fbpx
Wikipedia

Aquaculture of salmonids

The aquaculture of salmonids is the farming and harvesting of salmonid fish under controlled conditions for both commercial and recreational purposes. Salmonids (particularly salmon and rainbow trout), along with carp and tilapia, are the three most important fish groups in aquaculture.[2] The most commonly commercially farmed salmonid is the Atlantic salmon (Salmo salar).

Aquaculture production of salmonids in tonnes
1950–2010 as reported by the FAO[1]
Salmon farm in the archipelago of Finland

In the United States, Chinook salmon and rainbow trout are the most commonly farmed salmonids for recreational and subsistence fishing through the National Fish Hatchery System.[3] In Europe, brown trout are the most commonly reared fish for recreational restocking.[4] Commonly farmed non-salmonid fish groups include tilapia, catfish, black sea bass and bream. In 2007, the aquaculture of salmonids was worth USD $10.7 billion globally. Salmonid aquaculture production grew over ten-fold during the 25 years from 1982 to 2007. In 2012, the leading producers of salmonids were Norway, Chile, Scotland and Canada.[5]

Much controversy exists about the ecological and health impacts of intensive salmonids aquaculture. Of particular concern are the impacts on wild salmon and other marine life.

Methods edit

 
Assynt salmon hatchery, near Inchnadamph in the Scottish Highlands
 
Very young fertilised salmon eggs, notice the developing eyes and vertebral column.
 
Salmon egg hatching: In about 24 hr, it will be a fry without the yolk sac.

The aquaculture or farming of salmonids can be contrasted with capturing wild salmonids using commercial fishing techniques. However, the concept of "wild" salmon as used by the Alaska Seafood Marketing Institute includes stock enhancement fish produced in hatcheries that have historically been considered ocean ranching. The percentage of the Alaska salmon harvest resulting from ocean ranching depends upon the species of salmon and location.[6][not specific enough to verify] Methods of salmonid aquaculture originated in late 18th-century fertilization trials in Europe. In the late 19th century, salmon hatcheries were used in Europe and North America. From the late 1950s, enhancement programs based on hatcheries were established in the United States, Canada, Japan, and the USSR. The contemporary technique using floating sea cages originated in Norway in the late 1960s.[7]

Salmonids are usually farmed in two stages and in some places maybe more. First, the salmon are hatched from eggs and raised on land in freshwater tanks. Increasing the accumulated thermal units of water during incubation reduces time to hatching.[8] When they are 12 to 18 months old, the smolt (juvenile salmon) are transferred to floating sea cages or net pens anchored in sheltered bays or fjords along a coast. This farming in a marine environment is known as mariculture. There they are fed pelleted feed for another 12 to 24 months, when they are harvested.[9]

Norway produces 33% of the world's farmed salmonids, and Chile produces 31%.[10] The coastlines of these countries have suitable water temperatures and many areas well protected from storms. Chile is close to large forage fisheries which supply fish meal for salmon aquaculture. Scotland and Canada are also significant producers;[11][failed verification] and it was reported in 2012 that the Norwegian government at that time controlled a significant fraction of the Canadian industry.[12]

Modern salmonid farming systems are intensive. Their ownership is often under the control of huge agribusiness corporations, operating mechanized assembly lines on an industrial scale. In 2003, nearly half of the world’s farmed salmon was produced by just five companies.[13]

Hatcheries edit

Modern commercial hatcheries for supplying salmon smolts to aquaculture net pens have been shifting to recirculating aquaculture systems (RAS)s where the water is recycled within the hatchery. This allows location of the hatchery to be independent of a significant fresh water supply and allows economical temperature control to both speed up and slow down the growth rate to match the needs of the net pens.

Conventional hatchery systems operate flow-through, where spring water or other water sources flow into the hatchery. The eggs are then hatched in trays and the salmon smolts are produced in raceways. The waste products from the growing salmon fry and the feed are usually discharged into the local river. Conventional flow-through hatcheries, for example the majority of Alaska's enhancement hatcheries, use more than 100 tonnes (16,000 st) of water to produce a kg of smolts.

