it into this article s main text August 2017 ISO ASTM52900 15 defines seven categories of additive manufacturing AM processes within its meaning 93 94 They are Vat photopolymerization Material jetting Binder jetting Powder bed fusion Material extrusion Directed energy deposition Sheet laminationThe main differences between processes are in the way layers are deposited to create parts and in the materials that are used Each method has its own advantages and drawbacks which is why some companies offer a choice of powder and polymer for the material used to build the object 95 Others sometimes use standard off the shelf business paper as the build material to produce a durable prototype The main considerations in choosing a machine are generally speed costs of the 3D printer of the printed prototype choice and cost of the materials and color capabilities 96 Printers that work directly with metals are generally expensive However less expensive printers can be used to make a mold which is then used to make metal parts 97 Material Jetting The first process where three dimensional material is deposited to form an object was done with material jetting 26 or as it was originally called particle deposition Particle deposition by inkjet first started with continuous inkjet technology CIT 1950s and later with drop on demand inkjet technology 1970s using hot melt inks Wax inks were the first three dimensional materials jetted and later low temperature alloy metal was jetted with CIT Wax and thermoplastic hot melts were jetted next by DOD Objects were very small and started with text characters and numerals for signage An object must have form and can be handled Wax characters tumbled off paper documents and inspired a liquid metal recorder patent to make metal characters for signage in 1971 Thermoplastic color inks CMYK printed with layers of each color to form the first digitally formed layered objects in 1984 The idea of investment casting with Solid Ink jetted images or patterns in 1984 led to the first patent to form articles from particle deposition in 1989 issued in 1992 Material Extrusion Schematic representation of the 3D printing technique known as fused filament fabrication a filament a of plastic material is fed through a heated moving head b that melts and extrudes it depositing it layer after layer in the desired shape c A moving platform e lowers after each layer is deposited For this kind of technology additional vertical support structures d are needed to sustain overhanging partsSome methods melt or soften the material to produce the layers In fused filament fabrication also known as fused deposition modeling FDM the model or part is produced by extruding small beads or streams of material which harden immediately to form layers A filament of thermoplastic metal wire or other material is fed into an extrusion nozzle head 3D printer extruder which heats the material and turns the flow on and off FDM is somewhat restricted in the variation of shapes that may be fabricated Another technique fuses parts of the layer and then moves upward in the working area adding another layer of granules and repeating the process until the piece has built up This process uses the unfused media to support overhangs and thin walls in the part being produced which reduces the need for temporary auxiliary supports for the piece 98 Recently FFF FDM has expanded to 3 D print directly from pellets to avoid the conversion to filament This process is called fused particle fabrication FPF or fused granular fabrication FGF and has the potential to use more recycled materials 99 Powder Bed Fusion Powder Bed Fusion techniques or PBF include several processes such as DMLS SLS SLM MJF and EBM Powder Bed Fusion processes can be used with an array of materials and their flexibility allows for geometrically complex structures 100 making it a go to choice for many 3D printing projects These techniques include selective laser sintering with both metals and polymers and direct metal laser sintering 101 Selective laser melting does not use sintering for the fusion of powder granules but will completely melt the powder using a high energy laser to create fully dense materials in a layer wise method that has mechanical properties similar to those of conventional manufactured metals Electron beam melting is a similar type of additive manufacturing technology for metal parts e g titanium alloys EBM manufactures parts by melting metal powder layer by layer with an electron beam in a high vacuum 102 103 Another method consists of an inkjet 3D printing system which creates the model one layer at a time by spreading a layer of powder plaster or resins and printing a binder in the cross section of the part using an inkjet like process With laminated object manufacturing thin layers are cut to shape and joined In addition to the previously mentioned methods HP has developed the Multi Jet Fusion MJF which is a powder base technique though no lasers are involved An inkjet array applies fusing and detailing agents which are then combined by heating to create a solid layer 104 Binder jetting The binder jetting 3D printing technique is the deposition of a binding adhesive agent onto layers of material usually powdered The materials can be ceramic based or metal This method is also known as inkjet 3D printing system To produce the piece the printer builds the model using a head that moves over the platform base and deposits one layer at a time by spreading a layer of powder plaster or resins and printing a binder in the cross section of the part using an inkjet like process This is repeated until every layer has been printed This technology allows the printing of full color prototypes overhangs and elastomer parts The strength of bonded powder prints can be enhanced with wax or thermoset polymer impregnation 105 Schematic representation of stereolithography a light emitting device a laser or DLP selectively illuminate the transparent bottom c of a tank b filled with a liquid photo polymerizing resin the solidified resin d is progressively dragged up by a lifting platform e Stereolithography Other methods cure liquid materials using different sophisticated technologies such as stereolithography Photopolymerization is primarily used in stereolithography to produce a solid part from a liquid Inkjet printer systems like the Objet PolyJet system spray photopolymer materials onto a build tray in ultra thin layers between 16 and 30 mm until the part is completed 106 Each photopolymer layer is cured with UV light after it is jetted producing fully cured models that can be handled and used immediately without post curing Ultra small features can be made with the 3D micro fabrication technique used in multiphoton photopolymerisation Due to the nonlinear nature of photo excitation the gel is cured to a solid only in the places where the laser was focused while the remaining gel is then washed away Feature sizes of under 100 nm are easily produced as well as complex structures with moving and interlocked parts 107 Yet another approach uses a synthetic resin that is solidified using LEDs 108 In Mask image projection based stereolithography a 3D digital model is sliced by a set of horizontal planes Each slice is converted into a two dimensional mask image The mask image is then projected onto a photocurable liquid resin surface and light is projected onto the resin to cure it in the shape of the layer 109 Continuous liquid interface production begins with a pool of liquid photopolymer resin Part of the pool bottom is transparent to ultraviolet light the window which causes the resin to solidify The object rises slowly enough to allow resin to flow under and maintain contact with the bottom of the object 110 In powder fed directed energy deposition a high power laser is used to melt metal powder supplied to the focus of the laser beam The powder fed directed energy process is similar to Selective Laser Sintering but the metal powder is applied only where material is being added to the part at that moment 111 112 Computed Axial Lithography Computed axial lithography is a method for 3D printing based on computerised tomography scans to create prints in photo curable resin It was developed by a collaboration between the University of California Berkeley with Lawrence Livermore National Laboratory 113 114 115 Unlike other methods of 3D printing it does not build models through depositing layers of material like fused deposition modelling and stereolithography instead it creates objects using a series of 2D images projected onto a cylinder of resin 113 115 It is notable for its ability to build an object much more quickly than other methods using resins and the ability to embed objects within the prints 114 Liquid Additive Manufacturing Liquid additive manufacturing LAM is a 3D printing technique which deposits a liquid or high viscose material e g liquid silicone rubber onto a build surface to create an object which then is vulcanised using heat to harden the object 116 117 118 The process was originally created by Adrian Bowyer and was then built upon by German RepRap 116 119 120 A technique called programmable tooling uses 3D printing to create a temporary mold which is then filled via a conventional injection molding process and then immediately dissolved 121 Lamination In some printers paper can be used as the build material resulting in a lower cost to print During the 1990s some companies marketed printers that cut cross sections out of special adhesive coated paper using a carbon dioxide laser and then laminated them together In 2005 Mcor Technologies Ltd developed a different process using ordinary sheets of office paper a tungsten carbide blade to cut the shape and selective deposition of adhesive and pressure to bond the prototype 122 Directed Energy Deposition DED Powder fed directed energy deposition In powder fed directed energy deposition a high power laser is used to melt metal powder supplied to the focus of the laser beam The laser beam typically travels through the center of the deposition head and is focused to a small spot by one or more lenses The build occurs on an X Y table which is driven by a tool path created from a digital model to fabricate an object layer by layer The deposition head is moved up vertically as each layer is completed Some systems even make use of 5 axis 123 124 or 6 axis systems 125 i e articulated arms capable of delivering material on the substrate a printing bed or a pre existing part 126 with few to no spatial access restrictions Metal powder is delivered and distributed around the circumference of the head or can be split by an internal manifold and delivered through nozzles arranged in various configurations around the deposition head A hermetically sealed chamber filled with inert gas or a local inert shroud gas sometimes both combined are often used to shield the melt pool from atmospheric oxygen to limit oxidation and better control the material properties The powder fed directed energy process is similar to