fbpx
Wikipedia

Immunoglobulin E

Immunoglobulin E (IgE) is a type of antibody (or immunoglobulin (Ig) "isotype") that has been found only in mammals. IgE is synthesised by plasma cells. Monomers of IgE consist of two heavy chains (ε chain) and two light chains, with the ε chain containing four Ig-like constant domains (Cε1–Cε4).[1] IgE is thought to be an important part of the immune response against infection by certain parasitic worms, including Schistosoma mansoni, Trichinella spiralis,[2][3] and Fasciola hepatica.[4] IgE is also utilized during immune defense against certain protozoan parasites such as Plasmodium falciparum.[5] IgE may have evolved as a defense to protect against venoms.[6][7][8]

The structure of the IgE antibody
The role of mast cells in the development of allergy.
Degranulation processes 1: antigen; 2: IgE antibody; 3: FcεRI receptor; 4: preformed mediators (histamine, proteases, chemokines, heparin); 5: granules; 6: mast cell; 7: newly formed mediators (prostaglandins, leukotrienes, thromboxanes, PAF)

IgE also has an essential role in type I hypersensitivity,[9] which manifests in various allergic diseases, such as allergic asthma, most types of sinusitis, allergic rhinitis, food allergies, and specific types of chronic urticaria and atopic dermatitis. IgE also plays a pivotal role in responses to allergens, such as: anaphylactic reactions to drugs, bee stings, and antigen preparations used in desensitization immunotherapy.

Although IgE is typically the least abundant isotype—blood serum IgE levels in a normal ("non-atopic") individual are only 0.05% of the Ig concentration,[10] compared to 75% for the IgGs at 10 mg/ml, and are the isotypes responsible for most of the classical adaptive immune response—it is capable of triggering anaphylaxis, one of the most rapid and severe immunological reactions.[11]

Discovery edit

IgE was simultaneously discovered in 1966 and 1967 by two independent groups:[12] Kimishige Ishizaka and his wife Teruko Ishizaka at the Children's Asthma Research Institute and Hospital in Denver, Colorado,[13] and by Gunnar Johansson and Hans Bennich [sv] in Uppsala, Sweden.[14] Their joint paper was published in April 1969.[15]

Receptors edit

IgE primes the IgE-mediated allergic response by binding to Fc receptors found on the surface of mast cells and basophils. Fc receptors are also found on eosinophils, monocytes, macrophages and platelets in humans. There are two types of Fcε receptors:[citation needed]

  • FcεRI (type I Fcε receptor), the high-affinity IgE receptor
  • FcεRII (type II Fcε receptor), also known as CD23, the low-affinity IgE receptor

IgE can upregulate the expression of both types of Fcε receptors. FcεRI is expressed on mast cells, basophils, and the antigen-presenting dendritic cells in both mice and humans. Binding of antigens to IgE already bound by the FcεRI on mast cells causes cross-linking of the bound IgE and the aggregation of the underlying FcεRI, leading to degranulation (the release of mediators) and the secretion of several types of type 2 cytokines like interleukin (IL)-3 and stem cell factor (SCF), which both help the mast cells survive and accumulate in tissue, and IL-4, IL-5, IL-13, and IL-33, which in turn activate group 2-innate lymphoid cells (ILC2 or natural helper cells). Basophils share a common haemopoietic progenitor with mast cells; upon the cross-linking of their surface bound IgE by antigens, also release type 2 cytokines, including IL-4 and IL-13, and other inflammatory mediators. The low-affinity receptor (FcεRII) is always expressed on B cells; but IL-4 can induce its expression on the surfaces of macrophages, eosinophils, platelets, and some T cells.[16][17]

Function edit

Parasite hypothesis edit

The IgE isotype has co-evolved with basophils and mast cells in the defence against parasites like helminths (like Schistosoma) but may be also effective in bacterial infections.[18] Epidemiological research shows that IgE level is increased when infected by Schistosoma mansoni,[19] Necator americanus,[20] and nematodes[21] in humans. It is most likely beneficial in removal of hookworms from the lung.[citation needed]

Toxin hypothesis of allergic disease edit

In 1981 Margie Profet suggested that allergic reactions have evolved as a last line of defense to protect against venoms.[6] Although controversial at the time, new work supports some of Profet’s thoughts on the adaptive role of allergies as a defense against noxious toxins.[7]

In 2013 it emerged that IgE-antibodies play an essential role in acquired resistance to honey bee[8] and Russell's viper venoms.[8][22] The authors concluded that "a small dose of bee venom conferred immunity to a much larger, fatal dose" and "this kind of venom-specific, IgE-associated, adaptive immune response developed, at least in evolutionary terms, to protect the host against potentially toxic amounts of venom, such as would happen if the animal encountered a whole nest of bees, or in the event of a snakebite".[8][23][24] The major allergen of bee venom (phospholipase A2) induces a Th2 immune responses, associated with production of IgE antibodies, which may "increase the resistance of mice to challenge with potentially lethal doses".[25]

Cancer edit

Although it is not yet well understood, IgE may play an important role in the immune system's recognition of cancer,[26] in which the stimulation of a strong cytotoxic response against cells displaying only small amounts of early cancer markers would be beneficial. If this were the case, anti-IgE treatments such as omalizumab (for allergies) might have some undesirable side effects. However, a recent study, which was performed based on pooled analysis using comprehensive data from 67 phase I to IV clinical trials of omalizumab in various indications, concluded that a causal relationship between omalizumab therapy and malignancy is unlikely.[27]

