fbpx
Wikipedia

Computer-aided design

Computer-aided design (CAD) is the use of computers (or workstations) to aid in the creation, modification, analysis, or optimization of a design.[1] This software is used to increase the productivity of the designer, improve the quality of design, improve communications through documentation, and to create a database for manufacturing.[2] Designs made through CAD software are helpful in protecting products and inventions when used in patent applications. CAD output is often in the form of electronic files for print, machining, or other manufacturing operations. The terms computer-aided drafting (CAD) and computer aided design and drafting (CADD) are also used.[3]

Example: 2D CAD drawing
Example: 3D CAD model

Its use in designing electronic systems is known as electronic design automation (EDA). In mechanical design it is known as mechanical design automation (MDA), which includes the process of creating a technical drawing with the use of computer software.[4]

CAD software for mechanical design uses either vector-based graphics to depict the objects of traditional drafting, or may also produce raster graphics showing the overall appearance of designed objects. However, it involves more than just shapes. As in the manual drafting of technical and engineering drawings, the output of CAD must convey information, such as materials, processes, dimensions, and tolerances, according to application-specific conventions.

CAD may be used to design curves and figures in two-dimensional (2D) space; or curves, surfaces, and solids in three-dimensional (3D) space.[5][6]: 71, 106 

CAD is an important industrial art extensively used in many applications, including automotive, shipbuilding, and aerospace industries, industrial and architectural design (building information modeling), prosthetics, and many more. CAD is also widely used to produce computer animation for special effects in movies, advertising and technical manuals, often called DCC digital content creation. The modern ubiquity and power of computers means that even perfume bottles and shampoo dispensers are designed using techniques unheard of by engineers of the 1960s. Because of its enormous economic importance, CAD has been a major driving force for research in computational geometry, computer graphics (both hardware and software), and discrete differential geometry.[7]

The design of geometric models for object shapes, in particular, is occasionally called computer-aided geometric design (CAGD).[8]

Overview

Computer-aided design is one of the many tools used by engineers and designers and is used in many ways depending on the profession of the user and the type of software in question.

CAD is one part of the whole digital product development (DPD) activity within the product lifecycle management (PLM) processes, and as such is used together with other tools, which are either integrated modules or stand-alone products, such as:

CAD is also used for the accurate creation of photo simulations that are often required in the preparation of environmental impact reports, in which computer-aided designs of intended buildings are superimposed into photographs of existing environments to represent what that locale will be like, where the proposed facilities are allowed to be built. Potential blockage of view corridors and shadow studies are also frequently analyzed through the use of CAD.[9]

Using four properties which are history, features, parameterization, and high-level constraints are helpful in everyday engineering. The construction history can be used to look back into the model's personal features and work on the single area rather than the whole model. Parameters and constraints can be used to determine the size, shape, and other properties of the different modeling elements. The features in the CAD system can be used for the variety of tools for measurement such as tensile strength, yield strength, electrical, or electromagnetic properties. Also its stress, strain, timing, or how the element gets affected in certain temperatures, etc.

Types

 
A simple procedure of recreating a solid model out of 2D sketches.

There are several different types of CAD,[10] each requiring the operator to think differently about how to use them and design their virtual components in a different manner for each.

2D CAD

There are many producers of the lower-end 2D systems, including a number of free and open-source programs. These provide an approach to the drawing process without all the fuss over scale and placement on the drawing sheet that accompanied hand drafting since these can be adjusted as required during the creation of the final draft.

3D CAD

3D wireframe is basically an extension of 2D drafting (not often used today) into a three-dimensional space. Each line has to be manually inserted into the drawing. The final product has no mass properties associated with it and cannot have features directly add to it, such as holes. The operator approaches these in a similar fashion to the 2D systems, although many 3D systems allow using the wireframe model to make the final engineering drawing views.

