fbpx
Wikipedia

Muscle

Muscle is a soft tissue, one of the four basic types of animal tissue. Muscle tissue gives skeletal muscles the ability to contract. Muscle is formed during embryonic development, in a process known as myogenesis. Muscle tissue contains special contractile proteins called actin and myosin which interact to cause movement. Among many other muscle proteins present are two regulatory proteins, troponin and tropomyosin.

Muscle
The body contains three types of muscle tissue: (a) skeletal muscle, (b) smooth muscle, and (c) cardiac muscle. (Same magnification)
A schematic diagram of the different types of muscle cells (same order as above)
Identifiers
MeSHD009132
TA98A04.0.00.000
TA21975
FMA5022 30316, 5022
Anatomical terminology
[edit on Wikidata]

Muscle tissue varies with function and location in the body. In vertebrates the three types are: skeletal or striated; smooth muscle (non-striated) muscle; and cardiac muscle.[1] Skeletal muscle tissue consists of elongated, multinucleate muscle cells called muscle fibers, and is responsible for movements of the body. Other tissues in skeletal muscle include tendons and perimysium.[citation needed] Smooth and cardiac muscle contract involuntarily, without conscious intervention. These muscle types may be activated both through the interaction of the central nervous system as well as by receiving innervation from peripheral plexus or endocrine (hormonal) activation. Striated or skeletal muscle only contracts voluntarily, upon the influence of the central nervous system. Reflexes are a form of non-conscious activation of skeletal muscles, but nonetheless arise through activation of the central nervous system, albeit not engaging cortical structures until after the contraction has occurred.[citation needed]

The different muscle types vary in their response to neurotransmitters and hormones such as acetylcholine, noradrenaline, adrenaline, and nitric oxide depending on muscle type and the exact location of the muscle.[citation needed]

Sub-categorization of muscle tissue is also possible, depending on among other things the content of myoglobin, mitochondria, and myosin ATPase etc.[citation needed]

Etymology edit

The word muscle comes from Latin musculus, diminutive of mus meaning mouse, because the appearance of the flexed biceps resembles the back of a mouse.

The same phenomenon occurred in Greek, in which μῦς, mȳs, means both "mouse" and "muscle".

Structure edit

 
Three distinct types of muscle (L to R): Smooth (non-striated) muscle in internal organs, cardiac or heart muscle, and skeletal muscle.

There are three types of muscle tissue in vertebrates: skeletal, cardiac, and smooth. Skeletal and cardiac muscle are types of striated muscle tissue.[1] Smooth muscle is non-striated.

There are three types of muscle tissue in invertebrates that are based on their pattern of striation: transversely striated, obliquely striated, and smooth muscle. In arthropods there is no smooth muscle. The transversely striated type is the most similar to the skeletal muscle in vertebrates.[2]

Vertebrate skeletal muscle tissue is an elongated striated muscle tissue with the fibres ranging in width from three to eight micrometers and in length from 18 to 200 micrometers. In the uterine wall during pregnancy they enlarge in length from 70 to 500 micrometers.[3] Skeletal striated muscle tissue is arranged in regular, parallel bundles of myofibrils containing the many contractile units known as sarcomeres, which give the tissue its striated (striped) appearance. Skeletal muscle, is voluntary muscle anchored by tendons or sometimes by aponeuroses to bones, and is used to effect skeletal movement such as locomotion and to maintain posture. Postural control is generally maintained as an unconscious reflex, but the muscles responsible can also react to conscious control. An average adult man is made up of 42% of skeletal muscle as a percentage of body mass, and an average adult woman is made up of 36%.[4]

Cardiac muscle tissue, is found only in the walls of the heart as myocardium, and is an involuntary muscle controlled by the autonomic nervous system. Cardiac muscle tissue is striated like skeletal muscle, containing contractile units called sarcomeres in highly regular arrangements of bundles. While skeletal muscles are arranged in regular, parallel bundles, cardiac muscle connects at branching, irregular angles known as intercalated discs.

Smooth muscle tissue is non-striated and involuntary. Smooth muscle is found within the walls of organs and structures such as the esophagus, stomach, intestines, bronchi, uterus, urethra, bladder, blood vessels, and the arrector pili in the skin which controls the erection of body hair.