Selective Laser Sintering but the metal powder is projected only where material is being added to the part at that moment The laser beam is used to heat up and create a melt pool on the substrate in which the new powder is injected quasi simultaneously The process supports a wide range of materials including titanium stainless steel aluminium tungsten and other specialty materials as well as composites and functionally graded material The process can not only fully build new metal parts but can also add material to existing parts for example for coatings repair and hybrid manufacturing applications Laser engineered net shaping LENS which was developed by Sandia National Labs is one example of the powder fed directed energy deposition process for 3D printing or restoring metal parts 127 128 Metal wire processes Laser based wire feed systems such as Laser Metal Deposition wire LMD w feed wire through a nozzle that is melted by a laser using inert gas shielding in either an open environment gas surrounding the laser or in a sealed chamber Electron beam freeform fabrication uses an electron beam heat source inside a vacuum chamber It is also possible to use conventional gas metal arc welding attached to a 3D stage to 3 D print metals such as steel bronze and aluminium 129 130 Low cost open source RepRap style 3 D printers have been outfitted with Arduino based sensors and demonstrated reasonable metallurgical properties from conventional welding wire as feedstock 131 Selective Powder Deposition SPD In selective powder deposition build and support powders are selectively deposited into a crucible such that the build powder takes the shape of the desired object and support powder fills the rest of the volume in the crucible Then an infill material is applied such that it comes in contact with the build powder Then the crucible is fired up in a kiln at the temperature above the melting point of the infill but below the melting points of the powders When the infill melts it soaks the build powder But it doesn t soak the support powder because the support powder is chosen to be such that it is not wettable by the infill If at the firing temperature the atoms of the infill material and the build powder are mutually defusable such as in case of copper powder and zinc infill then the resulting material will be a uniform mixture of those atoms in this case bronze But if the atoms are not mutually defusable such as in case of tungsten and copper at 1100 C then the resulting material will be a composite To prevent shape distortion the firing temperature must be below the solidus temperature of the resulting alloy 132 Cryogenic 3D Printing Cryogenic 3D printing is a collection of techniques which forms solid structures by freezing liquid materials while they are deposited As each liquid layer is applied it is cooled by the low temperature of the previous layer and printing environment which results in solidification Unlike other 3D printing techniques Cryogenic 3D printing requires a controlled printing environment The ambient temperature must be below the material s freezing point to ensure the structure remains solid during manufacturing and the humidity must remain low to prevent frost formation between the application of layers 133 Materials typically include water and water based solutions such as brine slurry and hydrogels 134 135 Cryogenic 3D printing techniques include Rapid Freezing Prototype RFP 134 Low Temperature Deposition Manufacturing LDM 136 and Freeze form Extrusion Fabrication FEF 137 ApplicationsMain article Applications of 3D printing This section may benefit from being shortened by the use of summary style Summary style may involve the moving of large sections to sub articles that are then summarized in the main article The Audi RSQ was made with rapid prototyping industrial KUKA robots3D printing or additive manufacturing has been used in manufacturing medical industry and sociocultural sectors e g Cultural Heritage to create successful commercial technology 138 More recently 3D printing has also been used in the humanitarian and development sector to produce a range of medical items prosthetics spares and repairs 139 The earliest application of additive manufacturing was on the toolroom end of the manufacturing spectrum For example rapid prototyping was one of the earliest additive variants and its mission was to reduce the lead time and cost of developing prototypes of new parts and devices which was earlier only done with subtractive toolroom methods such as CNC milling turning and precision grinding 140 In the 2010s additive manufacturing entered production to a much greater extent Food industry Additive manufacturing of food is being developed by squeezing out food layer by layer into three dimensional objects A large variety of foods are appropriate candidates such as chocolate and candy and flat foods such as crackers pasta 141 and pizza 142 143 NASA is looking into the technology in order to create 3D printed food to limit food waste and to make food that is designed to fit an astronaut s dietary needs 144 In 2018 Italian bioengineer Giuseppe Scionti developed a technology allowing the production of fibrous plant based meat analogues using a custom 3D bioprinter mimicking meat texture and nutritional values 145 146 Fashion industry 3D printed necklace3D printing has entered the world of clothing with fashion designers experimenting with 3D printed bikinis shoes and dresses 147 In commercial production Nike used 3D printing to prototype and manufacture the 2012 Vapor Laser Talon football shoe for players of American football and New Balance has 3D manufactured custom fit shoes for athletes 147 148 3D printing has come to the point where companies are printing consumer grade eyewear with on demand custom fit and styling although they cannot print the lenses On demand customization of glasses is possible with rapid prototyping 149 Vanessa Friedman fashion director and chief fashion critic at The New York Times says 3D printing will have a significant value for fashion companies down the road especially if it transforms into a print it yourself tool for shoppers There s real sense that this is not going to happen anytime soon she says but it will happen and it will create dramatic change in how we think both about intellectual property and how things are in the supply chain She adds Certainly some of the fabrications that brands can use will be dramatically changed by technology 150 Transportation industry A 3D printed jet engine modelIn cars trucks and aircraft Additive Manufacturing is beginning to transform both 1 unibody and fuselage design and production and 2 powertrain design and production For example General Electric uses high end 3D printers to build parts for turbines 151 Many of these systems are used for rapid prototyping before mass production methods are employed Other prominent examples include In early 2014 Swedish supercar manufacturer Koenigsegg announced the One 1 a supercar that utilizes many components that were 3D printed 152 Urbee is the first car produced using 3D printing the bodywork and car windows were printed 153 154 155 In 2014 Local Motors debuted Strati a functioning vehicle that was entirely 3D printed using ABS plastic and carbon fiber except the powertrain 156 In May 2015 Airbus announced that its new Airbus A350 XWB included over 1000 components manufactured by 3D printing 157 In 2015 a Royal Air Force Eurofighter Typhoon fighter jet flew with printed parts The United States Air Force has begun to work with 3D printers and the Israeli Air Force has also purchased a 3D printer to print spare parts 158 In 2017 GE Aviation revealed that it had used design for additive manufacturing to create a helicopter engine with 16 parts instead of 900 with great potential impact on reducing the complexity of supply chains 159 Firearm industry AM s impact on firearms involves two dimensions new manufacturing methods for established companies and new possibilities for the making of do it yourself firearms In 2012 the US based group Defense Distributed disclosed plans to design a working plastic 3D printed firearm that could be downloaded and reproduced by anybody with a 3D printer 160 161 After Defense Distributed released their plans questions were raised regarding the effects that 3D printing and widespread consumer level CNC machining 162 163 may have on gun control effectiveness 164 165 166 167 Moreover armour design strategies can be enhanced by taking inspiration from nature and prototyping those designs easily possible using additive manufacturing 168 Health sector Surgical uses of 3D printing centric therapies have a history beginning in the mid 1990s with anatomical modeling for bony reconstructive surgery planning Patient matched implants were a natural extension of this work leading to truly personalized implants that fit one unique individual 169 Virtual planning of surgery and guidance using 3D printed personalized instruments have been applied to many areas of surgery including total joint replacement and craniomaxillofacial reconstruction with great success 170 171 One example of this is the bioresorbable trachial splint to treat newborns with tracheobronchomalacia 172 developed at the University of Michigan The use of additive manufacturing for serialized production of orthopedic implants metals is also increasing due to the ability to efficiently create porous surface structures that facilitate osseointegration The hearing aid and dental industries are expected to be the biggest area of future development using the custom 3D printing technology 173 3D printing is not just limited to inorganic materials there have been a number of biomedical advancements made possible by 3D printing As of 2012 update 3D bio printing technology has been studied by biotechnology firms and academia for possible use in tissue engineering applications in which organs and body parts are built using inkjet printing techniques In this process layers of living cells are deposited onto a gel medium or sugar matrix and slowly built up to form three dimensional structures including vascular systems 174 3D printing has been considered as a method of implanting stem cells capable of generating new tissues and organs in living humans 175 In 2018 3D printing technology was used for the first time to create a matrix for cell immobilization in fermentation Propionic acid production by Propionibacterium acidipropionici immobilized on 3D printed nylon beads was chosen as a model study It was shown that those 3D printed beads were capable of promoting high density cell attachment and propionic acid production which could be adapted to other fermentation bioprocesses 176 3D printing has also been employed by researchers in the pharmaceutical field During the last few years there s been a surge in academic interest regarding drug delivery with the aid of AM techniques This technology offers a unique way for materials to be utilized in novel formulations 177 AM manufacturing allows for the