fbpx
Wikipedia

Cuche Formation

The Cuche Formation (Spanish: Formación Cuche, Cc) is a geological formation of the Floresta Massif, Altiplano Cundiboyacense in the Eastern Ranges of the Colombian Andes. The sequence of siltstones, shales, and sandstone beds dates to the Late Devonian and Early Carboniferous periods, and has a maximum thickness of 900 metres (3,000 ft).

Cuche Formation
Stratigraphic range: Frasnian-Early Carboniferous
~385–355 Ma
TypeGeological formation
Unit ofFloresta Massif
UnderliesGirón Fm., Tibasosa Fm.
OverliesFloresta Formation
Area~36 km2 (14 sq mi)
Thickness300–900 m (980–2,950 ft)
Lithology
PrimarySandstone, siltstone
OtherShale
Location
Coordinates5°51′37.2″N 72°56′57.6″W / 5.860333°N 72.949333°W / 5.860333; -72.949333
RegionAltiplano Cundiboyacense
Eastern Ranges, Andes
Country Colombia
Type section
Named forVereda Cuche
Named byBotero
LocationFloresta
Year defined1950
Coordinates5°51′37.2″N 72°56′57.6″W / 5.860333°N 72.949333°W / 5.860333; -72.949333
Approximate paleocoordinates51°42′S 48°06′W / 51.7°S 48.1°W / -51.7; -48.1
RegionBoyacá
Country Colombia

Paleogeography of the Middle Devonian
380 Ma, by Stampfli & Borel
Contrasting with the original coastal depositional environment, the Cuche Formation is found at altitudes of more than 2,500 metres (8,200 ft) in the Eastern Colombian Andes around Floresta, Boyacá

The formation was deposited in a tidal-dominated deltaic environment at high southern paleolatitudes at the edge of the Paleozoic Paleo-Tethys Ocean. The Cuche Formation is highly fossiliferous; many Placoderm fish fossils, flora, bivalves, arthropods, crustaceans and ostracods have been discovered in the youngest Paleozoic strate of the Floresta Massif, while the underlying Floresta Formation is richer in trilobite biodiversity.[1]

Etymology edit

The formation was first described as part of the Floresta Series by Olsson and Carter in 1939. The current definition was given by Botero in 1950.[2] The formation is named after the vereda Cuche of Floresta, Boyacá, where the formation outcrops.[3] The word Cuche is taken from Muysccubun, the language of the indigenous Muisca, who inhabited the Altiplano Cundiboyacense before the Spanish conquest.[4]

Regional setting edit

The Floresta Massif is a block in the northern part of the Altiplano Cundiboyacense, marked by a metamorphic crystalline core overlain by Devonian to Carboniferous sedimentary sequences; from old to young, the El Tíbet, Floresta and Cuche Formations. The Paleozoic succession is overlain by sediments of much younger date; the Late Jurassic Girón and Early Cretaceous Tibasosa Formations. The massif is bound to the east by the Soapaga Fault and to the west by the Boyacá Fault.[5]

At time of deposition of the Devonian formations, present-day northern South America was located at the edge of the Paleo-Tethys Ocean on the southern hemisphere. The Paleozoic occurrence on the Altiplano is localized in outcrop; the majority of surface sediments are Cretaceous to Paleogene in age. Neogene uplift of the Eastern Ranges, with its main phase in the Plio-Pleistocene, caused the exhumation of older units at surface along major thrust faults in the Eastern Andes. In two phases during the Paleozoic, intrusions occurred into the sedimentary sequence, causing local metamorphism. The first phase is considered pre-Devonian and the latter phase post-Devonian. The remaining stratigraphy of the Cuche Formation appears little affected by this intrusive phase,[6] although slight metamorphism has been identified in later research.[7]

Description edit

Lithologies edit

The Cuche Formation is characterised by mostly cream and purple coloured shales, with a basal unit of micaceous siltstones with intercalated yellowish-grey shales and 30 metres (98 ft) thick quartzitic and feldspar-rich sandstone beds that colour red caused by meteoric waters. The sandstones have an iron-rich cementation.[3] A middle unit of fine-grained sandstones with thin banks of siltstones follows the lower part and an upper sequence of shales with interbedded ferruginous red beds.[2] The lower sequence contains runzelmark syn-sedimentary structures.[3]

Stratigraphy and depositional environment edit

 
The depositional environment of the Cuche Formation has been analysed to be a low-energy tidal-dominated deltaic setting, with frequent marine incursions into continental and lagoonal areas marked by the presence of both the flora and the many fish species found in the formation

The Cuche Formation in some places discordantly and in other areas transitionally defined by colour changes,[8][9] overlies the Floresta Formation in Boyacá and the Mogotes Formation in Santander,[10] and is, by an angular unconformity up to 60 degrees,[11] overlain by the Upper Jurassic Girón,[12] and Early Cretaceous Tibasosa Formations.[3] The angular unconformity between the Paleozoic and Mesozoic is exposed along the road between Duitama and Sogamoso, and is the location where the first flora fossils were found in 1978.[11]

The age of the Cuche Formation has been estimated to be Late Devonian to Early Carboniferous,[2][13] after an original designation as Permian-Carboniferous by Botero in 1950, further restricted to the Carboniferous by Julivert in 1968.[14] The formation covers an area of approximately 36 square kilometres (14 sq mi) and ranges in thickness between 300 and 900 metres (980 and 2,950 ft).[2] Stratigraphically, the Cuche Formation is time equivalent with the Diamante Formation of the Santander Massif to the north of the Altiplano Cundiboyacense.[15] To the west of Paz de Río, the Cuche Formation is thrusted upon the Neogene Concentración Formation by the Soapaga Fault.[16] In the northern part of the Floresta Massif, the contact between the metamorphic Otengá Stock and the Cuche Formation is formed by the Duga Fault.[17]

Based on the preservation of fossils, the lithologies, syn-sedimentary structures and stratigraphic position, a depositional environment of shallow low energy waters has been proposed, possibly in a lagoonal setting at the edge of a regressional Paleo-Tethys Ocean.[1][18] Other parts of the Cuche Formation were deposited in a continental environment, evidenced by the red beds and absence of marine fossils and abundant root imprints.[19] Overall, the sequence represents a coastal deltaic environment with frequent marine incursions, a tidal deltaic setting.[20][21]

Fossil content edit

 
Fossil flora from the Cuche Formation were identified as "Ginkgo-like" species, as this Baiera reconstruction. Proper Ginkgo do not appear in the geological record until the Middle Permian