Comparison of types edit

  smooth muscle cardiac muscle skeletal muscle
Anatomy      
  Neuromuscular junction none present
  Fibers fusiform, short (<0.4 mm) branching cylindrical, long (<15 cm)
  Mitochondria numerous many to few (by type)
  Nuclei 1 1 >1
  Sarcomeres none present, max. length 2.6 µm present, max. length 3.7 µm
  Syncytium none (independent cells) none (but functional as such) present
  Sarcoplasmic reticulum little elaborated moderately elaborated highly elaborated
ATPase little moderate abundant
Physiology      
  Self-regulation spontaneous action (slow) yes (rapid) none (requires nerve stimulus)
  Response to stimulus unresponsive "all-or-nothing" "all-or-nothing"
  Action potential yes yes yes
  Workspace Force/length curve is variable the increase in the force/length curve at the peak of the force/length curve
Response to stimulus              

Skeletal muscle edit

 
Striated skeletal muscle cells in microscopic view. The myofibers are the straight vertical bands; the horizontal striations (lighter and darker bands) that are a visible result from differences in composition and density along the fibrils within the cells. The cigar-like dark patches beside the myofibers are muscle-cell nuclei.

Skeletal muscle is broadly classified into two fiber types: Type I slow-twitch, and Type II fast-twitch muscle.

  • Type I, slow-twitch, slow oxidative, or red muscle is dense with capillaries and is rich in mitochondria and myoglobin, giving the muscle tissue its characteristic red color. It can carry more oxygen and sustain aerobic activity.
  • Type II, fast-twitch muscle, has three major kinds that are, in order of increasing contractile speed:[5][6]
    • Type IIa, which, like a slow muscle, is aerobic, rich in mitochondria and capillaries and appears red when deoxygenated.
    • Type IIx (also known as type IId), which is less dense in mitochondria and myoglobin. This is the fastest muscle type in humans. It can contract more quickly and with a greater amount of force than oxidative muscle but can sustain only short, anaerobic bursts of activity before muscle contraction becomes painful (often incorrectly attributed to a build-up of lactic acid). N.B. in some books and articles this muscle in humans was, confusingly, called type IIB.[7]
    • Type IIb, which is anaerobic, glycolytic, "white" muscle that is even less dense in mitochondria and myoglobin. In small animals like rodents, this is the major fast muscle type, explaining the pale color of their flesh.

The density of mammalian skeletal muscle tissue is about 1.06 kg/liter.[8] This can be contrasted with the density of adipose tissue (fat), which is 0.9196 kg/liter.[9] This makes muscle tissue approximately 15% denser than fat tissue.

Skeletal muscle is a highly oxygen consuming tissue, and oxidative DNA damage that is induced by reactive oxygen species tends to accumulate with age.[10] The oxidative DNA damage 8-OHdG accumulates in heart and skeletal muscle of both mouse and rat with age.[11] Also, DNA double-strand breaks accumulate with age in the skeletal muscle of mice.[12]

Smooth muscle edit

Smooth muscle is involuntary and non-striated. It is divided into two subgroups: the single-unit (unitary) and multiunit smooth muscle. Within single-unit cells, the whole bundle or sheet contracts as a syncytium (i.e. a multinucleate mass of cytoplasm that is not separated into cells). Multiunit smooth muscle tissues innervate individual cells; as such, they allow for fine control and gradual responses, much like motor unit recruitment in skeletal muscle.

Smooth muscle is found within the walls of blood vessels (such smooth muscle specifically being termed vascular smooth muscle) such as in the tunica media layer of large (aorta) and small arteries, arterioles and veins. Smooth muscle is also found in lymphatic vessels, the urinary bladder, uterus (termed uterine smooth muscle), male and female reproductive tracts, gastrointestinal tract, respiratory tract, arrector pili of skin, the ciliary muscle, and iris of the eye. The structure and function is basically the same in smooth muscle cells in different organs, but the inducing stimuli differ substantially, in order to perform individual effects in the body at individual times. In addition, the glomeruli of the kidneys contain smooth muscle-like cells called mesangial cells.