3D "dumb" solids are created in a way analogous to manipulations of real-world objects (not often used today). Basic three-dimensional geometric forms (prisms, cylinders, spheres, rectangle) have solid volumes added or subtracted from them as if assembling or cutting real-world objects. Two-dimensional projected views can easily be generated from the models. Basic 3D solids don't usually include tools to easily allow the motion of the components, set their limits to their motion, or identify interference between components.

There are two types of 3D solid modeling

  • Parametric modeling allows the operator to use what is referred to as "design intent". The objects and features are created modifiable. Any future modifications can be made by changing on how the original part was created. If a feature was intended to be located from the center of the part, the operator should locate it from the center of the model. The feature could be located using any geometric object already available in the part, but this random placement would defeat the design intent. If the operator designs the part as it functions the parametric modeler is able to make changes to the part while maintaining geometric and functional relationships.
  • Direct or explicit modeling provide the ability to edit geometry without a history tree With direct modeling, once a sketch is used to create geometry the sketch is incorporated into the new geometry and the designer just modifies the geometry without needing the original sketch. As with parametric modeling, direct modeling has the ability to include the relationships between selected geometry (e.g., tangency, concentricity).

FreeForm CAD

The top-end systems offer the capabilities to incorporate more organic, aesthetic and ergonomic features into the designs. Freeform surface modeling is often combined with solids to allow the designer to create products that fit the human form and visual requirements as well as they interface with the machine.

Technology

 
A CAD model of a computer mouse

Originally software for CAD systems was developed with computer languages such as Fortran, ALGOL but with the advancement of object-oriented programming methods this has radically changed. Typical modern parametric feature-based modeler and freeform surface systems are built around a number of key C modules with their own APIs. A CAD system can be seen as built up from the interaction of a graphical user interface (GUI) with NURBS geometry or boundary representation (B-rep) data via a geometric modeling kernel. A geometry constraint engine may also be employed to manage the associative relationships between geometry, such as wireframe geometry in a sketch or components in an assembly.

Unexpected capabilities of these associative relationships have led to a new form of prototyping called digital prototyping. In contrast to physical prototypes, which entail manufacturing time in the design. That said, CAD models can be generated by a computer after the physical prototype has been scanned using an industrial CT scanning machine. Depending on the nature of the business, digital or physical prototypes can be initially chosen according to specific needs.

Today, CAD systems exist for all the major platforms (Windows, Linux, UNIX and Mac OS X); some packages support multiple platforms.[11]

Currently, no special hardware is required for most CAD software. However, some CAD systems can do graphically and computationally intensive tasks, so a modern graphics card, high speed (and possibly multiple) CPUs and large amounts of RAM may be recommended.

The human-machine interface is generally via a computer mouse but can also be via a pen and digitizing graphics tablet. Manipulation of the view of the model on the screen is also sometimes done with the use of a Spacemouse/SpaceBall. Some systems also support stereoscopic glasses for viewing the 3D model. Technologies which in the past were limited to larger installations or specialist applications have become available to a wide group of users. These include the CAVE or HMDs and interactive devices like motion-sensing technology

Software

Starting around the mid-1960s, with the IBM Drafting System, computer-aided design systems began to provide more capability than just an ability to reproduce manual drafting with electronic drafting, the cost-benefit for companies to switch to CAD became apparent. The benefits of CAD systems over manual drafting are the capabilities one often takes for granted from computer systems today; automated generation of bills of materials, auto layout in integrated circuits, interference checking, and many others. Eventually, CAD provided the designer with the ability to perform engineering calculations.[6] During this transition, calculations were still performed either by hand or by those individuals who could run computer programs. CAD was a revolutionary change in the engineering industry, where draftsmen, designers, and engineering roles begin to merge. It did not eliminate departments as much as it merged departments and empowered draftsmen, designers, and engineers. CAD is an example of the pervasive effect computers were beginning to have on the industry. Current computer-aided design software packages range from 2D vector-based drafting systems to 3D solid and surface modelers. Modern CAD packages can also frequently allow rotations in three dimensions, allowing viewing of a designed object from any desired angle, even from the inside looking out.[6] Some CAD software is capable of dynamic mathematical modeling.[6]

