fbpx
Wikipedia

Citric acid cycle

The citric acid cycle—also known as the Krebs cycle, Szent-Györgyi-Krebs cycle or the TCA cycle (tricarboxylic acid cycle)[1][2]—is a series of biochemical reactions to release the energy stored in nutrients through the oxidation of acetyl-CoA derived from carbohydrates, fats, and proteins. The chemical energy released is available under the form of ATP. The Krebs cycle is used by organisms that respire (as opposed to organisms that ferment) to generate energy, either by anaerobic respiration or aerobic respiration. In addition, the cycle provides precursors of certain amino acids, as well as the reducing agent NADH, that are used in numerous other reactions. Its central importance to many biochemical pathways suggests that it was one of the earliest components of metabolism.[3][4] Even though it is branded as a 'cycle', it is not necessary for metabolites to follow only one specific route; at least three alternative segments of the citric acid cycle have been recognized.[5]

Overview of the citric acid cycle

The name of this metabolic pathway is derived from the citric acid (a tricarboxylic acid, often called citrate, as the ionized form predominates at biological pH[6]) that is consumed and then regenerated by this sequence of reactions to complete the cycle. The cycle consumes acetate (in the form of acetyl-CoA) and water, reduces NAD+ to NADH, releasing carbon dioxide. The NADH generated by the citric acid cycle is fed into the oxidative phosphorylation (electron transport) pathway. The net result of these two closely linked pathways is the oxidation of nutrients to produce usable chemical energy in the form of ATP.

In eukaryotic cells, the citric acid cycle occurs in the matrix of the mitochondrion. In prokaryotic cells, such as bacteria, which lack mitochondria, the citric acid cycle reaction sequence is performed in the cytosol with the proton gradient for ATP production being across the cell's surface (plasma membrane) rather than the inner membrane of the mitochondrion.

For each pyruvate molecule (from glycolysis), the overall yield of energy-containing compounds from the citric acid cycle is three NADH, one FADH2, and one GTP.[7]

Discovery edit

Several of the components and reactions of the citric acid cycle were established in the 1930s by the research of Albert Szent-Györgyi, who received the Nobel Prize in Physiology or Medicine in 1937 specifically for his discoveries pertaining to fumaric acid, a component of the cycle.[8] He made this discovery by studying pigeon breast muscle. Because this tissue maintains its oxidative capacity well after breaking down in the Latapie mill and releasing in aqueous solutions, breast muscle of the pigeon was very well qualified for the study of oxidative reactions.[9] The citric acid cycle itself was finally identified in 1937 by Hans Adolf Krebs and William Arthur Johnson while at the University of Sheffield,[10] for which the former received the Nobel Prize for Physiology or Medicine in 1953, and for whom the cycle is sometimes named the "Krebs cycle".[11]

Overview edit

 
Structural diagram of acetyl-CoA: The portion in blue, on the left, is the acetyl group; the portion in black is coenzyme A.

The citric acid cycle is a metabolic pathway that connects carbohydrate, fat, and protein metabolism. The reactions of the cycle are carried out by eight enzymes that completely oxidize acetate (a two carbon molecule), in the form of acetyl-CoA, into two molecules each of carbon dioxide and water. Through catabolism of sugars, fats, and proteins, the two-carbon organic product acetyl-CoA is produced which enters the citric acid cycle. The reactions of the cycle also convert three equivalents of nicotinamide adenine dinucleotide (NAD+) into three equivalents of reduced NAD+ (NADH), one equivalent of flavin adenine dinucleotide (FAD) into one equivalent of FADH2, and one equivalent each of guanosine diphosphate (GDP) and inorganic phosphate (Pi) into one equivalent of guanosine triphosphate (GTP). The NADH and FADH2 generated by the citric acid cycle are, in turn, used by the oxidative phosphorylation pathway to generate energy-rich ATP.

One of the primary sources of acetyl-CoA is from the breakdown of sugars by glycolysis which yield pyruvate that in turn is decarboxylated by the pyruvate dehydrogenase complex generating acetyl-CoA according to the following reaction scheme:

CH3C(=O)C(=O)Opyruvate + HSCoA + NAD+CH3C(=O)SCoAacetyl-CoA + NADH + CO2

The product of this reaction, acetyl-CoA, is the starting point for the citric acid cycle. Acetyl-CoA may also be obtained from the oxidation of fatty acids. Below is a schematic outline of the cycle:

  • The citric acid cycle begins with the transfer of a two-carbon acetyl group from acetyl-CoA to the four-carbon acceptor compound (oxaloacetate) to form a six-carbon compound (citrate).
  • The citrate then goes through a series of chemical transformations, losing two carboxyl groups as CO2. The carbons lost as CO2 originate from what was oxaloacetate, not directly from acetyl-CoA. The carbons donated by acetyl-CoA become part of the oxaloacetate carbon backbone after the first turn of the citric acid cycle. Loss of the acetyl-CoA-donated carbons as CO2 requires several turns of the citric acid cycle. However, because of the role of the citric acid cycle in anabolism, they might not be lost, since many citric acid cycle intermediates are also used as precursors for the biosynthesis of other molecules.[12]
  • Most of the electrons made available by the oxidative steps of the cycle are transferred to NAD+, forming NADH. For each acetyl group that enters the citric acid cycle, three molecules of NADH are produced. The citric acid cycle includes a series of oxidation reduction reaction in mitochondria.[clarification needed][13]
  • In addition, electrons from the succinate oxidation step are transferred first to the FAD cofactor of succinate dehydrogenase, reducing it to FADH2, and eventually to ubiquinone (Q) in the mitochondrial membrane, reducing it to ubiquinol (QH2) which is a substrate of the electron transfer chain at the level of Complex III.
  • For every NADH and FADH2 that are produced in the citric acid cycle, 2.5 and 1.5 ATP molecules are generated in oxidative phosphorylation, respectively.
  • At the end of each cycle, the four-carbon oxaloacetate has been regenerated, and the cycle continues.

Steps edit

There are ten basic steps in the citric acid cycle, as outlined below. The cycle is continuously supplied with new carbon in the form of acetyl-CoA, entering at step 0 in the table.[14]

Reaction type Substrates Enzyme Products Comment
0 / 10 Aldol condensation Oxaloacetate + Acetyl CoA + H2O Citrate synthase Citrate + CoA-SH irreversible, extends the 4C oxaloacetate to a 6C molecule
1 Dehydration Citrate Aconitase cis-Aconitate + H2O reversible isomerisation
2 Hydration cis-Aconitate + H2O Isocitrate
3 Oxidation Isocitrate + NAD+ Isocitrate dehydrogenase Oxalosuccinate + NADH + H + generates NADH (equivalent of 2.5 ATP)
4 Decarboxylation Oxalosuccinate α-Ketoglutarate + CO2 rate-limiting, irreversible stage, generates a 5C molecule
5 Oxidative
decarboxylation
α-Ketoglutarate + NAD+ + CoA-SH α-Ketoglutarate
dehydrogenase
, Thiamine pyrophosphate, Lipoic acid, Mg++,transsuccinytase
Succinyl-CoA + NADH + H + + CO2 irreversible stage, generates NADH (equivalent of 2.5 ATP), regenerates the 4C chain (CoA excluded)
6 substrate-level
phosphorylation
Succinyl-CoA + GDP + Pi Succinyl-CoA synthetase Succinate + CoA-SH + GTP or ADPATP instead of GDP→GTP,[15] generates 1 ATP or equivalent.
Condensation reaction of GDP + Pi and hydrolysis of succinyl-CoA involve the H2O needed for balanced equation.
7 Oxidation Succinate + ubiquinone (Q) Succinate dehydrogenase Fumarate + ubiquinol (QH2) uses FAD as a prosthetic group (FAD→FADH2 in the first step of the reaction) in the enzyme.[15]
These two electrons are later transferred to QH2 during Complex II of the ETC, where they generate the equivalent of 1.5 ATP
8 Hydration Fumarate + H2O Fumarase L-Malate Hydration of C-C double bond
9 Oxidation L-Malate + NAD+ Malate dehydrogenase Oxaloacetate + NADH + H+ reversible (in fact, equilibrium favors malate), generates NADH (equivalent of 2.5 ATP)
10 / 0 Aldol condensation Oxaloacetate + Acetyl CoA + H2O Citrate synthase Citrate + CoA-SH This is the same as step 0 and restarts the cycle. The reaction is irreversible and extends the 4C oxaloacetate to a 6C molecule

Two carbon atoms are oxidized to CO2, the energy from these reactions is transferred to other metabolic processes through GTP (or ATP), and as electrons in NADH and QH2. The NADH generated in the citric acid cycle may later be oxidized (donate its electrons) to drive ATP synthesis in a type of process called oxidative phosphorylation.[6] FADH2 is covalently attached to succinate dehydrogenase, an enzyme which functions both in the citric acid cycle and the mitochondrial electron transport chain in oxidative phosphorylation. FADH2, therefore, facilitates transfer of electrons to coenzyme Q, which is the final electron acceptor of the reaction catalyzed by the succinate:ubiquinone oxidoreductase complex, also acting as an intermediate in the electron transport chain.[15]

Mitochondria in animals, including humans, possess two succinyl-CoA synthetases: one that produces GTP from GDP, and another that produces ATP from ADP.[16] Plants have the type that produces ATP (ADP-forming succinyl-CoA synthetase).[14] Several of the enzymes in the cycle may be loosely associated in a multienzyme protein complex within the mitochondrial matrix.[17]

The GTP that is formed by GDP-forming succinyl-CoA synthetase may be utilized by nucleoside-diphosphate kinase to form ATP (the catalyzed reaction is GTP + ADP → GDP + ATP).[15]

Products edit

Products of the first turn of the cycle are one GTP (or ATP), three NADH, one FADH2 and two CO2.