Cardiac muscle edit

Cardiac muscle is involuntary, striated muscle that is found in the walls and histological foundation of the heart, specifically the myocardium. The cardiac muscle cells, (also called cardiomyocytes or myocardiocytes), predominantly contain only one nucleus, although populations with two to four nuclei do exist.[13][14][page needed] The myocardium is the muscle tissue of the heart and forms a thick middle layer between the outer epicardium layer and the inner endocardium layer.

Coordinated contractions of cardiac muscle cells in the heart propel blood out of the atria and ventricles to the blood vessels of the left/body/systemic and right/lungs/pulmonary circulatory systems. This complex mechanism illustrates systole of the heart.

Cardiac muscle cells, unlike most other tissues in the body, rely on an available blood and electrical supply to deliver oxygen and nutrients and remove waste products such as carbon dioxide. The coronary arteries help fulfill this function.

Development edit

 
A chicken embryo, showing the paraxial mesoderm on both sides of the neural fold. The anterior (forward) portion has begun to form somites (labeled "primitive segments").

All muscles are derived from paraxial mesoderm. The paraxial mesoderm is divided along the embryo's length into somites, corresponding to the segmentation of the body (most obviously seen in the vertebral column.[15] Each somite has three divisions, sclerotome (which forms vertebrae), dermatome (which forms skin), and myotome (which forms muscle). The myotome is divided into two sections, the epimere and hypomere, which form epaxial and hypaxial muscles, respectively. The only epaxial muscles in humans are the erector spinae and small intervertebral muscles, and are innervated by the dorsal rami of the spinal nerves. All other muscles, including those of the limbs are hypaxial, and innervated by the ventral rami of the spinal nerves.[15]

During development, myoblasts (muscle progenitor cells) either remain in the somite to form muscles associated with the vertebral column or migrate out into the body to form all other muscles. Myoblast migration is preceded by the formation of connective tissue frameworks, usually formed from the somatic lateral plate mesoderm. Myoblasts follow chemical signals to the appropriate locations, where they fuse into elongate skeletal muscle cells.[15]

Function edit

The primary function of muscle tissue is contraction. The three types of muscle tissue (skeletal, cardiac and smooth) have significant differences. However, all three use the movement of actin against myosin to create contraction.

Skeletal muscle edit

In skeletal muscle, contraction is stimulated by electrical impulses transmitted by the motor nerves. Cardiac and smooth muscle contractions are stimulated by internal pacemaker cells which regularly contract, and propagate contractions to other muscle cells they are in contact with. All skeletal muscle and many smooth muscle contractions are facilitated by the neurotransmitter acetylcholine.

Smooth muscle edit

Smooth muscle is found in almost all organ systems such as hollow organs including the stomach, and bladder; in tubular structures such as blood and lymph vessels, and bile ducts; in sphincters such as in the uterus, and the eye. In addition, it plays an important role in the ducts of exocrine glands. It fulfills various tasks such as sealing orifices (e.g. pylorus, uterine os) or the transport of the chyme through wavelike contractions of the intestinal tube. Smooth muscle cells contract more slowly than skeletal muscle cells, but they are stronger, more sustained and require less energy. Smooth muscle is also involuntary, unlike skeletal muscle, which requires a stimulus.

Cardiac muscle edit

Cardiac muscle is the muscle of the heart. It is self-contracting, autonomically regulated and must continue to contract in a rhythmic fashion for the whole life of the organism. Hence it has special features.

Invertebrate muscle edit

There are three types of muscle tissue in invertebrates that are based on their pattern of striation: transversely striated, obliquely striated, and smooth muscle. In arthropods there is no smooth muscle. The transversely striated type is the most similar to the skeletal muscle in vertebrates.[2]