CAD technology is used in the design of tools and machinery and in the drafting and design of all types of buildings, from small residential types (houses) to the largest commercial and industrial structures (hospitals and factories).[12]

CAD is mainly used for detailed engineering of 3D models or 2D drawings of physical components, but it is also used throughout the engineering process from conceptual design and layout of products, through strength and dynamic analysis of assemblies to definition of manufacturing methods of components. It can also be used to design objects such as jewelry, furniture, appliances, etc. Furthermore, many CAD applications now offer advanced rendering and animation capabilities so engineers can better visualize their product designs. 4D BIM is a type of virtual construction engineering simulation incorporating time or schedule-related information for project management.

CAD has become an especially important technology within the scope of computer-aided technologies, with benefits such as lower product development costs and a greatly shortened design cycle. CAD enables designers to layout and develop work on screen, print it out and save it for future editing, saving time on their drawings.

License management software

In the beginning of 2000, some CAD system software vendors might have shipped their distributions with a dedicated license manager software that might control how often or how many users can utilize CAD system.[6]: 166  It could run either on a local machine (by loading from a local storage device) or a local network fileserver and was usually tied to a specific IP address in latter case.[6]: 166 

List of software packages

CAD software enables engineers and architects to design, inspect and manage engineering projects within an integrated graphical user interface (GUI) on a personal computer system. Most applications support solid modeling with boundary representation (B-Rep) and NURBS geometry, and enable the same to be published in a variety of formats. A geometric modeling kernel is a software component that provides solid modeling and surface modeling features to CAD applications.[citation needed]

Based on market statistics, commercial software from Autodesk, Dassault Systems, Siemens PLM Software, and PTC dominate the CAD industry.[13][14] The following is a list of major CAD applications, grouped by usage statistics.[15]

Commercial software

Open-source software

Freeware

CAD kernels

See also

References

  1. ^ Narayan, K. Lalit (2008). Computer Aided Design and Manufacturing. New Delhi: Prentice Hall of India. p. 3. ISBN 978-8120333420.
  2. ^ Narayan, K. Lalit (2008). Computer Aided Design and Manufacturing. New Delhi: Prentice Hall of India. p. 4. ISBN 978-8120333420.
  3. ^ Duggal, Vijay (2000). Cadd Primer: A General Guide to Computer Aided Design and Drafting-Cadd, CAD. Mailmax Pub. ISBN 978-0962916595.
  4. ^ Madsen, David A. (2012). Engineering Drawing & Design. Clifton Park, NY: Delmar. p. 10. ISBN 978-1111309572.
  5. ^ Farin, Gerald; Hoschek, Josef; Kim, Myung-Soo (2002). Handbook of computer aided geometric design [electronic resource]. Elsevier. ISBN 978-0-444-51104-1.
  6. ^ a b c d e f Schoonmaker, Stephen J. (2003). The CAD guidebook : a basic manual for understanding and improving computer-aided design. New York: Marcel Dekker. ISBN 0-8247-0871-7. OCLC 50868192.
  7. ^ Pottmann, H.; Brell-Cokcan, S. and Wallner, J. (2007) "Discrete surfaces for architectural design" 2009-08-12 at the Wayback Machine, pp. 213–234 in Curve and Surface Design, Patrick Chenin, Tom Lyche and Larry L. Schumaker (eds.), Nashboro Press, ISBN 978-0-9728482-7-5.
  8. ^ Farin, Gerald (2002) Curves and Surfaces for CAGD: A Practical Guide, Morgan-Kaufmann, ISBN 1-55860-737-4.
  9. ^ "Computer-Aided Design (CAD) and Computer-Aided Manufacturing (CAM)". Inc.com. Retrieved 2020-04-30.
  10. ^ . engineershandbook.com. Archived from the original on 2012-11-18. Retrieved 2012-03-01.
  11. ^ "What is a CAD Workstation? Definition, Uses and More". Computer Tech Reviews. 2019-11-21. Retrieved 2020-04-30.
  12. ^ Jennifer Herron (2010). "3D Model-Based Design: Setting the Definitions Straight". MCADCafe.
  13. ^ The Big 6 in CAD/CAE/PLM software industry (2011), CAEWatch, September 12, 2011
  14. ^ van Kooten, Michel (2011-08-23). "GLOBAL SOFTWARE TOP 100 – EDITION 2011". Software Top 100.
  15. ^ List of mechanical CAD softwares, BeyondMech