Because two acetyl-CoA molecules are produced from each glucose molecule, two cycles are required per glucose molecule. Therefore, at the end of two cycles, the products are: two GTP, six NADH, two FADH2, and four CO2.[18]

Description Reactants Products
The sum of all reactions in the citric acid cycle is: Acetyl-CoA + 3 NAD+ + FAD + GDP + Pi + 2 H2O → CoA-SH + 3 NADH + FADH2 + 3 H+ + GTP + 2 CO2
Combining the reactions occurring during the pyruvate oxidation with those occurring during the citric acid cycle, the following overall pyruvate oxidation reaction is obtained: Pyruvate ion + 4 NAD+ + FAD + GDP + Pi + 2 H2O → 4 NADH + FADH2 + 4 H+ + GTP + 3 CO2
Combining the above reaction with the ones occurring in the course of glycolysis, the following overall glucose oxidation reaction (excluding reactions in the respiratory chain) is obtained: Glucose + 10 NAD+ + 2 FAD + 2 ADP + 2 GDP + 4 Pi + 2 H2O → 10 NADH + 2 FADH2 + 10 H+ + 2 ATP + 2 GTP + 6 CO2

The above reactions are balanced if Pi represents the H2PO4 ion, ADP and GDP the ADP2− and GDP2− ions, respectively, and ATP and GTP the ATP3− and GTP3− ions, respectively.

The total number of ATP molecules obtained after complete oxidation of one glucose in glycolysis, citric acid cycle, and oxidative phosphorylation is estimated to be between 30 and 38.[19]

Efficiency edit

The theoretical maximum yield of ATP through oxidation of one molecule of glucose in glycolysis, citric acid cycle, and oxidative phosphorylation is 38 (assuming 3 molar equivalents of ATP per equivalent NADH and 2 ATP per FADH2). In eukaryotes, two equivalents of NADH and two equivalents of ATP are generated in glycolysis, which takes place in the cytoplasm. If transported using the glycerol phosphate shuttle rather than the malate-aspartate shuttle, transport of two of these equivalents of NADH into the mitochondria effectively consumes two equivalents of ATP, thus reducing the net production of ATP to 36. Furthermore, inefficiencies in oxidative phosphorylation due to leakage of protons across the mitochondrial membrane and slippage of the ATP synthase/proton pump commonly reduces the ATP yield from NADH and FADH2 to less than the theoretical maximum yield.[19] The observed yields are, therefore, closer to ~2.5 ATP per NADH and ~1.5 ATP per FADH2, further reducing the total net production of ATP to approximately 30.[20] An assessment of the total ATP yield with newly revised proton-to-ATP ratios provides an estimate of 29.85 ATP per glucose molecule.[21]

Variation edit

While the citric acid cycle is in general highly conserved, there is significant variability in the enzymes found in different taxa[22] (note that the diagrams on this page are specific to the mammalian pathway variant).

Some differences exist between eukaryotes and prokaryotes. The conversion of D-threo-isocitrate to 2-oxoglutarate is catalyzed in eukaryotes by the NAD+-dependent EC 1.1.1.41, while prokaryotes employ the NADP+-dependent EC 1.1.1.42.[23] Similarly, the conversion of (S)-malate to oxaloacetate is catalyzed in eukaryotes by the NAD+-dependent EC 1.1.1.37, while most prokaryotes utilize a quinone-dependent enzyme, EC 1.1.5.4.[24]

A step with significant variability is the conversion of succinyl-CoA to succinate. Most organisms utilize EC 6.2.1.5, succinate–CoA ligase (ADP-forming) (despite its name, the enzyme operates in the pathway in the direction of ATP formation). In mammals a GTP-forming enzyme, succinate–CoA ligase (GDP-forming) (EC 6.2.1.4) also operates. The level of utilization of each isoform is tissue dependent.[25] In some acetate-producing bacteria, such as Acetobacter aceti, an entirely different enzyme catalyzes this conversion – EC 2.8.3.18, succinyl-CoA:acetate CoA-transferase. This specialized enzyme links the TCA cycle with acetate metabolism in these organisms.[26] Some bacteria, such as Helicobacter pylori, employ yet another enzyme for this conversion – succinyl-CoA:acetoacetate CoA-transferase (EC 2.8.3.5).[27]

Some variability also exists at the previous step – the conversion of 2-oxoglutarate to succinyl-CoA. While most organisms utilize the ubiquitous NAD+-dependent 2-oxoglutarate dehydrogenase, some bacteria utilize a ferredoxin-dependent 2-oxoglutarate synthase (EC 1.2.7.3).[28] Other organisms, including obligately autotrophic and methanotrophic bacteria and archaea, bypass succinyl-CoA entirely, and convert 2-oxoglutarate to succinate via succinate semialdehyde, using EC 4.1.1.71, 2-oxoglutarate decarboxylase, and EC 1.2.1.79, succinate-semialdehyde dehydrogenase.[29]

In cancer, there are substantial metabolic derangements that occur to ensure the proliferation of tumor cells, and consequently metabolites can accumulate which serve to facilitate tumorigenesis, dubbed oncometabolites.[30] Among the best characterized oncometabolites is 2-hydroxyglutarate which is produced through a heterozygous gain-of-function mutation (specifically a neomorphic one) in isocitrate dehydrogenase (IDH) (which under normal circumstances catalyzes the oxidation of isocitrate to oxalosuccinate, which then spontaneously decarboxylates to alpha-ketoglutarate, as discussed above; in this case an additional reduction step occurs after the formation of alpha-ketoglutarate via NADPH to yield 2-hydroxyglutarate), and hence IDH is considered an oncogene. Under physiological conditions, 2-hydroxyglutarate is a minor product of several metabolic pathways as an error but readily converted to alpha-ketoglutarate via hydroxyglutarate dehydrogenase enzymes (L2HGDH and D2HGDH)[31] but does not have a known physiologic role in mammalian cells; of note, in cancer, 2-hydroxyglutarate is likely a terminal metabolite as isotope labelling experiments of colorectal cancer cell lines show that its conversion back to alpha-ketoglutarate is too low to measure.[32] In cancer, 2-hydroxyglutarate serves as a competitive inhibitor for a number of enzymes that facilitate reactions via alpha-ketoglutarate in alpha-ketoglutarate-dependent dioxygenases. This mutation results in several important changes to the metabolism of the cell. For one thing, because there is an extra NADPH-catalyzed reduction, this can contribute to depletion of cellular stores of NADPH and also reduce levels of alpha-ketoglutarate available to the cell. In particular, the depletion of NADPH is problematic because NADPH is highly compartmentalized and cannot freely diffuse between the organelles in the cell. It is produced largely via the pentose phosphate pathway in the cytoplasm. The depletion of NADPH results in increased oxidative stress within the cell as it is a required cofactor in the production of GSH, and this oxidative stress can result in DNA damage. There are also changes on the genetic and epigenetic level through the function of histone lysine demethylases (KDMs) and ten-eleven translocation (TET) enzymes; ordinarily TETs hydroxylate 5-methylcytosines to prime them for demethylation. However, in the absence of alpha-ketoglutarate this cannot be done and there is hence hypermethylation of the cell's DNA, serving to promote epithelial-mesenchymal transition (EMT) and inhibit cellular differentiation. A similar phenomenon is observed for the Jumonji C family of KDMs which require a hydroxylation to perform demethylation at the epsilon-amino methyl group.[33] Additionally, the inability of prolyl hydroxylases to catalyze reactions results in stabilization of hypoxia-inducible factor alpha, which is necessary to promote degradation of the latter (as under conditions of low oxygen there will not be adequate substrate for hydroxylation). This results in a pseudohypoxic phenotype in the cancer cell that promotes angiogenesis, metabolic reprogramming, cell growth, and migration.[citation needed]

Regulation edit

Allosteric regulation by metabolites. The regulation of the citric acid cycle is largely determined by product inhibition and substrate availability. If the cycle were permitted to run unchecked, large amounts of metabolic energy could be wasted in overproduction of reduced coenzyme such as NADH and ATP. The major eventual substrate of the cycle is ADP which gets converted to ATP. A reduced amount of ADP causes accumulation of precursor NADH which in turn can inhibit a number of enzymes. NADH, a product of all dehydrogenases in the citric acid cycle with the exception of succinate dehydrogenase, inhibits pyruvate dehydrogenase, isocitrate dehydrogenase, α-ketoglutarate dehydrogenase, and also citrate synthase. Acetyl-coA inhibits pyruvate dehydrogenase, while succinyl-CoA inhibits alpha-ketoglutarate dehydrogenase and citrate synthase. When tested in vitro with TCA enzymes, ATP inhibits citrate synthase and α-ketoglutarate dehydrogenase; however, ATP levels do not change more than 10% in vivo between rest and vigorous exercise. There is no known allosteric mechanism that can account for large changes in reaction rate from an allosteric effector whose concentration changes less than 10%.[6]

Citrate is used for feedback inhibition, as it inhibits phosphofructokinase, an enzyme involved in glycolysis that catalyses formation of fructose 1,6-bisphosphate, a precursor of pyruvate. This prevents a constant high rate of flux when there is an accumulation of citrate and a decrease in substrate for the enzyme.[34]

Regulation by calcium. Calcium is also used as a regulator in the citric acid cycle. Calcium levels in the mitochondrial matrix can reach up to the tens of micromolar levels during cellular activation.[35] It activates pyruvate dehydrogenase phosphatase which in turn activates the pyruvate dehydrogenase complex. Calcium also activates isocitrate dehydrogenase and α-ketoglutarate dehydrogenase.[36] This increases the reaction rate of many of the steps in the cycle, and therefore increases flux throughout the pathway.[citation needed]

Transcriptional regulation. Recent work has demonstrated an important link between intermediates of the citric acid cycle and the regulation of hypoxia-inducible factors (HIF). HIF plays a role in the regulation of oxygen homeostasis, and is a transcription factor that targets angiogenesis, vascular remodeling, glucose utilization, iron transport and apoptosis. HIF is synthesized constitutively, and hydroxylation of at least one of two critical proline residues mediates their interaction with the von Hippel Lindau E3 ubiquitin ligase complex, which targets them for rapid degradation. This reaction is catalysed by prolyl 4-hydroxylases. Fumarate and succinate have been identified as potent inhibitors of prolyl hydroxylases, thus leading to the stabilisation of HIF.[37]

Major metabolic pathways converging on the citric acid cycle edit

Several catabolic pathways converge on the citric acid cycle. Most of these reactions add intermediates to the citric acid cycle, and are therefore known as anaplerotic reactions, from the Greek meaning to "fill up". These increase the amount of acetyl CoA that the cycle is able to carry, increasing the mitochondrion's capability to carry out respiration if this is otherwise a limiting factor. Processes that remove intermediates from the cycle are termed "cataplerotic" reactions.[38]

In this section and in the next, the citric acid cycle intermediates are indicated in italics to distinguish them from other substrates and end-products.

