fbpx
Wikipedia

Adenosine diphosphate

Adenosine diphosphate (ADP), also known as adenosine pyrophosphate (APP), is an important organic compound in metabolism and is essential to the flow of energy in living cells. ADP consists of three important structural components: a sugar backbone attached to adenine and two phosphate groups bonded to the 5 carbon atom of ribose. The diphosphate group of ADP is attached to the 5’ carbon of the sugar backbone, while the adenine attaches to the 1’ carbon.[1]

Adenosine diphosphate
Names
IUPAC name
Adenosine 5′-(trihydrogen diphosphate)
Systematic IUPAC name
[(2R,3S,4R,5R)-5-(6-Amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl trihydrogen diphosphate
Other names
Adenosine 5′-diphosphate; Adenosine 5′-pyrophosphate; Adenosine pyrophosphate
Identifiers
  • 58-64-0 Y
3D model (JSmol)
  • Interactive image
  • Interactive image
ChEBI
  • CHEBI:16761 Y
ChEMBL
  • ChEMBL14830 Y
ChemSpider
  • 5800 Y
DrugBank
  • DB03431 N
ECHA InfoCard 100.000.356
EC Number
  • 218-249-0
  • 1712
KEGG
  • C00008 N
  • 6022
RTECS number
  • AU7467000
UNII
  • 61D2G4IYVH Y
  • DTXSID60883210
  • InChI=1S/C10H15N5O10P2/c11-8-5-9(13-2-12-8)15(3-14-5)10-7(17)6(16)4(24-10)1-23-27(21,22)25-26(18,19)20/h2-4,6-7,10,16-17H,1H2,(H,21,22)(H2,11,12,13)(H2,18,19,20)/t4-,6-,7-,10-/m1/s1 Y
    Key: XTWYTFMLZFPYCI-KQYNXXCUSA-N Y
  • InChI=1/C10H15N5O10P2/c11-8-5-9(13-2-12-8)15(3-14-5)10-7(17)6(16)4(24-10)1-23-27(21,22)25-26(18,19)20/h2-4,6-7,10,16-17H,1H2,(H,21,22)(H2,11,12,13)(H2,18,19,20)/t4-,6-,7-,10-/m1/s1
    Key: XTWYTFMLZFPYCI-KQYNXXCUBP
  • O=P(O)(O)OP(=O)(O)OC[C@H]3O[C@@H](n2cnc1c(ncnc12)N)[C@H](O)[C@@H]3O
  • c1nc(c2c(n1)n(cn2)[C@H]3[C@@H]([C@@H]([C@H](O3)COP(=O)(O)OP(=O)(O)O)O)O)N
Properties
C10H15N5O10P2
Molar mass 427.201 g/mol
Density 2.49 g/mL
log P -2.640
Hazards
Safety data sheet (SDS) MSDS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YN ?)

ADP can be interconverted to adenosine triphosphate (ATP) and adenosine monophosphate (AMP). ATP contains one more phosphate group than does ADP. AMP contains one fewer phosphate group. Energy transfer used by all living things is a result of dephosphorylation of ATP by enzymes known as ATPases. The cleavage of a phosphate group from ATP results in the coupling of energy to metabolic reactions and a by-product of ADP.[1] ATP is continually reformed from lower-energy species ADP and AMP. The biosynthesis of ATP is achieved throughout processes such as substrate-level phosphorylation, oxidative phosphorylation, and photophosphorylation, all of which facilitate the addition of a phosphate group to ADP.

Bioenergetics edit

ADP cycling supplies the energy needed to do work in a biological system, the thermodynamic process of transferring energy from one source to another. There are two types of energy: potential energy and kinetic energy. Potential energy can be thought of as stored energy, or usable energy that is available to do work. Kinetic energy is the energy of an object as a result of its motion. The significance of ATP is in its ability to store potential energy within the phosphate bonds. The energy stored between these bonds can then be transferred to do work. For example, the transfer of energy from ATP to the protein myosin causes a conformational change when connecting to actin during muscle contraction.[1]

 
The cycle of synthesis and degradation of ATP; 1 and 2 represent output and input of energy, respectively.