The first identification of fossil content of the Cuche Formation was done by Botero, who studied the formation in 1950. Research in the early 1980s revealed the presence of many more fossils in the formation and among the first fossil flora found were species then identified as the genera Ginkgo and Baiera.[14] The lower units show poorly preserved plant remains and the overlying shales provided arthropods and crustaceans. In the middle units of the formation, more and better preserved plant fossils were found alongside bivalves, ostracods (of the genus Welleria) and arthropods.[22]

The Cuche Formation contains unique Placoderm fish fossils, first noted by Mojica and Villarroel in 1984.[23] Across the section, also plant fossils and bivalves are found. In this part of the sequence the first fish fossils were discovered. The top section provided brachiopods (genus Lingula) and other at that moment undetermined fossil fragments.[24]

Later research has provided more insight into the flora of the formation, with the "Ginkgo" species possibly a Ginkgophyton sp..[25] Additionally, fossil flora of Colpodexylon cf. deatsii and cf. Archaeopteris sp. have been described from the formation.[26] In the continental sandstone facies of the Cuche Formation, ichnofossils of Diplichnites have been described.[27]

Fishes edit

Antarctilamna (Gondwanan)
Bothriolepis (Euramerican)
Holoptychius (Euramerican)
The fossil assemblage of the Cuche Formation is unique in the mixture of typical Euramerican (Laurussian) and Gondwanan fish and flora species.

A closer paleogeographical relation between the paleocontinents has been suggested to explain this curious combination.

Remains of the cartilaginous fish Antarctilamna sp., the Placoderms Asterolepis sp. and two species of Bothriolepis,[28] the spiny shark ?Cheiracanthoides sp., the Porolepiform Holoptychius sp., and the Rhizodontid ?Strepsodus sp. have been uncovered from the Cuche Formation.[23] Several other fossils are less well recognizable at the genus level, among others Actinopterygii, Sarcopterygii,[29] and Osteolepiformes.[30] The fish specimens were found in sediments possibly representing localized transgressive marine incursions into brackish lagoonal settings,[20][31] in all cases associated with the presence of bivalves, ostracods and brachiopods.[32]

The fossil fish assemblage of the Cuche Formation presents a curious mixture of Euramerican "Old Red Sandstone" (Catskills, Greenland, Scotland and the Baltic states)[20] species (Asterolepis and Holoptychius), and Gondwanan taxa (Antarctilamna), suggesting the interchange of species between the paleogeographical regions, possibly at closer distance than is presented in most paleogeographical models.[33][34] This hypothesis is further strengthened by the discovery of typical Euramerican flora, as Archaeopteris.[26]

Asterolepis has been known only from Euramerican fossils, except for a specimen found in Iran.[20] The fish of the Cuche Formation are quite different from Bolivian Devonian fossils, with the exception of Antarctilamna. The similar sediments of the Colpacucho Formation in Bolivia have not provided the species discovered in the Cuche Formation, probably because of the cooler climate of the Devonian Bolivian seas more to the south than the paleogeographical position of northern Colombia (already around 51°S) at that time.[34]

Fossils assigned to Florestacanthus cf. morenoi, Colombiaspis rinconensis and Colombialepis villarroeli were later described from the Cuche Formation.[35][36][37]

Eurypterids edit

In 2019, fragments of the eurypterid Pterygotus were retrieved from the formation. The find represents the first sea scorpion from Colombia and the fourth from South America.[38] The specimen (SGC-MGJRG.2018.I.5), assigned with uncertainty to P. bolivianus due to similarities with its holotype, represents the first eurypterid of Colombia and the fourth of South America. The fossil was dated as Frasnian (Late Devonian), showing that Pterygotus did not become extinct during the Middle Devonian as previously thought.[39]

Outcrops edit

 
 
class=notpageimage|
Type locality of the Cuche Formation in the north of the Altiplano Cundiboyacense

The Cuche Formation is found at the Floresta Massif around its type locality in Floresta, Boyacá, stretching across Floresta to the west close to Belén and Paz de Río,[2][40] up to north of Tibasosa in the valley of the Chicamocha River.[41]

Regional correlations edit

Stratigraphy of the Llanos Basin and surrounding provinces
Ma Age Paleomap Regional events Catatumbo Cordillera proximal Llanos distal Llanos Putumayo VSM Environments Maximum thickness Petroleum geology Notes
0.01 Holocene
 
Holocene volcanism
Seismic activity
alluvium Overburden
1 Pleistocene
 
Pleistocene volcanism
Andean orogeny 3
Glaciations
Guayabo Soatá
Sabana
Necesidad Guayabo Gigante
Neiva
Alluvial to fluvial (Guayabo) 550 m (1,800 ft)
(Guayabo)
[42][43][44][45]
2.6 Pliocene
 
Pliocene volcanism
Andean orogeny 3
GABI
Subachoque
5.3 Messinian Andean orogeny 3
Foreland
Marichuela Caimán Honda [44][46]
13.5 Langhian Regional flooding León hiatus Caja León Lacustrine (León) 400 m (1,300 ft)
(León)
Seal [45][47]
16.2 Burdigalian Miocene inundations
Andean orogeny 2
C1 Carbonera C1 Ospina Proximal fluvio-deltaic (C1) 850 m (2,790 ft)
(Carbonera)
Reservoir [46][45]
17.3 C2 Carbonera C2 Distal lacustrine-deltaic (C2) Seal
19 C3 Carbonera C3 Proximal fluvio-deltaic (C3) Reservoir
21 Early Miocene Pebas wetlands C4 Carbonera C4 Barzalosa Distal fluvio-deltaic (C4) Seal
23 Late Oligocene
 
Andean orogeny 1
Foredeep
C5 Carbonera C5 Orito Proximal fluvio-deltaic (C5) Reservoir [43][46]
25 C6 Carbonera C6 Distal fluvio-lacustrine (C6) Seal
28 Early Oligocene C7 C7 Pepino Gualanday Proximal deltaic-marine (C7) Reservoir [43][46][48]
32 Oligo-Eocene C8 Usme C8 onlap Marine-deltaic (C8) Seal
Source
[48]
35 Late Eocene
 
Mirador Mirador Coastal (Mirador) 240 m (790 ft)
(Mirador)
Reservoir [45][49]
40 Middle Eocene Regadera hiatus
45
50 Early Eocene
 
Socha Los Cuervos Deltaic (Los Cuervos) 260 m (850 ft)
(Los Cuervos)
Seal
Source
[45][49]
55 Late Paleocene PETM
2000 ppm CO2
Los Cuervos Bogotá Gualanday
60 Early Paleocene SALMA Barco Guaduas Barco Rumiyaco Fluvial (Barco) 225 m (738 ft)
(Barco)
Reservoir [42][43][46][45][50]
65 Maastrichtian
 