usage of materials and compounds in the development of formulations in ways that are not possible with conventional traditional techniques in the pharmaceutical field e g tableting cast molding etc Moreover one of the major advantages of 3D printing especially in the case of fused deposition modelling FDM is the personalization of the dosage form that can be achieved thus targeting the patient s specific needs 178 In the not so distant future 3D printers are expected to reach hospitals and pharmacies in order to provide on demand production of personalized formulations according to the patients needs 179 Medical equipment During the COVID 19 pandemic 3d printers were used to supplement the strained supply of PPE through volunteers using their personally owned printers to produce various pieces of personal protective equipment i e frames for face shields Education sector3D printing and open source 3D printers in particular are the latest technology making inroads into the classroom 180 181 182 Higher education has proven to be a major buyer of desktop and professional 3D printers which industry experts generally view as a positive indicator 183 Some authors have claimed that 3D printers offer an unprecedented revolution in STEM education 184 185 The evidence for such claims comes from both the low cost ability for rapid prototyping in the classroom by students but also the fabrication of low cost high quality scientific equipment from open hardware designs forming open source labs 186 Additionally Libraries around the world have also become locations to house smaller 3D printers for educational and community access 187 Future applications for 3D printing might include creating open source scientific equipment 186 188 3D printed sculpture of an Egyptian pharaoh shown at ThreedingReplicating archeological artifacts In the 2010s 3D printing became intensively used in the cultural heritage field for preservation restoration and dissemination purposes 189 Many Europeans and North American Museums have purchased 3D printers and actively recreate missing pieces of their relics 190 and archaeological monuments such as Tiwanaku in Bolivia 191 The Metropolitan Museum of Art and the British Museum have started using their 3D printers to create museum souvenirs that are available in the museum shops 192 Other museums like the National Museum of Military History and Varna Historical Museum have gone further and sell through the online platform Threeding digital models of their artifacts created using Artec 3D scanners in 3D printing friendly file format which everyone can 3D print at home 193 Replicating historic buildings The Stoofbrug nl in Amsterdam the world s first 3D printed metal bridge 79 The application of 3D printing for the representation of architectural assets has many challenges In 2018 the structure of Iran National Bank was traditionally surveyed and modeled in computer graphics software specifically Cinema4D and was optimized for 3D printing The team tested the technique for the construction of the part and it was successful After testing the procedure the modellers reconstructed the structure in Cinema4D and exported the front part of the model to Netfabb The entrance of the building was chosen due to the 3D printing limitations and the budget of the project for producing the maquette 3D printing was only one of the capabilities enabled by the produced 3D model of the bank but due to the project s limited scope the team did not continue modelling for the virtual representation or other applications 194 In 2021 Parsinejad et al comprehensively compared the hand surveying method for 3D reconstruction ready for 3D printing with digital recording adoption of photogrammetry method 194 Soft actuators 3D printed soft actuators is a growing application of 3D printing technology which has found its place in the 3D printing applications These soft actuators are being developed to deal with soft structures and organs especially in biomedical sectors and where the interaction between human and robot is inevitable The majority of the existing soft actuators are fabricated by conventional methods that require manual fabrication of devices post processing assembly and lengthy iterations until maturity of the fabrication is achieved Instead of the tedious and time consuming aspects of the current fabrication processes researchers are exploring an appropriate manufacturing approach for effective fabrication of soft actuators Thus 3D printed soft actuators are introduced to revolutionize the design and fabrication of soft actuators with custom geometrical functional and control properties in a faster and inexpensive approach They also enable incorporation of all actuator components into a single structure eliminating the need to use external joints adhesives and fasteners Circuit boardsCircuit board manufacturing involves multiple steps which include imaging drilling plating soldermask coating nomenclature printing and surface finishes These steps include many chemicals such as harsh solvents and acids 3D printing circuit boards remove the need for many of these steps while still producing complex designs 195 Polymer ink is used to create the layers of the build while silver polymer is used for creating the traces and holes used to allow electricity to flow 196 Current circuit board manufacturing can be a tedious process depending on the design Specified materials are gathered and sent into inner layer processing where images are printed developed and etched The etches cores are typically punched to add lamination tooling The cores are then prepared for lamination The stack up the buildup of a circuit board is built and sent into lamination where the layers are bonded The boards are then measured and drilled Many steps may differ from this stage however for simple designs the material goes through a plating process to plate the holes and surface The outer image is then printed developed and etched After the image is defined the material must get coated with soldermask for later soldering Nomenclature is then added so components can be identified later Then the surface finish is added The boards are routed out of panel form into their singular or array form and then electrically tested Aside from the paperwork which must be completed which proves the boards meet specifications the boards are then packed and shipped The benefits of 3D printing would be that the final outline is defined from the beginning no imaging punching or lamination is required and electrical connections are made with the silver polymer which eliminates drilling and plating The final paperwork would also be greatly reduced due to the lack of materials required to build the circuit board Complex designs which may take weeks to complete through normal processing can be 3D printed greatly reducing manufacturing time A 3D selfie in 1 20 scale printed using gypsum based printingHobbyists In 2005 academic journals had begun to report on the possible artistic applications of 3D printing technology 197 Off the shelf machines were increasingly capable of producing practical household applications for example ornamental objects Some practical examples include a working clock 198 and gears printed for home woodworking machines among other purposes 199 Web sites associated with home 3D printing tended to include backscratchers coat hooks door knobs etc 200 As of 2017 domestic 3D printing was reaching a consumer audience beyond hobbyists and enthusiasts Several projects and companies are making efforts to develop affordable 3D printers for home desktop use Much of this work has been driven by and targeted at DIY maker enthusiast early adopter communities with additional ties to the academic and hacker communities Sped on by decreases in price and increases in quality As of 2019 update an estimated 2 million people worldwide have purchased a 3D printer for hobby use 201 Legal aspectsIntellectual property See also Free hardware 3D printing has existed for decades within certain manufacturing industries where many legal regimes including patents industrial design rights copyrights and trademarks may apply However there is not much jurisprudence to say how these laws will apply if 3D printers become mainstream and individuals or hobbyist communities begin manufacturing items for personal use for non profit distribution or for sale Any of the mentioned legal regimes may prohibit the distribution of the designs used in 3D printing or the distribution or sale of the printed item To be allowed to do these things where an active intellectual property was involved a person would have to contact the owner and ask for a licence which may come with conditions and a price However many patent design and copyright laws contain a standard limitation or exception for private non commercial use of inventions designs or works of art protected under intellectual property IP That standard limitation or exception may leave such private non commercial uses outside the scope of IP rights Patents cover inventions including processes machines manufacturing and compositions of matter and have a finite duration which varies between countries but generally 20 years from the date of application Therefore if a type of wheel is patented printing using or selling such a wheel could be an infringement of the patent 202 Copyright covers an expression 203 in a tangible fixed medium and often lasts for the life of the author plus 70 years thereafter 204 For example a sculptor retains copyright over a statue such that other people cannot then legally distribute designs to print an identical or similar statue without paying royalties waiting for the copyright to expire or working within a fair use exception When a feature has both artistic copyrightable and functional patentable merits when the question has appeared in US court the courts have often held the feature is not copyrightable unless it can be separated from the functional aspects of the item 204 In other countries the law and the courts may apply a different approach allowing for example the design of a useful device to be registered as a whole as an industrial design on the understanding that in case of unauthorized copying only the non functional features may be claimed under design law whereas any technical features could only be claimed if covered by a valid patent Gun legislation and administration Main article 3D printed firearms The US Department of Homeland Security and the Joint Regional Intelligence Center released a memo stating that significant advances in three dimensional 3D printing capabilities availability of free digital 3D printable files for firearms components and difficulty regulating file sharing may present public safety risks from unqualified gun seekers who obtain or manufacture 3D printed guns and that proposed legislation to ban 3D printing of weapons may deter but cannot completely prevent their production Even if the practice is prohibited by new legislation online distribution of these 3D printable