It takes multiple reactions between myosin and actin to effectively produce one muscle contraction, and, therefore, the availability of large amounts of ATP is required to produce each muscle contraction. For this reason, biological processes have evolved to produce efficient ways to replenish the potential energy of ATP from ADP.[2]

Breaking one of ATP's phosphorus bonds generates approximately 30.5 kilojoules per mole of ATP (7.3 kcal).[3] ADP can be converted, or powered back to ATP through the process of releasing the chemical energy available in food; in humans, this is constantly performed via aerobic respiration in the mitochondria.[2] Plants use photosynthetic pathways to convert and store energy from sunlight, also conversion of ADP to ATP.[3] Animals use the energy released in the breakdown of glucose and other molecules to convert ADP to ATP, which can then be used to fuel necessary growth and cell maintenance.[2]

Cellular respiration edit

Catabolism edit

The ten-step catabolic pathway of glycolysis is the initial phase of free-energy release in the breakdown of glucose and can be split into two phases, the preparatory phase and payoff phase. ADP and phosphate are needed as precursors to synthesize ATP in the payoff reactions of the TCA cycle and oxidative phosphorylation mechanism.[4] During the payoff phase of glycolysis, the enzymes phosphoglycerate kinase and pyruvate kinase facilitate the addition of a phosphate group to ADP by way of substrate-level phosphorylation.[5]

 
Glycolysis overview

Glycolysis edit

Glycolysis is performed by all living organisms and consists of 10 steps. The net reaction for the overall process of glycolysis is:[6]

Glucose + 2 NAD+ + 2 Pi + 2 ADP → 2 pyruvate + 2 ATP + 2 NADH + 2 H2O

Steps 1 and 3 require the input of energy derived from the hydrolysis of ATP to ADP and Pi (inorganic phosphate), whereas steps 7 and 10 require the input of ADP, each yielding ATP.[7] The enzymes necessary to break down glucose are found in the cytoplasm, the viscous fluid that fills living cells, where the glycolytic reactions take place.[1]

Citric acid cycle edit

The citric acid cycle, also known as the Krebs cycle or the TCA (tricarboxylic acid) cycle is an 8-step process that takes the pyruvate generated by glycolysis and generates 4 NADH, FADH2, and GTP, which is further converted to ATP.[8] It is only in step 5, where GTP is generated, by succinyl-CoA synthetase, and then converted to ATP, that ADP is used (GTP + ADP → GDP + ATP).[9]

Oxidative phosphorylation edit

Oxidative phosphorylation produces 26 of the 30 equivalents of ATP generated in cellular respiration by transferring electrons from NADH or FADH2 to O2 through electron carriers.[10] The energy released when electrons are passed from higher-energy NADH or FADH2 to the lower-energy O2 is required to phosphorylate ADP and once again generate ATP.[11] It is this energy coupling and phosphorylation of ADP to ATP that gives the electron transport chain the name oxidative phosphorylation.[1]

 
ATP-Synthase

Mitochondrial ATP synthase complex edit

During the initial phases of glycolysis and the TCA cycle, cofactors such as NAD+ donate and accept electrons[12] that aid in the electron transport chain's ability to produce a proton gradient across the inner mitochondrial membrane.[13] The ATP synthase complex exists within the mitochondrial membrane (FO portion) and protrudes into the matrix (F1 portion). The energy derived as a result of the chemical gradient is then used to synthesize ATP by coupling the reaction of inorganic phosphate to ADP in the active site of the ATP synthase enzyme; the equation for this can be written as ADP + Pi → ATP.[citation needed]

Blood platelet activation edit

Under normal conditions, small disk-shape platelets circulate in the blood freely and without interaction with one another. ADP is stored in dense bodies inside blood platelets and is released upon platelet activation. ADP interacts with a family of ADP receptors found on platelets (P2Y1, P2Y12, and P2X1), which leads to platelet activation.[14]

  • P2Y1 receptors initiate platelet aggregation and shape change as a result of interactions with ADP.
  • P2Y12 receptors further amplify the response to ADP and draw forth the completion of aggregation.