External links

  • MIT 1982 CAD lab
  •   Learning materials related to Computer-aided design at Wikiversity
  •   Learning materials related to Computer-aided Geometric Design at Wikiversity
  •   Media related to Computer-aided design at Wikimedia Commons
  •   The dictionary definition of computer-aided design at Wiktionary

computer, aided, design, cadd, redirect, here, currency, canadian, dollar, other, uses, disambiguation, cadd, disambiguation, computers, workstations, creation, modification, analysis, optimization, design, this, software, used, increase, productivity, designe. CAD and CADD redirect here For the currency see Canadian dollar For other uses see Cad disambiguation and CADD disambiguation Computer aided design CAD is the use of computers or workstations to aid in the creation modification analysis or optimization of a design 1 This software is used to increase the productivity of the designer improve the quality of design improve communications through documentation and to create a database for manufacturing 2 Designs made through CAD software are helpful in protecting products and inventions when used in patent applications CAD output is often in the form of electronic files for print machining or other manufacturing operations The terms computer aided drafting CAD and computer aided design and drafting CADD are also used 3 Example 2D CAD drawing Example 3D CAD model Its use in designing electronic systems is known as electronic design automation EDA In mechanical design it is known as mechanical design automation MDA which includes the process of creating a technical drawing with the use of computer software 4 CAD software for mechanical design uses either vector based graphics to depict the objects of traditional drafting or may also produce raster graphics showing the overall appearance of designed objects However it involves more than just shapes As in the manual drafting of technical and engineering drawings the output of CAD must convey information such as materials processes dimensions and tolerances according to application specific conventions CAD may be used to design curves and figures in two dimensional 2D space or curves surfaces and solids in three dimensional 3D space 5 6 71 106 CAD is an important industrial art extensively used in many applications including automotive shipbuilding and aerospace industries industrial and architectural design building information modeling prosthetics and many more CAD is also widely used to produce computer animation for special effects in movies advertising and technical manuals often called DCC digital content creation The modern ubiquity and power of computers means that even perfume bottles and shampoo dispensers are designed using techniques unheard of by engineers of the 1960s Because of its enormous economic importance CAD has been a major driving force for research in computational geometry computer graphics both hardware and software and discrete differential geometry 7 The design of geometric models for object shapes in particular is occasionally called computer aided geometric design CAGD 8 Contents 1 Overview 2 Types 2 1 2D CAD 2 2 3D CAD 2 3 FreeForm CAD 3 Technology 4 Software 4 1 License management software 5 List of software packages 5 1 Commercial software 5 2 Open source software 5 3 Freeware 5 4 CAD kernels 6 See also 7 References 8 External linksOverview EditThis section does not cite any sources Please help improve this section by adding citations to reliable sources Unsourced material may be challenged and removed January 2020 Learn how and when to remove this template message Computer aided design is one of the many tools used by engineers and designers and is used in many ways depending on the profession of the user and the type of software in question CAD is one part of the whole digital product development DPD activity within the product lifecycle management PLM processes and as such is used together with other tools which are either integrated modules or stand alone products such as Computer aided engineering CAE and finite element analysis FEA FEM Computer aided manufacturing CAM including instructions to computer numerical control CNC machines Photorealistic rendering and motion simulation Document management and revision control using product data management PDM CAD is also used for the accurate creation of photo simulations that are often required in the preparation of environmental impact reports in which computer aided designs of intended buildings are superimposed into photographs of existing environments to represent what that