Role in disease edit

Atopic individuals can have up to ten times the normal level of IgE in their blood (as do sufferers of hyper-IgE syndrome). However, this may not be a requirement for symptoms to occur as has been seen in asthmatics with normal IgE levels in their blood—recent research has shown that IgE production can occur locally in the nasal mucosa.[28]

IgE that can specifically recognise an allergen (typically this is a protein, such as dust mite Der p 1, cat Fel d 1, grass or ragweed pollen, food protein, etc.) has a unique long-lived interaction with its high-affinity receptor FcεRI so that basophils and mast cells, capable of mediating inflammatory reactions, become "primed", ready to release chemicals like histamine, leukotrienes, and certain interleukins. These chemicals cause many of the symptoms we associate with allergy, such as airway constriction in asthma, local inflammation in eczema, increased mucus secretion in allergic rhinitis, and increased vascular permeability, it is presumed, to allow other immune cells to gain access to tissues, but which can lead to a potentially fatal drop in blood pressure as in anaphylaxis.[citation needed]

IgE is known to be elevated in various autoimmune disorders such as SLE, rheumatoid arthritis (RA), and psoriasis, and is theorized to be of pathogenetic importance in SLE and RA by eliciting a hypersensitivity reaction.[29][30]

Regulation of IgE levels through control of B cell differentiation to antibody-secreting plasma cells is thought to involve the "low-affinity" receptor FcεRII, or CD23.[31] CD23 may also allow facilitated antigen presentation, an IgE-dependent mechanism whereby B cells expressing CD23 are able to present allergen to (and stimulate) specific T helper cells, causing the perpetuation of a Th2 response, one of the hallmarks of which is the production of more antibodies.[32]

Role in diagnosis edit

Diagnosis of allergy is most often done by reviewing a person's medical history and finding a positive result for the presence of allergen specific IgE when conducting a skin or blood test.[33] Specific IgE testing is the proven test for allergy detection; evidence does not show that indiscriminate IgE testing or testing for immunoglobulin G (IgG) can support allergy diagnosis.[34]

Drugs targeting the IgE pathway edit

Currently, allergic diseases and asthma are usually treated with one or more of the following drugs: (1) antihistamines and antileukotrienes, which antagonize the inflammatory mediators histamine and leukotrienes, (2) local or systemic (oral or injectable) corticosteroids, which suppress a broad spectrum of inflammatory mechanisms, (3) short or long-acting bronchodilators, which relax smooth muscle of constricted airway in asthma, or (4) mast cell stabilizers, which inhibit the degranulation of mast cells that is normally triggered by IgE-binding at FcεRI. Long-term uses of systemic corticosteroids are known to cause many serious side effects and are advisable to avoid, if alternative therapies are available.[citation needed]

IgE, the IgE synthesis pathway, and the IgE-mediated allergic/inflammatory pathway are all important targets in intervening with the pathological processes of allergy, asthma, and other IgE-mediated diseases. The B lymphocyte differentiation and maturation pathway that eventually generate IgE-secreting plasma cells go through the intermediate steps of IgE-expressing B lymphoblasts and involves the interaction with IgE-expressing memory B cells. Tanox, a biotech company based in Houston, Texas, proposed in 1987 that by targeting membrane-bound IgE (mIgE) on B lymphoblast and memory B cells, those cells can be lysed or down-regulated, thus achieving the inhibition of the production of antigen-specific IgE and hence a shift of immune balance toward non-IgE mechanisms.[35] Two approaches targeting the IgE pathway were evolved and both are in active development. In the first approach, the anti-IgE antibody drug omalizumab (trade name Xolair) recognises IgE not bound to its receptors and is used to neutralise or mop-up existing IgE and prevent it from binding to the receptors on mast cells and basophils. Xolair has been approved in many countries for treating severe, persistent allergic asthma. It has also been approved in March 2014 in the European Union[36] and the U. S.[37] for treating chronic spontaneous urticaria, which cannot be adequately treated with H1-antihistamines. In the second approach, antibodies specific for a domain of 52 amino acid residues, referred to as CεmX or M1’ (M1 prime), present only on human mIgE on B cells and not on free, soluble IgE, have been prepared and are under clinical development for the treatment of allergy and asthma.[38][39] An anti-M1’ humanized antibody, quilizumab, is in phase IIb clinical trial.[40][41]

In 2002, researchers at the Randall Division of Cell and Molecular Biophysics determined the structure of IgE.[42] Understanding of this structure (which is atypical of other isotypes in that it is highly bent and asymmetric) and of the interaction of IgE with receptor FcεRI will enable development of a new generation of allergy drugs that seek to interfere with the IgE-receptor interaction. It may be possible to design treatments cheaper than monoclonal antibodies (for instance, small molecule drugs) that use a similar approach to inhibit binding of IgE to its receptor.[citation needed]