KT extinction Catatumbo Guadalupe Monserrate Deltaic-fluvial (Guadalupe) 750 m (2,460 ft)
(Guadalupe)
Reservoir [42][45]
72 Campanian End of rifting Colón-Mito Juan [45][51]
83 Santonian Villeta/Güagüaquí
86 Coniacian
89 Turonian Cenomanian-Turonian anoxic event La Luna Chipaque Gachetá hiatus Restricted marine (all) 500 m (1,600 ft)
(Gachetá)
Source [42][45][52]
93 Cenomanian
 
Rift 2
100 Albian Une Une Caballos Deltaic (Une) 500 m (1,600 ft)
(Une)
Reservoir [46][52]
113 Aptian
 
Capacho Fómeque Motema Yaví Open marine (Fómeque) 800 m (2,600 ft)
(Fómeque)
Source (Fóm) [43][45][53]
125 Barremian High biodiversity Aguardiente Paja Shallow to open marine (Paja) 940 m (3,080 ft)
(Paja)
Reservoir [42]
129 Hauterivian
 
Rift 1 Tibú-
Mercedes
Las Juntas hiatus Deltaic (Las Juntas) 910 m (2,990 ft)
(Las Juntas)
Reservoir (LJun) [42]
133 Valanginian Río Negro Cáqueza
Macanal
Rosablanca
Restricted marine (Macanal) 2,935 m (9,629 ft)
(Macanal)
Source (Mac) [43][54]
140 Berriasian Girón
145 Tithonian Break-up of Pangea Jordán Arcabuco Buenavista
Batá
Saldaña Alluvial, fluvial (Buenavista) 110 m (360 ft)
(Buenavista)
"Jurassic" [46][55]
150 Early-Mid Jurassic
 
Passive margin 2 La Quinta
Montebel

Noreán
hiatus Coastal tuff (La Quinta) 100 m (330 ft)
(La Quinta)
[56]
201 Late Triassic
 
Mucuchachi Payandé [46]
235 Early Triassic
 
Pangea hiatus "Paleozoic"
250 Permian
 
300 Late Carboniferous
 
Famatinian orogeny Cerro Neiva
()
[57]
340 Early Carboniferous Fossil fish
Romer's gap
Cuche
(355-385)
Farallones
()
Deltaic, estuarine (Cuche) 900 m (3,000 ft)
(Cuche)
360 Late Devonian
 
Passive margin 1 Río Cachirí
(360-419)
Ambicá
()
Alluvial-fluvial-reef (Farallones) 2,400 m (7,900 ft)
(Farallones)
[54][58][59][60][61]
390 Early Devonian
 
High biodiversity Floresta
(387-400)
El Tíbet
Shallow marine (Floresta) 600 m (2,000 ft)
(Floresta)
410 Late Silurian Silurian mystery
425 Early Silurian hiatus
440 Late Ordovician
 
Rich fauna in Bolivia San Pedro
(450-490)
Duda
()
470 Early Ordovician First fossils Busbanzá
(>470±22)
Chuscales
Otengá
Guape
()
Río Nevado
()
Hígado
()
Agua Blanca
Venado
(470-475)
[62][63][64]
488 Late Cambrian
 
Regional intrusions Chicamocha
(490-515)
Quetame
()
Ariarí
()
SJ del Guaviare
(490-590)
San Isidro
()
[65][66]
515 Early Cambrian Cambrian explosion [64][67]
542 Ediacaran
 
Break-up of Rodinia pre-Quetame post-Parguaza El Barro
()
Yellow: allochthonous basement
(Chibcha Terrane)
Green: autochthonous basement
(Río Negro-Juruena Province)
Basement [68][69]
600 Neoproterozoic Cariri Velhos orogeny Bucaramanga
(600-1400)
pre-Guaviare [65]
800
 
Snowball Earth [70]
1000 Mesoproterozoic
 
Sunsás orogeny Ariarí
(1000)
La Urraca
(1030-1100)
[71][72][73][74]
1300 Rondônia-Juruá orogeny pre-Ariarí Parguaza
(1300-1400)
Garzón
(1180-1550)
[75]
1400
 
pre-Bucaramanga [76]
1600 Paleoproterozoic Maimachi
(1500-1700)
pre-Garzón [77]
1800
 
Tapajós orogeny Mitú
(1800)
[75][77]
1950 Transamazonic orogeny pre-Mitú [75]
2200 Columbia
2530 Archean
 
Carajas-Imataca orogeny [75]
3100 Kenorland
Sources
Legend
  • group
  • important formation
  • fossiliferous formation
  • minor formation
  • (age in Ma)
  • proximal Llanos (Medina)[note 1]
  • distal Llanos (Saltarin 1A well)[note 2]


See also edit

  Geology of the Eastern Hills
  Geology of the Ocetá Páramo
  Geology of the Altiplano Cundiboyacense
  Bogotá, Cerrejón, Paja Formations, Honda Group

Notes edit

  1. ^ based on Duarte et al. (2019)[78], García González et al. (2009),[79] and geological report of Villavicencio[80]
  2. ^ based on Duarte et al. (2019)[78] and the hydrocarbon potential evaluation performed by the UIS and ANH in 2009[81]