files will be as difficult to control as any other illegally traded music movie or software files 205 Attempting to restrict the distribution of gun plans via the Internet has been likened to the futility of preventing the widespread distribution of DeCSS which enabled DVD ripping 206 207 208 209 After the US government had Defense Distributed take down the plans they were still widely available via the Pirate Bay and other file sharing sites 210 Downloads of the plans from the UK Germany Spain and Brazil were heavy 211 212 Some US legislators have proposed regulations on 3D printers to prevent them from being used for printing guns 213 214 3D printing advocates have suggested that such regulations would be futile could cripple the 3D printing industry and could infringe on free speech rights with early pioneer of 3D printing professor Hod Lipson suggesting that gunpowder could be controlled instead 215 216 217 218 219 220 Internationally where gun controls are generally stricter than in the United States some commentators have said the impact may be more strongly felt since alternative firearms are not as easily obtainable 221 Officials in the United Kingdom have noted that producing a 3D printed gun would be illegal under their gun control laws 222 Europol stated that criminals have access to other sources of weapons but noted that as technology improves the risks of an effect would increase 223 224 Aerospace regulation In the United States the FAA has anticipated a desire to use additive manufacturing techniques and has been considering how best to regulate this process 225 The FAA has jurisdiction over such fabrication because all aircraft parts must be made under FAA production approval or under other FAA regulatory categories 226 In December 2016 the FAA approved the production of a 3D printed fuel nozzle for the GE LEAP engine 227 Aviation attorney Jason Dickstein has suggested that additive manufacturing is merely a production method and should be regulated like any other production method 228 229 He has suggested that the FAA s focus should be on guidance to explain compliance rather than on changing the existing rules and that existing regulations and guidance permit a company to develop a robust quality system that adequately reflects regulatory needs for quality assurance 228 Health and safetyMain article Health and safety hazards of 3D printing See also Health and safety hazards of nanomaterials source source source source source source source source source source source source source source track A video on research done on printer emissionsResearch on the health and safety concerns of 3D printing is new and in development due to the recent proliferation of 3D printing devices In 2017 the European Agency for Safety and Health at Work has published a discussion paper on the processes and materials involved in 3D printing potential implications of this technology for occupational safety and health and avenues for controlling potential hazards 230 Noise levels Noise level is measured in decibels dB and can vary greatly in home printers from 15 dB to 75 dB 231 Some main sources of noise in filament printers are fans motors and bearings while in resin printers the fans usually are responsible for most of the noise 231 Some methods for dampening the noise from a printer may be to install vibration isolation use larger diameter fans perform regular maintenance and lubrication or using a soundproofing enclosure 231 ImpactAdditive manufacturing starting with today s infancy period requires manufacturing firms to be flexible ever improving users of all available technologies to remain competitive Advocates of additive manufacturing also predict that this arc of technological development will counter globalization as end users will do much of their own manufacturing rather than engage in trade to buy products from other people and corporations 14 The real integration of the newer additive technologies into commercial production however is more a matter of complementing traditional subtractive methods rather than displacing them entirely 232 The futurologist Jeremy Rifkin 233 claimed that 3D printing signals the beginning of a third industrial revolution 234 succeeding the production line assembly that dominated manufacturing starting in the late 19th century Social change Street sign in Windhoek Namibia advertising 3D printing July 2018Since the 1950s a number of writers and social commentators have speculated in some depth about the social and cultural changes that might result from the advent of commercially affordable additive manufacturing technology 235 In recent years 3D printing is creating significant impact in the humanitarian and development sector Its potential to facilitate distributed manufacturing is resulting in supply chain and logistics benefits by reducing the need for transportation warehousing and wastage Furthermore social and economic development is being advanced through the creation of local production economies 139 Others have suggested that as more and more 3D printers start to enter people s homes the conventional relationship between the home and the workplace might get further eroded 236 Likewise it has also been suggested that as it becomes easier for businesses to transmit designs for new objects around the globe so the need for high speed freight services might also become less 237 Finally given the ease with which certain objects can now be replicated it remains to be seen whether changes will be made to current copyright legislation so as to protect intellectual property rights with the new technology widely available As 3D printers became more accessible to consumers online social platforms have developed to support the community 238 This includes websites that allow users to access information such as how to build a 3D printer as well as social forums that discuss how to improve 3D print quality and discuss 3D printing news as well as social media websites that are dedicated to share 3D models 239 240 241 RepRap is a wiki based website that was created to hold all information on 3D printing and has developed into a community that aims to bring 3D printing to everyone Furthermore there are other sites such as Pinshape Thingiverse and MyMiniFactory which were created initially to allow users to post 3D files for anyone to print allowing for decreased transaction cost of sharing 3D files These websites have allowed greater social interaction between users creating communities dedicated to 3D printing Some call attention to the conjunction of commons based peer production with 3D printing and other low cost manufacturing techniques 242 243 244 The self reinforced fantasy of a system of eternal growth can be overcome with the development of economies of scope and here society can play an important role contributing to the raising of the whole productive structure to a higher plateau of more sustainable and customized productivity 242 Further it is true that many issues problems and threats arise due to the democratization of the means of production and especially regarding the physical ones 242 For instance the recyclability of advanced nanomaterials is still questioned weapons manufacturing could become easier not to mention the implications for counterfeiting 245 and on intellectual property 246 It might be maintained that in contrast to the industrial paradigm whose competitive dynamics were about economies of scale commons based peer production 3D printing could develop economies of scope While the advantages of scale rest on cheap global transportation the economies of scope share infrastructure costs intangible and tangible productive resources taking advantage of the capabilities of the fabrication tools 242 And following Neil Gershenfeld 247 in that some of the least developed parts of the world need some of the most advanced technologies commons based peer production and 3D printing may offer the necessary tools for thinking globally but acting locally in response to certain needs Larry Summers wrote about the devastating consequences of 3D printing and other technologies robots artificial intelligence etc for those who perform routine tasks In his view already there are more American men on disability insurance than doing production work in manufacturing And the trends are all in the wrong direction particularly for the less skilled as the capacity of capital embodying artificial intelligence to replace white collar as well as blue collar work will increase rapidly in the years ahead Summers recommends more vigorous cooperative efforts to address the myriad devices e g tax havens bank secrecy money laundering and regulatory arbitrage enabling the holders of great wealth to a paying income and estate taxes and to make it more difficult to accumulate great fortunes without requiring great social contributions in return including more vigorous enforcement of anti monopoly laws reductions in excessive protection for intellectual property greater encouragement of profit sharing schemes that may benefit workers and give them a stake in wealth accumulation strengthening of collective bargaining arrangements improvements in corporate governance strengthening of financial regulation to eliminate subsidies to financial activity easing of land use restrictions that may cause the real estate of the rich to keep rising in value better training for young people and retraining for displaced workers and increased public and private investment in infrastructure development e g in energy production and transportation 248 Michael Spence wrote that Now comes a powerful wave of digital technology that is replacing labor in increasingly complex tasks This process of labor substitution and disintermediation has been underway for some time in service sectors think of ATMs online banking enterprise resource planning customer relationship management mobile payment systems and much more This revolution is spreading to the production of goods where robots and 3D printing are displacing labor In his view the vast majority of the cost of digital technologies comes at the start in the design of hardware e g 3D printers and more important in creating the software that enables machines to carry out various tasks Once this is achieved the marginal cost of the hardware is relatively low and declines as scale rises and the marginal cost of replicating the software is essentially zero With a huge potential global market to amortize the upfront fixed costs of design and testing the incentives to invest in digital technologies are compelling 249 Spence believes that unlike prior digital technologies which drove firms to deploy underutilized pools of valuable labor around the world the motivating force in the current wave of digital technologies is cost reduction via the replacement of labor For example as the cost of 3D printing technology declines it is easy to imagine that production may become extremely local and customized Moreover production may occur in response to actual demand not