References edit

  1. ^ . Archived from the original on September 6, 2008.
  2. ^ Erb KJ (May 2007). "Helminths, allergic disorders and IgE-mediated immune responses: where do we stand?". European Journal of Immunology. 37 (5): 1170–3. doi:10.1002/eji.200737314. PMID 17447233. S2CID 24519249.
  3. ^ Watanabe N, Bruschi F, Korenaga M (April 2005). "IgE: a question of protective immunity in Trichinella spiralis infection". Trends in Parasitology. 21 (4): 175–8. doi:10.1016/j.pt.2005.02.010. PMID 15780839.
  4. ^ Pfister K, Turner K, Currie A, Hall E, Jarrett EE (November 1983). "IgE production in rat fascioliasis". Parasite Immunology. 5 (6): 587–93. doi:10.1111/j.1365-3024.1983.tb00775.x. PMID 6657297. S2CID 1530964.
  5. ^ Duarte J, Deshpande P, Guiyedi V, Mécheri S, Fesel C, Cazenave PA, et al. (January 2007). "Total and functional parasite specific IgE responses in Plasmodium falciparum-infected patients exhibiting different clinical status". Malaria Journal. 6: 1. doi:10.1186/1475-2875-6-1. PMC 1781948. PMID 17204149.
  6. ^ a b Profet M (March 1991). "The function of allergy: immunological defense against toxins". The Quarterly Review of Biology. 66 (1): 23–62. doi:10.1086/417049. PMID 2052671. S2CID 5648170.
  7. ^ a b Palm NW, Rosenstein RK, Medzhitov R (April 2012). "Allergic host defences". Nature. 484 (7395): 465–72. Bibcode:2012Natur.484..465P. doi:10.1038/nature11047. PMC 3596087. PMID 22538607.
  8. ^ a b c d Marichal T, Starkl P, Reber LL, Kalesnikoff J, Oettgen HC, Tsai M, et al. (November 2013). "A beneficial role for immunoglobulin E in host defense against honeybee venom". Immunity. 39 (5): 963–75. doi:10.1016/j.immuni.2013.10.005. PMC 4164235. PMID 24210352.
  9. ^ Gould HJ, Sutton BJ, Beavil AJ, Beavil RL, McCloskey N, Coker HA, et al. (2003). "The biology of IGE and the basis of allergic disease". Annual Review of Immunology. 21: 579–628. doi:10.1146/annurev.immunol.21.120601.141103. PMID 12500981.
  10. ^ Winter WE, Hardt NS, Fuhrman S (September 2000). "Immunoglobulin E: importance in parasitic infections and hypersensitivity responses". Archives of Pathology & Laboratory Medicine. 124 (9): 1382–5. doi:10.5858/2000-124-1382-IE. PMID 10975945.
  11. ^ Reber, LL; Hernandez, JD; Galli, SJ (August 2017). "The pathophysiology of anaphylaxis". The Journal of Allergy and Clinical Immunology. 140 (2): 335–348. doi:10.1016/j.jaci.2017.06.003. PMC 5657389. PMID 28780941.
  12. ^ Stanworth DR (February 1993). "The discovery of IgE". Allergy. 48 (2): 67–71. doi:10.1111/j.1398-9995.1993.tb00687.x. PMID 8457034. S2CID 36262710.
  13. ^ Ishizaka K, Ishizaka T, Hornbrook MM (July 1966). "Physico-chemical properties of human reaginic antibody. IV. Presence of a unique immunoglobulin as a carrier of reaginic activity". Journal of Immunology. 97 (1): 75–85. doi:10.4049/jimmunol.97.1.75. PMID 4162440. S2CID 255620017.
  14. ^ Johansson SG, Bennich H (October 1967). "Immunological studies of an atypical (myeloma) immunoglobulin". Immunology. 13 (4): 381–94. PMC 1409218. PMID 4168094.
  15. ^ Ishizaka T, Ishizaka K, Johansson SG, Bennich H (April 1969). "Histamine release from human leukocytes by anti-gamma E antibodies". Journal of Immunology. 102 (4): 884–92. doi:10.4049/jimmunol.102.4.884. PMID 4181251. S2CID 255338552. Retrieved 2016-02-29.
  16. ^ Ewart MA, Ozanne BW, Cushley W (May 2002). "The CD23a and CD23b proximal promoters display different sensitivities to exogenous stimuli in B lymphocytes". Genes and Immunity. 3 (3): 158–64. doi:10.1038/sj.gene.6363848. PMID 12070780.
  17. ^ Novak N, Kraft S, Bieber T (December 2001). "IgE receptors". Current Opinion in Immunology. 13 (6): 721–6. doi:10.1016/s0952-7915(01)00285-0. PMID 11677096.
  18. ^ Abraham, Soman N.; St. John, Ashley L. (June 2010). "Mast cell-orchestrated immunity to pathogens". Nature Reviews Immunology. 10 (6): 440–452. doi:10.1038/nri2782. ISSN 1474-1741. PMC 4469150. PMID 20498670.
  19. ^ Rihet P, Demeure CE, Bourgois A, Prata A, Dessein AJ (November 1991). "Evidence for an association between human resistance to Schistosoma mansoni and high anti-larval IgE levels". European Journal of Immunology. 21 (11): 2679–86. doi:10.1002/eji.1830211106. PMID 1936116. S2CID 1103861.
  20. ^ Pritchard DI, Quinnell RJ, Walsh EA (February 1995). "Immunity in humans to Necator americanus: IgE, parasite weight and fecundity". Parasite Immunology. 17 (2): 71–5. doi:10.1111/j.1365-3024.1995.tb00968.x. PMID 7761110. S2CID 41222700.
  21. ^ Turner JD, et al. (June 2005). "Allergen-specific IgE and IgG4 are markers of resistance and susceptibility in a human intestinal nematode infection". Microbes and Infection. 7 (7–8): 990–6. doi:10.1016/j.micinf.2005.03.036. PMID 15961339.
  22. ^ Starkl P, Marichal T, Gaudenzio N, Reber LL, Sibilano R, Tsai M, Galli SJ (January 2016). "IgE antibodies, FcεRIα, and IgE-mediated local anaphylaxis can limit snake venom toxicity". The Journal of Allergy and Clinical Immunology. 137 (1): 246–257.e11. doi:10.1016/j.jaci.2015.08.005. PMC 4715494. PMID 26410782.