References edit

  1. ^ a b "eLS". Wiley. 30 May 2001. doi:10.1002/9780470015902.a0026598. Retrieved 24 April 2023. {{cite journal}}: Cite journal requires |journal= (help)
  2. ^ a b Paniagua, R; Royuela, M; García-Anchuelo, RM; Fraile, B (January 1996). "Ultrastructure of invertebrate muscle cell types". Histology and Histopathology. 11 (1): 181–201. PMID 8720463.
  3. ^ Hugh Potter, Summary of muscle tissue . Archived from the original on 2014-10-21. Retrieved 2014-09-02.{{cite web}}: CS1 maint: bot: original URL status unknown (link)
  4. ^ Marieb, Elaine; Hoehn, Katja (2007). Human Anatomy & Physiology (7th ed.). Pearson Benjamin Cummings. p. 317. ISBN 978-0-8053-5387-7.
  5. ^ Larsson, L; Edström, L; Lindegren, B; Gorza, L; Schiaffino, S (July 1991). "MHC composition and enzyme-histochemical and physiological properties of a novel fast-twitch motor unit type". The American Journal of Physiology. 261 (1 pt 1): C93–101. doi:10.1152/ajpcell.1991.261.1.C93. PMID 1858863.
  6. ^ Talbot, J; Maves, L (July 2016). "Skeletal muscle fiber type: using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease". Wiley Interdisciplinary Reviews. Developmental Biology. 5 (4): 518–34. doi:10.1002/wdev.230. PMC 5180455. PMID 27199166.
  7. ^ Smerdu, V; Karsch-Mizrachi, I; Campione, M; Leinwand, L; Schiaffino, S (December 1994). "Type IIx myosin heavy chain transcripts are expressed in type IIb fibers of human skeletal muscle". The American Journal of Physiology. 267 (6 pt 1): C1723–1728. doi:10.1152/ajpcell.1994.267.6.C1723. PMID 7545970. Note: Access to full text requires subscription; abstract freely available
  8. ^ Urbancheka, M; Picken, E; Kalliainen, L; Kuzon, W (2001). "Specific Force Deficit in Skeletal Muscles of Old Rats Is Partially Explained by the Existence of Denervated Muscle Fibers". The Journals of Gerontology Series A: Biological Sciences and Medical Sciences. 56 (5): B191–B197. doi:10.1093/gerona/56.5.B191. PMID 11320099.
  9. ^ Farvid, MS; Ng, TW; Chan, DC; Barrett, PH; Watts, GF (2005). "Association of adiponectin and resistin with adipose tissue compartments, insulin resistance and dyslipidaemia". Diabetes, Obesity & Metabolism. 7 (4): 406–413. doi:10.1111/j.1463-1326.2004.00410.x. PMID 15955127. S2CID 46736884.
  10. ^ Bou Saada Y, Zakharova V, Chernyak B, Dib C, Carnac G, Dokudovskaya S, Vassetzky YS. Control of DNA integrity in skeletal muscle under physiological and pathological conditions. Cell Mol Life Sci. 2017 Oct;74(19):3439-3449. doi: 10.1007/s00018-017-2530-0. Epub 2017 Apr 25. PMID: 28444416
  11. ^ Hamilton, M. L.; Van Remmen, H.; Drake, J. A.; Yang, H.; Guo, Z. M.; Kewitt, K.; Walter, C. A.; Richardson, A. (August 2001). "Does oxidative damage to DNA increase with age?". Proceedings of the National Academy of Sciences of the United States of America. 98 (18): 10469–10474. Bibcode:2001PNAS...9810469H. doi:10.1073/pnas.171202698. PMC 56984. PMID 11517304
  12. ^ Park SJ, Gavrilova O, Brown AL, Soto JE, Bremner S, Kim J, Xu X, Yang S, Um JH, Koch LG, Britton SL, Lieber RL, Philp A, Baar K, Kohama SG, Abel ED, Kim MK, Chung JH. DNA-PK Promotes the Mitochondrial, Metabolic, and Physical Decline that Occurs During Aging. Cell Metab. 2017 May 2;25(5):1135-1146.e7. doi: 10.1016/j.cmet.2017.04.008. Erratum in: Cell Metab. 2017 Aug 1;26(2):447. PMID: 28467930; PMCID: PMC5485859
  13. ^ Olivetti G, Cigola E, Maestri R, et al. (July 1996). "Aging, cardiac hypertrophy and ischemic cardiomyopathy do not affect the proportion of mononucleated and multinucleated myocytes in the human heart". Journal of Molecular and Cellular Cardiology. 28 (7): 1463–77. doi:10.1006/jmcc.1996.0137. PMID 8841934.
  14. ^ Pollard, Thomas D.; Earnshaw, William C.; Lippincott-Schwartz, Jennifer (2008). Cell Biology (Second ed.). Philadelphia, PA. ISBN 978-1-4377-0063-3. OCLC 489073468.{{cite book}}: CS1 maint: location missing publisher (link)
  15. ^ a b c Sweeney, Lauren (1997). Basic Concepts in Embryology: A Student's Survival Guide (1st Paperback ed.). McGraw-Hill Professional. ISBN 9780070633087.