anticipated or forecast demand Spence believes that labor no matter how inexpensive will become a less important asset for growth and employment expansion with labor intensive process oriented manufacturing becoming less effective and that re localization will appear in both developed and developing countries In his view production will not disappear but it will be less labor intensive and all countries will eventually need to rebuild their growth models around digital technologies and the human capital supporting their deployment and expansion Spence writes that the world we are entering is one in which the most powerful global flows will be ideas and digital capital not goods services and traditional capital Adapting to this will require shifts in mindsets policies investments especially in human capital and quite possibly models of employment and distribution 249 Naomi Wu regards the usage of 3D printing in the Chinese classroom where rote memorization is standard to teach design principles and creativity as the most exciting recent development of the technology and more generally regards 3D printing as being the next desktop publishing revolution 250 Environmental change The growth of additive manufacturing could have a large impact on the environment As opposed to traditional manufacturing for instance in which pieces are cut from larger blocks of material additive manufacturing creates products layer by layer and prints only relevant parts wasting much less material and thus wasting less energy in producing the raw materials needed 251 By making only the bare structural necessities of products additive manufacturing also could make a profound contribution to lightweighting reducing the energy consumption and greenhouse gas emissions of vehicles and other forms of transportation 252 A case study on an airplane component made using additive manufacturing for example found that the component s use saves 63 of relevant energy and carbon dioxide emissions over the course of the product s lifetime 253 In addition previous life cycle assessment of additive manufacturing has estimated that adopting the technology could further lower carbon dioxide emissions since 3D printing creates localized production and products would not need to be transported long distances to reach their final destination 254 Continuing to adopt additive manufacturing does pose some environmental downsides however Despite additive manufacturing reducing waste from the subtractive manufacturing process by up to 90 the additive manufacturing process creates other forms of waste such as non recyclable material metal powders Additive manufacturing has not yet reached its theoretical material efficiency potential of 97 but it may get closer as the technology continues to increase productivity 255 Some large FDM printers which melt high density polyethylene HDPE pellets may also accept sufficiently clean recycled material such as chipped milk bottles In addition these printers can use shredded material coming from faulty builds or unsuccessful prototype versions thus reducing overall project wastage and materials handling and storage The concept has been explored in the RecycleBot See also3D modeling 3D scanning 3D printing marketplace 3D bioprinting 3D food printing 3D Manufacturing Format 3D printing speed 3D Systems Additive Manufacturing File Format Actuator AstroPrint Cloud manufacturing Computer numeric control Delta robot Fraunhofer Competence Field Additive Manufacturing Fusion3 Laser cutting Limbitless Solutions List of 3D printer manufacturers List of common 3D test models List of emerging technologies List of notable 3D printed weapons and parts Magnetically assisted slip casting MakerBot Industries Milling center Organ on a chip Robocasting Self replicating machine Ultimaker Volumetric printingReferences 3D printing scales up The Economist 5 September 2013 Ngo Tuan D Kashani Alireza Imbalzano Gabriele Nguyen Kate T Q Hui David 2018 Additive manufacturing 3D printing A review of materials methods applications and challenges Composites Part B Engineering 143 172 196 doi 10 1016 j compositesb 2018 02 012 S2CID 139464688 Excell Jon 23 May 2010 The rise of additive manufacturing The Engineer Archived from the original on 19 September 2015 Retrieved 30 October 2013 Learning Course Additive Manufacturing Additive Fertigung tmg muenchen de Lam Hugo K S Ding Li Cheng T C E Zhou Honggeng 1 January 2019 The impact of 3D printing implementation on stock returns A contingent dynamic capabilities perspective International Journal of Operations amp Production Management 39 6 7 8 935 961 doi 10 1108 IJOPM 01 2019 0075 ISSN 0144 3577 S2CID 211386031 3D Printing All You Need To Know explainedideas com Archived from the original on 20 August 2022 Retrieved 11 August 2022 a b Most used 3D printing technologies 2017 2018 Statistic Statista Retrieved 2 December 2018 Google Ngram Viewer books google com ISO ASTM 52900 2015 Additive manufacturing General principles Terminology iso org Retrieved 15 June 2017 a b Zelinski Peter 4 August 2017 Additive manufacturing and 3D printing are two different things Additive Manufacturing retrieved 11 August 2017 M Leinster Things Pass By in The Earth In Peril D Wollheim ed Ace Books 1957 USA List of Ace SF double titles D 205 p 25 story copyright 1945 by Standard Magazines Inc Ariadne New Scientist 64 917 80 3 October 1974 ISSN 0262 4079 Ellam Richard 26 February 2019 3D printing you read it here first New Scientist Retrieved 23 August 2019 a b Jane Bird 8 August 2012 Exploring the 3D printing opportunity Financial Times Retrieved 30 August 2012 Hideo Kodama Background of my invention of 3D printer and its spread Patent Magazine of Japan Patent Attorneys Association vo 67 no 13 pp 109 118 November 2014 JP S56 144478 JP Patent S56 144478 3D figure production device issued 10 November 1981 Hideo Kodama A Scheme for Three Dimensional Display by Automatic Fabrication of Three Dimensional Model IEICE Transactions on Electronics Japanese Edition vol J64 C No 4 pp 237 41 April 1981 Hideo Kodama Automatic method for fabricating a three dimensional plastic model with photo hardening polymer Review of Scientific Instruments Vol 52 No 11 pp 1770 73 November 1981 4665492 Masters William E United States Patent 4665492 Computer automated manufacturing process and system issued 12 May 1987 3 D Printing Steps into the Spotlight Upstate Business Journal 11 April 2013 Archived from the original on 20 December 2019 Retrieved 20 December 2019 Wang Ben 27 January 1999 Concurrent Design of Products Manufacturing Processes and Systems CRC Press ISBN 978 90 5699 628 4 Jean Claude Andre Disdpositif pour realiser un modele de piece industrielle National De La Propriete Industrielle Mendoza Hannah Rose 15 May 2015 Alain Le Mehaute The Man Who Submitted Patent For SLA 3D Printing Before Chuck Hull 3dprint com Moussion Alexandre 2014 Interview d Alain Le Mehaute l un des peres de l impression Interview of Alain Le Mehaute one of the 3D printinf technologies fathers 3D Primante 3D a b Howard Robert 2009 Connecting the dots my life and inventions from X rays to death rays New York NY Welcome Rain pp 195 197 ISBN 978 1 56649 957 6 OCLC 455879561 a b c d Barnatt Christopher 2013 3D printing the next industrial revolution Nottingham England ExplainingTheFuture com ISBN 978 1 4841 8176 8 OCLC 854672031 3D Printing What You Need to Know PCMag com Archived from the original on 18 October 2013 Retrieved 30 October 2013 Apparatus for Production of Three Dimensional Objects by Stereolithography 8 August 1984 Freedman David H 2012 Layer By Layer Technology Review 115 1 50 53 History of 3D Printing When Was 3D Printing Invented All3DP 10 December 2018 Retrieved 22 November 2019 The Evolution of 3D Printing Past Present and Future 3D Printing Industry 1 August 2016 Retrieved 24 February 2021 Amon C H Beuth J L Weiss L E Merz R Prinz F B 1998 Shape Deposition Manufacturing With Microcasting Processing Thermal and Mechanical Issues Journal of Manufacturing Science and Engineering 120 3 656 665 doi 10 1115 1 2830171 Archived from the original PDF on 20 December 2014 Retrieved 20 December 2014 Beck J E Fritz B Siewiorek Daniel Weiss Lee 1992 Manufacturing Mechatronics Using Thermal Spray Shape Deposition PDF Proceedings of the 1992 Solid Freeform Fabrication Symposium Archived from the original PDF on 24 December 2014 Retrieved 20 December 2014 Prinz F B Merz R Weiss Lee 1997 Ikawa N ed Building Parts You Could Not Build Before Proceedings of the 8th International Conference on Production Engineering London UK Chapman amp Hall pp 40 44 Schoffer Filemon 15 May 2016 How expiring patents are ushering in the next generation of 3D printing TechCrunch Retrieved 18 August 2023 GrabCAD GE jet engine bracket challenge Zelinski Peter 2 June 2014 How do you make a howitzer less heavy Modern Machine Shop archived from the original on 15 November 2020 retrieved 7 June 2014 As Billions More Fly Here s How Aviation Could Evolve National Geographic 22 June 2017 Retrieved 20 November 2020 Aviation and Aerospace Industry GE Additive Retrieved 20 November 2020 Pratt amp Whitney to Deliver First Entry Into Service Engine Parts Using Additive Manufacturing Additive Manufacturing 6 April 2015 Retrieved 20 December 2020 Han Pinlina 2017 Additive Design and Manufacturing of Jet Engine Parts Engineering 3 5 648 652 doi 10 1016 j eng 2017 05 017 b Mtaho Adam r Ishengoma Fredrick 2014 3D Printing Developing Countries Perspectives International Journal of Computer Applications 104 11 30 arXiv 1410 5349 Bibcode 2014IJCA 104k 30R doi 10 5120 18249 9329 S2CID 5381455 Filabot Plastic Filament Maker Kickstarter 24 May 2012 Retrieved 1 December 2018 Cook Benjamin Stassen 26 March 2014 VIPRE 3D Printed Electronics Retrieved 2 April 2019 3D Printer Price How Much Does a 3D Printer Cost 3D Insider 22 June 2017 Retrieved 24 February 2021 How Much Does a 3D Printer Cost Calculate the ROI Now Formlabs Retrieved 24 February 2021 Patient receives the world s first fully 3D printed prosthetic eye Engadget Retrieved 4 December 2021 Vsak dan prvi 24ur com www 24ur com Retrieved 4 December 2021 P Sivasankaran and B Radjaram 3D Printing and Its Importance in Engineering A Review 2020 International Conference on System Computation Automation and Networking ICSCAN Pondicherry India 2020 pp 1 3 doi 10 1109 ICSCAN49426 2020 9262378 K J A Al Ahbabi M M S Alrashdi and W K Ahmed The Capabilities of 3D Printing Technology in the Production of Battery Energy Storage System 2021 6th International Conference on Renewable Energy Generation and Applications ICREGA Al Ain United Arab Emirates 2021 pp 211 216 doi 10 1109 ICREGA50506 2021 9388302 F Auricchio The magic world of 3D printing 2017 IEEE MTT S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications IMWS AMP Pavia Italy 2017 pp 1 1 doi 10 1109 IMWS AMP 2017 8247328 Jacobs Paul Francis 1 January 1992 Rapid Prototyping amp Manufacturing Fundamentals of Stereolithography Society of Manufacturing Engineers ISBN 978 0 87263 425 1 Azman Abdul Hadi