Pyruvate molecules produced by glycolysis are actively transported across the inner mitochondrial membrane, and into the matrix. Here they can be oxidized and combined with coenzyme A to form CO2, acetyl-CoA, and NADH, as in the normal cycle.[39]

However, it is also possible for pyruvate to be carboxylated by pyruvate carboxylase to form oxaloacetate. This latter reaction "fills up" the amount of oxaloacetate in the citric acid cycle, and is therefore an anaplerotic reaction, increasing the cycle's capacity to metabolize acetyl-CoA when the tissue's energy needs (e.g. in muscle) are suddenly increased by activity.[40]

In the citric acid cycle all the intermediates (e.g. citrate, iso-citrate, alpha-ketoglutarate, succinate, fumarate, malate, and oxaloacetate) are regenerated during each turn of the cycle. Adding more of any of these intermediates to the mitochondrion therefore means that that additional amount is retained within the cycle, increasing all the other intermediates as one is converted into the other. Hence the addition of any one of them to the cycle has an anaplerotic effect, and its removal has a cataplerotic effect. These anaplerotic and cataplerotic reactions will, during the course of the cycle, increase or decrease the amount of oxaloacetate available to combine with acetyl-CoA to form citric acid. This in turn increases or decreases the rate of ATP production by the mitochondrion, and thus the availability of ATP to the cell.[40]

Acetyl-CoA, on the other hand, derived from pyruvate oxidation, or from the beta-oxidation of fatty acids, is the only fuel to enter the citric acid cycle. With each turn of the cycle one molecule of acetyl-CoA is consumed for every molecule of oxaloacetate present in the mitochondrial matrix, and is never regenerated. It is the oxidation of the acetate portion of acetyl-CoA that produces CO2 and water, with the energy thus released captured in the form of ATP.[40] The three steps of beta-oxidation resemble the steps that occur in the production of oxaloacetate from succinate in the TCA cycle. Acyl-CoA is oxidized to trans-Enoyl-CoA while FAD is reduced to FADH2, which is similar to the oxidation of succinate to fumarate. Following, trans-Enoyl-CoA is hydrated across the double bond to beta-hydroxyacyl-CoA, just like fumarate is hydrated to malate. Lastly, beta-hydroxyacyl-CoA is oxidized to beta-ketoacyl-CoA while NAD+ is reduced to NADH, which follows the same process as the oxidation of malate to oxaloacetate.[41]

In the liver, the carboxylation of cytosolic pyruvate into intra-mitochondrial oxaloacetate is an early step in the gluconeogenic pathway which converts lactate and de-aminated alanine into glucose,[39][40] under the influence of high levels of glucagon and/or epinephrine in the blood.[40] Here the addition of oxaloacetate to the mitochondrion does not have a net anaplerotic effect, as another citric acid cycle intermediate (malate) is immediately removed from the mitochondrion to be converted into cytosolic oxaloacetate, which is ultimately converted into glucose, in a process that is almost the reverse of glycolysis.[40]

In protein catabolism, proteins are broken down by proteases into their constituent amino acids. Their carbon skeletons (i.e. the de-aminated amino acids) may either enter the citric acid cycle as intermediates (e.g. alpha-ketoglutarate derived from glutamate or glutamine), having an anaplerotic effect on the cycle, or, in the case of leucine, isoleucine, lysine, phenylalanine, tryptophan, and tyrosine, they are converted into acetyl-CoA which can be burned to CO2 and water, or used to form ketone bodies, which too can only be burned in tissues other than the liver where they are formed, or excreted via the urine or breath.[40] These latter amino acids are therefore termed "ketogenic" amino acids, whereas those that enter the citric acid cycle as intermediates can only be cataplerotically removed by entering the gluconeogenic pathway via malate which is transported out of the mitochondrion to be converted into cytosolic oxaloacetate and ultimately into glucose. These are the so-called "glucogenic" amino acids. De-aminated alanine, cysteine, glycine, serine, and threonine are converted to pyruvate and can consequently either enter the citric acid cycle as oxaloacetate (an anaplerotic reaction) or as acetyl-CoA to be disposed of as CO2 and water.[40]

In fat catabolism, triglycerides are hydrolyzed to break them into fatty acids and glycerol. In the liver the glycerol can be converted into glucose via dihydroxyacetone phosphate and glyceraldehyde-3-phosphate by way of gluconeogenesis. In skeletal muscle, glycerol is used in glycolysis by converting glycerol into glycerol-3-phosphate, then into dihydroxyacetone phosphate (DHAP), then into glyceraldehyde-3-phosphate.[42]

In many tissues, especially heart and skeletal muscle tissue, fatty acids are broken down through a process known as beta oxidation, which results in the production of mitochondrial acetyl-CoA, which can be used in the citric acid cycle. Beta oxidation of fatty acids with an odd number of methylene bridges produces propionyl-CoA, which is then converted into succinyl-CoA and fed into the citric acid cycle as an anaplerotic intermediate.[43]

The total energy gained from the complete breakdown of one (six-carbon) molecule of glucose by glycolysis, the formation of 2 acetyl-CoA molecules, their catabolism in the citric acid cycle, and oxidative phosphorylation equals about 30 ATP molecules, in eukaryotes. The number of ATP molecules derived from the beta oxidation of a 6 carbon segment of a fatty acid chain, and the subsequent oxidation of the resulting 3 molecules of acetyl-CoA is 40.[citation needed]

Citric acid cycle intermediates serve as substrates for biosynthetic processes edit

In this subheading, as in the previous one, the TCA intermediates are identified by italics.

Several of the citric acid cycle intermediates are used for the synthesis of important compounds, which will have significant cataplerotic effects on the cycle.[40]Acetyl-CoA cannot be transported out of the mitochondrion. To obtain cytosolic acetyl-CoA, citrate is removed from the citric acid cycle and carried across the inner mitochondrial membrane into the cytosol. There it is cleaved by ATP citrate lyase into acetyl-CoA and oxaloacetate. The oxaloacetate is returned to mitochondrion as malate (and then converted back into oxaloacetate to transfer more acetyl-CoA out of the mitochondrion).[44] The cytosolic acetyl-CoA is used for fatty acid synthesis and the production of cholesterol. Cholesterol can, in turn, be used to synthesize the steroid hormones, bile salts, and vitamin D.[39][40]

The carbon skeletons of many non-essential amino acids are made from citric acid cycle intermediates. To turn them into amino acids the alpha keto-acids formed from the citric acid cycle intermediates have to acquire their amino groups from glutamate in a transamination reaction, in which pyridoxal phosphate is a cofactor. In this reaction the glutamate is converted into alpha-ketoglutarate, which is a citric acid cycle intermediate. The intermediates that can provide the carbon skeletons for amino acid synthesis are oxaloacetate which forms aspartate and asparagine; and alpha-ketoglutarate which forms glutamine, proline, and arginine.[39][40]

Of these amino acids, aspartate and glutamine are used, together with carbon and nitrogen atoms from other sources, to form the purines that are used as the bases in DNA and RNA, as well as in ATP, AMP, GTP, NAD, FAD and CoA.[40]

The pyrimidines are partly assembled from aspartate (derived from oxaloacetate). The pyrimidines, thymine, cytosine and uracil, form the complementary bases to the purine bases in DNA and RNA, and are also components of CTP, UMP, UDP and UTP.[40]

The majority of the carbon atoms in the porphyrins come from the citric acid cycle intermediate, succinyl-CoA. These molecules are an important component of the hemoproteins, such as hemoglobin, myoglobin and various cytochromes.[40]

During gluconeogenesis mitochondrial oxaloacetate is reduced to malate which is then transported out of the mitochondrion, to be oxidized back to oxaloacetate in the cytosol. Cytosolic oxaloacetate is then decarboxylated to phosphoenolpyruvate by phosphoenolpyruvate carboxykinase, which is the rate limiting step in the conversion of nearly all the gluconeogenic precursors (such as the glucogenic amino acids and lactate) into glucose by the liver and kidney.[39][40]

Because the citric acid cycle is involved in both catabolic and anabolic processes, it is known as an amphibolic pathway. Evan M.W.Duo Click on genes, proteins and metabolites below to link to respective articles. [§ 1]

[[File:
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
[[
]]
|alt=TCACycle_WP78 edit]]
TCACycle_WP78 edit
  1. ^ The interactive pathway map can be edited at WikiPathways: "TCACycle_WP78".

Glucose feeds the TCA cycle via circulating lactate edit

The metabolic role of lactate is well recognized as a fuel for tissues, mitochondrial cytopathies such as DPH Cytopathy, and the scientific field of oncology (tumors). In the classical Cori cycle, muscles produce lactate which is then taken up by the liver for gluconeogenesis. New studies suggest that lactate can be used as a source of carbon for the TCA cycle.[45]

Evolution edit

It is believed that components of the citric acid cycle were derived from anaerobic bacteria, and that the TCA cycle itself may have evolved more than once.[46] Theoretically, several alternatives to the TCA cycle exist; however, the TCA cycle appears to be the most efficient. If several TCA alternatives had evolved independently, they all appear to have converged to the TCA cycle.[47][48]