locale will be like where the proposed facilities are allowed to be built Potential blockage of view corridors and shadow studies are also frequently analyzed through the use of CAD 9 Using four properties which are history features parameterization and high level constraints are helpful in everyday engineering The construction history can be used to look back into the model s personal features and work on the single area rather than the whole model Parameters and constraints can be used to determine the size shape and other properties of the different modeling elements The features in the CAD system can be used for the variety of tools for measurement such as tensile strength yield strength electrical or electromagnetic properties Also its stress strain timing or how the element gets affected in certain temperatures etc Types Edit A simple procedure of recreating a solid model out of 2D sketches See also Comparison of computer aided design editors There are several different types of CAD 10 each requiring the operator to think differently about how to use them and design their virtual components in a different manner for each 2D CAD Edit There are many producers of the lower end 2D systems including a number of free and open source programs These provide an approach to the drawing process without all the fuss over scale and placement on the drawing sheet that accompanied hand drafting since these can be adjusted as required during the creation of the final draft 3D CAD Edit 3D wireframe is basically an extension of 2D drafting not often used today into a three dimensional space Each line has to be manually inserted into the drawing The final product has no mass properties associated with it and cannot have features directly add to it such as holes The operator approaches these in a similar fashion to the 2D systems although many 3D systems allow using the wireframe model to make the final engineering drawing views 3D dumb solids are created in a way analogous to manipulations of real world objects not often used today Basic three dimensional geometric forms prisms cylinders spheres rectangle have solid volumes added or subtracted from them as if assembling or cutting real world objects Two dimensional projected views can easily be generated from the models Basic 3D solids don t usually include tools to easily allow the motion of the components set their limits to their motion or identify interference between components There are two types of 3D solid modeling Parametric modeling allows the operator to use what is referred to as design intent The objects and features are created modifiable Any future modifications can be made by changing on how the original part was created If a feature was intended to be located from the center of the part the operator should locate it from the center of the model The feature could be located using any geometric object already available in the part but this random placement would defeat the design intent If the operator designs the part as it functions the parametric modeler is able to make changes to the part while maintaining geometric and functional relationships Direct or explicit modeling provide the ability to edit geometry without a history tree With direct modeling once a sketch is used to create geometry the sketch is incorporated into the new geometry and the designer just modifies the geometry without needing the original sketch As with parametric modeling direct modeling has the ability to include the relationships between selected geometry e g tangency concentricity FreeForm CAD Edit The top end systems offer the capabilities to incorporate more organic aesthetic and ergonomic features into the designs Freeform surface modeling is often combined with solids to allow the designer to create products that fit the human form and visual requirements as well as they interface with the machine Further information Surface to surface intersection problemTechnology EditThis section does not cite any sources Please help improve this section by adding citations to reliable sources Unsourced material may be challenged and removed January 2020 Learn how and when to remove this template message A CAD model of a computer mouse Originally software for CAD systems was developed with computer languages such as Fortran ALGOL but with the advancement of object oriented programming methods this has radically changed Typical modern parametric feature based modeler and freeform surface systems are built around a number of key C modules with their own APIs A CAD system can be seen as built up from the interaction