muscle, other, uses, disambiguation, this, article, missing, information, about, type, versus, type, fibres, please, expand, article, include, this, information, further, details, exist, talk, page, december, 2023, this, article, needs, more, reliable, medical. For other uses see Muscle disambiguation This article is missing information about type 1 versus type 2 fibres Please expand the article to include this information Further details may exist on the talk page December 2023 This article needs more reliable medical references for verification or relies too heavily on primary sources Please review the contents of the article and add the appropriate references if you can Unsourced or poorly sourced material may be challenged and removed Find sources Muscle news newspapers books scholar JSTOR May 2023 Muscle is a soft tissue one of the four basic types of animal tissue Muscle tissue gives skeletal muscles the ability to contract Muscle is formed during embryonic development in a process known as myogenesis Muscle tissue contains special contractile proteins called actin and myosin which interact to cause movement Among many other muscle proteins present are two regulatory proteins troponin and tropomyosin MuscleThe body contains three types of muscle tissue a skeletal muscle b smooth muscle and c cardiac muscle Same magnification A schematic diagram of the different types of muscle cells same order as above IdentifiersMeSHD009132TA98A04 0 00 000TA21975FMA5022 30316 5022Anatomical terminology edit on Wikidata Muscle tissue varies with function and location in the body In vertebrates the three types are skeletal or striated smooth muscle non striated muscle and cardiac muscle 1 Skeletal muscle tissue consists of elongated multinucleate muscle cells called muscle fibers and is responsible for movements of the body Other tissues in skeletal muscle include tendons and perimysium citation needed Smooth and cardiac muscle contract involuntarily without conscious intervention These muscle types may be activated both through the interaction of the central nervous system as well as by receiving innervation from peripheral plexus or endocrine hormonal activation Striated or skeletal muscle only contracts voluntarily upon the influence of the central nervous system Reflexes are a form of non conscious activation of skeletal muscles but nonetheless arise through activation of the central nervous system albeit not engaging cortical structures until after the contraction has occurred citation needed The different muscle types vary in their response to neurotransmitters and hormones such as acetylcholine noradrenaline adrenaline and nitric oxide depending on muscle type and the exact location of the muscle citation needed Sub categorization of muscle tissue is also possible depending on among other things the content of myoglobin mitochondria and myosin ATPase etc citation needed Contents 1 Etymology 2 Structure 2 1 Comparison of types 2 2 Skeletal muscle 2 3 Smooth muscle 2 4 Cardiac muscle 3 Development 4 Function 4 1 Skeletal muscle 4 2 Smooth muscle 4 3 Cardiac muscle 5 Invertebrate muscle 6 ReferencesEtymology editThe word muscle comes from Latin musculus diminutive of mus meaning mouse because the appearance of the flexed biceps resembles the back of a mouse The same phenomenon occurred in Greek in which mῦs mȳs means both mouse and muscle Structure edit nbsp Three distinct types of muscle L to R Smooth non striated muscle in internal organs cardiac or heart muscle and skeletal muscle There are three types of muscle tissue in vertebrates skeletal cardiac and smooth Skeletal and cardiac muscle are types of striated muscle tissue 1 Smooth muscle is non striated There are three types of muscle tissue in invertebrates that are based on their pattern of striation transversely striated obliquely striated and smooth muscle In arthropods there is no smooth muscle The transversely striated type is the most similar to the skeletal muscle in vertebrates 2 Vertebrate skeletal muscle tissue is an elongated striated muscle tissue with the fibres ranging in width from three to eight micrometers and in length from 18 to 200 micrometers In the uterine wall during pregnancy they enlarge in length from 70 to 500 micrometers 3 Skeletal striated muscle tissue is arranged in regular parallel bundles of myofibrils containing the many contractile units known as sarcomeres which give the tissue its striated striped appearance Skeletal muscle is voluntary muscle anchored by tendons or sometimes by aponeuroses