See also edit

References edit

  1. ^ Lowenstein JM (1969). Methods in Enzymology, Volume 13: Citric Acid Cycle. Boston: Academic Press. ISBN 978-0-12-181870-8.
  2. ^ Kay J, Weitzman PD (1987). Krebs' citric acid cycle: half a century and still turning. London: Biochemical Society. pp. 25. ISBN 978-0-904498-22-6.
  3. ^ Wagner A (2014). Arrival of the Fittest (First ed.). PenguinYork. p. 100. ISBN 9781591846468.
  4. ^ Lane N (2009). Life Ascending: The Ten Great Inventions of Evolution. New York: W. W. Norton & Co. ISBN 978-0-393-06596-1.
  5. ^ Chinopoulos C (August 2013). "Which way does the citric acid cycle turn during hypoxia? The critical role of α-ketoglutarate dehydrogenase complex" (PDF). Journal of Neuroscience Research. 91 (8): 1030–43. doi:10.1002/jnr.23196. PMID 23378250.
  6. ^ a b c Voet D, Voet JG (2004). Biochemistry (3rd ed.). New York: John Wiley & Sons, Inc. p. 615.
  7. ^ Lieberman M (2013). Marks' basic medical biochemistry : a clinical approach. Marks, Allan D., Peet, Alisa. (Fourth ed.). Philadelphia: Wolters Kluwer Health/Lippincott Williams & Wilkins. ISBN 9781608315727. OCLC 769803483.
  8. ^ "The Nobel Prize in Physiology or Medicine 1937". The Nobel Foundation. Retrieved 2011-10-26.
  9. ^ Chandramana, Sudeep. (2014). Inclusive Growth And Youth Empowerment: A Development Model For Aspirational India. Journal of Science, Technology and Management. 7. 52–62.
  10. ^ Krebs HA, Johnson WA (April 1937). "Metabolism of ketonic acids in animal tissues". The Biochemical Journal. 31 (4): 645–60. doi:10.1042/bj0310645. PMC 1266984. PMID 16746382.
  11. ^ "The Nobel Prize in Physiology or Medicine 1953". The Nobel Foundation. Retrieved 2011-10-26.
  12. ^ Wolfe RR, Jahoor F (February 1990). "Recovery of labeled CO2 during the infusion of C-1- vs C-2-labeled acetate: implications for tracer studies of substrate oxidation". The American Journal of Clinical Nutrition. 51 (2): 248–52. doi:10.1093/ajcn/51.2.248. PMID 2106256.
  13. ^ Berg JM, Tymoczko JL, Stryer L (2002). "The Citric Acid Cycle". Biochemistry (5th ed.). W H Freeman. ISBN 0-7167-3051-0.
  14. ^ a b Jones RC, Buchanan BB, Gruissem W (2000). Biochemistry & molecular biology of plants (1st ed.). Rockville, Md: American Society of Plant Physiologists. ISBN 978-0-943088-39-6.
  15. ^ a b c d Stryer L, Berg J, Tymoczko JL (2002). Biochemistry. San Francisco: W. H. Freeman. ISBN 978-0-7167-4684-3.
  16. ^ Johnson JD, Mehus JG, Tews K, Milavetz BI, Lambeth DO (October 1998). "Genetic evidence for the expression of ATP- and GTP-specific succinyl-CoA synthetases in multicellular eucaryotes". The Journal of Biological Chemistry. 273 (42): 27580–6. doi:10.1074/jbc.273.42.27580. PMID 9765291.
  17. ^ Barnes SJ, Weitzman PD (June 1986). "Organization of citric acid cycle enzymes into a multienzyme cluster". FEBS Letters. 201 (2): 267–70. doi:10.1016/0014-5793(86)80621-4. PMID 3086126. S2CID 43052163.
  18. ^ "The citric acid cycle". Khan Academy. Retrieved 10 August 2021.
  19. ^ a b Porter RK, Brand MD (September 1995). "Mitochondrial proton conductance and H+/O ratio are independent of electron transport rate in isolated hepatocytes". The Biochemical Journal. 310 (2): 379–82. doi:10.1042/bj3100379. PMC 1135905. PMID 7654171.
  20. ^ Stryer L, Berg JM, Tymoczko JL (2002). "Section 18.6: The Regulation of Cellular Respiration Is Governed Primarily by the Need for ATP". Biochemistry. San Francisco: W. H. Freeman. ISBN 978-0-7167-4684-3.
  21. ^ Rich PR (December 2003). "The molecular machinery of Keilin's respiratory chain". Biochemical Society Transactions. 31 (Pt 6): 1095–105. doi:10.1042/BST0311095. PMID 14641005. S2CID 32361233.
  22. ^ "Citric acid cycle variants at MetaCyc".
  23. ^ Sahara T, Takada Y, Takeuchi Y, Yamaoka N, Fukunaga N (March 2002). "Cloning, sequencing, and expression of a gene encoding the monomeric isocitrate dehydrogenase of the nitrogen-fixing bacterium, Azotobacter vinelandii". Bioscience, Biotechnology, and Biochemistry. 66 (3): 489–500. doi:10.1271/bbb.66.489. PMID 12005040. S2CID 12950388.
  24. ^ van der Rest ME, Frank C, Molenaar D (December 2000). "Functions of the membrane-associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Escherichia coli". Journal of Bacteriology. 182 (24): 6892–9. doi:10.1128/jb.182.24.6892-6899.2000. PMC 94812. PMID 11092847.
  25. ^ Lambeth DO, Tews KN, Adkins S, Frohlich D, Milavetz BI (August 2004). "Expression of two succinyl-CoA synthetases with different nucleotide specificities in mammalian tissues". The Journal of Biological Chemistry. 279 (35): 36621–4. doi:10.1074/jbc.M406884200. PMID 15234968.
  26. ^ Mullins EA, Francois JA, Kappock TJ (July 2008). "A specialized citric acid cycle requiring succinyl-coenzyme A (CoA):acetate CoA-transferase (AarC) confers acetic acid resistance on the acidophile Acetobacter aceti". Journal of Bacteriology. 190 (14): 4933–40. doi:10.1128/JB.00405-08. PMC 2447011. PMID 18502856.
  27. ^ Corthésy-Theulaz IE, Bergonzelli GE, Henry H, Bachmann D, Schorderet DF, Blum AL, Ornston LN (October 1997). "Cloning and characterization of Helicobacter pylori succinyl CoA:acetoacetate CoA-transferase, a novel prokaryotic member of the CoA-transferase family". The Journal of Biological Chemistry. 272 (41): 25659–67. doi:10.1074/jbc.272.41.25659. PMID 9325289.
  28. ^ Baughn AD, Garforth SJ, Vilchèze C, Jacobs WR (November 2009). "An anaerobic-type alpha-ketoglutarate ferredoxin oxidoreductase completes the oxidative tricarboxylic acid cycle of Mycobacterium tuberculosis". PLOS Pathogens. 5 (11): e1000662. doi:10.1371/journal.ppat.1000662. PMC 2773412. PMID 19936047.
  29. ^ Zhang S, Bryant DA (December 2011). "The tricarboxylic acid cycle in cyanobacteria". Science. 334 (6062): 1551–3. Bibcode:2011Sci...334.1551Z. doi:10.1126/science.1210858. PMID 22174252. S2CID 206536295.
  30. ^ Dang L, Su SM (June 2017). "Isocitrate Dehydrogenase Mutation and (R)-2-Hydroxyglutarate: From Basic Discovery to Therapeutics Development". Annual Review of Biochemistry. 86 (1): 305–331. doi:10.1146/annurev-biochem-061516-044732. PMID 28375741.
  31. ^ Yong C, Stewart GD, Frezza C (March 2020). "Oncometabolites in renal cancer". Nature Reviews. Nephrology. 16 (3): 156–172. doi:10.1038/s41581-019-0210-z. PMC 7030949. PMID 31636445.
  32. ^ Gelman SJ, Mahieu NG, Cho K, Llufrio EM, Wencewicz TA, Patti GJ (December 2015). "Evidence that 2-hydroxyglutarate is not readily metabolized in colorectal carcinoma cells". Cancer & Metabolism. 3 (1): 13. doi:10.1186/s40170-015-0139-z. PMC 4665876. PMID 26629338.
  33. ^ Rotili D, Mai A (June 2011). "Targeting Histone Demethylases: A New Avenue for the Fight against Cancer". Genes & Cancer. 2 (6): 663–79. doi:10.1177/1947601911417976. PMC 3174264. PMID 21941621.
  34. ^ Nelson, David L.; Cox, Michael M.; Hoskins, Aaron A.; Lehninger, Albert L. (2021). Lehninger principles of biochemistry (Eighth ed.). New York, NY: Macmillan International, Higher Education. ISBN 978-1-319-22800-2.
  35. ^ Ivannikov MV, Macleod GT (June 2013). "Mitochondrial free Ca²⁺ levels and their effects on energy metabolism in Drosophila motor nerve terminals". Biophysical Journal. 104 (11): 2353–61. Bibcode:2013BpJ...104.2353I. doi:10.1016/j.bpj.2013.03.064. PMC 3672877. PMID 23746507.
  36. ^ Denton RM, Randle PJ, Bridges BJ, Cooper RH, Kerbey AL, Pask HT, et al. (October 1975). "Regulation of mammalian pyruvate dehydrogenase". Molecular and Cellular Biochemistry. 9 (1): 27–53. doi:10.1007/BF01731731. PMID 171557. S2CID 27367543.
  37. ^ Koivunen P, Hirsilä M, Remes AM, Hassinen IE, Kivirikko KI, Myllyharju J (February 2007). "Inhibition of hypoxia-inducible factor (HIF) hydroxylases by citric acid cycle intermediates: possible links between cell metabolism and stabilization of HIF". The Journal of Biological Chemistry. 282 (7): 4524–32. doi:10.1074/jbc.M610415200. PMID 17182618.
  38. ^ Owen OE, Kalhan SC, Hanson RW (2002). "The Key Role of Anaplerosis and Cataplerosis for Citric Acid Cycle Function". Journal of Biological Chemistry. 277 (34): 30409–30412. doi:10.1074/jbc.r200006200. PMID 12087111.
  39. ^ a b c d e Voet D, Voet JG, Pratt CW (2006). Fundamentals of Biochemistr (2nd ed.). John Wiley and Sons, Inc. pp. 547, 556. ISBN 978-0-471-21495-3.
  40. ^ a b c d e f g h i j k l m n o Stryer L (1995). "Citric acid cycle". Biochemistry (Fourth ed.). New York: W. H. Freeman and Company. pp. 509–527, 569–579, 614–616, 638–641, 732–735, 739–748, 770–773. ISBN 978-0-7167-2009-6.
  41. ^ Garrett RH, Grisham CM (2013). Biochemistry (5th ed.). Belmont, CA: Brooks/Cole, Cengage Learning. pp. 623–625, 771–773. ISBN 9781133106296. OCLC 777722371.
  42. ^ van Hall G, Sacchetti M, Rådegran G, Saltin B (September 2002). "Human skeletal muscle fatty acid and glycerol metabolism during rest, exercise and recovery". The Journal of Physiology. 543 (Pt 3): 1047–1058. doi:10.1113/jphysiol.2002.023796. PMC 2290548. PMID 12231658.
  43. ^ Halarnkar PP, Blomquist GJ (1989). "Comparative aspects of propionate metabolism". Comparative Biochemistry and Physiology. B, Comparative Biochemistry. 92 (2): 227–31. doi:10.1016/0305-0491(89)90270-8. PMID 2647392.
  44. ^ Ferré P, Foufelle F (2007). "SREBP-1c transcription factor and lipid homeostasis: clinical perspective". Hormone Research. 68 (2): 72–82. doi:10.1159/000100426. PMID 17344645. this process is outlined graphically in page 73
  45. ^ Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X, Lu W, et al. (November 2017). "Glucose feeds the TCA cycle via circulating lactate". Nature. 551 (7678): 115–118. Bibcode:2017Natur.551..115H. doi:10.1038/nature24057. PMC 5898814. PMID 29045397.
  46. ^ Gest H (1987). "Evolutionary roots of the citric acid cycle in prokaryotes". Biochemical Society Symposium. 54: 3–16. PMID 3332996.
  47. ^ Meléndez-Hevia E, Waddell TG, Cascante M (September 1996). "The puzzle of the Krebs citric acid cycle: assembling the pieces of chemically feasible reactions, and opportunism in the design of metabolic pathways during evolution" (PDF). Journal of Molecular Evolution. 43 (3): 293–303. Bibcode:1996JMolE..43..293M. doi:10.1007/BF02338838. PMID 8703096. S2CID 19107073. (PDF) from the original on 2017-08-12.
  48. ^ Ebenhöh O, Heinrich R (January 2001). "Evolutionary optimization of metabolic pathways. Theoretical reconstruction of the stoichiometry of ATP and NADH producing systems" (PDF). Bulletin of Mathematical Biology. 63 (1): 21–55. doi:10.1006/bulm.2000.0197. PMID 11146883. S2CID 44260374. (PDF) from the original on 2003-05-08.