References edit

  1. ^ a b Morzadec et al., 2015, p.331
  2. ^ a b c d e Rodríguez & Solano, 2000, p.57
  3. ^ a b c d Mojica & Villarroel, 1984, p.65
  4. ^ Giraldo Gallego, 2014
  5. ^ Mojica & Villarroel, 1984, p.60
  6. ^ Mojica & Villarroel, 1984, p.63
  7. ^ Geoestudios, 2006, p.68
  8. ^ Rodríguez & Solano, 2000, p.58
  9. ^ Mojica & Villarroel, 1984, p.67
  10. ^ Rodríguez Gutiérrez, 2017, p.75
  11. ^ a b Mojica & Villarroel, 1984, p.68
  12. ^ Rodríguez & Solano, 2000, p.41
  13. ^ Villarroel & Mojica, 1985, p.85
  14. ^ a b Mojica & Villarroel, 1984, p.71
  15. ^ Villafañez Cardona, 2012, p.39
  16. ^ Geoestudios, 2006, p.14
  17. ^ Geoestudios, 2006, p.202
  18. ^ Mojica & Villarroel, 1984, p.75
  19. ^ Giroud López, 2014, p.146
  20. ^ a b c d Janvier & Villarroel, 2000, p.756
  21. ^ Giroud López, 2014, p.147
  22. ^ Mojica & Villarroel, 1984, p.72
  23. ^ a b Janvier & Villarroel, 2000, p.729
  24. ^ Mojica & Villarroel, 1984, p.66
  25. ^ Mojica & Villarroel, 1984, p.74
  26. ^ a b Berry et al., 2000
  27. ^ Gómez Cruz et al., 2015
  28. ^ Janvier & Villarroel, 1998, p.7
  29. ^ Janvier & Villarroel, 1998, p.11
  30. ^ Janvier & Villarroel, 1998, p.12
  31. ^ Janvier & Villarroel, 1998, p.9
  32. ^ Janvier & Villarroel, 1998, p.14
  33. ^ Janvier & Villarroel, 1998, p.15
  34. ^ a b Janvier & Villarroel, 2000, p.757
  35. ^ Olive et al., 2019, p.4
  36. ^ Olive et al., 2019, p.6
  37. ^ Olive et al., 2019, p.8
  38. ^ Olive et al., 2019, p.17
  39. ^ Olive et al., 2019, p.13
  40. ^ Plancha 172, 1998
  41. ^ Pardo Díaz et al., 2014, p.55
  42. ^ a b c d e f García González et al., 2009, p.27
  43. ^ a b c d e f García González et al., 2009, p.50
  44. ^ a b García González et al., 2009, p.85
  45. ^ a b c d e f g h i j Barrero et al., 2007, p.60
  46. ^ a b c d e f g h Barrero et al., 2007, p.58
  47. ^ Plancha 111, 2001, p.29
  48. ^ a b Plancha 177, 2015, p.39
  49. ^ a b Plancha 111, 2001, p.26
  50. ^ Plancha 111, 2001, p.24
  51. ^ Plancha 111, 2001, p.23
  52. ^ a b Pulido & Gómez, 2001, p.32
  53. ^ Pulido & Gómez, 2001, p.30
  54. ^ a b Pulido & Gómez, 2001, pp.21-26
  55. ^ Pulido & Gómez, 2001, p.28
  56. ^ Correa Martínez et al., 2019, p.49
  57. ^ Plancha 303, 2002, p.27
  58. ^ Terraza et al., 2008, p.22
  59. ^ Plancha 229, 2015, pp.46-55
  60. ^ Plancha 303, 2002, p.26
  61. ^ Moreno Sánchez et al., 2009, p.53
  62. ^ Mantilla Figueroa et al., 2015, p.43
  63. ^ Manosalva Sánchez et al., 2017, p.84
  64. ^ a b Plancha 303, 2002, p.24
  65. ^ a b Mantilla Figueroa et al., 2015, p.42
  66. ^ Arango Mejía et al., 2012, p.25
  67. ^ Plancha 350, 2011, p.49
  68. ^ Pulido & Gómez, 2001, pp.17-21
  69. ^ Plancha 111, 2001, p.13
  70. ^ Plancha 303, 2002, p.23
  71. ^ Plancha 348, 2015, p.38
  72. ^ Planchas 367-414, 2003, p.35
  73. ^ Toro Toro et al., 2014, p.22
  74. ^ Plancha 303, 2002, p.21
  75. ^ a b c d Bonilla et al., 2016, p.19
  76. ^ Gómez Tapias et al., 2015, p.209
  77. ^ a b Bonilla et al., 2016, p.22
  78. ^ a b Duarte et al., 2019
  79. ^ García González et al., 2009
  80. ^ Pulido & Gómez, 2001
  81. ^ García González et al., 2009, p.60

Bibliography edit

Geology edit

  • Geoestudios &, ANH. 2006. Cartografía geológica cuenca Cordillera Oriental - Sector Soapaga, 1–239. ANH. Accessed 2017-05-05.
  • Giraldo Gallego, Diana Andrea. 2014. Antropónimos muiscas en la Colonia (1608-1650). Forma y Función 27. 41–94. Accessed 2017-05-05.
  • Mojica, Jairo, and Carlos Villarroel. 1984. Contribución al conocimiento de las unidades paleozoicas del área de Floresta (Cordillera Oriental Colombiana; Departamento de Boyacá) y en especial al de la Formación Cuche. Geología Colombiana 13. 55–80. Accessed 2017-05-05.
  • Pardo Díaz, Marta Yolima; Marta Liliana Gil Padilla; Laura Natalia Garavito Rincón; Pedro Corredor Vargas; Carolina Gutiérrez Barrios; Wilson Parra, and Nancy Amaya Pedraza. 2014. Estudios técnicos, económicos, sociales y ambientales Complejo de Páramos Altiplano Cundiboyacense, 1–546. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt & CORPOBOYACÁ.
  • Rodríguez Gutiérrez, Madeleidy. 2017. Criterios de Análisis y Validación del Comportamiento de los Túneles con Squeezing en Rocas, 1–541. Escuela Colombiana de Ingeniería Julio Garavito.
  • Rodríguez Parra, Antonio José, and Orlando Solano Silva. 2000. Mapa Geológico del Departamento de Boyacá - 1:250,000 - Memoria explicativa, 1–120. INGEOMINAS.
  • Villafañez Cardona, Yohana. 2012. Análisis de procedencia de areniscas cuarzosas del Devónico-Carbonífero de la Formación Floresta (Norte de Santander): Consideraciones paleogeográficas regionales, 1–89. EAFIT.

Paleontology edit

  • Zapata Ramirez, Héctor; Alan Pradel; Carlos Martinez Pérez; Philippe Janvier; James C. Lamsdell; Pierre Gueriau; Nicolas Rabet; Philippe Duranleau-Gagnon, and Andres L. Cardenas Rozo. 2019. New insights into Late Devonian vertebrates and associated fauna from the Cuche Formation (Floresta Massif, Colombia). Journal of Vertebrate Paleontology e1620247. 1–18. Accessed 2019-10-09. doi:10.1080/02724634.2019.1620247
  • Gómez Cruz, Arley de Jesús; Mario Moreno Sánchez, and Alexander Lemus Restrepo. 2015. Diplicnites isp. del Devónico y Carbonífero de Colombia, _. Tercer Simposio Latinoamericano de Icnología, Colonia de Sacramento, Uruguay. Accessed 2017-05-05.
  • Morzadec, Pierre; Michal Mergl; Carlos Villarroel; Philippe Janvier, and Patrick R. Racheboeuf. 2015. Trilobites and inarticulate brachiopods from the Devonian Floresta Formation of Colombia: a review. Bulletin of Geosciences 90. 331–358. Accessed 2017-05-05.
  • Giroud López, Marie Joëlle. 2014. El Mar en la Localidad Tipo del Devónico Medio, del Municipio de Floresta - Boyacá, Colombia, 1–174. Universidad de La Habana. Accessed 2017-05-05.
  • Berry, Christopher M.; Eduardo Morel; Jairo Mojica, and Carlos Villarroel. 2000. Devonian plants from Colombia, with discussion of their geological and palaeogeographical context. Geological Magazine 137. 257–268. Accessed 2017-05-05.
  • Janvier, Philippe, and Carlos Villarroel. 2000. Devonian vertebrates from Colombia. Palaeontology 43. 729–763. Accessed 2017-05-05.
  • Janvier, Philippe, and Carlos Villarroel. 1998. Los Peces Devónicos del Macizo de Floresta (Boyacá, Colombia). Consideraciones taxonómicas, bioestratigráficas, biogeográficas y ambientales. Geología Colombiana 23. 3–18. Accessed 2017-05-05.