ADP in the blood is converted to adenosine by the action of ecto-ADPases, inhibiting further platelet activation via adenosine receptors.[citation needed]

See also edit

References edit

  1. ^ a b c d e Cox, Michael; Nelson, David R.; Lehninger, Albert L (2008). Lehninger principles of biochemistry. San Francisco: W.H. Freeman. ISBN 978-0-7167-7108-1.
  2. ^ a b c Nave, C.R. (2005). "Adenosine Triphosphate". Hyper Physics [serial on the Internet]. Georgia State University.
  3. ^ a b Farabee, M.J. (2002). . ATP and Biological Energy [serial on the Internet]. Archived from the original on 2007-12-01.
  4. ^ Jensen TE, Richter EA (March 2012). "Regulation of glucose and glycogen metabolism during and after exercise". J. Physiol. 590 (Pt 5): 1069–76. doi:10.1113/jphysiol.2011.224972. PMC 3381815. PMID 22199166.
  5. ^ Liapounova NA, Hampl V, Gordon PM, Sensen CW, Gedamu L, Dacks JB (December 2006). "Reconstructing the mosaic glycolytic pathway of the anaerobic eukaryote Monocercomonoides". Eukaryotic Cell. 5 (12): 2138–46. doi:10.1128/EC.00258-06. PMC 1694820. PMID 17071828.
  6. ^ Medh, J.D. "Glycolysis" (PDF). CSUN.Edu. Archived (PDF) from the original on 2022-10-09. Retrieved 3 April 2013.
  7. ^ Bailey, Regina. . Archived from the original on 2013-05-15. Retrieved 2013-05-10.
  8. ^ (PDF). Takusagawa’s Note. Archived from the original (PDF) on 24 March 2012. Retrieved 4 April 2013.
  9. ^ (PDF). UCCS.edu. Archived from the original (PDF) on 2013-02-28.
  10. ^ "Oxidative phosphorylation". W H Freeman, 2002. Retrieved 4 April 2013.
  11. ^ Medh, J. D. "Electron Transport Chain (Overview)" (PDF). CSUN.edu. Archived (PDF) from the original on 2022-10-09. Retrieved 4 April 2013.
  12. ^ Belenky P, Bogan KL, Brenner C (January 2007). "NAD+ metabolism in health and disease". Trends Biochem. Sci. 32 (1): 12–9. doi:10.1016/j.tibs.2006.11.006. PMID 17161604.
  13. ^ Murray, Robert F. (2003). Harper's illustrated biochemistry. New York: McGraw-Hill. ISBN 0-07-121766-5.
  14. ^ Murugappa S, Kunapuli SP (2006). "The role of ADP receptors in platelet function". Front. Biosci. 11: 1977–86. doi:10.2741/1939. PMID 16368572.