External links edit

citric, acid, cycle, citric, acid, cycle, also, known, krebs, cycle, szent, györgyi, krebs, cycle, cycle, tricarboxylic, acid, cycle, series, biochemical, reactions, release, energy, stored, nutrients, through, oxidation, acetyl, derived, from, carbohydrates, . The citric acid cycle also known as the Krebs cycle Szent Gyorgyi Krebs cycle or the TCA cycle tricarboxylic acid cycle 1 2 is a series of biochemical reactions to release the energy stored in nutrients through the oxidation of acetyl CoA derived from carbohydrates fats and proteins The chemical energy released is available under the form of ATP The Krebs cycle is used by organisms that respire as opposed to organisms that ferment to generate energy either by anaerobic respiration or aerobic respiration In addition the cycle provides precursors of certain amino acids as well as the reducing agent NADH that are used in numerous other reactions Its central importance to many biochemical pathways suggests that it was one of the earliest components of metabolism 3 4 Even though it is branded as a cycle it is not necessary for metabolites to follow only one specific route at least three alternative segments of the citric acid cycle have been recognized 5 Overview of the citric acid cycleThe name of this metabolic pathway is derived from the citric acid a tricarboxylic acid often called citrate as the ionized form predominates at biological pH 6 that is consumed and then regenerated by this sequence of reactions to complete the cycle The cycle consumes acetate in the form of acetyl CoA and water reduces NAD to NADH releasing carbon dioxide The NADH generated by the citric acid cycle is fed into the oxidative phosphorylation electron transport pathway The net result of these two closely linked pathways is the oxidation of nutrients to produce usable chemical energy in the form of ATP In eukaryotic cells the citric acid cycle occurs in the matrix of the mitochondrion In prokaryotic cells such as bacteria which lack mitochondria the citric acid cycle reaction sequence is performed in the cytosol with the proton gradient for ATP production being across the cell s surface plasma membrane rather than the inner membrane of the mitochondrion For each pyruvate molecule from glycolysis the overall yield of energy containing compounds from the citric acid cycle is three NADH one FADH2 and one GTP 7 Contents 1 Discovery 2 Overview 3 Steps 4 Products 5 Efficiency 6 Variation 7 Regulation 8 Major metabolic pathways converging on the citric acid cycle 9 Citric acid cycle intermediates serve as substrates for biosynthetic processes 10 Glucose feeds the TCA cycle via circulating lactate 11 Evolution 12 See also 13 References 14 External linksDiscovery editSeveral of the components and reactions of the citric acid cycle were established in the 1930s by the research of Albert Szent Gyorgyi who received the Nobel Prize in Physiology or Medicine in 1937 specifically for his discoveries pertaining to fumaric acid a component of the cycle 8 He made this discovery by studying pigeon breast muscle Because this tissue maintains its oxidative capacity well after breaking down in the Latapie mill and releasing in aqueous solutions breast muscle of the pigeon was very well qualified for the study of oxidative reactions 9 The citric acid cycle itself was finally identified in 1937 by Hans Adolf Krebs and William Arthur Johnson while at the University of Sheffield 10 for which the former received the Nobel Prize for Physiology or Medicine in 1953 and for whom the cycle is sometimes named the Krebs cycle 11 Overview editThis section needs additional citations for verification Please help improve this article by adding citations to reliable sources in this section Unsourced material may be challenged and removed Find sources Citric acid cycle news newspapers books scholar JSTOR August 2022 Learn how and when to remove this template message nbsp Structural diagram of acetyl CoA The portion in blue on the left is the acetyl group the portion in black is coenzyme A The citric acid cycle is a metabolic pathway that connects carbohydrate fat and protein metabolism The reactions of the cycle are carried out by eight enzymes that completely oxidize acetate a two carbon molecule in the form of acetyl CoA into two molecules each of carbon dioxide and water Through catabolism of sugars fats and proteins the two carbon organic product acetyl CoA is produced which enters the citric acid cycle The reactions of the cycle also convert three equivalents of nicotinamide adenine dinucleotide NAD into three equivalents of reduced NAD NADH one equivalent of flavin adenine dinucleotide FAD into one equivalent of FADH2 and one equivalent each of guanosine diphosphate GDP and inorganic phosphate Pi into one equivalent of guanosine triphosphate GTP The NADH and FADH2 generated by the citric acid cycle are in turn used by the oxidative phosphorylation pathway to generate energy rich ATP One of the primary sources of acetyl CoA is from the breakdown of sugars by glycolysis which yield pyruvate that in turn is decarboxylated by the pyruvate dehydrogenase complex generating acetyl CoA according to the following reaction scheme CH3C O C O O pyruvate HSCoA NAD CH3C O SCoA acetyl CoA NADH CO2 The product of this reaction acetyl CoA is the starting point for the citric acid cycle Acetyl CoA may also be obtained from the oxidation of fatty acids Below is a schematic outline of the cycle The citric acid cycle begins with the transfer of a two carbon acetyl group from acetyl CoA to the four carbon acceptor compound oxaloacetate to form a six carbon compound citrate The citrate then goes through a series of chemical transformations losing two carboxyl groups as CO2 The carbons lost as CO2 originate from what was oxaloacetate not directly from acetyl CoA The carbons donated by acetyl CoA become part of the oxaloacetate carbon backbone after the first turn of the citric acid cycle Loss of the acetyl CoA donated carbons as CO2 requires several turns of the citric acid cycle However because of the role of the citric acid cycle in anabolism they might not be lost since many citric acid cycle intermediates are also used as precursors for the biosynthesis of other molecules 12 Most of the electrons made available by the oxidative steps of the cycle are transferred to NAD forming NADH For each acetyl group that enters the citric acid cycle three molecules of NADH are produced The citric acid cycle includes a series of oxidation reduction reaction in mitochondria clarification needed 13 In addition electrons from the succinate oxidation step are transferred first to the FAD cofactor of succinate dehydrogenase reducing it to FADH2 and eventually to ubiquinone Q in the mitochondrial membrane reducing it to ubiquinol QH2 which is a substrate of the electron transfer chain at the level of Complex III For every NADH and FADH2 that are produced in the citric acid cycle 2 5 and 1 5 ATP molecules are generated in oxidative phosphorylation respectively At the end of each cycle the four carbon oxaloacetate has been regenerated and the cycle continues Steps editThere are ten basic steps in the citric acid cycle as outlined below The cycle is continuously supplied with new carbon in the form of acetyl CoA entering at step 0 in the table 14 Reaction type Substrates Enzyme Products Comment0 10 Aldol condensation Oxaloacetate Acetyl CoA H2O Citrate synthase Citrate CoA SH irreversible extends the 4C oxaloacetate to a 6C molecule1 Dehydration Citrate Aconitase cis Aconitate H2O reversible isomerisation2 Hydration cis Aconitate H2O Isocitrate3 Oxidation Isocitrate NAD Isocitrate dehydrogenase Oxalosuccinate NADH H generates NADH equivalent of 2 5 ATP 4 Decarboxylation Oxalosuccinate a Ketoglutarate CO2 rate limiting irreversible stage generates a 5C molecule5 Oxidativedecarboxylation a Ketoglutarate NAD CoA SH a Ketoglutaratedehydrogenase Thiamine pyrophosphate Lipoic acid Mg transsuccinytase Succinyl CoA NADH H CO2 irreversible stage generates NADH equivalent of 2 5 ATP regenerates the 4C chain CoA excluded 6 substrate levelphosphorylation Succinyl CoA GDP Pi Succinyl CoA synthetase Succinate CoA SH GTP or ADP ATP instead of GDP GTP 15 generates 1 ATP or equivalent Condensation reaction of GDP Pi and hydrolysis of succinyl CoA involve the H2O needed for balanced equation 7 Oxidation Succinate ubiquinone Q Succinate dehydrogenase Fumarate ubiquinol QH2 uses FAD as a prosthetic group FAD FADH2 in the first step of the reaction in the enzyme 15 These two electrons are later transferred to QH2 during Complex II of the ETC where they generate the equivalent of 1 5 ATP8 Hydration Fumarate H2O Fumarase L Malate Hydration of C C double bond9 Oxidation L Malate NAD Malate dehydrogenase Oxaloacetate NADH H reversible in fact equilibrium favors malate generates NADH equivalent of 2 5 ATP 10 0 Aldol condensation Oxaloacetate Acetyl CoA H2O Citrate synthase Citrate CoA SH This is the same as step 0 and restarts the cycle The reaction is irreversible and extends the 4C oxaloacetate to a 6C moleculeTwo carbon atoms are oxidized to CO2 the energy from these reactions is transferred to other metabolic processes through GTP or ATP and as electrons in NADH and QH2 The NADH generated in the citric acid cycle may later be oxidized donate its electrons to drive ATP synthesis in a type of process called oxidative phosphorylation 6 FADH2 is covalently attached to succinate dehydrogenase an enzyme which functions both in the citric acid cycle and the mitochondrial electron transport chain in oxidative phosphorylation FADH2 therefore facilitates transfer of electrons to coenzyme Q which is the final electron acceptor of the reaction catalyzed by the succinate ubiquinone oxidoreductase complex also acting as an intermediate in the electron transport chain 15 Mitochondria in animals including humans possess two succinyl CoA synthetases one that produces GTP from GDP and another that produces ATP from ADP 16 Plants have the type that produces ATP ADP forming succinyl CoA synthetase 14 Several of the enzymes in the cycle may be loosely associated in a multienzyme protein complex within the mitochondrial matrix 17 The GTP that is formed by