  23. ^ Sharlach, Molly (24 October 2013). "Bee sting allergy could be a defense response gone haywire, scientists say". Stanford Medicine News Center. Retrieved 20 November 2019.
  24. ^ Foley, James A. (25 October 2013). "Severe Allergies to Bee Stings may be Malfunctioning Evolutionary Response". Nature World News.
  25. ^ Tsai M, Starkl P, Marichal T, Galli SJ (October 2015). "Testing the 'toxin hypothesis of allergy': mast cells, IgE, and innate and acquired immune responses to venoms". Current Opinion in Immunology. 36: 80–7. doi:10.1016/j.coi.2015.07.001. PMC 4593748. PMID 26210895.
  26. ^ Karagiannis SN, Wang Q, East N, Burke F, Riffard S, Bracher MG, et al. (April 2003). "Activity of human monocytes in IgE antibody-dependent surveillance and killing of ovarian tumor cells". European Journal of Immunology. 33 (4): 1030–40. doi:10.1002/eji.200323185. PMID 12672069. S2CID 29495137.
  27. ^ Busse W, Buhl R, Fernandez Vidaurre C, Blogg M, Zhu J, Eisner MD, Canvin J (April 2012). "Omalizumab and the risk of malignancy: results from a pooled analysis". The Journal of Allergy and Clinical Immunology. 129 (4): 983–9.e6. doi:10.1016/j.jaci.2012.01.033. PMID 22365654.
  28. ^ Takhar P, Smurthwaite L, Coker HA, Fear DJ, Banfield GK, Carr VA, et al. (April 2005). "Allergen drives class switching to IgE in the nasal mucosa in allergic rhinitis". Journal of Immunology. 174 (8): 5024–32. doi:10.4049/jimmunol.174.8.5024. PMID 15814733.
  29. ^ Permin H, Wiik A (October 1978). "The prevalence of IgE antinuclear antibodies in rheumatoid arthritis and systemic lupus erythematosus". Acta Pathologica et Microbiologica Scandinavica, Section C. 86C (5): 245–9. doi:10.1111/j.1699-0463.1978.tb02587.x. PMID 309705. S2CID 13737751.
  30. ^ Elkayam O, Tamir R, Pick AI, Wysenbeek A (January 1995). "Serum IgE concentrations, disease activity, and atopic disorders in systemic lupus erythematosus". Allergy. 50 (1): 94–6. PMID 7741196.
  31. ^ Conrad DH, Ford JW, Sturgill JL, Gibb DR (September 2007). "CD23: an overlooked regulator of allergic disease". Current Allergy and Asthma Reports. 7 (5): 331–7. doi:10.1007/s11882-007-0050-y. PMID 17697638. S2CID 24816595.
  32. ^ Holm J, Willumsen N, Würtzen PA, Christensen LH, Lund K (April 2011). "Facilitated antigen presentation and its inhibition by blocking IgG antibodies depends on IgE repertoire complexity". The Journal of Allergy and Clinical Immunology. 127 (4): 1029–37. doi:10.1016/j.jaci.2011.01.062. PMID 21377718.
  33. ^ Cox L, Williams B, Sicherer S, Oppenheimer J, Sher L, Hamilton R, Golden D (December 2008). "Pearls and pitfalls of allergy diagnostic testing: report from the American College of Allergy, Asthma and Immunology/American Academy of Allergy, Asthma and Immunology Specific IgE Test Task Force". Annals of Allergy, Asthma & Immunology. 101 (6): 580–92. doi:10.1016/S1081-1206(10)60220-7. PMID 19119701.
  34. ^ American Academy of Allergy, Asthma, and Immunology. (PDF). Choosing Wisely: An Initiative of the ABIM Foundation. Archived from the original (PDF) on November 3, 2012. Retrieved August 14, 2012.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  35. ^ Chang TW, Wu PC, Hsu CL, Hung AF (2007). Anti‐IgE Antibodies for the Treatment of IgE‐Mediated Allergic Diseases. Advances in Immunology. Vol. 93. pp. 63–119. doi:10.1016/S0065-2776(06)93002-8. ISBN 9780123737076. PMID 17383539.
  36. ^ . Novartis. 2014-03-06. Archived from the original on 2014-12-18. Retrieved 2014-12-04.
  37. ^ . Novartis. 2014-03-21. Archived from the original on 2014-12-03. Retrieved 2014-12-04.
  38. ^ Chen JB, Wu PC, Hung AF, Chu CY, Tsai TF, Yu HM, et al. (February 2010). "Unique epitopes on C epsilon mX in IgE-B cell receptors are potentially applicable for targeting IgE-committed B cells". Journal of Immunology. 184 (4): 1748–56. doi:10.4049/jimmunol.0902437. PMID 20083663.
  39. ^ Brightbill HD, Jeet S, Lin Z, Yan D, Zhou M, Tan M, et al. (June 2010). "Antibodies specific for a segment of human membrane IgE deplete IgE-producing B cells in humanized mice". The Journal of Clinical Investigation. 120 (6): 2218–29. doi:10.1172/JCI40141. PMC 2877936. PMID 20458139.
  40. ^ "MEMP1972A". ClinicalTrials.gov. U.S. National Institutes of Health. Retrieved 2014-12-04.
  41. ^ Gauvreau GM, Harris JM, Boulet LP, Scheerens H, Fitzgerald JM, Putnam WS, et al. (July 2014). "Targeting membrane-expressed IgE B cell receptor with an antibody to the M1 prime epitope reduces IgE production". Science Translational Medicine. 6 (243): 243ra85. doi:10.1126/scitranslmed.3008961. PMID 24990880. S2CID 41593528.
  42. ^ Wan T, Beavil RL, Fabiane SM, Beavil AJ, Sohi MK, Keown M, et al. (July 2002). "The crystal structure of IgE Fc reveals an asymmetrically bent conformation". Nature Immunology. 3 (7): 681–6. doi:10.1038/ni811. PMID 12068291. S2CID 32347451.