An alternative method to hatching in freshwater tanks is to use spawning channels. These are artificial streams, usually parallel to an existing stream with concrete or rip-rap sides and gravel bottoms. Water from the adjacent stream is piped into the top of the channel, sometimes via a header pond to settle out sediment. Spawning success is often much better in channels than in adjacent streams due to the control of floods which in some years can wash out the natural redds. Because of the lack of floods, spawning channels must sometimes be cleaned out to remove accumulated sediment. The same floods which destroy natural redds also clean them out. Spawning channels preserve the natural selection of natural streams as no temptation exists, as in hatcheries, to use prophylactic chemicals to control diseases. However, exposing fish to wild parasites and pathogens using uncontrolled water supplies, combined with the high cost of spawning channels, makes this technology unsuitable for salmon aquaculture businesses. This type of technology is only useful for stock enhancement programs.

Sea cages edit

Sea cages, also called sea pens or net pens, are usually made of mesh framed with steel or plastic. They can be square or circular, 10 to 32 m (33 to 105 ft) across and 10 m (33 ft) deep, with volumes between 1,000 and 10,000 m3 (35,000 and 353,000 cu ft). A large sea cage can contain up to 90,000 fish.

They are usually placed side by side to form a system called a seafarm or seasite, with a floating wharf and walkways along the net boundaries. Additional nets can also surround the seafarm to keep out predatory marine mammals. Stocking densities range from 8 to 18 kg (18 to 40 lb)/m3 for Atlantic salmon and 5 to 10 kilograms (11 to 22 lb)/m3 for Chinook salmon.[9][14]

In contrast to closed or recirculating systems, the open net cages of salmonid farming lower production costs, but provide no effective barrier to the discharge of wastes, parasites, and disease into the surrounding coastal waters.[13] Farmed salmon in open net cages can escape into wild habitats, for example, during storms.

An emerging wave in aquaculture is applying the same farming methods used for salmonids to other carnivorous finfish species, such as cod, bluefin tuna, halibut, and snapper. However, this is likely to have the same environmental drawbacks as salmon farming.[13][15]

A second emerging wave in aquaculture is the development of copper alloys as netting materials. Copper alloys have become important netting materials because they are antimicrobial (i.e., they destroy bacteria, viruses, fungi, algae, and other microbes), so they prevent biofouling (i.e., the undesirable accumulation, adhesion, and growth of microorganisms, plants, algae, tubeworms, barnacles, mollusks, and other organisms). By inhibiting microbial growth, copper alloy aquaculture cages avoid costly net changes that are necessary with other materials. The resistance of organism growth on copper alloy nets also provides a cleaner and healthier environment for farmed fish to grow and thrive.

Feeding edit

With the amount of worldwide fish meal production being almost a constant amount for the last 30+ years and at maximum sustainable yield, much of the fish meal market has shifted from chicken and pig feed to fish and shrimp feeds as aquaculture has grown in this time.[16]

Work continues on developing salmonid diet made from concentrated plant protein.[17] As of 2014, an enzymatic process can be used to lower the carbohydrate content of barley, making it a high-protein fish feed suitable for salmon.[18] Many other substitutions for fish meal are known, and diets containing zero fish meal are possible. For example, a planned closed-containment salmon fish farm in Scotland uses ragworms, algae, and amino acids as feed.[19] Some of the eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in Omega-3 fatty acids may be replaced by land-based (non-marine) algae oil, reducing the harvest of wild fish as fish meal.[20]

However, commercial economic animal diets are determined by least-cost linear programming models that are effectively competing with similar models for chicken and pig feeds for the same feed ingredients, and these models show that fish meal is more useful in aquatic diets than in chicken diets, where they can make the chickens taste like fish.[21] Unfortunately, this substitution can result in lower levels of the highly valued omega-3 content in the farmed product. However, when vegetable oil is used in the growing diet as an energy source and a different finishing diet containing high omega-3 content fatty acids from either fish oil, algae oils, or some vegetable oils are used a few months before harvest, this problem is eliminated.[22]

On a dry-dry basis, 2–4 kg of wild-caught fish are needed to produce 1 kg of salmon.[23] The ratio may be reduced if non-fish sources are added.[20] Wild salmon require about 10 kg of forage fish to produce 1 kg of salmon, as part of the normal trophic level energy transfer. The difference between the two numbers is related to farmed salmon feed containing other ingredients beyond fish meal and because farmed fish do not expend energy hunting.