GDP forming succinyl CoA synthetase may be utilized by nucleoside diphosphate kinase to form ATP the catalyzed reaction is GTP ADP GDP ATP 15 Products editProducts of the first turn of the cycle are one GTP or ATP three NADH one FADH2 and two CO2 Because two acetyl CoA molecules are produced from each glucose molecule two cycles are required per glucose molecule Therefore at the end of two cycles the products are two GTP six NADH two FADH2 and four CO2 18 Description Reactants ProductsThe sum of all reactions in the citric acid cycle is Acetyl CoA 3 NAD FAD GDP Pi 2 H2O CoA SH 3 NADH FADH2 3 H GTP 2 CO2Combining the reactions occurring during the pyruvate oxidation with those occurring during the citric acid cycle the following overall pyruvate oxidation reaction is obtained Pyruvate ion 4 NAD FAD GDP Pi 2 H2O 4 NADH FADH2 4 H GTP 3 CO2Combining the above reaction with the ones occurring in the course of glycolysis the following overall glucose oxidation reaction excluding reactions in the respiratory chain is obtained Glucose 10 NAD 2 FAD 2 ADP 2 GDP 4 Pi 2 H2O 10 NADH 2 FADH2 10 H 2 ATP 2 GTP 6 CO2The above reactions are balanced if Pi represents the H2PO4 ion ADP and GDP the ADP2 and GDP2 ions respectively and ATP and GTP the ATP3 and GTP3 ions respectively The total number of ATP molecules obtained after complete oxidation of one glucose in glycolysis citric acid cycle and oxidative phosphorylation is estimated to be between 30 and 38 19 Efficiency editThe theoretical maximum yield of ATP through oxidation of one molecule of glucose in glycolysis citric acid cycle and oxidative phosphorylation is 38 assuming 3 molar equivalents of ATP per equivalent NADH and 2 ATP per FADH2 In eukaryotes two equivalents of NADH and two equivalents of ATP are generated in glycolysis which takes place in the cytoplasm If transported using the glycerol phosphate shuttle rather than the malate aspartate shuttle transport of two of these equivalents of NADH into the mitochondria effectively consumes two equivalents of ATP thus reducing the net production of ATP to 36 Furthermore inefficiencies in oxidative phosphorylation due to leakage of protons across the mitochondrial membrane and slippage of the ATP synthase proton pump commonly reduces the ATP yield from NADH and FADH2 to less than the theoretical maximum yield 19 The observed yields are therefore closer to 2 5 ATP per NADH and 1 5 ATP per FADH2 further reducing the total net production of ATP to approximately 30 20 An assessment of the total ATP yield with newly revised proton to ATP ratios provides an estimate of 29 85 ATP per glucose molecule 21 Variation editWhile the citric acid cycle is in general highly conserved there is significant variability in the enzymes found in different taxa 22 note that the diagrams on this page are specific to the mammalian pathway variant Some differences exist between eukaryotes and prokaryotes The conversion of D threo isocitrate to 2 oxoglutarate is catalyzed in eukaryotes by the NAD dependent EC 1 1 1 41 while prokaryotes employ the NADP dependent EC 1 1 1 42 23 Similarly the conversion of S malate to oxaloacetate is catalyzed in eukaryotes by the NAD dependent EC 1 1 1 37 while most prokaryotes utilize a quinone dependent enzyme EC 1 1 5 4 24 A step with significant variability is the conversion of succinyl CoA to succinate Most organisms utilize EC 6 2 1 5 succinate CoA ligase ADP forming despite its name the enzyme operates in the pathway in the direction of ATP formation In mammals a GTP forming enzyme succinate CoA ligase GDP forming EC 6 2 1 4 also operates The level of utilization of each isoform is tissue dependent 25 In some acetate producing bacteria such as Acetobacter aceti an entirely different enzyme catalyzes this conversion EC 2 8 3 18 succinyl CoA acetate CoA transferase This specialized enzyme links the TCA cycle with acetate metabolism in these organisms 26 Some bacteria such as Helicobacter pylori employ yet another enzyme for this conversion succinyl CoA acetoacetate CoA transferase EC 2 8 3 5 27 Some variability also exists at the previous step the conversion of 2 oxoglutarate to succinyl CoA While most organisms utilize the ubiquitous NAD dependent 2 oxoglutarate dehydrogenase some bacteria utilize a ferredoxin dependent 2 oxoglutarate synthase EC 1 2 7 3 28 Other organisms including obligately autotrophic and methanotrophic bacteria and archaea bypass succinyl CoA entirely and convert 2 oxoglutarate to succinate via succinate semialdehyde using EC 4 1 1 71 2 oxoglutarate decarboxylase and EC 1 2 1 79 succinate semialdehyde dehydrogenase 29 In cancer there are substantial metabolic derangements that occur to ensure the proliferation of tumor cells and consequently metabolites can accumulate which serve to facilitate tumorigenesis dubbed oncometabolites 30 Among the best characterized oncometabolites is 2 hydroxyglutarate which is produced through a heterozygous gain of function mutation specifically a neomorphic one in isocitrate dehydrogenase IDH which under normal circumstances catalyzes the oxidation of isocitrate to oxalosuccinate which then spontaneously decarboxylates to alpha ketoglutarate as discussed above in this case an additional reduction step occurs after the formation of alpha ketoglutarate via NADPH to yield 2 hydroxyglutarate and hence IDH is considered an oncogene Under physiological conditions 2 hydroxyglutarate is a minor product of several metabolic pathways as an error but readily converted to alpha ketoglutarate via hydroxyglutarate dehydrogenase enzymes L2HGDH and D2HGDH 31 but does not have a known physiologic role in mammalian cells of note in cancer 2 hydroxyglutarate is likely a terminal metabolite as isotope labelling experiments of colorectal cancer cell lines show that its conversion back to alpha ketoglutarate is too low to measure 32 In cancer 2 hydroxyglutarate serves as a competitive inhibitor for a number of enzymes that facilitate reactions via alpha ketoglutarate in alpha ketoglutarate dependent dioxygenases This mutation results in several important changes to the metabolism of the cell For one thing because there is an extra NADPH catalyzed reduction this can contribute to depletion of cellular stores of NADPH and also reduce levels of alpha ketoglutarate available to the cell In particular the depletion of NADPH is problematic because NADPH is highly compartmentalized and cannot freely diffuse between the organelles in the cell It is produced largely via the pentose phosphate pathway in the cytoplasm The depletion of NADPH results in increased oxidative stress within the cell as it is a required cofactor in the production of GSH and this oxidative stress can result in DNA damage There are also changes on the genetic and epigenetic level through the function of histone lysine demethylases KDMs and ten eleven translocation TET enzymes ordinarily TETs hydroxylate 5 methylcytosines to prime them for demethylation However in the absence of alpha ketoglutarate this cannot be done and there is hence hypermethylation of the cell s DNA serving to promote epithelial mesenchymal transition EMT and inhibit cellular differentiation A similar phenomenon is observed for the Jumonji C family of KDMs which require a hydroxylation to perform demethylation at the epsilon amino methyl group 33 Additionally the inability of prolyl hydroxylases to catalyze reactions results in stabilization of hypoxia inducible factor alpha which is necessary to promote degradation of the latter as under conditions of low oxygen there will not be adequate substrate for hydroxylation This results in a pseudohypoxic phenotype in the cancer cell that promotes angiogenesis metabolic reprogramming cell growth and migration citation needed Regulation editAllosteric regulation by metabolites The regulation of the citric acid cycle is largely determined by product inhibition and substrate availability If the cycle were permitted to run unchecked large amounts of metabolic energy could be wasted in overproduction of reduced coenzyme such as NADH and ATP The major eventual substrate of the cycle is ADP which gets converted to ATP A reduced amount of ADP causes accumulation of precursor NADH which in turn can inhibit a number of enzymes NADH a product of all dehydrogenases in the citric acid cycle with the exception of succinate dehydrogenase inhibits pyruvate dehydrogenase isocitrate dehydrogenase a ketoglutarate dehydrogenase and also citrate synthase Acetyl coA inhibits pyruvate dehydrogenase while succinyl CoA inhibits alpha ketoglutarate dehydrogenase and citrate synthase When tested in vitro with TCA enzymes ATP inhibits citrate synthase and a ketoglutarate dehydrogenase however ATP levels do not change more than 10 in vivo between rest and vigorous exercise There is no known allosteric mechanism that can account for large changes in reaction rate from an allosteric effector whose concentration changes less than 10 6 Citrate is used for feedback inhibition as it inhibits phosphofructokinase an enzyme involved in glycolysis that catalyses formation of fructose 1 6 bisphosphate a precursor of pyruvate This prevents a constant high rate of flux when there is an accumulation of citrate and a decrease in substrate for the enzyme 34 Regulation by calcium Calcium is also used as a regulator in the citric acid cycle Calcium levels in the mitochondrial matrix can reach up to the tens of micromolar levels during cellular activation 35 It activates pyruvate dehydrogenase phosphatase which in turn activates the pyruvate dehydrogenase complex Calcium also activates isocitrate dehydrogenase and a ketoglutarate dehydrogenase 36 This increases the reaction rate of many of the steps in the cycle and therefore increases flux throughout the pathway citation needed Transcriptional regulation Recent work has demonstrated an important link between intermediates of the citric acid cycle and the regulation of hypoxia inducible factors HIF HIF plays a role in the regulation of oxygen homeostasis and is a transcription factor that targets angiogenesis vascular remodeling glucose utilization iron transport and apoptosis HIF is synthesized constitutively and hydroxylation of at least one of two critical proline residues