of a graphical user interface GUI with NURBS geometry or boundary representation B rep data via a geometric modeling kernel A geometry constraint engine may also be employed to manage the associative relationships between geometry such as wireframe geometry in a sketch or components in an assembly Unexpected capabilities of these associative relationships have led to a new form of prototyping called digital prototyping In contrast to physical prototypes which entail manufacturing time in the design That said CAD models can be generated by a computer after the physical prototype has been scanned using an industrial CT scanning machine Depending on the nature of the business digital or physical prototypes can be initially chosen according to specific needs Today CAD systems exist for all the major platforms Windows Linux UNIX and Mac OS X some packages support multiple platforms 11 Currently no special hardware is required for most CAD software However some CAD systems can do graphically and computationally intensive tasks so a modern graphics card high speed and possibly multiple CPUs and large amounts of RAM may be recommended The human machine interface is generally via a computer mouse but can also be via a pen and digitizing graphics tablet Manipulation of the view of the model on the screen is also sometimes done with the use of a Spacemouse SpaceBall Some systems also support stereoscopic glasses for viewing the 3D model Technologies which in the past were limited to larger installations or specialist applications have become available to a wide group of users These include the CAVE or HMDs and interactive devices like motion sensing technologySoftware EditSee also History of CAD software Starting around the mid 1960s with the IBM Drafting System computer aided design systems began to provide more capability than just an ability to reproduce manual drafting with electronic drafting the cost benefit for companies to switch to CAD became apparent The benefits of CAD systems over manual drafting are the capabilities one often takes for granted from computer systems today automated generation of bills of materials auto layout in integrated circuits interference checking and many others Eventually CAD provided the designer with the ability to perform engineering calculations 6 During this transition calculations were still performed either by hand or by those individuals who could run computer programs CAD was a revolutionary change in the engineering industry where draftsmen designers and engineering roles begin to merge It did not eliminate departments as much as it merged departments and empowered draftsmen designers and engineers CAD is an example of the pervasive effect computers were beginning to have on the industry Current computer aided design software packages range from 2D vector based drafting systems to 3D solid and surface modelers Modern CAD packages can also frequently allow rotations in three dimensions allowing viewing of a designed object from any desired angle even from the inside looking out 6 Some CAD software is capable of dynamic mathematical modeling 6 CAD technology is used in the design of tools and machinery and in the drafting and design of all types of buildings from small residential types houses to the largest commercial and industrial structures hospitals and factories 12 CAD is mainly used for detailed engineering of 3D models or 2D drawings of physical components but it is also used throughout the engineering process from conceptual design and layout of products through strength and dynamic analysis of assemblies to definition of manufacturing methods of components It can also be used to design objects such as jewelry furniture appliances etc Furthermore many CAD applications now offer advanced rendering and animation capabilities so engineers can better visualize their product designs 4D BIM is a type of virtual construction engineering simulation incorporating time or schedule related information for project management CAD has become an especially important technology within the scope of computer aided technologies with benefits such as lower product development costs and a greatly shortened design cycle CAD enables designers to layout and develop work on screen print it out and save it for future editing saving time on their drawings License management software Edit In the beginning of 2000 some CAD system software vendors might have shipped their distributions with a dedicated license manager software that might control how often or how many users can utilize CAD system 6 166 It could run either