Maps edit

  • Renzoni, Giancarlo, and Humberto Rosas. 2009. Plancha 171 - Duitama - 1:100,000, 1. INGEOMINAS. Accessed 2017-06-06.
  • Ulloa, Carlos E.; Álvaro Guerra, and Ricardo Escovar. 1998. Plancha 172 - Paz de Río - 1:100,000, 1. INGEOMINAS. Accessed 2017-06-06.
  • Renzoni, Giancarlo; Humberto Rosas, and Fernando Etayo Serna. 1998. Plancha 191 - Tunja - 1:100,000, 1. INGEOMINAS. Accessed 2017-06-06.

External links edit

  • (in Spanish) Peces devónicos de Colombia, diversidad en los mares y ríos de hace 410-355 millones de años

cuche, formation, spanish, formación, cuche, geological, formation, floresta, massif, altiplano, cundiboyacense, eastern, ranges, colombian, andes, sequence, siltstones, shales, sandstone, beds, dates, late, devonian, early, carboniferous, periods, maximum, th. The Cuche Formation Spanish Formacion Cuche Cc is a geological formation of the Floresta Massif Altiplano Cundiboyacense in the Eastern Ranges of the Colombian Andes The sequence of siltstones shales and sandstone beds dates to the Late Devonian and Early Carboniferous periods and has a maximum thickness of 900 metres 3 000 ft Cuche FormationStratigraphic range Frasnian Early Carboniferous 385 355 Ma PreꞒ Ꞓ O S D C P T J K Pg NTypeGeological formationUnit ofFloresta MassifUnderliesGiron Fm Tibasosa Fm OverliesFloresta FormationArea 36 km2 14 sq mi Thickness300 900 m 980 2 950 ft LithologyPrimarySandstone siltstoneOtherShaleLocationCoordinates5 51 37 2 N 72 56 57 6 W 5 860333 N 72 949333 W 5 860333 72 949333RegionAltiplano CundiboyacenseEastern Ranges AndesCountry ColombiaType sectionNamed forVereda CucheNamed byBoteroLocationFlorestaYear defined1950Coordinates5 51 37 2 N 72 56 57 6 W 5 860333 N 72 949333 W 5 860333 72 949333Approximate paleocoordinates51 42 S 48 06 W 51 7 S 48 1 W 51 7 48 1RegionBoyacaCountry ColombiaPaleogeography of the Middle Devonian380 Ma by Stampfli amp BorelContrasting with the original coastal depositional environment the Cuche Formation is found at altitudes of more than 2 500 metres 8 200 ft in the Eastern Colombian Andes around Floresta BoyacaThe formation was deposited in a tidal dominated deltaic environment at high southern paleolatitudes at the edge of the Paleozoic Paleo Tethys Ocean The Cuche Formation is highly fossiliferous many Placoderm fish fossils flora bivalves arthropods crustaceans and ostracods have been discovered in the youngest Paleozoic strate of the Floresta Massif while the underlying Floresta Formation is richer in trilobite biodiversity 1 Contents 1 Etymology 2 Regional setting 3 Description 3 1 Lithologies 3 2 Stratigraphy and depositional environment 4 Fossil content 4 1 Fishes 4 2 Eurypterids 5 Outcrops 6 Regional correlations 7 See also 8 Notes 9 References 9 1 Bibliography 9 2 Geology 9 3 Paleontology 9 3 1 Maps 10 External linksEtymology editThe formation was first described as part of the Floresta Series by Olsson and Carter in 1939 The current definition was given by Botero in 1950 2 The formation is named after the vereda Cuche of Floresta Boyaca where the formation outcrops 3 The word Cuche is taken from Muysccubun the language of the indigenous Muisca who inhabited the Altiplano Cundiboyacense before the Spanish conquest 4 Regional setting editThe Floresta Massif is a block in the northern part of the Altiplano Cundiboyacense marked by a metamorphic crystalline core overlain by Devonian to Carboniferous sedimentary sequences from old to young the El Tibet Floresta and Cuche Formations The Paleozoic succession is overlain by sediments of much younger date the Late Jurassic Giron and Early Cretaceous Tibasosa Formations The massif is bound to the east by the Soapaga Fault and to the west by the Boyaca Fault 5 At time of deposition of the Devonian formations present day northern South America was located at the edge of the Paleo Tethys Ocean on the southern hemisphere The Paleozoic occurrence on the Altiplano is localized in outcrop the majority of surface sediments are Cretaceous to Paleogene in age Neogene uplift of the Eastern Ranges with its main phase in the Plio Pleistocene caused the exhumation of older units at surface along major thrust faults in the Eastern Andes In two phases during the Paleozoic intrusions occurred into the sedimentary sequence causing local metamorphism The first phase is considered pre Devonian and the latter phase post Devonian The remaining stratigraphy of the Cuche Formation appears little affected by this intrusive phase 6 although slight metamorphism has been identified in later research 7 Description editLithologies edit The Cuche Formation is characterised by mostly cream and purple coloured shales with a basal unit of micaceous siltstones with intercalated yellowish grey shales and 30 metres 98 ft thick quartzitic and feldspar rich sandstone beds that colour red caused by meteoric waters The sandstones have an iron rich cementation 3 A middle unit of fine grained sandstones with thin banks of siltstones follows the lower part and an upper sequence of shales with interbedded ferruginous red beds 2 The lower sequence contains runzelmark syn sedimentary structures 3 Stratigraphy and depositional environment edit nbsp The depositional environment of the Cuche Formation has been analysed to be a low energy tidal dominated deltaic setting with frequent marine incursions into continental and lagoonal areas marked by the presence of both the flora and the many fish species found in the formationThe Cuche Formation in some places discordantly and in other areas transitionally defined by colour changes 8 9 overlies the Floresta Formation in Boyaca and the Mogotes Formation in Santander 10 and is by an angular unconformity up to 60 degrees 11 overlain by the Upper Jurassic Giron 12 and Early Cretaceous Tibasosa Formations 