Vignat Frederic Villeneuve Francois 29 April 2018 Cad Tools and File Format Performance Evaluation in Designing Lattice Structures for Additive Manufacturing Jurnal Teknologi 80 4 doi 10 11113 jt v80 12058 ISSN 2180 3722 3D solid repair software Fix STL polygon mesh files LimitState FIX Print limitstate com Retrieved 4 January 2016 3D Printing Pens yellowgurl com Archived from the original on 16 September 2016 Retrieved 9 August 2016 Model Repair Service Modelrepair azurewebsites net Archived from the original on 4 March 2016 Retrieved 4 January 2016 3D Printing Overhang How to 3D Print Overhangs All3DP 16 June 2021 Retrieved 11 October 2021 Magics the Most Powerful 3D Printing Software Software for additive manufacturing Software materialise com Retrieved 4 January 2016 netfabb Cloud Services Netfabb com 15 May 2009 Archived from the original on 30 December 2015 Retrieved 4 January 2016 How to repair a 3D scan for printing Anamarva com Retrieved 4 January 2016 Fausto Bernardini Holly E Rushmeier 2002 The 3D Model Acquisition Pipeline GAS PDF Computer Graphics Forum 21 2 149 72 doi 10 1111 1467 8659 00574 S2CID 15779281 Satyanarayana B Prakash Kode Jaya 2015 Component Replication Using 3D Printing Technology Procedia Materials Science Elsevier BV 10 263 269 doi 10 1016 j mspro 2015 06 049 ISSN 2211 8128 Objet Connex 3D Printers Objet Printer Solutions Archived from the original on 7 November 2011 Retrieved 31 January 2012 Lee Handol Kwak Dong Bin Choi Chi Young Ahn Kang Ho 2023 Accurate measurements of particle emissions from a three dimensional printer using a chamber test with a mixer installed sampling system Scientific Reports 13 1 6495 Bibcode 2023NatSR 13 6495L doi 10 1038 s41598 023 33538 9 PMC 10119104 PMID 37081153 6495 Design Guide Preparing a File for 3D Printing PDF Xometry How to Smooth 3D Printed Parts Machine Design 29 April 2014 Kraft Caleb Smoothing Out Your 3D Prints With Acetone Vapor Make Retrieved 5 January 2016 Hart Kevin R Dunn Ryan M Sietins Jennifer M Hofmeister Mock Clara M Mackay Michael E Wetzel Eric D 2018 Increased fracture toughness of additively manufactured amorphous thermoplastics via thermal annealing Polymer 144 192 204 doi 10 1016 j polymer 2018 04 024 ISSN 0032 3861 Valvez S Silva A P Reis P N B Berto F 2022 Annealing effect on mechanical properties of 3D printed composites Procedia Structural Integrity 37 738 745 doi 10 1016 j prostr 2022 02 004 ISSN 2452 3216 a b Benwood C Anstey A Andrzejewski J Misra M Mohanty A K 2018 Improving the Impact Strength and Heat Resistance of 3D Printed Models Structure Property and Processing Correlationships during Fused Deposition Modeling FDM of Poly Lactic Acid ACS Omega 3 4 4400 4411 doi 10 1021 acsomega 8b00129 PMC 6641607 PMID 31458666 Wijnbergen D C van der Stelt M Verhamme L M 2021 The effect of annealing on deformation and mechanical strength of tough PLA and its application in 3D printed prosthetic sockets Rapid Prototyping Journal 27 11 81 89 doi 10 1108 RPJ 04 2021 0090 S2CID 244259184 Wei Du Qian Bai Bi Zhang 2016 A Novel Method for Additive Subtractive Hybrid Manufacturing of Metallic Parts Procedia Manufacturing 5 1018 1030 doi 10 1016 j promfg 2016 08 067 ISSN 2351 9789 Li F Chen S Shi J Tian H 2018 Investigation on Surface Quality in a Hybrid Manufacturing System Combining Wire and Arc Additive Manufacturing and Machining In Chen S Zhang Y Feng Z eds Transactions on Intelligent Welding Manufacturing Springer pp 127 137 doi 10 1007 978 981 10 7043 3 9 ISBN 978 981 10 7042 6 Delfs P T ows M Schmid H J October 2016 Optimized build orientation of additive manufactured parts for improved surface quality and build time Additive Manufacturing 12 314 320 doi 10 1016 j addma 2016 06 003 ISSN 2214 8604 O Connell Jackson 29 April 2022 Cura Adaptive Layers Simply Explained All3DP Retrieved 29 March 2023 Boissonneault Tess 15 August 2022 Your Guide to Painting PLA 3D Prints Wevolver Retrieved 29 March 2023 Haselhuhn Amberlee S Gooding Eli J Glover Alexandra G Anzalone Gerald C Wijnen Bas Sanders Paul G Pearce Joshua M 2014 Substrate Release Mechanisms for Gas Metal Arc Weld 3D Aluminum Metal Printing 3D Printing and Additive Manufacturing 1 4 204 doi 10 1089 3dp 2014 0015 S2CID 135499443 Haselhuhn Amberlee S Wijnen Bas Anzalone Gerald C Sanders Paul G Pearce Joshua M 2015 In situ formation of substrate release mechanisms for gas metal arc weld metal 3 D printing Journal of Materials Processing Technology 226 50 doi 10 1016 j jmatprotec 2015 06 038 a b Huet Natalie 16 July 2021 Amsterdam unveils the world s first 3D printed steel bridge euronews Wang Xin Jiang Man Zhou Zuowan Gou Jihua Hui David 2017 3D printing of polymer matrix composites A review and prospective Composites Part B Engineering 110 442 458 doi 10 1016 j compositesb 2016 11 034 Rose L 2011 On the degradation of porous stainless steel Thesis University of British Columbia pp 104 143 doi 10 14288 1 0071732 Zadi Maad Ahmad Rohbib Rohbib Irawan A 2018 Additive manufacturing for steels a review IOP Conference Series Materials Science and Engineering 285 1 012028 Bibcode 2018MS amp E 285a2028Z doi 10 1088 1757 899X 285 1 012028 Galante Raquel G Figueiredo Pina Celio Serro Ana Paula 2019 Additive manufacturing of ceramics for dental applications Dental Materials 35 6 825 846 doi 10 1016 j dental 2019 02 026 PMID 30948230 S2CID 96434269 Cooper Kenneth G 2001 Rapid prototyping technology selection and application New York Marcel Dekker pp 39 41 ISBN 0 8247 0261 1 OCLC 45873626 a b Burns Marshall 1993 Automated fabrication improving productivity in manufacturing Englewood Cliffs N J PTR Prentice Hall pp 8 15 49 95 97 ISBN 0 13 119462 3 OCLC 27810960 Mici Joni Ko Jang Won West Jared Jaquith Jeffrey Lipson Hod 2019 Parallel electrostatic grippers for layered assembly Additive Manufacturing 27 451 460 doi 10 1016 j addma 2019 03 032 S2CID 141154762 Spec2Fab A reducer tuner model for translating specifications to 3D prints Spec2Fab CiteSeerX 10 1 1 396 2985 Researchers Turn to Multi Material 3D Printing to Develop Responsive Versatile Smart Composites Researchers Turn to Multi Material 3D Printing to Develop Responsive Versatile Smart Composites CIMP 3D CIMP 3d in Chinese CIMP 3D CIMP 3d Momeni Farhang Xun Liu and Jun Ni A review of 4D printing Materials amp design 122 2017 42 79 Joshi Siddharth et al 4D printing of materials for the future Opportunities and challenges Applied Materials Today 18 2020 100490 Additive manufacturing General Principles Overview of process categories and feedstock ISO ASTM International Standard 17296 2 2015 E 2015 Standard Terminology for Additive Manufacturing General Principles Terminology ASTM International Standards Worldwide 1 December 2015 Retrieved 23 August 2019 Sherman Lilli Manolis 15 November 2007 A whole new dimension Rich homes can afford 3D printers The Economist Wohlers Terry Factors to Consider When Choosing a 3D Printer WohlersAssociates com Nov Dec 2005 Archived from the original on 4 November 2020 Retrieved 6 January 2007 3ders org 25 September 2012 Casting aluminium parts directly from 3D printed PLA parts 3ders org Retrieved 30 October 2013 permanent dead link How Selective Heat Sintering Works THRE3D com Archived from the original on 3 February 2014 Retrieved 3 February 2014 Woern Aubrey Byard Dennis Oakley Robert Fiedler Matthew Snabes Samantha 12 August 2018 Fused Particle Fabrication 3 D Printing Recycled Materials Optimization and Mechanical Properties Materials 11 8 1413 Bibcode 2018Mate 11 1413W doi 10 3390 ma11081413 PMC 6120030 PMID 30103532 Powder bed fusion DMLS SLS SLM MJF EBM make 3dexperience 3ds com Aluminium powder DMLS printed part finishes race first Machine Design 3 March 2014 Hiemenz Joe Rapid prototypes move to metal components EE Times 3 9 2007 Rapid Manufacturing by Electron Beam Melting SMU edu Archived from the original on 20 July 2018 Retrieved 18 July 2017 Material extrusion FDM make 3dexperience 3ds com 3DEXPERIENCE Platform make 3dexperience 3ds com Cameron Coward 7 April 2015 3D Printing DK Publishing p 74 ISBN 978 1 61564 745 3 Johnson R Colin Cheaper avenue to 65 nm EE Times 3 30 2007 The World s Smallest 3D Printer TU Wien 12 September 2011 Archived from the original on 20 September 2011 Retrieved 15 September 2011 3D printing multi material objects in minutes instead of hours Kurzweil Accelerating Intelligence 22 November 2013 St Fleur Nicholas 17 March 2015 3 D Printing Just Got 100 Times Faster The Atlantic Retrieved 19 March 2015 Beese Allison M Carroll Beth E 2015 Review of Mechanical Properties of Ti 6Al 4V Made by Laser Based Additive Manufacturing Using Powder Feedstock JOM 68 3 724 Bibcode 2016JOM 68c 724B doi 10 1007 s11837 015 1759 z S2CID 138250882 Gibson Ian Rosen David Stucker Brent 2015 Additive Manufacturing Technologies PDF doi 10 1007 978 1 4939 2113 3 ISBN 978 1 4939 2112 6 a b Kelly Brett E Bhattacharya Indrasen Heidari Hossein Shusteff Maxim Spadaccini Christopher M Taylor Hayden K 31 January 2019 Volumetric additive manufacturing via tomographic reconstruction Science 363 6431 1075 1079 Bibcode 2019Sci 363 1075K doi 10 1126 science aau7114 ISSN 0036 8075 PMID 30705152 S2CID 72336143 a b Star Trek like replicator creates entire objects in minutes Science 31 January 2019 Retrieved 31 January 2019 a b Kelly Brett Bhattacharya Indrasen Shusteff Maxim Panas Robert M Taylor Hayden K Spadaccini Christopher M 16 May 2017 Computed Axial Lithography CAL Toward Single Step 3D Printing of Arbitrary Geometries arXiv 1705 05893 cs GR a b German RepRap introduces L280 first Liquid Additive Manufacturing LAM production ready 3D printer 3ders org Retrieved 13 April 2019 Davies Sam 2 November 2018 German RepRap to present series ready Liquid Additive Manufacturing system at Formnext TCT Magazine Retrieved 13 April 2019 German RepRap presenting Liquid Additive Manufacturing technology at RAPID TCT TCT Magazine 10 May 2017 Retrieved 13 April 2019 Scott Clare 2 November 2018 German RepRap to Present Liquid Additive Manufacturing and L280 3D Printer at Formnext 3DPrint com The Voice of 3D Printing Additive Manufacturing Retrieved 13 April 2019 German RepRap develops new polyurethane material for Liquid Additive Manufacturing TCT Magazine 2 August 2017 Retrieved 13 April 2019 Essentium to acquire collider to advance DLP 3D printing technology Make Parts Fast 20 July 2021 3D Printer Uses Standard Paper www rapidtoday com Yang Y Gong Y Qu S 2019 Additive subtractive hybrid manufacturing of 316L stainless steel powder Densification microhardness and residual stress J Mech Sci Technol 33 12 5797 5807 doi 10 1007 s12206 019 1126 z S2CID 214298577 Boisselier D Sankare S Engel T 2014 Improvement of the Laser Direct Metal Deposition Process in 5 axis Configuration Physics Procedia 56 8th International Conference on Laser Assisted Net Shape Engineering LANE 2014 239 249 Bibcode 2014PhPro 56 239B doi 10 1016 j phpro 2014 08 168 S2CID 109491084 Li L Haghighi A Yang Y 2018 A novel 6 axis hybrid additive subtractive manufacturing process Design and case studies Journal of Manufacturing Processes 33 150 