mediates their interaction with the von Hippel Lindau E3 ubiquitin ligase complex which targets them for rapid degradation This reaction is catalysed by prolyl 4 hydroxylases Fumarate and succinate have been identified as potent inhibitors of prolyl hydroxylases thus leading to the stabilisation of HIF 37 Major metabolic pathways converging on the citric acid cycle editSeveral catabolic pathways converge on the citric acid cycle Most of these reactions add intermediates to the citric acid cycle and are therefore known as anaplerotic reactions from the Greek meaning to fill up These increase the amount of acetyl CoA that the cycle is able to carry increasing the mitochondrion s capability to carry out respiration if this is otherwise a limiting factor Processes that remove intermediates from the cycle are termed cataplerotic reactions 38 In this section and in the next the citric acid cycle intermediates are indicated in italics to distinguish them from other substrates and end products Pyruvate molecules produced by glycolysis are actively transported across the inner mitochondrial membrane and into the matrix Here they can be oxidized and combined with coenzyme A to form CO2 acetyl CoA and NADH as in the normal cycle 39 However it is also possible for pyruvate to be carboxylated by pyruvate carboxylase to form oxaloacetate This latter reaction fills up the amount of oxaloacetate in the citric acid cycle and is therefore an anaplerotic reaction increasing the cycle s capacity to metabolize acetyl CoA when the tissue s energy needs e g in muscle are suddenly increased by activity 40 In the citric acid cycle all the intermediates e g citrate iso citrate alpha ketoglutarate succinate fumarate malate and oxaloacetate are regenerated during each turn of the cycle Adding more of any of these intermediates to the mitochondrion therefore means that that additional amount is retained within the cycle increasing all the other intermediates as one is converted into the other Hence the addition of any one of them to the cycle has an anaplerotic effect and its removal has a cataplerotic effect These anaplerotic and cataplerotic reactions will during the course of the cycle increase or decrease the amount of oxaloacetate available to combine with acetyl CoA to form citric acid This in turn increases or decreases the rate of ATP production by the mitochondrion and thus the availability of ATP to the cell 40 Acetyl CoA on the other hand derived from pyruvate oxidation or from the beta oxidation of fatty acids is the only fuel to enter the citric acid cycle With each turn of the cycle one molecule of acetyl CoA is consumed for every molecule of oxaloacetate present in the mitochondrial matrix and is never regenerated It is the oxidation of the acetate portion of acetyl CoA that produces CO2 and water with the energy thus released captured in the form of ATP 40 The three steps of beta oxidation resemble the steps that occur in the production of oxaloacetate from succinate in the TCA cycle Acyl CoA is oxidized to trans Enoyl CoA while FAD is reduced to FADH2 which is similar to the oxidation of succinate to fumarate Following trans Enoyl CoA is hydrated across the double bond to beta hydroxyacyl CoA just like fumarate is hydrated to malate Lastly beta hydroxyacyl CoA is oxidized to beta ketoacyl CoA while NAD is reduced to NADH which follows the same process as the oxidation of malate to oxaloacetate 41 In the liver the carboxylation of cytosolic pyruvate into intra mitochondrial oxaloacetate is an early step in the gluconeogenic pathway which converts lactate and de aminated alanine into glucose 39 40 under the influence of high levels of glucagon and or epinephrine in the blood 40 Here the addition of oxaloacetate to the mitochondrion does not have a net anaplerotic effect as another citric acid cycle intermediate malate is immediately removed from the mitochondrion to be converted into cytosolic oxaloacetate which is ultimately converted into glucose in a process that is almost the reverse of glycolysis 40 In protein catabolism proteins are broken down by proteases into their constituent amino acids Their carbon skeletons i e the de aminated amino acids may either enter the citric acid cycle as intermediates e g alpha ketoglutarate derived from glutamate or glutamine having an anaplerotic effect on the cycle or in the case of leucine isoleucine lysine phenylalanine tryptophan and tyrosine they are converted into acetyl CoA which can be burned to CO2 and water or used to form ketone bodies which too can only be burned in tissues other than the liver where they are formed or excreted via the urine or breath 40 These latter amino acids are therefore termed ketogenic amino acids whereas those that enter the citric acid cycle as intermediates can only be cataplerotically removed by entering the gluconeogenic pathway via malate which is transported out of the mitochondrion to be converted into cytosolic oxaloacetate and ultimately into glucose These are the so called glucogenic amino acids De aminated alanine cysteine glycine serine and threonine are converted to pyruvate and can consequently either enter the citric acid cycle as oxaloacetate an anaplerotic reaction or as acetyl CoA to be disposed of as CO2 and water 40 In fat catabolism triglycerides are hydrolyzed to break them into fatty acids and glycerol In the liver the glycerol can be converted into glucose via dihydroxyacetone phosphate and glyceraldehyde 3 phosphate by way of gluconeogenesis In skeletal muscle glycerol is used in glycolysis by converting glycerol into glycerol 3 phosphate then into dihydroxyacetone phosphate DHAP then into glyceraldehyde 3 phosphate 42 In many tissues especially heart and skeletal muscle tissue fatty acids are broken down through a process known as beta oxidation which results in the production of mitochondrial acetyl CoA which can be used in the citric acid cycle Beta oxidation of fatty acids with an odd number of methylene bridges produces propionyl CoA which is then converted into succinyl CoA and fed into the citric acid cycle as an anaplerotic intermediate 43 The total energy gained from the complete breakdown of one six carbon molecule of glucose by glycolysis the formation of 2 acetyl CoA molecules their catabolism in the citric acid cycle and oxidative phosphorylation equals about 30 ATP molecules in eukaryotes The number of ATP molecules derived from the beta oxidation of a 6 carbon segment of a fatty acid chain and the subsequent oxidation of the resulting 3 molecules of acetyl CoA is 40 citation needed Citric acid cycle intermediates serve as substrates for biosynthetic processes editIn this subheading as in the previous one the TCA intermediates are identified by italics Several of the citric acid cycle intermediates are used for the synthesis of important compounds which will have significant cataplerotic effects on the cycle 40 Acetyl CoA cannot be transported out of the mitochondrion To obtain cytosolic acetyl CoA citrate is removed from the citric acid cycle and carried across the inner mitochondrial membrane into the cytosol There it is cleaved by ATP citrate lyase into acetyl CoA and oxaloacetate The oxaloacetate is returned to mitochondrion as malate and then converted back into oxaloacetate to transfer more acetyl CoA out of the mitochondrion 44 The cytosolic acetyl CoA is used for fatty acid synthesis and the production of cholesterol Cholesterol can in turn be used to synthesize the steroid hormones bile salts and vitamin D 39 40 The carbon skeletons of many non essential amino acids are made from citric acid cycle intermediates To turn them into amino acids the alpha keto acids formed from the citric acid cycle intermediates have to acquire their amino groups from glutamate in a transamination reaction in which pyridoxal phosphate is a cofactor In this reaction the glutamate is converted into alpha ketoglutarate which is a citric acid cycle intermediate The intermediates that can provide the carbon skeletons for amino acid synthesis are oxaloacetate which forms aspartate and asparagine and alpha ketoglutarate which forms glutamine proline and arginine 39 40 Of these amino acids aspartate and glutamine are used together with carbon and nitrogen atoms from other sources to form the purines that are used as the bases in DNA and RNA as well as in ATP AMP GTP NAD FAD and CoA 40 The pyrimidines are partly assembled from aspartate derived from oxaloacetate The pyrimidines thymine cytosine and uracil form the complementary bases to the purine bases in DNA and RNA and are also components of CTP UMP UDP and UTP 40 The majority of the carbon atoms in the porphyrins come from the citric acid cycle intermediate succinyl CoA These molecules are an important component of the hemoproteins such as hemoglobin myoglobin and various cytochromes 40 During gluconeogenesis mitochondrial oxaloacetate is reduced to malate which is then transported out of the mitochondrion to be oxidized back to oxaloacetate in the cytosol Cytosolic oxaloacetate is then decarboxylated to phosphoenolpyruvate by phosphoenolpyruvate carboxykinase which is the rate limiting step in the conversion of nearly all the gluconeogenic precursors such as the glucogenic amino acids and lactate into glucose by the liver and kidney 39 40 Because the citric acid cycle is involved in both catabolic and anabolic processes it is known as an amphibolic pathway Evan M W Duo Click on genes proteins and metabolites below to link to respective articles 1 File nbsp nbsp alt TCACycle WP78 edit TCACycle WP78 edit The interactive pathway map can be edited at WikiPathways TCACycle WP78 Glucose feeds the TCA cycle via circulating lactate editThe metabolic role of lactate is well recognized as a fuel for tissues mitochondrial cytopathies such as DPH Cytopathy and the scientific field of oncology tumors In the classical Cori cycle muscles produce lactate which is then taken up by the liver for gluconeogenesis New studies suggest that lactate can be used as a source of carbon for the TCA cycle 45 Evolution editIt is believed that components of the citric acid cycle were derived from anaerobic bacteria and that the TCA cycle itself may have evolved more than once 46 Theoretically