immunoglobulin, type, antibody, immunoglobulin, isotype, that, been, found, only, mammals, synthesised, plasma, cells, monomers, consist, heavy, chains, chain, light, chains, with, chain, containing, four, like, constant, domains, cε1, cε4, thought, important,. Immunoglobulin E IgE is a type of antibody or immunoglobulin Ig isotype that has been found only in mammals IgE is synthesised by plasma cells Monomers of IgE consist of two heavy chains e chain and two light chains with the e chain containing four Ig like constant domains Ce1 Ce4 1 IgE is thought to be an important part of the immune response against infection by certain parasitic worms including Schistosoma mansoni Trichinella spiralis 2 3 and Fasciola hepatica 4 IgE is also utilized during immune defense against certain protozoan parasites such as Plasmodium falciparum 5 IgE may have evolved as a defense to protect against venoms 6 7 8 The structure of the IgE antibodyThe role of mast cells in the development of allergy Degranulation processes 1 antigen 2 IgE antibody 3 FceRI receptor 4 preformed mediators histamine proteases chemokines heparin 5 granules 6 mast cell 7 newly formed mediators prostaglandins leukotrienes thromboxanes PAF IgE also has an essential role in type I hypersensitivity 9 which manifests in various allergic diseases such as allergic asthma most types of sinusitis allergic rhinitis food allergies and specific types of chronic urticaria and atopic dermatitis IgE also plays a pivotal role in responses to allergens such as anaphylactic reactions to drugs bee stings and antigen preparations used in desensitization immunotherapy Although IgE is typically the least abundant isotype blood serum IgE levels in a normal non atopic individual are only 0 05 of the Ig concentration 10 compared to 75 for the IgGs at 10 mg ml and are the isotypes responsible for most of the classical adaptive immune response it is capable of triggering anaphylaxis one of the most rapid and severe immunological reactions 11 Contents 1 Discovery 2 Receptors 3 Function 3 1 Parasite hypothesis 3 2 Toxin hypothesis of allergic disease 3 3 Cancer 4 Role in disease 4 1 Role in diagnosis 5 Drugs targeting the IgE pathway 6 ReferencesDiscovery editIgE was simultaneously discovered in 1966 and 1967 by two independent groups 12 Kimishige Ishizaka and his wife Teruko Ishizaka at the Children s Asthma Research Institute and Hospital in Denver Colorado 13 and by Gunnar Johansson and Hans Bennich sv in Uppsala Sweden 14 Their joint paper was published in April 1969 15 Receptors editIgE primes the IgE mediated allergic response by binding to Fc receptors found on the surface of mast cells and basophils Fc receptors are also found on eosinophils monocytes macrophages and platelets in humans There are two types of Fce receptors citation needed FceRI type I Fce receptor the high affinity IgE receptor FceRII type II Fce receptor also known as CD23 the low affinity IgE receptorIgE can upregulate the expression of both types of Fce receptors FceRI is expressed on mast cells basophils and the antigen presenting dendritic cells in both mice and humans Binding of antigens to IgE already bound by the FceRI on mast cells causes cross linking of the bound IgE and the aggregation of the underlying FceRI leading to degranulation the release of mediators and the secretion of several types of type 2 cytokines like interleukin IL 3 and stem cell factor SCF which both help the mast cells survive and accumulate in tissue and IL 4 IL 5 IL 13 and IL 33 which in turn activate group 2 innate lymphoid cells ILC2 or natural helper cells Basophils share a common haemopoietic progenitor with mast cells upon the cross linking of their surface bound IgE by antigens also release type 2 cytokines including IL 4 and IL 13 and other inflammatory mediators The low affinity receptor FceRII is always expressed on B cells but IL 4 can induce its expression on the surfaces of macrophages eosinophils platelets and some T cells 16 17 Function editParasite hypothesis edit The IgE isotype has co evolved with basophils and mast cells in the defence against parasites like helminths like Schistosoma but may be also effective in bacterial infections 18 Epidemiological research shows that IgE level is increased when infected by Schistosoma mansoni 19 Necator americanus 20 and nematodes 21 in humans It is most likely beneficial in removal of hookworms from the lung citation needed Toxin hypothesis of allergic disease edit In 1981 Margie Profet suggested that allergic reactions have evolved as a last line of defense to protect against venoms 6 Although controversial at the time new work supports some of Profet s thoughts on the adaptive role of allergies as a defense against noxious toxins 7 In 2013 it emerged that IgE antibodies play an essential role in acquired resistance to honey bee 8 and Russell s viper venoms 8 22 The authors concluded that a small dose of bee venom conferred immunity to a much larger fatal dose and this kind of venom specific IgE associated adaptive immune response developed at least in evolutionary terms to protect the host against potentially toxic amounts of venom such as would happen if