In 2017 it was reported that the American company Cargill has been researching and developing alternative feeds with EWOS through its internal COMPASS programs in Norway, resulting in the proprietary RAPID feed blend. These methods studied macronutrient profiles of fish feed based upon geography and season. Using RAPID feed, salmon farms reduced the time to maturity of salmon to about 15 months, in a period one-fifth faster than usual.[24][25]

Other feed additives edit

As of 2008, 50-80% of the world fish oil production is fed to farmed salmonids.[26][27]

Farm raised salmonids are also fed the carotenoids astaxanthin and canthaxanthin, so their flesh colour matches wild salmon, which also contain the same carotenoid pigments from their diet in the wild.[28]

Harvesting edit

Modern harvesting methods are shifting towards using wet-well ships to transport live salmon to the processing plant. This allows the fish to be killed, bled, and filleted before rigor has occurred. This results in superior product quality to the customer, along with more humane processing. To obtain maximum quality, minimizing the level of stress is necessary in the live salmon until actually being electrically and percussively killed and the gills slit for bleeding.[29] These improvements in processing time and freshness to the final customer are commercially significant and forcing the commercial wild fisheries to upgrade their processing to the benefit of all seafood consumers.

An older method of harvesting is to use a sweep net, which operates a bit like a purse seine net. The sweep net is a big net with weights along the bottom edge. It is stretched across the pen with the bottom edge extending to the bottom of the pen. Lines attached to the bottom corners are raised, herding some fish into the purse, where they are netted. Before killing, the fish are usually rendered unconscious in water saturated in carbon dioxide, although this practice is being phased out in some countries due to ethical and product quality concerns. More advanced systems use a percussive-stun harvest system that kills the fish instantly and humanely with a blow to the head from a pneumatic piston. They are then bled by cutting the gill arches and immediately immersing them in iced water. Harvesting and killing methods are designed to minimize scale loss, and avoid the fish releasing stress hormones, which negatively affect flesh quality.[14]

Wild versus farmed edit

Wild salmonids are captured from wild habitats using commercial fishing techniques. Most wild salmonids are caught in North American, Japanese, and Russian fisheries. The following table shows the changes in production of wild salmonids and farmed salmonids over a period of 25 years, as reported by the FAO.[30] Russia, Japan and Alaska all operate major hatchery based stock enhancement programs. The resulting fish hatchery fish are defined as "wild" for FAO and marketing purposes.

Salmonid production in tonnes by species
Species 1982 2007 2013
Wild Farmed Wild Farmed
Atlantic salmon 10,326 13,265 2,989 1,433,708 2,087,110[31]
Steelhead 171,946 604,695
Coho salmon 42,281 2,921 17,200 115,376
Chinook salmon 25,147 8,906 11,542
Pink salmon 170,373 495,986
Chum salmon 182,561 303,205
Sockeye salmon 128,176 164,222
Total salmonid production
1982 2007
tonnes percent tonnes percent
Wild 558,864 75 992,508 31
Farmed 188,132 25 2,165,321 69
Overall 746,996 3,157,831

Issues edit

The US in their dietary guidelines for 2010 recommends eating 8 ounces per week of a variety of seafood and 12 ounces for lactating mothers, with no upper limits set and no restrictions on eating farmed or wild salmon.[32] In 2018, Canadian dietary guidelines recommended eating at least two servings of fish each week and choosing fish such as char, herring, mackerel, salmon, sardines, and trout.[33]

Currently, much controversy exists about the ecological and health impacts of intensive salmonid aquaculture. Of particular concern are the impacts on wild salmonids and other marine life and on the incomes of commercial salmonid fishermen.[34] However, the 'enhanced' production of salmon juveniles – which for instance lead to a double-digit proportion (20-50%) of the Alaska's yearly ‘wild’ salmon harvest - is not void of controversy, and the Alaska salmon harvest are highly dependent on the operation of Alaska’s Regional Aquaculture Associations. Furthermore, the sustainability of enhanced/hatchery-based ‘wild’ caught salmon has long been hotly debated,[35] both from a scientific and political/marketing perspective. Such debate and positions were central to a 'halt' in the re-certification of Alaska salmon fisheries by the Marine Stewardship Council (MSC) in 2012.[36] The Alaska salmon fisheries subsequently re-attained MSC-certification status; however the heavily hatchery-dependent Prince William Sound (PWS) unit of certification (“one of the most valuable fishing area in the State”[37]) was for several years excluded from the MSC-certification (it remained ‘under assessment’ pending further analysis).