160 doi 10 1016 j jmapro 2018 05 008 S2CID 139579311 Saving with Feature Additions BeAM Machines 17 July 2020 Retrieved 29 April 2022 Beese Allison M Carroll Beth E 21 December 2015 Review of Mechanical Properties of Ti 6Al 4V Made by Laser Based Additive Manufacturing Using Powder Feedstock JOM 68 3 724 734 Bibcode 2016JOM 68c 724B doi 10 1007 s11837 015 1759 z ISSN 1047 4838 S2CID 138250882 Gibson Ian Rosen David Stucker Brent 2015 Chapter 10 Additive Manufacturing Technologies Springer PDF doi 10 1007 978 1 4939 2113 3 ISBN 978 1 4939 2112 6 S2CID 114833020 Surovi Nowrin Akter Hussain Shaista Soh Gim Song 2022 A Study of Machine Learning Framework for Enabling Early Defect Detection in Wire Arc Additive Manufacturing Processes International Design Engineering Technical Conferences and Computers and Information in Engineering Conference Vol 86229 pp V03AT03A002 Nilsiam Yuenyong Haselhuhn Amberlee Wijnen Bas Sanders Paul Pearce Joshua M 2015 Integrated Voltage Current Monitoring and Control of Gas Metal Arc Weld Magnetic Ball Jointed Open Source 3 D Printer Machines 3 4 339 51 doi 10 3390 machines3040339 Pinar A Wijnen B Anzalone G C Havens T C Sanders P G Pearce J M 2015 Low cost Open Source Voltage and Current Monitor for Gas Metal Arc Weld 3 D Printing Journal of Sensors 2015 1 8 doi 10 1155 2015 876714 Magalhaes Samuel Sardinha Manuel Vicente Carlos Leite Marco Ribeiro Relogio Vaz Maria Reis Luis 23 August 2021 Validation of a low cost selective powder deposition process through the characterization of tin bronze specimens The Journal of Materials Design and Applications 235 12 2681 2691 doi 10 1177 14644207211031941 S2CID 238738655 Li Zongan Xu Mengjia Wang Jiahang Zhang Feng October 2022 Recent Advances in Cryogenic 3D Printing Technologies Advanced Engineering Materials 24 10 2200245 doi 10 1002 adem 202200245 ISSN 1438 1656 S2CID 248488161 a b Zhang Wei Leu Ming C Ji Zhiming Yan Yongnian 1 June 1999 Rapid freezing prototyping with water Materials amp Design 20 2 139 145 doi 10 1016 S0261 3069 99 00020 5 ISSN 0261 3069 Tan Zhengchu Parisi Cristian Di Silvio Lucy Dini Daniele Forte Antonio Elia 24 November 2017 Cryogenic 3D Printing of Super Soft Hydrogels Scientific Reports 7 1 16293 Bibcode 2017NatSR 716293T doi 10 1038 s41598 017 16668 9 ISSN 2045 2322 PMC 5701203 PMID 29176756 Xiong Zhuo Yan Yongnian Wang Shenguo Zhang Renji Zhang Chao 7 June 2002 Fabrication of porous scaffolds for bone tissue engineering via low temperature deposition Scripta Materialia 46 11 771 776 doi 10 1016 S1359 6462 02 00071 4 ISSN 1359 6462 Huang Tieshu Mason Michael S Hilmas Gregory E Leu Ming C 1 June 2006 Freeze form extrusion fabrication of ceramic parts Virtual and Physical Prototyping 1 2 93 100 doi 10 1080 17452750600649609 ISSN 1745 2759 S2CID 135763440 Taufik Mohammad Jain Prashant K 10 December 2016 Additive Manufacturing Current Scenario Proceedings of International Conference on Advanced Production and Industrial Engineering ICAPIE 2016 380 386 Archived from the original on 1 October 2020 Retrieved 31 May 2017 a b Corsini Lucia Aranda Jan Clara B Moultrie James 2019 Using digital fabrication tools to provide humanitarian and development aid in low resource settings Technology in Society 58 101117 doi 10 1016 j techsoc 2019 02 003 ISSN 0160 791X Vincent January February 2011 Origins A 3D Vision Spawns Stratasys Inc Today s Machining World Vol 7 no 1 pp 24 25 Wong Venessa 28 January 2014 A Guide to All the Food That s Fit to 3D Print So Far Bloomberg com Did BeeHex Just Hit Print to Make Pizza at Home 27 May 2016 Retrieved 28 May 2016 Foodini 3D Printer Cooks Up Meals Like the Star Trek Food Replicator Archived from the original on 2 May 2020 Retrieved 27 January 2015 3D Printed Food System for Long Duration Space Missions sbir gsfc nasa gov Retrieved 24 April 2019 Bejerano Pablo G 28 September 2018 Barcelona researcher develops 3D printer that makes steaks El Pais ISSN 1134 6582 Retrieved 21 June 2019 Lidia Montes Ruqayyah Moynihan A researcher has developed a plant based meat substitute that s made with a 3D printer Business Insider Retrieved 21 June 2019 a b 3D Printed Clothing Becoming a Reality Resins Online 17 June 2013 Archived from the original on 1 November 2013 Retrieved 30 October 2013 Michael Fitzgerald 28 May 2013 With 3 D Printing the Shoe Really Fits MIT Sloan Management Review Retrieved 30 October 2013 Sharma Rakesh 10 September 2013 3D Custom Eyewear The Next Focal Point For 3D Printing Forbes com Retrieved 10 September 2013 Alvarez Edgar Fashion and technology will inevitably become one Engagdet 3D Printing Challenges and Opportunities for International Relations Council on Foreign Relations 23 October 2013 Archived from the original on 28 October 2013 Retrieved 30 October 2013 Koenigsegg One 1 Comes With 3D Printed Parts Business Insider Retrieved 14 May 2014 Conheca o Urbee primeiro carro a ser fabricado com uma impressora 3D tecmundo com br 3 November 2010 Eternity Max 23 November 2014 The Urbee 3D Printed Car Coast to Coast on 10 Gallons 3D Printed Car Creator Discusses Future of the Urbee on YouTube Local Motors shows Strati the world s first 3D printed car 13 January 2015 Simmons Dan 6 May 2015 Airbus had 1 000 parts 3D printed to meet deadline BBC Retrieved 27 November 2015 Zitun Yoav 27 July 2015 The 3D printer revolution comes to the IAF Ynetnews Ynet News Retrieved 29 September 2015 Zelinski Peter 31 March 2017 GE team secretly printed a helicopter engine replacing 900 parts with 16 Modern Machine Shop retrieved 9 April 2017 Greenberg Andy 23 August 2012 Wiki Weapon Project Aims To Create A Gun Anyone Can 3D Print at Home Forbes Retrieved 27 August 2012 Poeter Damon 24 August 2012 Could a Printable Gun Change the World PC Magazine Retrieved 27 August 2012 Samsel Aaron 23 May 2013 3D Printers Meet Othermill A CNC machine for your home office VIDEO Guns com Archived from the original on 4 October 2018 Retrieved 30 October 2013 The Third Wave CNC Stereolithography and the end of gun control Popehat 6 October 2011 Retrieved 30 October 2013 Rosenwald Michael S 25 February 2013 Weapons made with 3 D printers could test gun control efforts Washington Post Making guns at home Ready print fire The Economist 16 February 2013 Retrieved 30 October 2013 Rayner Alex 6 May 2013 3D printable guns are just the start says Cody Wilson The Guardian London Manjoo Farhad 8 May 2013 3 D printed gun Yes it will be possible to make weapons with 3 D printers No that doesn t make gun control futile Slate com Retrieved 30 October 2013 Islam Muhammed Kamrul Hazell Paul J Escobedo Juan P Wang Hongxu July 2021 Biomimetic armour design strategies for additive manufacturing A review Materials amp Design 205 109730 doi 10 1016 j matdes 2021 109730 Eppley B L Sadove A M 1 November 1998 Computer generated patient models for reconstruction of cranial and facial deformities J Craniofac Surg 9 6 548 556 doi 10 1097 00001665 199811000 00011 PMID 10029769 Poukens Jules 1 February 2008 A classification of cranial implants based on the degree of difficulty in computer design and manufacture The International Journal of Medical Robotics and Computer Assisted Surgery 4 1 46 50 doi 10 1002 rcs 171 PMID 18240335 S2CID 26121479 Perry Keith 12 March 2014 Man makes surgical history after having his shattered face rebuilt using 3D printed parts The Daily Telegraph London Archived from the original on 11 January 2022 Retrieved 12 March 2014 Zopf David A Hollister Scott J Nelson Marc E Ohye Richard G Green Glenn E 2013 Bioresorbable Airway Splint Created with a Three Dimensional Printer New England Journal of Medicine 368 21 2043 5 doi 10 1056 NEJMc1206319 PMID 23697530 Moore Calen 11 February 2014 Surgeons have implanted a 3 D printed pelvis into a U K cancer patient fiercemedicaldevices com Retrieved 4 March 2014 3D printed sugar network to help grow artificial liver BBC News 2 July 2012 RFA HD 15 023 Use of 3 D Printers for the Production of Medical Devices R43 R44 NIH grants Retrieved 30 September 2015 Belgrano Fabricio dos Santos Diegel Olaf Pereira Nei Hatti Kaul Rajni 2018 Cell immobilization on 3D printed matrices A model study on propionic acid fermentation Bioresource Technology 249 777 782 doi 10 1016 j biortech 2017 10 087 PMID 29136932 Melocchi Alice Uboldi Marco Cerea Matteo Foppoli Anastasia Maroni Alessandra Moutaharrik Saliha Palugan Luca Zema Lucia Gazzaniga Andrea 1 October 2020 A Graphical Review on the Escalation of Fused Deposition Modeling FDM 3D Printing in the Pharmaceutical Field Journal of Pharmaceutical Sciences 109 10 2943 2957 doi 10 1016 j xphs 2020 07 011 hdl 2434 828138 ISSN 0022 3549 PMID 32679215 S2CID 220630295 Afsana Jain Vineet Haider Nafis Jain Keerti 20 March 2019 3D Printing in Personalized Drug Delivery Current Pharmaceutical Design 24 42 5062 5071 doi 10 2174 1381612825666190215122208 PMID 30767736 S2CID 73421860 Trenfield Sarah J Awad Atheer Madla Christine M Hatton Grace B Firth Jack Goyanes Alvaro Gaisford Simon Basit Abdul W 3 October 2019 Shaping the future recent advances of 3D printing in drug delivery and healthcare PDF Expert Opinion on Drug Delivery 16 10 1081 1094 doi 10 1080 17425247 2019 1660318 ISSN 1742 5247 PMID 31478752 S2CID 201805196 Schelly C Anzalone G Wijnen B amp Pearce J M 2015 Open source 3 D printing Technologies for education Bringing Additive Manufacturing to the Classroom Journal of Visual Languages amp Computing Grujovic N Radovic M Kanjevac V Borota J Grujovic G amp Divac D September 2011 3D printing technology in education environment In 34th International Conference on Production Engineering pp 29 30 Mercuri Rebecca Meredith Kevin 2014 An educational venture into 3D Printing 2014 IEEE Integrated STEM Education Conference pp 1 6 doi 10 1109 ISECon 2014 6891037 ISBN 978 1 4799 3229 0 S2CID 16555348 Despite Market Woes 3D Printing Has a Future Thanks to Higher Education Bold 2 December 2015 Oppliger Douglas E Anzalone Gerald Pearce Joshua M Irwin John L 15 June 2014 The RepRap 3 D Printer Revolution in STEM Education 2014 ASEE Annual Conference amp Exposition 24 1242 1 24 1242 13 ISSN 2153 5868 Gillen Andrew 2016 Teacher s Toolkit The New Standard in Technology Education 3 D Design Class Science Scope 039 9 doi 10 2505 4 ss16 039 09 8 ISSN 0887 2376 a b Zhang Chenlong Anzalone Nicholas C Faria Rodrigo P Pearce Joshua M 2013 Open Source 3D Printable Optics Equipment PLOS ONE 8 3 e59840 Bibcode 2013PLoSO 859840Z doi 10 1371 journal pone 0059840 PMC 3609802 PMID 23544104 UMass Amherst Library Opens 3 D Printing Innovation Center Library Journal 2 April 2015 Archived from the original on 2 April 2015 Retrieved 23 August 2019 Pearce Joshua M 14 September 2012 Building Research Equipment with Free Open Source Hardware Science 337 6100 1303 1304 Bibcode 2012Sci 337 1303P doi 10 1126 science 1228183 ISSN 0036 8075 PMID 22984059 S2CID 44722829 Scopigno R Cignoni P Pietroni N Callieri M Dellepiane M 2017 Digital Fabrication Techniques for Cultural Heritage A Survey PDF Computer Graphics Forum 36 1 6 21 doi 10 1111 cgf 12781 S2CID 26690232 Museum uses 3D