adenosine, diphosphate, also, known, adenosine, pyrophosphate, important, organic, compound, metabolism, essential, flow, energy, living, cells, consists, three, important, structural, components, sugar, backbone, attached, adenine, phosphate, groups, bonded, . Adenosine diphosphate ADP also known as adenosine pyrophosphate APP is an important organic compound in metabolism and is essential to the flow of energy in living cells ADP consists of three important structural components a sugar backbone attached to adenine and two phosphate groups bonded to the 5 carbon atom of ribose The diphosphate group of ADP is attached to the 5 carbon of the sugar backbone while the adenine attaches to the 1 carbon 1 Adenosine diphosphate NamesIUPAC name Adenosine 5 trihydrogen diphosphate Systematic IUPAC name 2R 3S 4R 5R 5 6 Amino 9H purin 9 yl 3 4 dihydroxyoxolan 2 yl methyl trihydrogen diphosphateOther names Adenosine 5 diphosphate Adenosine 5 pyrophosphate Adenosine pyrophosphateIdentifiersCAS Number 58 64 0 Y3D model JSmol Interactive imageInteractive imageChEBI CHEBI 16761 YChEMBL ChEMBL14830 YChemSpider 5800 YDrugBank DB03431 NECHA InfoCard 100 000 356EC Number 218 249 0IUPHAR BPS 1712KEGG C00008 NPubChem CID 6022RTECS number AU7467000UNII 61D2G4IYVH YCompTox Dashboard EPA DTXSID60883210InChI InChI 1S C10H15N5O10P2 c11 8 5 9 13 2 12 8 15 3 14 5 10 7 17 6 16 4 24 10 1 23 27 21 22 25 26 18 19 20 h2 4 6 7 10 16 17H 1H2 H 21 22 H2 11 12 13 H2 18 19 20 t4 6 7 10 m1 s1 YKey XTWYTFMLZFPYCI KQYNXXCUSA N YInChI 1 C10H15N5O10P2 c11 8 5 9 13 2 12 8 15 3 14 5 10 7 17 6 16 4 24 10 1 23 27 21 22 25 26 18 19 20 h2 4 6 7 10 16 17H 1H2 H 21 22 H2 11 12 13 H2 18 19 20 t4 6 7 10 m1 s1Key XTWYTFMLZFPYCI KQYNXXCUBPSMILES O P O O OP O O OC C H 3O C H n2cnc1c ncnc12 N C H O C H 3Oc1nc c2c n1 n cn2 C H 3 C H C H C H O3 COP O O OP O O O O O NPropertiesChemical formula C 10H 15N 5O 10P 2Molar mass 427 201 g molDensity 2 49 g mLlog P 2 640HazardsSafety data sheet SDS MSDSExcept where otherwise noted data are given for materials in their standard state at 25 C 77 F 100 kPa N verify what is Y N Infobox references ADP can be interconverted to adenosine triphosphate ATP and adenosine monophosphate AMP ATP contains one more phosphate group than does ADP AMP contains one fewer phosphate group Energy transfer used by all living things is a result of dephosphorylation of ATP by enzymes known as ATPases The cleavage of a phosphate group from ATP results in the coupling of energy to metabolic reactions and a by product of ADP 1 ATP is continually reformed from lower energy species ADP and AMP The biosynthesis of ATP is achieved throughout processes such as substrate level phosphorylation oxidative phosphorylation and photophosphorylation all of which facilitate the addition of a phosphate group to ADP Contents 1 Bioenergetics 2 Cellular respiration 2 1 Catabolism 2 2 Glycolysis 2 3 Citric acid cycle 2 4 Oxidative phosphorylation 2 4 1 Mitochondrial ATP synthase complex 3 Blood platelet activation 4 See also 5 ReferencesBioenergetics editADP cycling supplies the energy needed to do work in a biological system the thermodynamic process of transferring energy from one source to another There are two types of energy potential energy and kinetic energy Potential energy can be thought of as stored energy or usable energy that is available to do work Kinetic energy is the energy of an object as a result of its motion The significance of ATP is in its ability to store potential energy within the phosphate bonds The energy stored between these bonds can then be transferred to do work For example the transfer of energy from ATP to the protein myosin causes a conformational change when connecting to actin during muscle contraction 1 nbsp The cycle of synthesis and degradation of ATP 1 and 2 represent output and input of energy respectively It takes multiple reactions between myosin and actin to effectively produce one muscle contraction and therefore the availability of large amounts of ATP is required to produce each muscle contraction For this reason biological processes have evolved to produce efficient ways to replenish the potential energy of ATP from ADP 2 Breaking one of ATP s phosphorus bonds generates approximately 30 5 kilojoules per mole of ATP 7 3 kcal 3 ADP can be converted or powered back to ATP through the process of releasing the chemical energy available in food in humans this is constantly performed via aerobic respiration in the mitochondria 2 Plants use photosynthetic pathways to convert and store energy from sunlight also conversion of ADP to ATP 3 Animals use the energy released in the breakdown of glucose and other molecules to convert ADP to ATP which can then be used to fuel necessary growth and cell maintenance 2 Cellular respiration editCatabolism edit The ten step catabolic pathway of glycolysis is the initial phase of free energy release in the breakdown of glucose and can be split into two phases the preparatory phase and payoff phase ADP and phosphate are needed as precursors to synthesize ATP in the payoff reactions of the TCA cycle and oxidative phosphorylation mechanism 4 During the payoff phase