on a local machine by loading from a local storage device or a local network fileserver and was usually tied to a specific IP address in latter case 6 166 List of software packages EditCAD software enables engineers and architects to design inspect and manage engineering projects within an integrated graphical user interface GUI on a personal computer system Most applications support solid modeling with boundary representation B Rep and NURBS geometry and enable the same to be published in a variety of formats A geometric modeling kernel is a software component that provides solid modeling and surface modeling features to CAD applications citation needed Based on market statistics commercial software from Autodesk Dassault Systems Siemens PLM Software and PTC dominate the CAD industry 13 14 The following is a list of major CAD applications grouped by usage statistics 15 Commercial software Edit AC3D Alibre Design ArchiCAD Graphisoft AutoCAD Autodesk Autodesk Inventor AxSTREAM BricsCAD CATIA Dassault Systemes Cobalt CorelCAD Fusion 360 Autodesk IntelliCAD IRONCAD KeyCreator Kubotek Landscape Express MEDUSA MicroStation Bentley Systems Modelur AgiliCity Onshape Promine PTC Creo successor to Pro ENGINEER PunchCAD Remo 3D Revit Autodesk Rhinoceros 3D Siemens NX SketchUp Solid Edge Siemens SolidWorks Dassault Systemes SpaceClaim T FLEX CAD TranslateCAD TurboCAD Vectorworks Nemetschek Open source software Edit BRL CAD FreeCAD LibreCAD LeoCAD OpenSCAD QCAD Salome software SolveSpaceFreeware Edit BricsCAD Shape TiffinCAD Tinkercad successor to Autodesk 123D CAD kernels Edit ACIS by Spatial C3D Toolkit by C3D Labs Open CASCADE Open Source Parasolid by Siemens ShapeManager by AutodeskSee also Edit3D computer graphics 3D printing Additive Manufacturing File Format Algorithmic art CAD standards Coarse space numerical analysis Comparison of 3D computer graphics software Comparison of CAD CAM and CAE file viewers Comparison of computer aided design software Comparison of EDA software Electronic Design Automation Computer aided industrial design Digital architecture Electronic design automation Engineering optimization Finite element method ISO 128 ISO 10303 STEP Model based definition Molecular design software Open source hardware Rapid prototyping Responsive computer aided design Space mapping Surrogate model System integration Virtual prototyping Virtual realityReferences Edit Narayan K Lalit 2008 Computer Aided Design and Manufacturing New Delhi Prentice Hall of India p 3 ISBN 978 8120333420 Narayan K Lalit 2008 Computer Aided Design and Manufacturing New Delhi Prentice Hall of India p 4 ISBN 978 8120333420 Duggal Vijay 2000 Cadd Primer A General Guide to Computer Aided Design and Drafting Cadd CAD Mailmax Pub ISBN 978 0962916595 Madsen David A 2012 Engineering Drawing amp Design Clifton Park NY Delmar p 10 ISBN 978 1111309572 Farin Gerald Hoschek Josef Kim Myung Soo 2002 Handbook of computer aided geometric design electronic resource Elsevier ISBN 978 0 444 51104 1 a b c d e f Schoonmaker Stephen J 2003 The CAD guidebook a basic manual for understanding and improving computer aided design New York Marcel Dekker ISBN 0 8247 0871 7 OCLC 50868192 Pottmann H Brell Cokcan S and Wallner J 2007 Discrete surfaces for architectural design Archived 2009 08 12 at the Wayback Machine pp 213 234 in Curve and Surface Design Patrick Chenin Tom Lyche and Larry L Schumaker eds Nashboro Press ISBN 978 0 9728482 7 5 Farin Gerald 2002 Curves and Surfaces for CAGD A Practical Guide Morgan Kaufmann ISBN 1 55860 737 4 Computer Aided Design CAD and Computer Aided Manufacturing CAM Inc com Retrieved 2020 04 30 3D Feature based Parametric Solid Modeling engineershandbook com Archived from the original on 2012 11 18 Retrieved 2012 03 01 What is a CAD Workstation Definition Uses and More Computer Tech Reviews 2019 11 21 Retrieved 2020 04 30 Jennifer Herron 2010 3D Model Based Design Setting the Definitions Straight MCADCafe The Big 6 in CAD CAE PLM software industry 2011 CAEWatch September 12 2011 van Kooten Michel 2011 08 23 GLOBAL SOFTWARE TOP 100 EDITION 2011 Software Top 100 List of mechanical CAD softwares BeyondMechExternal links EditMIT 1982 CAD lab Learning materials related to Computer aided design at Wikiversity Learning materials related to Computer aided Geometric Design at Wikiversity Media related to Computer aided design at Wikimedia Commons The dictionary definition of computer aided design at Wiktionary Retrieved from https en wikipedia org w index php title Computer aided design amp oldid 1132620428, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.