to bones and is used to effect skeletal movement such as locomotion and to maintain posture Postural control is generally maintained as an unconscious reflex but the muscles responsible can also react to conscious control An average adult man is made up of 42 of skeletal muscle as a percentage of body mass and an average adult woman is made up of 36 4 Cardiac muscle tissue is found only in the walls of the heart as myocardium and is an involuntary muscle controlled by the autonomic nervous system Cardiac muscle tissue is striated like skeletal muscle containing contractile units called sarcomeres in highly regular arrangements of bundles While skeletal muscles are arranged in regular parallel bundles cardiac muscle connects at branching irregular angles known as intercalated discs Smooth muscle tissue is non striated and involuntary Smooth muscle is found within the walls of organs and structures such as the esophagus stomach intestines bronchi uterus urethra bladder blood vessels and the arrector pili in the skin which controls the erection of body hair Comparison of types edit smooth muscle cardiac muscle skeletal muscleAnatomy Neuromuscular junction none present Fibers fusiform short lt 0 4 mm branching cylindrical long lt 15 cm Mitochondria numerous many to few by type Nuclei 1 1 gt 1 Sarcomeres none present max length 2 6 µm present max length 3 7 µm Syncytium none independent cells none but functional as such present Sarcoplasmic reticulum little elaborated moderately elaborated highly elaboratedATPase little moderate abundantPhysiology Self regulation spontaneous action slow yes rapid none requires nerve stimulus Response to stimulus unresponsive all or nothing all or nothing Action potential yes yes yes Workspace Force length curve is variable the increase in the force length curve at the peak of the force length curveResponse to stimulus nbsp nbsp nbsp Skeletal muscle edit Main article Skeletal muscle nbsp Striated skeletal muscle cells in microscopic view The myofibers are the straight vertical bands the horizontal striations lighter and darker bands that are a visible result from differences in composition and density along the fibrils within the cells The cigar like dark patches beside the myofibers are muscle cell nuclei Skeletal muscle is broadly classified into two fiber types Type I slow twitch and Type II fast twitch muscle Type I slow twitch slow oxidative or red muscle is dense with capillaries and is rich in mitochondria and myoglobin giving the muscle tissue its characteristic red color It can carry more oxygen and sustain aerobic activity Type II fast twitch muscle has three major kinds that are in order of increasing contractile speed 5 6 Type IIa which like a slow muscle is aerobic rich in mitochondria and capillaries and appears red when deoxygenated Type IIx also known as type IId which is less dense in mitochondria and myoglobin This is the fastest muscle type in humans It can contract more quickly and with a greater amount of force than oxidative muscle but can sustain only short anaerobic bursts of activity before muscle contraction becomes painful often incorrectly attributed to a build up of lactic acid N B in some books and articles this muscle in humans was confusingly called type IIB 7 Type IIb which is anaerobic glycolytic white muscle that is even less dense in mitochondria and myoglobin In small animals like rodents this is the major fast muscle type explaining the pale color of their flesh The density of mammalian skeletal muscle tissue is about 1 06 kg liter 8 This can be contrasted with the density of adipose tissue fat which is 0 9196 kg liter 9 This makes muscle tissue approximately 15 denser than fat tissue Skeletal muscle is a highly oxygen consuming tissue and oxidative DNA damage that is induced by reactive oxygen species tends to accumulate with age 10 The oxidative DNA damage 8 OHdG accumulates in heart and skeletal muscle of both mouse and rat with age 11 Also DNA double strand breaks accumulate with age in the skeletal muscle of mice 12 Smooth muscle edit Main article Smooth muscle Smooth muscle is involuntary and non striated It is divided into two subgroups the single unit unitary and multiunit smooth muscle Within single unit cells the whole bundle or sheet contracts as a syncytium i e a multinucleate mass of cytoplasm that is not separated into cells Multiunit smooth muscle tissues innervate individual cells as such they allow for fine control and gradual responses much like motor unit recruitment in skeletal muscle Smooth