of glycolysis the enzymes phosphoglycerate kinase and pyruvate kinase facilitate the addition of a phosphate group to ADP by way of substrate level phosphorylation 5 nbsp Glycolysis overviewGlycolysis edit Main article glycolysis Glycolysis is performed by all living organisms and consists of 10 steps The net reaction for the overall process of glycolysis is 6 Glucose 2 NAD 2 Pi 2 ADP 2 pyruvate 2 ATP 2 NADH 2 H2OSteps 1 and 3 require the input of energy derived from the hydrolysis of ATP to ADP and Pi inorganic phosphate whereas steps 7 and 10 require the input of ADP each yielding ATP 7 The enzymes necessary to break down glucose are found in the cytoplasm the viscous fluid that fills living cells where the glycolytic reactions take place 1 Citric acid cycle edit Main article citric acid cycle The citric acid cycle also known as the Krebs cycle or the TCA tricarboxylic acid cycle is an 8 step process that takes the pyruvate generated by glycolysis and generates 4 NADH FADH2 and GTP which is further converted to ATP 8 It is only in step 5 where GTP is generated by succinyl CoA synthetase and then converted to ATP that ADP is used GTP ADP GDP ATP 9 Oxidative phosphorylation edit Main article oxidative phosphorylation Oxidative phosphorylation produces 26 of the 30 equivalents of ATP generated in cellular respiration by transferring electrons from NADH or FADH2 to O2 through electron carriers 10 The energy released when electrons are passed from higher energy NADH or FADH2 to the lower energy O2 is required to phosphorylate ADP and once again generate ATP 11 It is this energy coupling and phosphorylation of ADP to ATP that gives the electron transport chain the name oxidative phosphorylation 1 nbsp ATP SynthaseMitochondrial ATP synthase complex edit Main article ATP synthase During the initial phases of glycolysis and the TCA cycle cofactors such as NAD donate and accept electrons 12 that aid in the electron transport chain s ability to produce a proton gradient across the inner mitochondrial membrane 13 The ATP synthase complex exists within the mitochondrial membrane FO portion and protrudes into the matrix F1 portion The energy derived as a result of the chemical gradient is then used to synthesize ATP by coupling the reaction of inorganic phosphate to ADP in the active site of the ATP synthase enzyme the equation for this can be written as ADP Pi ATP citation needed Blood platelet activation editUnder normal conditions small disk shape platelets circulate in the blood freely and without interaction with one another ADP is stored in dense bodies inside blood platelets and is released upon platelet activation ADP interacts with a family of ADP receptors found on platelets P2Y1 P2Y12 and P2X1 which leads to platelet activation 14 P2Y1 receptors initiate platelet aggregation and shape change as a result of interactions with ADP P2Y12 receptors further amplify the response to ADP and draw forth the completion of aggregation ADP in the blood is converted to adenosine by the action of ecto ADPases inhibiting further platelet activation via adenosine receptors citation needed See also editNucleoside Nucleotide DNA RNA Oligonucleotide Apyrase Phosphate Adenosine diphosphate riboseReferences edit a b c d e Cox Michael Nelson David R Lehninger Albert L 2008 Lehninger principles of biochemistry San Francisco W H Freeman ISBN 978 0 7167 7108 1 a b c Nave C R 2005 Adenosine Triphosphate Hyper Physics serial on the Internet Georgia State University a b Farabee M J 2002 The Nature of ATP ATP and Biological Energy serial on the Internet Archived from the original on 2007 12 01 Jensen TE Richter EA March 2012 Regulation of glucose and glycogen metabolism during and after exercise J Physiol 590 Pt 5 1069 76 doi 10 1113 jphysiol 2011 224972 PMC 3381815 PMID 22199166 Liapounova NA Hampl V Gordon PM Sensen CW Gedamu L Dacks JB December 2006 Reconstructing the mosaic glycolytic pathway of the anaerobic eukaryote Monocercomonoides Eukaryotic Cell 5 12 2138 46 doi 10 1128 EC 00258 06 PMC 1694820 PMID 17071828 Medh J D Glycolysis PDF CSUN Edu Archived PDF from the original on 2022 10 09 Retrieved 3 April 2013 Bailey Regina 10 Steps of Glycolysis Archived from the original on 2013 05 15 Retrieved 2013 05 10 Citric Acid Cycle PDF Takusagawa s Note Archived from the original PDF on 24 March 2012 Retrieved 4 April 2013 Biochemistry PDF UCCS edu Archived from the original PDF on 2013 02 28 Oxidative phosphorylation W H Freeman 2002 Retrieved 4 April 2013 Medh J D Electron Transport Chain Overview PDF CSUN edu Archived PDF from the original on 2022 10 09 Retrieved 4 April 2013 Belenky P Bogan KL Brenner C January 2007 NAD metabolism in health and disease Trends Biochem Sci 32 1 12 9 doi 10 1016 j tibs 2006 11 006 PMID 17161604 Murray Robert F 2003 Harper s illustrated biochemistry New York McGraw Hill ISBN 0 07 121766 5 Murugappa S Kunapuli SP 2006 The role of ADP receptors in platelet function Front Biosci 11 1977 86 doi 10 2741 1939 PMID 16368572 Retrieved from https en wikipedia org w index php title Adenosine diphosphate amp oldid 1176961502, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.