3 The angular unconformity between the Paleozoic and Mesozoic is exposed along the road between Duitama and Sogamoso and is the location where the first flora fossils were found in 1978 11 The age of the Cuche Formation has been estimated to be Late Devonian to Early Carboniferous 2 13 after an original designation as Permian Carboniferous by Botero in 1950 further restricted to the Carboniferous by Julivert in 1968 14 The formation covers an area of approximately 36 square kilometres 14 sq mi and ranges in thickness between 300 and 900 metres 980 and 2 950 ft 2 Stratigraphically the Cuche Formation is time equivalent with the Diamante Formation of the Santander Massif to the north of the Altiplano Cundiboyacense 15 To the west of Paz de Rio the Cuche Formation is thrusted upon the Neogene Concentracion Formation by the Soapaga Fault 16 In the northern part of the Floresta Massif the contact between the metamorphic Otenga Stock and the Cuche Formation is formed by the Duga Fault 17 Based on the preservation of fossils the lithologies syn sedimentary structures and stratigraphic position a depositional environment of shallow low energy waters has been proposed possibly in a lagoonal setting at the edge of a regressional Paleo Tethys Ocean 1 18 Other parts of the Cuche Formation were deposited in a continental environment evidenced by the red beds and absence of marine fossils and abundant root imprints 19 Overall the sequence represents a coastal deltaic environment with frequent marine incursions a tidal deltaic setting 20 21 Fossil content edit nbsp Fossil flora from the Cuche Formation were identified as Ginkgo like species as this Baiera reconstruction Proper Ginkgo do not appear in the geological record until the Middle PermianThe first identification of fossil content of the Cuche Formation was done by Botero who studied the formation in 1950 Research in the early 1980s revealed the presence of many more fossils in the formation and among the first fossil flora found were species then identified as the genera Ginkgo and Baiera 14 The lower units show poorly preserved plant remains and the overlying shales provided arthropods and crustaceans In the middle units of the formation more and better preserved plant fossils were found alongside bivalves ostracods of the genus Welleria and arthropods 22 The Cuche Formation contains unique Placoderm fish fossils first noted by Mojica and Villarroel in 1984 23 Across the section also plant fossils and bivalves are found In this part of the sequence the first fish fossils were discovered The top section provided brachiopods genus Lingula and other at that moment undetermined fossil fragments 24 Later research has provided more insight into the flora of the formation with the Ginkgo species possibly a Ginkgophyton sp 25 Additionally fossil flora of Colpodexylon cf deatsii and cf Archaeopteris sp have been described from the formation 26 In the continental sandstone facies of the Cuche Formation ichnofossils of Diplichnites have been described 27 Fishes edit nbsp Antarctilamna Gondwanan nbsp Bothriolepis Euramerican nbsp Holoptychius Euramerican The fossil assemblage of the Cuche Formation is unique in the mixture of typical Euramerican Laurussian and Gondwanan fish and flora species A closer paleogeographical relation between the paleocontinents has been suggested to explain this curious combination Remains of the cartilaginous fish Antarctilamna sp the Placoderms Asterolepis sp and two species of Bothriolepis 28 the spiny shark Cheiracanthoides sp the Porolepiform Holoptychius sp and the Rhizodontid Strepsodus sp have been uncovered from the Cuche Formation 23 Several other fossils are less well recognizable at the genus level among others Actinopterygii Sarcopterygii 29 and Osteolepiformes 30 The fish specimens were found in sediments possibly representing localized transgressive marine incursions into brackish lagoonal settings 20 31 in all cases associated with the presence of bivalves ostracods and brachiopods 32 The fossil fish assemblage of the Cuche Formation presents a curious mixture of Euramerican Old Red Sandstone Catskills Greenland Scotland and the Baltic states 20 species Asterolepis and Holoptychius and Gondwanan taxa Antarctilamna suggesting the interchange of species between the paleogeographical regions possibly at closer distance than is presented in most paleogeographical models 33 34 This hypothesis is further strengthened by the discovery of typical Euramerican flora as Archaeopteris 26 Asterolepis has been known only from Euramerican fossils except for a specimen found in Iran 20 The fish of the Cuche Formation are quite different from Bolivian Devonian fossils with the exception of Antarctilamna The similar sediments of the Colpacucho Formation in Bolivia have not provided the species discovered in the Cuche Formation probably because of the cooler climate of the Devonian Bolivian seas more to the south than the paleogeographical position of northern Colombia already around 51 S at that time 34 Fossils assigned to Florestacanthus cf morenoi Colombiaspis rinconensis and Colombialepis villarroeli were later described from the Cuche Formation 35 36 37 Eurypterids edit In 2019 fragments of the eurypterid Pterygotus were retrieved from the formation The find represents the first sea scorpion from Colombia and the fourth from South America 38 The specimen SGC MGJRG 2018 I 5 assigned with uncertainty to P bolivianus due to similarities with its holotype represents the first eurypterid of Colombia and the fourth of South America The fossil was dated as Frasnian Late Devonian showing that Pterygotus did not become extinct during the Middle Devonian as previously thought 39 Outcrops edit nbsp nbsp class notpageimage Type locality of the