muscle is found within the walls of blood vessels such smooth muscle specifically being termed vascular smooth muscle such as in the tunica media layer of large aorta and small arteries arterioles and veins Smooth muscle is also found in lymphatic vessels the urinary bladder uterus termed uterine smooth muscle male and female reproductive tracts gastrointestinal tract respiratory tract arrector pili of skin the ciliary muscle and iris of the eye The structure and function is basically the same in smooth muscle cells in different organs but the inducing stimuli differ substantially in order to perform individual effects in the body at individual times In addition the glomeruli of the kidneys contain smooth muscle like cells called mesangial cells Cardiac muscle edit Main article Cardiac muscle Cardiac muscle is involuntary striated muscle that is found in the walls and histological foundation of the heart specifically the myocardium The cardiac muscle cells also called cardiomyocytes or myocardiocytes predominantly contain only one nucleus although populations with two to four nuclei do exist 13 14 page needed The myocardium is the muscle tissue of the heart and forms a thick middle layer between the outer epicardium layer and the inner endocardium layer Coordinated contractions of cardiac muscle cells in the heart propel blood out of the atria and ventricles to the blood vessels of the left body systemic and right lungs pulmonary circulatory systems This complex mechanism illustrates systole of the heart Cardiac muscle cells unlike most other tissues in the body rely on an available blood and electrical supply to deliver oxygen and nutrients and remove waste products such as carbon dioxide The coronary arteries help fulfill this function Development editMain article Myogenesis nbsp A chicken embryo showing the paraxial mesoderm on both sides of the neural fold The anterior forward portion has begun to form somites labeled primitive segments All muscles are derived from paraxial mesoderm The paraxial mesoderm is divided along the embryo s length into somites corresponding to the segmentation of the body most obviously seen in the vertebral column 15 Each somite has three divisions sclerotome which forms vertebrae dermatome which forms skin and myotome which forms muscle The myotome is divided into two sections the epimere and hypomere which form epaxial and hypaxial muscles respectively The only epaxial muscles in humans are the erector spinae and small intervertebral muscles and are innervated by the dorsal rami of the spinal nerves All other muscles including those of the limbs are hypaxial and innervated by the ventral rami of the spinal nerves 15 During development myoblasts muscle progenitor cells either remain in the somite to form muscles associated with the vertebral column or migrate out into the body to form all other muscles Myoblast migration is preceded by the formation of connective tissue frameworks usually formed from the somatic lateral plate mesoderm Myoblasts follow chemical signals to the appropriate locations where they fuse into elongate skeletal muscle cells 15 Function editFurther information Sliding filament theory The primary function of muscle tissue is contraction The three types of muscle tissue skeletal cardiac and smooth have significant differences However all three use the movement of actin against myosin to create contraction Skeletal muscle edit In skeletal muscle contraction is stimulated by electrical impulses transmitted by the motor nerves Cardiac and smooth muscle contractions are stimulated by internal pacemaker cells which regularly contract and propagate contractions to other muscle cells they are in contact with All skeletal muscle and many smooth muscle contractions are facilitated by the neurotransmitter acetylcholine Smooth muscle edit Smooth muscle is found in almost all organ systems such as hollow organs including the stomach and bladder in tubular structures such as blood and lymph vessels and bile ducts in sphincters such as in the uterus and the eye In addition it plays an important role in the ducts of exocrine glands It fulfills various tasks such as sealing orifices e g pylorus uterine os or the transport of the chyme through wavelike contractions of the intestinal tube Smooth muscle cells contract more slowly than skeletal muscle cells but they are stronger more sustained and require less energy Smooth muscle is also involuntary unlike skeletal muscle which requires a stimulus Cardiac muscle edit Cardiac muscle is the