the animal encountered a whole nest of bees or in the event of a snakebite 8 23 24 The major allergen of bee venom phospholipase A2 induces a Th2 immune responses associated with production of IgE antibodies which may increase the resistance of mice to challenge with potentially lethal doses 25 Cancer edit Although it is not yet well understood IgE may play an important role in the immune system s recognition of cancer 26 in which the stimulation of a strong cytotoxic response against cells displaying only small amounts of early cancer markers would be beneficial If this were the case anti IgE treatments such as omalizumab for allergies might have some undesirable side effects However a recent study which was performed based on pooled analysis using comprehensive data from 67 phase I to IV clinical trials of omalizumab in various indications concluded that a causal relationship between omalizumab therapy and malignancy is unlikely 27 Role in disease editAtopic individuals can have up to ten times the normal level of IgE in their blood as do sufferers of hyper IgE syndrome However this may not be a requirement for symptoms to occur as has been seen in asthmatics with normal IgE levels in their blood recent research has shown that IgE production can occur locally in the nasal mucosa 28 IgE that can specifically recognise an allergen typically this is a protein such as dust mite Der p 1 cat Fel d 1 grass or ragweed pollen food protein etc has a unique long lived interaction with its high affinity receptor FceRI so that basophils and mast cells capable of mediating inflammatory reactions become primed ready to release chemicals like histamine leukotrienes and certain interleukins These chemicals cause many of the symptoms we associate with allergy such as airway constriction in asthma local inflammation in eczema increased mucus secretion in allergic rhinitis and increased vascular permeability it is presumed to allow other immune cells to gain access to tissues but which can lead to a potentially fatal drop in blood pressure as in anaphylaxis citation needed IgE is known to be elevated in various autoimmune disorders such as SLE rheumatoid arthritis RA and psoriasis and is theorized to be of pathogenetic importance in SLE and RA by eliciting a hypersensitivity reaction 29 30 Regulation of IgE levels through control of B cell differentiation to antibody secreting plasma cells is thought to involve the low affinity receptor FceRII or CD23 31 CD23 may also allow facilitated antigen presentation an IgE dependent mechanism whereby B cells expressing CD23 are able to present allergen to and stimulate specific T helper cells causing the perpetuation of a Th2 response one of the hallmarks of which is the production of more antibodies 32 Role in diagnosis edit Diagnosis of allergy is most often done by reviewing a person s medical history and finding a positive result for the presence of allergen specific IgE when conducting a skin or blood test 33 Specific IgE testing is the proven test for allergy detection evidence does not show that indiscriminate IgE testing or testing for immunoglobulin G IgG can support allergy diagnosis 34 Drugs targeting the IgE pathway editCurrently allergic diseases and asthma are usually treated with one or more of the following drugs 1 antihistamines and antileukotrienes which antagonize the inflammatory mediators histamine and leukotrienes 2 local or systemic oral or injectable corticosteroids which suppress a broad spectrum of inflammatory mechanisms 3 short or long acting bronchodilators which relax smooth muscle of constricted airway in asthma or 4 mast cell stabilizers which inhibit the degranulation of mast cells that is normally triggered by IgE binding at FceRI Long term uses of systemic corticosteroids are known to cause many serious side effects and are advisable to avoid if alternative therapies are available citation needed IgE the IgE synthesis pathway and the IgE mediated allergic inflammatory pathway are all important targets in intervening with the pathological processes of allergy asthma and other IgE mediated diseases The B lymphocyte differentiation and maturation pathway that eventually generate IgE secreting plasma cells go through the intermediate steps of IgE expressing B lymphoblasts and involves the interaction with IgE expressing memory B cells Tanox a biotech company based in Houston Texas proposed in 1987 that by targeting membrane bound IgE mIgE on B lymphoblast and memory B cells those cells can be lysed or down regulated thus achieving the inhibition of the production of antigen specific IgE and hence a shift of immune balance toward non IgE mechanisms 35 Two approaches targeting the IgE pathway were evolved and both are in active development In the first approach the anti IgE antibody drug omalizumab trade name Xolair recognises IgE not bound to its receptors and is used to neutralise or mop up existing IgE and prevent it from binding to the receptors on mast cells and basophils Xolair has been approved in many countries for treating severe persistent allergic asthma It has also been approved in March 2014 in the European Union 36 and the U S 37 for treating