Cuche Formation in the north of the Altiplano Cundiboyacense The Cuche Formation is found at the Floresta Massif around its type locality in Floresta Boyaca stretching across Floresta to the west close to Belen and Paz de Rio 2 40 up to north of Tibasosa in the valley of the Chicamocha River 41 Regional correlations editStratigraphy of the Llanos Basin and surrounding provinces Ma Age Paleomap Regional events Catatumbo Cordillera proximal Llanos distal Llanos Putumayo VSM Environments Maximum thickness Petroleum geology Notes0 01 Holocene nbsp Holocene volcanismSeismic activity alluvium Overburden1 Pleistocene nbsp Pleistocene volcanismAndean orogeny 3Glaciations Guayabo SoataSabana Necesidad Guayabo GiganteNeiva Alluvial to fluvial Guayabo 550 m 1 800 ft Guayabo 42 43 44 45 2 6 Pliocene nbsp Pliocene volcanismAndean orogeny 3GABI Subachoque5 3 Messinian Andean orogeny 3Foreland Marichuela Caiman Honda 44 46 13 5 Langhian Regional flooding Leon hiatus Caja Leon Lacustrine Leon 400 m 1 300 ft Leon Seal 45 47 16 2 Burdigalian Miocene inundationsAndean orogeny 2 C1 Carbonera C1 Ospina Proximal fluvio deltaic C1 850 m 2 790 ft Carbonera Reservoir 46 45 17 3 C2 Carbonera C2 Distal lacustrine deltaic C2 Seal19 C3 Carbonera C3 Proximal fluvio deltaic C3 Reservoir21 Early Miocene Pebas wetlands C4 Carbonera C4 Barzalosa Distal fluvio deltaic C4 Seal23 Late Oligocene nbsp Andean orogeny 1Foredeep C5 Carbonera C5 Orito Proximal fluvio deltaic C5 Reservoir 43 46 25 C6 Carbonera C6 Distal fluvio lacustrine C6 Seal28 Early Oligocene C7 C7 Pepino Gualanday Proximal deltaic marine C7 Reservoir 43 46 48 32 Oligo Eocene C8 Usme C8 onlap Marine deltaic C8 SealSource 48 35 Late Eocene nbsp Mirador Mirador Coastal Mirador 240 m 790 ft Mirador Reservoir 45 49 40 Middle Eocene Regadera hiatus4550 Early Eocene nbsp Socha Los Cuervos Deltaic Los Cuervos 260 m 850 ft Los Cuervos SealSource 45 49 55 Late Paleocene PETM2000 ppm CO2 Los Cuervos Bogota Gualanday60 Early Paleocene SALMA Barco Guaduas Barco Rumiyaco Fluvial Barco 225 m 738 ft Barco Reservoir 42 43 46 45 50 65 Maastrichtian nbsp KT extinction Catatumbo Guadalupe Monserrate Deltaic fluvial Guadalupe 750 m 2 460 ft Guadalupe Reservoir 42 45 72 Campanian End of rifting Colon Mito Juan 45 51 83 Santonian Villeta Guaguaqui86 Coniacian89 Turonian Cenomanian Turonian anoxic event La Luna Chipaque Gacheta hiatus Restricted marine all 500 m 1 600 ft Gacheta Source 42 45 52 93 Cenomanian nbsp Rift 2100 Albian Une Une Caballos Deltaic Une 500 m 1 600 ft Une Reservoir 46 52 113 Aptian nbsp Capacho Fomeque Motema Yavi Open marine Fomeque 800 m 2 600 ft Fomeque Source Fom 43 45 53 125 Barremian High biodiversity Aguardiente Paja Shallow to open marine Paja 940 m 3 080 ft Paja Reservoir 42 129 Hauterivian nbsp Rift 1 Tibu Mercedes Las Juntas hiatus Deltaic Las Juntas 910 m 2 990 ft Las Juntas Reservoir LJun 42 133 Valanginian Rio Negro CaquezaMacanalRosablanca Restricted marine Macanal 2 935 m 9 629 ft Macanal Source Mac 43 54 140 Berriasian Giron145 Tithonian Break up of Pangea Jordan Arcabuco BuenavistaBata Saldana Alluvial fluvial Buenavista 110 m 360 ft Buenavista Jurassic 46 55 150 Early Mid Jurassic nbsp Passive margin 2 La Quinta MontebelNorean hiatus Coastal tuff La Quinta 100 m 330 ft La Quinta 56 201 Late Triassic nbsp Mucuchachi Payande 46 235 Early Triassic nbsp Pangea hiatus Paleozoic 250 Permian nbsp 300 Late Carboniferous nbsp Famatinian orogeny Cerro Neiva 57 340 Early Carboniferous Fossil fishRomer s gap Cuche 355 385 Farallones Deltaic estuarine Cuche 900 m 3 000 ft Cuche 360 Late Devonian nbsp Passive margin 1 Rio Cachiri 360 419 Ambica Alluvial fluvial reef Farallones 2 400 m 7 900 ft Farallones 54 58 59 60 61 390 Early Devonian nbsp High biodiversity Floresta 387 400 El Tibet Shallow marine Floresta 600 m 2 000 ft Floresta 410 Late Silurian Silurian mystery425 Early Silurian hiatus440 Late Ordovician nbsp Rich fauna in Bolivia San Pedro 450 490 Duda 470 Early Ordovician First fossils Busbanza gt 470 22 ChuscalesOtenga Guape Rio Nevado Higado Agua BlancaVenado 470 475 62 63 64 488 Late Cambrian nbsp Regional intrusions Chicamocha 490 515 Quetame Ariari SJ del Guaviare 490 590 San Isidro 65 66 515 Early Cambrian Cambrian explosion 64 67 542 Ediacaran nbsp Break up of Rodinia pre Quetame post Parguaza El Barro Yellow allochthonous basement Chibcha Terrane Green autochthonous basement Rio Negro Juruena Province Basement 68 69 600 Neoproterozoic Cariri Velhos orogeny Bucaramanga 600 1400 pre Guaviare 65 800 nbsp Snowball Earth 70 1000 Mesoproterozoic nbsp Sunsas orogeny Ariari 1000 La Urraca 1030 1100 71 72 73 74 1300 Rondonia Jurua orogeny pre Ariari Parguaza 1300 1400 Garzon 1180 1550 75 1400 nbsp pre Bucaramanga 76 1600 Paleoproterozoic Maimachi 1500 1700 pre Garzon 77 1800 nbsp Tapajos orogeny Mitu 1800 75 77 1950 Transamazonic orogeny pre Mitu 75 2200 Columbia2530 Archean nbsp Carajas Imataca orogeny 75 3100 KenorlandSourcesLegendgroup important formation fossiliferous formation minor formation age in Ma proximal Llanos Medina note 1 distal Llanos Saltarin 1A well note 2 See also edit nbsp Colombia portal nbsp Geology portal nbsp Geology of the Eastern Hills nbsp Geology of the Oceta Paramo nbsp Geology of the Altiplano Cundiboyacense nbsp Bogota Cerrejon Paja Formations Honda GroupNotes edit based on Duarte et al 2019 78 Garcia Gonzalez et al 2009 79 and geological report of Villavicencio 80 based on Duarte et al 2019 78 and the hydrocarbon potential evaluation performed by the UIS and ANH in 2009 81 References edit a b Morzadec et al 2015 p 331 a b c d e Rodriguez amp Solano 2000 p 57 a b c d Mojica amp Villarroel 1984 p 65 Giraldo Gallego 2014 Mojica amp Villarroel 1984 p 60 Mojica amp Villarroel 1984 p 63 Geoestudios 2006 p 68 Rodriguez amp Solano 2000 