muscle of the heart It is self contracting autonomically regulated and must continue to contract in a rhythmic fashion for the whole life of the organism Hence it has special features Invertebrate muscle editThere are three types of muscle tissue in invertebrates that are based on their pattern of striation transversely striated obliquely striated and smooth muscle In arthropods there is no smooth muscle The transversely striated type is the most similar to the skeletal muscle in vertebrates 2 References edit a b eLS Wiley 30 May 2001 doi 10 1002 9780470015902 a0026598 Retrieved 24 April 2023 a href Template Cite journal html title Template Cite journal cite journal a Cite journal requires journal help a b Paniagua R Royuela M Garcia Anchuelo RM Fraile B January 1996 Ultrastructure of invertebrate muscle cell types Histology and Histopathology 11 1 181 201 PMID 8720463 Hugh Potter Summary of muscle tissue Muscle Tissue Archived from the original on 2014 10 21 Retrieved 2014 09 02 a href Template Cite web html title Template Cite web cite web a CS1 maint bot original URL status unknown link Marieb Elaine Hoehn Katja 2007 Human Anatomy amp Physiology 7th ed Pearson Benjamin Cummings p 317 ISBN 978 0 8053 5387 7 Larsson L Edstrom L Lindegren B Gorza L Schiaffino S July 1991 MHC composition and enzyme histochemical and physiological properties of a novel fast twitch motor unit type The American Journal of Physiology 261 1 pt 1 C93 101 doi 10 1152 ajpcell 1991 261 1 C93 PMID 1858863 Talbot J Maves L July 2016 Skeletal muscle fiber type using insights from muscle developmental biology to dissect targets for susceptibility and resistance to muscle disease Wiley Interdisciplinary Reviews Developmental Biology 5 4 518 34 doi 10 1002 wdev 230 PMC 5180455 PMID 27199166 Smerdu V Karsch Mizrachi I Campione M Leinwand L Schiaffino S December 1994 Type IIx myosin heavy chain transcripts are expressed in type IIb fibers of human skeletal muscle The American Journal of Physiology 267 6 pt 1 C1723 1728 doi 10 1152 ajpcell 1994 267 6 C1723 PMID 7545970 Note Access to full text requires subscription abstract freely available Urbancheka M Picken E Kalliainen L Kuzon W 2001 Specific Force Deficit in Skeletal Muscles of Old Rats Is Partially Explained by the Existence of Denervated Muscle Fibers The Journals of Gerontology Series A Biological Sciences and Medical Sciences 56 5 B191 B197 doi 10 1093 gerona 56 5 B191 PMID 11320099 Farvid MS Ng TW Chan DC Barrett PH Watts GF 2005 Association of adiponectin and resistin with adipose tissue compartments insulin resistance and dyslipidaemia Diabetes Obesity amp Metabolism 7 4 406 413 doi 10 1111 j 1463 1326 2004 00410 x PMID 15955127 S2CID 46736884 Bou Saada Y Zakharova V Chernyak B Dib C Carnac G Dokudovskaya S Vassetzky YS Control of DNA integrity in skeletal muscle under physiological and pathological conditions Cell Mol Life Sci 2017 Oct 74 19 3439 3449 doi 10 1007 s00018 017 2530 0 Epub 2017 Apr 25 PMID 28444416 Hamilton M L Van Remmen H Drake J A Yang H Guo Z M Kewitt K Walter C A Richardson A August 2001 Does oxidative damage to DNA increase with age Proceedings of the National Academy of Sciences of the United States of America 98 18 10469 10474 Bibcode 2001PNAS 9810469H doi 10 1073 pnas 171202698 PMC 56984 PMID 11517304 Park SJ Gavrilova O Brown AL Soto JE Bremner S Kim J Xu X Yang S Um JH Koch LG Britton SL Lieber RL Philp A Baar K Kohama SG Abel ED Kim MK Chung JH DNA PK Promotes the Mitochondrial Metabolic and Physical Decline that Occurs During Aging Cell Metab 2017 May 2 25 5 1135 1146 e7 doi 10 1016 j cmet 2017 04 008 Erratum in Cell Metab 2017 Aug 1 26 2 447 PMID 28467930 PMCID PMC5485859 Olivetti G Cigola E Maestri R et al July 1996 Aging cardiac hypertrophy and ischemic cardiomyopathy do not affect the proportion of mononucleated and multinucleated myocytes in the human heart Journal of Molecular and Cellular Cardiology 28 7 1463 77 doi 10 1006 jmcc 1996 0137 PMID 8841934 Pollard Thomas D Earnshaw William C Lippincott Schwartz Jennifer 2008 Cell Biology Second ed Philadelphia PA ISBN 978 1 4377 0063 3 OCLC 489073468 a href Template Cite book html title Template Cite book cite book a CS1 maint location missing publisher link a b c Sweeney Lauren 1997 Basic Concepts in Embryology A Student s Survival Guide 1st Paperback ed McGraw Hill Professional ISBN 9780070633087 Portals nbsp Biology nbsp Medicine Retrieved from https en wikipedia org w index php title Muscle amp oldid 1192881245, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.