chronic spontaneous urticaria which cannot be adequately treated with H1 antihistamines In the second approach antibodies specific for a domain of 52 amino acid residues referred to as CemX or M1 M1 prime present only on human mIgE on B cells and not on free soluble IgE have been prepared and are under clinical development for the treatment of allergy and asthma 38 39 An anti M1 humanized antibody quilizumab is in phase IIb clinical trial 40 41 In 2002 researchers at the Randall Division of Cell and Molecular Biophysics determined the structure of IgE 42 Understanding of this structure which is atypical of other isotypes in that it is highly bent and asymmetric and of the interaction of IgE with receptor FceRI will enable development of a new generation of allergy drugs that seek to interfere with the IgE receptor interaction It may be possible to design treatments cheaper than monoclonal antibodies for instance small molecule drugs that use a similar approach to inhibit binding of IgE to its receptor citation needed References edit Antibody structure Archived from the original on September 6 2008 Erb KJ May 2007 Helminths allergic disorders and IgE mediated immune responses where do we stand European Journal of Immunology 37 5 1170 3 doi 10 1002 eji 200737314 PMID 17447233 S2CID 24519249 Watanabe N Bruschi F Korenaga M April 2005 IgE a question of protective immunity in Trichinella spiralis infection Trends in Parasitology 21 4 175 8 doi 10 1016 j pt 2005 02 010 PMID 15780839 Pfister K Turner K Currie A Hall E Jarrett EE November 1983 IgE production in rat fascioliasis Parasite Immunology 5 6 587 93 doi 10 1111 j 1365 3024 1983 tb00775 x PMID 6657297 S2CID 1530964 Duarte J Deshpande P Guiyedi V Mecheri S Fesel C Cazenave PA et al January 2007 Total and functional parasite specific IgE responses in Plasmodium falciparum infected patients exhibiting different clinical status Malaria Journal 6 1 doi 10 1186 1475 2875 6 1 PMC 1781948 PMID 17204149 a b Profet M March 1991 The function of allergy immunological defense against toxins The Quarterly Review of Biology 66 1 23 62 doi 10 1086 417049 PMID 2052671 S2CID 5648170 a b Palm NW Rosenstein RK Medzhitov R April 2012 Allergic host defences Nature 484 7395 465 72 Bibcode 2012Natur 484 465P doi 10 1038 nature11047 PMC 3596087 PMID 22538607 a b c d Marichal T Starkl P Reber LL Kalesnikoff J Oettgen HC Tsai M et al November 2013 A beneficial role for immunoglobulin E in host defense against honeybee venom Immunity 39 5 963 75 doi 10 1016 j immuni 2013 10 005 PMC 4164235 PMID 24210352 Gould HJ Sutton BJ Beavil AJ Beavil RL McCloskey N Coker HA et al 2003 The biology of IGE and the basis of allergic disease Annual Review of Immunology 21 579 628 doi 10 1146 annurev immunol 21 120601 141103 PMID 12500981 Winter WE Hardt NS Fuhrman S September 2000 Immunoglobulin E importance in parasitic infections and hypersensitivity responses Archives of Pathology amp Laboratory Medicine 124 9 1382 5 doi 10 5858 2000 124 1382 IE PMID 10975945 Reber LL Hernandez JD Galli SJ August 2017 The pathophysiology of anaphylaxis The Journal of Allergy and Clinical Immunology 140 2 335 348 doi 10 1016 j jaci 2017 06 003 PMC 5657389 PMID 28780941 Stanworth DR February 1993 The discovery of IgE Allergy 48 2 67 71 doi 10 1111 j 1398 9995 1993 tb00687 x PMID 8457034 S2CID 36262710 Ishizaka K Ishizaka T Hornbrook MM July 1966 Physico chemical properties of human reaginic antibody IV Presence of a unique immunoglobulin as a carrier of reaginic activity Journal of Immunology 97 1 75 85 doi 10 4049 jimmunol 97 1 75 PMID 4162440 S2CID 255620017 Johansson SG Bennich H October 1967 Immunological studies of an atypical myeloma immunoglobulin Immunology 13 4 381 94 PMC 1409218 PMID 4168094 Ishizaka T Ishizaka K Johansson SG Bennich H April 1969 Histamine release from human leukocytes by anti gamma E antibodies Journal of Immunology 102 4 884 92 doi 10 4049 jimmunol 102 4 884 PMID 4181251 S2CID 255338552 Retrieved 2016 02 29 Ewart MA Ozanne BW Cushley W May 2002 The CD23a and CD23b proximal promoters display different sensitivities to exogenous stimuli in B lymphocytes Genes and Immunity 3 3 158 64 doi 10 1038 sj gene 6363848 PMID 12070780 Novak N Kraft S Bieber T December 2001 IgE receptors Current Opinion in Immunology 13 6 721 6 doi 10 1016 s0952 7915 01 00285 0 PMID 11677096 Abraham Soman N St John Ashley L June 2010 Mast cell orchestrated immunity to pathogens Nature Reviews Immunology 10 6 440 452 doi 10 1038 nri2782 ISSN 1474 1741 PMC 4469150 PMID 20498670 Rihet P Demeure CE Bourgois A Prata A Dessein AJ November 1991 Evidence for an association between human resistance to Schistosoma mansoni and high anti larval IgE levels European Journal of Immunology 21 11 2679 86 doi 10 1002 eji 1830211106 PMID 1936116 S2CID 1103861 Pritchard DI Quinnell RJ Walsh EA February 1995 Immunity in humans to Necator americanus IgE parasite weight and fecundity Parasite Immunology 17 2 71 5 doi 10 1111 j 1365 3024 1995 tb00968 x PMID 7761110 S2CID 41222700 Turner JD et al June 2005 Allergen specific IgE and IgG4 are markers of resistance and susceptibility in a human intestinal nematode infection Microbes and