printing to take fragile maquette by Thomas Hart Benton on tour through the States Archived from the original on 17 November 2015 Vranich Alexei December 2018 Reconstructing ancient architecture at Tiwanaku Bolivia the potential and promise of 3D printing Heritage Science 6 1 65 doi 10 1186 s40494 018 0231 0 S2CID 139309556 British Museum releases 3D printer scans of artefacts Independent co uk 4 November 2014 Archived from the original on 7 November 2014 Threeding Uses Artec 3D Scanning Technology to Catalog 3D Models for Bulgaria s National Museum of Military History 3dprint com 20 February 2015 a b Parsinejad H Choi I Yari M 2021 Production of Iranian Architectural Assets for Representation in Museums Theme of Museum Based Digital Twin Body Space and Technology 20 1 61 74 doi 10 16995 bst 364 3D Printed Circuit Boards are the Next Big Thing in Additive Manufacturing 20 June 2018 Archived from the original on 24 April 2019 Retrieved 24 April 2019 Dimension Nano Additive Manufacturing Inks amp Materials for Custom 3D Printing Solutions nano di com Sequin Carlo H 2005 Rapid prototyping Communications of the ACM 48 6 66 73 doi 10 1145 1064830 1064860 S2CID 2216664 INIST 16817711 ewilhelm 3D printed clock and gears Instructables com Retrieved 30 October 2013 Successful Sumpod 3D printing of a herringbone gear 3d printer kit com 23 January 2012 Archived from the original on 2 November 2013 Retrieved 30 October 2013 backscratcher 3D Models to Print yeggi yeggi com Congressional Research Service 3D Printing Overview Impacts and the Federal Role August 2 2019 Fas org 3D Printing Technology Insight Report 2014 patent activity involving 3D Printing from 1990 2013 PDF Retrieved 10 June 2014 Thompson Clive 30 May 2012 3 D Printing s Legal Morass Wired a b Weinberg Michael January 2013 What s the Deal with copyright and 3D printing PDF Institute for Emerging Innovation Archived from the original PDF on 24 November 2020 Retrieved 30 October 2013 Homeland Security bulletin warns 3D printed guns may be impossible to stop Fox News 23 May 2013 Retrieved 30 October 2013 Controlled by Guns Quiet Babylon 7 May 2013 Retrieved 30 October 2013 3dprinting Joncamfield com Archived from the original on 28 November 2020 Retrieved 30 October 2013 State Dept Censors 3D Gun Plans Citing National Security News antiwar com 10 May 2013 Retrieved 30 October 2013 Wishful Thinking Is Control Freaks Last Defense Against 3D Printed Guns Reason com 8 May 2013 Retrieved 30 October 2013 Lennard Natasha 10 May 2013 The Pirate Bay steps in to distribute 3 D gun designs Salon com Archived from the original on 11 May 2013 Retrieved 30 October 2013 US demands removal of 3D printed gun blueprints neurope eu Archived from the original on 30 October 2013 Retrieved 30 October 2013 Economia E F E 9 May 2013 Espana y EE UU lideran las descargas de los planos de la pistola de impresion casera El Pais ElPais com Retrieved 30 October 2013 Sen Leland Yee Proposes Regulating Guns From 3 D Printers CBS Sacramento 8 May 2013 Retrieved 30 October 2013 Schumer Announces Support For Measure To Make 3D Printed Guns Illegal 5 May 2013 Four Horsemen of the 3D Printing Apocalypse Makezine com 30 June 2011 Archived from the original on 30 March 2013 Retrieved 30 October 2013 Ball James 10 May 2013 US government attempts to stifle 3D printer gun designs will ultimately fail The Guardian London Gadgets 18 January 2013 Like It Or Not 3D Printing Will Probably Be Legislated TechCrunch Retrieved 30 October 2013 Beckhusen Robert 15 February 2013 3 D Printing Pioneer Wants Government to Restrict Gunpowder Not Printable Guns Wired Retrieved 30 October 2013 Bump Philip 10 May 2013 How Defense Distributed Already Upended the World The Atlantic Wire Archived from the original on 7 June 2013 Retrieved 30 October 2013 News European Plastics News Archived from the original on 29 October 2013 Retrieved 30 October 2013 Cochrane Peter 21 May 2013 Peter Cochrane s Blog Beyond 3D Printed Guns TechRepublic Retrieved 30 October 2013 Gilani Nadia 6 May 2013 Gun factory fears as 3D blueprints put online by Defense Distributed Metro co uk Retrieved 30 October 2013 Liberator First 3D printed gun sparks gun control controversy Digitaljournal com 6 May 2013 Retrieved 30 October 2013 First 3D Printed Gun The Liberator Successfully Fired International Business Times UK 7 May 2013 Archived from the original on 29 October 2013 Retrieved 30 October 2013 FAA prepares guidance for wave of 3D printed aerospace parts SpaceNews com 20 October 2017 eCFR Code of Federal Regulations ecfr gov Archived from the original on 4 August 2018 Retrieved 4 August 2018 FAA to launch eight year additive manufacturing road map 3D Printing Industry 21 October 2017 a b 2017 Edition 4 May 5 2017 ARSA arsa org Embracing Drones and 3D Printing in the Regulatory Framework MRO Network 10 January 2018 EU OSHA European Agency for Safety and Health 7 June 2017 3D Printing and monitoring of workers a new industrial revolution osha europa eu Retrieved 31 October 2017 a b c How Loud Are 3D Printers and Making Them Quiet 21 July 2020 Albert Mark 17 January 2011 Subtractive plus additive equals more than gt Modern Machine Shop Vol 83 no 9 p 14 Jeremy Rifkin and The Third Industrial Revolution Home Page The third industrial revolution com Archived from the original on 25 February 2017 Retrieved 4 January 2016 A third industrial revolution The Economist 21 April 2012 Retrieved 4 January 2016 Hollow Matthew Confronting a New Era of Duplication 3D Printing Replicating Technology and the Search for Authenticity in George O Smith s Venus Equilateral Series Thesis Durham University Retrieved 21 July 2013 Ratto Matt Ree Robert 2012 Materializing information 3D printing and social change First Monday 17 7 doi 10 5210 fm v17i7 3968 Additive Manufacturing A supply chain wide response to economic uncertainty and environmental sustainability PDF Archived from the original PDF on 15 January 2014 Retrieved 11 January 2014 Ree Robert Ratto Matt 27 June 2012 Materializing information 3D printing and social change First Monday 17 7 Retrieved 30 March 2014 RepRap Options Retrieved 30 March 2014 3D Printing Retrieved 30 March 2014 Thingiverse Retrieved 30 March 2014 a b c d Kostakis Vasilis 12 January 2013 At the Turning Point of the Current Techno Economic Paradigm Commons Based Peer Production Desktop Manufacturing and the Role of Civil Society in the Perezian Framework TripleC Communication Capitalism amp Critique 11 1 173 190 doi 10 31269 triplec v11i1 463 ISSN 1726 670X Kostakis Vasilis Papachristou Marios 2014 Commons based peer production and digital fabrication The case of a Rep Rap based Lego built 3D printing milling machine Telematics and Informatics 31 3 434 43 doi 10 1016 j tele 2013 09 006 S2CID 2297267 Kostakis Vasilis Fountouklis Michail Drechsler Wolfgang 2013 Peer Production and Desktop Manufacturing Science Technology amp Human Values 38 6 773 800 doi 10 1177 0162243913493676 JSTOR 43671156 S2CID 43962759 Garrett Thomas Campbell Christopher Williams Olga Ivanova and Banning 17 October 2011 Could 3D Printing Change the World Atlantic Council Retrieved 23 August 2019 a href Template Cite web html title Template Cite web cite web a CS1 maint multiple names authors list link Haufe Patrick Bowyer Adrian Bradshaw Simon 2010 The intellectual property implications of low cost 3D printing SCRIPTed 7 1 5 31 ISSN 1744 2567 Gershenfeld Neil 2008 Fab The Coming Revolution on Your Desktop from Personal Computers to Personal Fabrication Basic Books pp 13 14 ISBN 978 0 7867 2204 4 The Inequality Puzzle Democracy Journal 14 May 2014 a b Spence Michael 22 May 2014 Labor s Digital Displacement by Michael Spence Project Syndicate Andre Helene 29 November 2017 Naomi Wu My visibility allows me to direct more attention to important issues and other deserving women Women in 3D Printing Archived from the original on 4 December 2017 Retrieved 3 December 2017 Hardcastle Jessica Lyons 24 November 2015 Is 3D Printing the Future of Sustainable Manufacturing Environmental Leader Retrieved 21 January 2019 Simpson Timothy W 31 January 2018 Lightweighting with Lattices Additive Manufacturing Retrieved 21 January 2019 Reeves P 2012 Example of Econolyst Research Understanding the Benefits of AM on CO2 PDF The Econolyst Retrieved 21 January 2019 Gelber Malte Uiterkamp Anton J M Schoot Visser Cindy October 2015 A Global Sustainability Perspective of 3D Printing Technologies Energy Policy 74 1 158 167 doi 10 1016 j enpol 2014 08 033 Peng Tao Kellens Karel Tang Renzhong Chen Chao Chen Gang May 2018 Sustainability of additive manufacturing An overview on its energy demand and environmental impact Additive Manufacturing 21 1 694 704 doi 10 1016 j addma 2018 04 022 Further reading Scholia has a profile for 3D printing Q229367 Lipson Hod 11 February 2013 Fabricated the new world of 3D printing Kurman Melba Indianapolis Indiana ISBN 978 1 118 35063 8 OCLC 806199735 a href Template Cite book html title Template Cite book cite book a CS1 maint location missing publisher link Tran Jasper 2017 Reconstructionism IP and 3D Printing Thesis SSRN 2842345 Tran Jasper 2016 Press Clause and 3D Printing Northwestern Journal of Technology and Intellectual Property 14 75 80 SSRN 2614606 Tran Jasper 2016 3D Printed Food Minnesota Journal of Law Science and Technology 17 855 80 SSRN 2710071 Tran Jasper 2015 To Bioprint or Not to Bioprint North Carolina Journal of Law and Technology 17 123 78 SSRN 2562952 Tran Jasper 2015 Patenting Bioprinting Harvard Journal of Law and Technology Digest SSRN 2603693 Tran Jasper 2015 The Law and 3D Printing John Marshall Journal of Information Technology and Privacy Law 31 505 20 Lindenfeld Eric et al 2015 Strict Liability and 3D Printed Medical Devices Yale Journal of Law and Technology SSRN 2697245 Dickel Sascha Schrape Jan Felix 2016 Materializing Digital Futures The Decentralized and Networked Future of Value Creation Progress in IS pp 163 78 doi 10 1007 978 3 319 31686 4 9 ISBN 978 3 319 31684 0 S2CID 148483485 Results of Make Magazine s 2015 3D Printer Shootout Retrieved 1 June 2015 Evaluation Protocol for Make Magazine s 2015 3D Printer Shootout makezine com Retrieved 1 June 2015 Heat Beds in 3D Printing Advantages and Equipment Boots Industries Retrieved 7 September 2015 Stephens B Azimi P El Orch Z Ramos T 2013 Ultrafine particle emissions from desktop 3D printers Atmospheric Environment 79 334 339 Bibcode 2013AtmEn 79 334S doi 10 1016 j atmosenv 2013 06 050 Easton Thomas A November 2008 The 3D Trainwreck How 3D Printing Will Shake Up Manufacturing Analog 128 11 50 63 Wright Paul K 2001 21st Century Manufacturing New Jersey Prentice Hall Inc 3D printing a new industrial revolution Safety and health at work EU OSHA osha europa eu Retrieved 28 July 2017 External links3D printing at Wikipedia s sister projects Definitions from Wiktionary Media from Commons Data from Wikidata Rapid prototyping websites at Curlie Retrieved from https en wikipedia org w index php title 3D printing amp oldid 1171004081, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.