p 58 Mojica amp Villarroel 1984 p 67 Rodriguez Gutierrez 2017 p 75 a b Mojica amp Villarroel 1984 p 68 Rodriguez amp Solano 2000 p 41 Villarroel amp Mojica 1985 p 85 a b Mojica amp Villarroel 1984 p 71 Villafanez Cardona 2012 p 39 Geoestudios 2006 p 14 Geoestudios 2006 p 202 Mojica amp Villarroel 1984 p 75 Giroud Lopez 2014 p 146 a b c d Janvier amp Villarroel 2000 p 756 Giroud Lopez 2014 p 147 Mojica amp Villarroel 1984 p 72 a b Janvier amp Villarroel 2000 p 729 Mojica amp Villarroel 1984 p 66 Mojica amp Villarroel 1984 p 74 a b Berry et al 2000 Gomez Cruz et al 2015 Janvier amp Villarroel 1998 p 7 Janvier amp Villarroel 1998 p 11 Janvier amp Villarroel 1998 p 12 Janvier amp Villarroel 1998 p 9 Janvier amp Villarroel 1998 p 14 Janvier amp Villarroel 1998 p 15 a b Janvier amp Villarroel 2000 p 757 Olive et al 2019 p 4 Olive et al 2019 p 6 Olive et al 2019 p 8 Olive et al 2019 p 17 Olive et al 2019 p 13 Plancha 172 1998 Pardo Diaz et al 2014 p 55 a b c d e f Garcia Gonzalez et al 2009 p 27 a b c d e f Garcia Gonzalez et al 2009 p 50 a b Garcia Gonzalez et al 2009 p 85 a b c d e f g h i j Barrero et al 2007 p 60 a b c d e f g h Barrero et al 2007 p 58 Plancha 111 2001 p 29 a b Plancha 177 2015 p 39 a b Plancha 111 2001 p 26 Plancha 111 2001 p 24 Plancha 111 2001 p 23 a b Pulido amp Gomez 2001 p 32 Pulido amp Gomez 2001 p 30 a b Pulido amp Gomez 2001 pp 21 26 Pulido amp Gomez 2001 p 28 Correa Martinez et al 2019 p 49 Plancha 303 2002 p 27 Terraza et al 2008 p 22 Plancha 229 2015 pp 46 55 Plancha 303 2002 p 26 Moreno Sanchez et al 2009 p 53 Mantilla Figueroa et al 2015 p 43 Manosalva Sanchez et al 2017 p 84 a b Plancha 303 2002 p 24 a b Mantilla Figueroa et al 2015 p 42 Arango Mejia et al 2012 p 25 Plancha 350 2011 p 49 Pulido amp Gomez 2001 pp 17 21 Plancha 111 2001 p 13 Plancha 303 2002 p 23 Plancha 348 2015 p 38 Planchas 367 414 2003 p 35 Toro Toro et al 2014 p 22 Plancha 303 2002 p 21 a b c d Bonilla et al 2016 p 19 Gomez Tapias et al 2015 p 209 a b Bonilla et al 2016 p 22 a b Duarte et al 2019 Garcia Gonzalez et al 2009 Pulido amp Gomez 2001 Garcia Gonzalez et al 2009 p 60 Bibliography edit Geology edit Geoestudios amp ANH 2006 Cartografia geologica cuenca Cordillera Oriental Sector Soapaga 1 239 ANH Accessed 2017 05 05 Giraldo Gallego Diana Andrea 2014 Antroponimos muiscas en la Colonia 1608 1650 Forma y Funcion 27 41 94 Accessed 2017 05 05 Mojica Jairo and Carlos Villarroel 1984 Contribucion al conocimiento de las unidades paleozoicas del area de Floresta Cordillera Oriental Colombiana Departamento de Boyaca y en especial al de la Formacion Cuche Geologia Colombiana 13 55 80 Accessed 2017 05 05 Pardo Diaz Marta Yolima Marta Liliana Gil Padilla Laura Natalia Garavito Rincon Pedro Corredor Vargas Carolina Gutierrez Barrios Wilson Parra and Nancy Amaya Pedraza 2014 Estudios tecnicos economicos sociales y ambientales Complejo de Paramos Altiplano Cundiboyacense 1 546 Instituto de Investigacion de Recursos Biologicos Alexander von Humboldt amp CORPOBOYACA Rodriguez Gutierrez Madeleidy 2017 Criterios de Analisis y Validacion del Comportamiento de los Tuneles con Squeezing en Rocas 1 541 Escuela Colombiana de Ingenieria Julio Garavito Rodriguez Parra Antonio Jose and Orlando Solano Silva 2000 Mapa Geologico del Departamento de Boyaca 1 250 000 Memoria explicativa 1 120 INGEOMINAS Villafanez Cardona Yohana 2012 Analisis de procedencia de areniscas cuarzosas del Devonico Carbonifero de la Formacion Floresta Norte de Santander Consideraciones paleogeograficas regionales 1 89 EAFIT Paleontology edit Zapata Ramirez Hector Alan Pradel Carlos Martinez Perez Philippe Janvier James C Lamsdell Pierre Gueriau Nicolas Rabet Philippe Duranleau Gagnon and Andres L Cardenas Rozo 2019 New insights into Late Devonian vertebrates and associated fauna from the Cuche Formation Floresta Massif Colombia Journal of Vertebrate Paleontology e1620247 1 18 Accessed 2019 10 09 doi 10 1080 02724634 2019 1620247 Gomez Cruz Arley de Jesus Mario Moreno Sanchez and Alexander Lemus Restrepo 2015 Diplicnites isp del Devonico y Carbonifero de Colombia Tercer Simposio Latinoamericano de Icnologia Colonia de Sacramento Uruguay Accessed 2017 05 05 Morzadec Pierre Michal Mergl Carlos Villarroel Philippe Janvier and Patrick R Racheboeuf 2015 Trilobites and inarticulate brachiopods from the Devonian Floresta Formation of Colombia a review Bulletin of Geosciences 90 331 358 Accessed 2017 05 05 Giroud Lopez Marie Joelle 2014 El Mar en la Localidad Tipo del Devonico Medio del Municipio de Floresta Boyaca Colombia 1 174 Universidad de La Habana Accessed 2017 05 05 Berry Christopher M Eduardo Morel Jairo Mojica and Carlos Villarroel 2000 Devonian plants from Colombia with discussion of their geological and palaeogeographical context Geological Magazine 137 257 268 Accessed 2017 05 05 Janvier Philippe and Carlos Villarroel 2000 Devonian vertebrates from Colombia Palaeontology 43 729 763 Accessed 2017 05 05 Janvier Philippe and Carlos Villarroel 1998 Los Peces Devonicos del Macizo de Floresta Boyaca Colombia Consideraciones taxonomicas bioestratigraficas biogeograficas y ambientales Geologia Colombiana 23 3 18 Accessed 2017 05 05 Maps edit Renzoni Giancarlo and Humberto Rosas 2009 Plancha 171 Duitama 1 100 000 1 INGEOMINAS Accessed 2017 06 06 Ulloa Carlos E Alvaro Guerra and Ricardo Escovar 1998 Plancha 172 Paz de Rio 1 100 000 1 INGEOMINAS Accessed 2017 06 06 Renzoni Giancarlo Humberto Rosas and Fernando Etayo Serna 1998 Plancha 191 Tunja 1 100 000 1 INGEOMINAS Accessed 2017 06 06 External links edit in Spanish Peces devonicos de Colombia diversidad en los mares y rios de hace 410 355 millones de anos Retrieved from https en wikipedia org w index php title Cuche Formation amp oldid 1148205718, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.