Infection 7 7 8 990 6 doi 10 1016 j micinf 2005 03 036 PMID 15961339 Starkl P Marichal T Gaudenzio N Reber LL Sibilano R Tsai M Galli SJ January 2016 IgE antibodies FceRIa and IgE mediated local anaphylaxis can limit snake venom toxicity The Journal of Allergy and Clinical Immunology 137 1 246 257 e11 doi 10 1016 j jaci 2015 08 005 PMC 4715494 PMID 26410782 Sharlach Molly 24 October 2013 Bee sting allergy could be a defense response gone haywire scientists say Stanford Medicine News Center Retrieved 20 November 2019 Foley James A 25 October 2013 Severe Allergies to Bee Stings may be Malfunctioning Evolutionary Response Nature World News Tsai M Starkl P Marichal T Galli SJ October 2015 Testing the toxin hypothesis of allergy mast cells IgE and innate and acquired immune responses to venoms Current Opinion in Immunology 36 80 7 doi 10 1016 j coi 2015 07 001 PMC 4593748 PMID 26210895 Karagiannis SN Wang Q East N Burke F Riffard S Bracher MG et al April 2003 Activity of human monocytes in IgE antibody dependent surveillance and killing of ovarian tumor cells European Journal of Immunology 33 4 1030 40 doi 10 1002 eji 200323185 PMID 12672069 S2CID 29495137 Busse W Buhl R Fernandez Vidaurre C Blogg M Zhu J Eisner MD Canvin J April 2012 Omalizumab and the risk of malignancy results from a pooled analysis The Journal of Allergy and Clinical Immunology 129 4 983 9 e6 doi 10 1016 j jaci 2012 01 033 PMID 22365654 Takhar P Smurthwaite L Coker HA Fear DJ Banfield GK Carr VA et al April 2005 Allergen drives class switching to IgE in the nasal mucosa in allergic rhinitis Journal of Immunology 174 8 5024 32 doi 10 4049 jimmunol 174 8 5024 PMID 15814733 Permin H Wiik A October 1978 The prevalence of IgE antinuclear antibodies in rheumatoid arthritis and systemic lupus erythematosus Acta Pathologica et Microbiologica Scandinavica Section C 86C 5 245 9 doi 10 1111 j 1699 0463 1978 tb02587 x PMID 309705 S2CID 13737751 Elkayam O Tamir R Pick AI Wysenbeek A January 1995 Serum IgE concentrations disease activity and atopic disorders in systemic lupus erythematosus Allergy 50 1 94 6 PMID 7741196 Conrad DH Ford JW Sturgill JL Gibb DR September 2007 CD23 an overlooked regulator of allergic disease Current Allergy and Asthma Reports 7 5 331 7 doi 10 1007 s11882 007 0050 y PMID 17697638 S2CID 24816595 Holm J Willumsen N Wurtzen PA Christensen LH Lund K April 2011 Facilitated antigen presentation and its inhibition by blocking IgG antibodies depends on IgE repertoire complexity The Journal of Allergy and Clinical Immunology 127 4 1029 37 doi 10 1016 j jaci 2011 01 062 PMID 21377718 Cox L Williams B Sicherer S Oppenheimer J Sher L Hamilton R Golden D December 2008 Pearls and pitfalls of allergy diagnostic testing report from the American College of Allergy Asthma and Immunology American Academy of Allergy Asthma and Immunology Specific IgE Test Task Force Annals of Allergy Asthma amp Immunology 101 6 580 92 doi 10 1016 S1081 1206 10 60220 7 PMID 19119701 American Academy of Allergy Asthma and Immunology Five Things Physicians and Patients Should Question PDF Choosing Wisely An Initiative of the ABIM Foundation Archived from the original PDF on November 3 2012 Retrieved August 14 2012 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link Chang TW Wu PC Hsu CL Hung AF 2007 Anti IgE Antibodies for the Treatment of IgE Mediated Allergic Diseases Advances in Immunology Vol 93 pp 63 119 doi 10 1016 S0065 2776 06 93002 8 ISBN 9780123737076 PMID 17383539 Novartis announces Xolair approved in EU as first and only licensed therapy for chronic spontaneous urticaria CSU patients unresponsive to antihistamines Novartis 2014 03 06 Archived from the original on 2014 12 18 Retrieved 2014 12 04 Novartis announces US FDA approval of Xolair for chronic idiopathic urticaria CIU Novartis 2014 03 21 Archived from the original on 2014 12 03 Retrieved 2014 12 04 Chen JB Wu PC Hung AF Chu CY Tsai TF Yu HM et al February 2010 Unique epitopes on C epsilon mX in IgE B cell receptors are potentially applicable for targeting IgE committed B cells Journal of Immunology 184 4 1748 56 doi 10 4049 jimmunol 0902437 PMID 20083663 Brightbill HD Jeet S Lin Z Yan D Zhou M Tan M et al June 2010 Antibodies specific for a segment of human membrane IgE deplete IgE producing B cells in humanized mice The Journal of Clinical Investigation 120 6 2218 29 doi 10 1172 JCI40141 PMC 2877936 PMID 20458139 MEMP1972A ClinicalTrials gov U S National Institutes of Health Retrieved 2014 12 04 Gauvreau GM Harris JM Boulet LP Scheerens H Fitzgerald JM Putnam WS et al July 2014 Targeting membrane expressed IgE B cell receptor with an antibody to the M1 prime epitope reduces IgE production Science Translational Medicine 6 243 243ra85 doi 10 1126 scitranslmed 3008961 PMID 24990880 S2CID 41593528 Wan T Beavil RL Fabiane SM Beavil AJ Sohi MK Keown M et al July 2002 The crystal structure of IgE Fc reveals an asymmetrically bent conformation Nature Immunology 3 7 681 6 doi 10 1038 ni811 PMID 12068291 S2CID 32347451 Portals nbsp Biology nbsp Medicine Retrieved from https en wikipedia org w index php title Immunoglobulin E amp oldid 1191325650, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.