several alternatives to the TCA cycle exist however the TCA cycle appears to be the most efficient If several TCA alternatives had evolved independently they all appear to have converged to the TCA cycle 47 48 See also editCalvin cycle Glyoxylate cycle Reverse reductive Krebs cycle Krebs cycle simple English References edit Lowenstein JM 1969 Methods in Enzymology Volume 13 Citric Acid Cycle Boston Academic Press ISBN 978 0 12 181870 8 Kay J Weitzman PD 1987 Krebs citric acid cycle half a century and still turning London Biochemical Society pp 25 ISBN 978 0 904498 22 6 Wagner A 2014 Arrival of the Fittest First ed PenguinYork p 100 ISBN 9781591846468 Lane N 2009 Life Ascending The Ten Great Inventions of Evolution New York W W Norton amp Co ISBN 978 0 393 06596 1 Chinopoulos C August 2013 Which way does the citric acid cycle turn during hypoxia The critical role of a ketoglutarate dehydrogenase complex PDF Journal of Neuroscience Research 91 8 1030 43 doi 10 1002 jnr 23196 PMID 23378250 a b c Voet D Voet JG 2004 Biochemistry 3rd ed New York John Wiley amp Sons Inc p 615 Lieberman M 2013 Marks basic medical biochemistry a clinical approach Marks Allan D Peet Alisa Fourth ed Philadelphia Wolters Kluwer Health Lippincott Williams amp Wilkins ISBN 9781608315727 OCLC 769803483 The Nobel Prize in Physiology or Medicine 1937 The Nobel Foundation Retrieved 2011 10 26 Chandramana Sudeep 2014 Inclusive Growth And Youth Empowerment A Development Model For Aspirational India Journal of Science Technology and Management 7 52 62 Krebs HA Johnson WA April 1937 Metabolism of ketonic acids in animal tissues The Biochemical Journal 31 4 645 60 doi 10 1042 bj0310645 PMC 1266984 PMID 16746382 The Nobel Prize in Physiology or Medicine 1953 The Nobel Foundation Retrieved 2011 10 26 Wolfe RR Jahoor F February 1990 Recovery of labeled CO2 during the infusion of C 1 vs C 2 labeled acetate implications for tracer studies of substrate oxidation The American Journal of Clinical Nutrition 51 2 248 52 doi 10 1093 ajcn 51 2 248 PMID 2106256 Berg JM Tymoczko JL Stryer L 2002 The Citric Acid Cycle Biochemistry 5th ed W H Freeman ISBN 0 7167 3051 0 a b Jones RC Buchanan BB Gruissem W 2000 Biochemistry amp molecular biology of plants 1st ed Rockville Md American Society of Plant Physiologists ISBN 978 0 943088 39 6 a b c d Stryer L Berg J Tymoczko JL 2002 Biochemistry San Francisco W H Freeman ISBN 978 0 7167 4684 3 Johnson JD Mehus JG Tews K Milavetz BI Lambeth DO October 1998 Genetic evidence for the expression of ATP and GTP specific succinyl CoA synthetases in multicellular eucaryotes The Journal of Biological Chemistry 273 42 27580 6 doi 10 1074 jbc 273 42 27580 PMID 9765291 Barnes SJ Weitzman PD June 1986 Organization of citric acid cycle enzymes into a multienzyme cluster FEBS Letters 201 2 267 70 doi 10 1016 0014 5793 86 80621 4 PMID 3086126 S2CID 43052163 The citric acid cycle Khan Academy Retrieved 10 August 2021 a b Porter RK Brand MD September 1995 Mitochondrial proton conductance and H O ratio are independent of electron transport rate in isolated hepatocytes The Biochemical Journal 310 2 379 82 doi 10 1042 bj3100379 PMC 1135905 PMID 7654171 Stryer L Berg JM Tymoczko JL 2002 Section 18 6 The Regulation of Cellular Respiration Is Governed Primarily by the Need for ATP Biochemistry San Francisco W H Freeman ISBN 978 0 7167 4684 3 Rich PR December 2003 The molecular machinery of Keilin s respiratory chain Biochemical Society Transactions 31 Pt 6 1095 105 doi 10 1042 BST0311095 PMID 14641005 S2CID 32361233 Citric acid cycle variants at MetaCyc Sahara T Takada Y Takeuchi Y Yamaoka N Fukunaga N March 2002 Cloning sequencing and expression of a gene encoding the monomeric isocitrate dehydrogenase of the nitrogen fixing bacterium Azotobacter vinelandii Bioscience Biotechnology and Biochemistry 66 3 489 500 doi 10 1271 bbb 66 489 PMID 12005040 S2CID 12950388 van der Rest ME Frank C Molenaar D December 2000 Functions of the membrane associated and cytoplasmic malate dehydrogenases in the citric acid cycle of Escherichia coli Journal of Bacteriology 182 24 6892 9 doi 10 1128 jb 182 24 6892 6899 2000 PMC 94812 PMID 11092847 Lambeth DO Tews KN Adkins S Frohlich D Milavetz BI August 2004 Expression of two succinyl CoA synthetases with different nucleotide specificities in mammalian tissues The Journal of Biological Chemistry 279 35 36621 4 doi 10 1074 jbc M406884200 PMID 15234968 Mullins EA Francois JA Kappock TJ July 2008 A specialized citric acid cycle requiring succinyl coenzyme A CoA acetate CoA transferase AarC confers acetic acid resistance on the acidophile Acetobacter aceti Journal of Bacteriology 190 14 4933 40 doi 10 1128 JB 00405 08 PMC 2447011 PMID 18502856 Corthesy Theulaz IE Bergonzelli GE Henry H Bachmann D Schorderet DF Blum AL Ornston LN October 1997 Cloning and characterization of Helicobacter pylori succinyl CoA acetoacetate CoA transferase a novel prokaryotic member of the CoA transferase family The Journal of Biological Chemistry 272 41 25659 67 doi 10 1074 jbc 272 41 25659 PMID 9325289 Baughn AD Garforth SJ Vilcheze C Jacobs WR November 2009 An anaerobic type alpha ketoglutarate ferredoxin oxidoreductase completes the oxidative tricarboxylic acid cycle of Mycobacterium tuberculosis PLOS Pathogens 5 11 e1000662 doi 10 1371 journal ppat 1000662 PMC 2773412 PMID 19936047 Zhang S Bryant DA December 2011 The tricarboxylic acid cycle in cyanobacteria Science 334 6062 1551 3 Bibcode 2011Sci 334 1551Z doi 10 1126 science 1210858 PMID 22174252 S2CID 206536295 Dang L Su SM June 2017 Isocitrate Dehydrogenase Mutation and R 2 Hydroxyglutarate From Basic Discovery to Therapeutics Development Annual Review of Biochemistry 86 1 305 331 doi 10 1146 annurev biochem 061516 044732 PMID 28375741 Yong C Stewart GD Frezza C March 2020 Oncometabolites in renal cancer Nature Reviews Nephrology 16 3 156 172 doi 10 1038 s41581 019 0210 z PMC 7030949 PMID 31636445 Gelman SJ Mahieu NG Cho K Llufrio EM Wencewicz TA Patti GJ December 2015 Evidence that 2 hydroxyglutarate is not readily metabolized in colorectal carcinoma cells Cancer amp Metabolism 3 1 13 doi 10 1186 s40170 015 0139 z PMC 4665876 PMID 26629338 Rotili D Mai A June 2011 Targeting Histone Demethylases A New Avenue for the Fight against Cancer Genes amp Cancer 2 6 663 79 doi 10 1177 1947601911417976 PMC 3174264 PMID 21941621 Nelson David L Cox Michael M Hoskins Aaron A Lehninger Albert L 2021 Lehninger principles of biochemistry Eighth ed New York NY Macmillan International Higher Education ISBN 978 1 319 22800 2 Ivannikov MV Macleod GT June 2013 Mitochondrial free Ca levels and their effects on energy metabolism in Drosophila motor nerve terminals Biophysical Journal 104 11 2353 61 Bibcode 2013BpJ 104 2353I doi 10 1016 j bpj 2013 03 064 PMC 3672877 PMID 23746507 Denton RM Randle PJ Bridges BJ Cooper RH Kerbey AL Pask HT et al October 1975 Regulation of mammalian pyruvate dehydrogenase Molecular and Cellular Biochemistry 9 1 27 53 doi 10 1007 BF01731731 PMID 171557 S2CID 27367543 Koivunen P Hirsila M Remes AM Hassinen IE Kivirikko KI Myllyharju J February 2007 Inhibition of hypoxia inducible factor HIF hydroxylases by citric acid cycle intermediates possible links between cell metabolism and stabilization of HIF The Journal of Biological Chemistry 282 7 4524 32 doi 10 1074 jbc M610415200 PMID 17182618 Owen OE Kalhan SC Hanson RW 2002 The Key Role of Anaplerosis and Cataplerosis for Citric Acid Cycle Function Journal of Biological Chemistry 277 34 30409 30412 doi 10 1074 jbc r200006200 PMID 12087111 a b c d e Voet D Voet JG Pratt CW 2006 Fundamentals of Biochemistr 2nd ed John Wiley and Sons Inc pp 547 556 ISBN 978 0 471 21495 3 a b c d e f g h i j k l m n o Stryer L 1995 Citric acid cycle Biochemistry Fourth ed New York W H Freeman and Company pp 509 527 569 579 614 616 638 641 732 735 739 748 770 773 ISBN 978 0 7167 2009 6 Garrett RH Grisham CM 2013 Biochemistry 5th ed Belmont CA Brooks Cole Cengage Learning pp 623 625 771 773 ISBN 9781133106296 OCLC 777722371 van Hall G Sacchetti M Radegran G Saltin B September 2002 Human skeletal muscle fatty acid and glycerol metabolism during rest exercise and recovery The Journal of Physiology 543 Pt 3 1047 1058 doi 10 1113 jphysiol 2002 023796 PMC 2290548 PMID 12231658 Halarnkar PP Blomquist GJ 1989 Comparative aspects of propionate metabolism Comparative Biochemistry and Physiology B Comparative Biochemistry 92 2 227 31 doi 10 1016 0305 0491 89 90270 8 PMID 2647392 Ferre P Foufelle F 2007 SREBP 1c transcription factor and lipid homeostasis clinical perspective Hormone Research 68 2 72 82 doi 10 1159 000100426 PMID 17344645 this process is outlined graphically in page 73 Hui S Ghergurovich JM Morscher RJ Jang C Teng X Lu W et al November 2017 Glucose feeds the TCA cycle via circulating lactate Nature 551 7678 115 118 Bibcode 2017Natur 551 115H doi 10 1038 nature24057 PMC 5898814 PMID 29045397 Gest H 1987 Evolutionary roots of the citric acid cycle in prokaryotes Biochemical Society Symposium 54 3 16 PMID 3332996 Melendez Hevia E Waddell TG Cascante M September 1996 The puzzle of the Krebs citric acid cycle assembling the pieces of chemically feasible reactions and opportunism in the design of metabolic pathways during evolution PDF Journal of Molecular Evolution 43 3 293 303 Bibcode 1996JMolE 43 293M doi 10 1007 BF02338838 PMID 8703096 S2CID 19107073 Archived PDF from the original on 2017 08 12 Ebenhoh O Heinrich R January 2001 Evolutionary optimization of metabolic pathways Theoretical reconstruction of the stoichiometry of ATP and NADH producing systems PDF Bulletin of Mathematical Biology 63 1 21 55 doi 10 1006 bulm 2000 0197 PMID 11146883 S2CID 44260374 Archived PDF from the original on 2003 05 08 External links edit nbsp Scholia has a profile for TCA cycle aka Krebs or citric acid cycle Q27436670 An animation of the citric acid cycle at Smith College Citric acid cycle variants at MetaCyc Pathways connected to the citric acid cycle Archived 2008 10 26 at the Wayback Machine at Kyoto Encyclopedia of Genes and Genomes metpath Interactive representation of the citric acid cycle Retrieved from https en wikipedia org w index php title Citric acid cycle amp oldid 1192310750, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.