Disease and parasites edit

In 1972, Gyrodactylus, a monogenean parasite, was introduced with live trout and salmon from Sweden (Baltic stocks are resistant to it) into government-operated hatcheries in Norway. From the hatcheries, infected eggs, smolt, and fry were implanted in many rivers with the goal to strengthen the wild salmon stocks, but caused instead devastation to some of the wild salmon populations affected.[38]

In 1984, infectious salmon anemia (ISAv) was discovered in Norway in an Atlantic salmon hatchery. Eighty percent of the fish in the outbreak died. ISAv, a viral disease, is now a major threat to the viability of Atlantic salmon farming. It is now the first of the diseases classified on List One of the European Commission’s fish health regimen. Amongst other measures, this requires the total eradication of the entire fish stock should an outbreak of the disease be confirmed on any farm. ISAv seriously affects salmon farms in Chile, Norway, Scotland, and Canada, causing major economic losses to infected farms.[39] As the name implies, it causes severe anemia of infected fish. Unlike mammals, the red blood cells of fish have ribosomes, and can become infected with viruses. The fish develop pale gills, and may swim close to the water surface, gulping for air. However, the disease can also develop without the fish showing any external signs of illness, the fish maintain a normal appetite, and then they suddenly die. The disease can progress slowly throughout an infected farm, and in the worst cases, death rates may approach 100%. It is also a threat to the dwindling stocks of wild salmon. Management strategies include developing a vaccine and improving genetic resistance to the disease.[40]

In the wild, diseases and parasites are normally at low levels, and kept in check by natural predation on weakened individuals. In crowded net pens, they can become epidemics. Diseases and parasites also transfer from farmed to wild salmon populations. A recent study in British Columbia links the spread of parasitic sea lice from river salmon farms to wild pink salmon in the same river.[13] The European Commission (2002) concluded, "The reduction of wild salmonid abundance is also linked to other factors but there is more and more scientific evidence establishing a direct link between the number of lice-infested wild fish and the presence of cages in the same estuary."[41] It is reported that wild salmon on the west coast of Canada are being driven to extinction by sea lice from nearby salmon farms.[42] These predictions have been disputed by other scientists[43] and recent harvests have indicated that the predictions were in error. In 2011, Scottish salmon farming introduced the use of farmed wrasse for the purpose of cleaning farmed salmon of ectoparasites.[44][45]

Globally, salmon production fell around 9% in 2015, in large part due to acute outbreaks of sea lice in Scotland and Norway.[46][47][48] Lasers are used to reduce lice infections.[49]

In the mid 1980s to the 1990s, bacterial kidney disease (BKD) caused by Renibacterium salmoninarum heavily impacted Chinook hatcheries in Idaho.[50] The disease causes granulomatous inflammation that can lead to abscesses in the liver, spleen, and kidneys.[51]

Pollution and contaminants edit

Salmonid farms are typically sited in marine ecosystems with good water quality, high water exchange rates, current speeds fast enough to prevent pollution of the bottom but slow enough to prevent pen damage, protection from major storms, reasonable water depth, and a reasonable distance from major infrastructure such as ports, processing plants, and logistical facilities such as airports. Logistical considerations are significant, and feed and maintenance labor must be transported to the facility and the product returned. Siting decisions are complicated by complex, politically driven permit problems in many countries that prevents optimal locations for the farms.

In sites without adequate currents, heavy metals can accumulate on the benthos (seafloor) near the salmon farms, particularly copper and zinc.[14]

Contaminants are commonly found in the flesh of farmed and wild salmon.[52] Health Canada in 2002 published measurements of PCBs, dioxins and furans and PDBEs in several varieties of fish. The farmed salmonids population had nearly 3 times the level of PCBs, more than 3 times the level of PDBEs, and nearly twice the level of dioxins and furans seen in the wild population.[53] On the other hand, "Update of the monitoring of levels of dioxins and PCBs in food and feed", a 2012 study from the European Food Safety Authority, stated that farmed salmon and trout contained on average a many times lesser fraction of dioxins and PCBs than wild-caught salmon and trout."[54]

A 2004 study, reported in Science, analysed farmed and wild salmon for organochlorine contaminants. They found the contaminants were higher in farmed salmon. Within the farmed salmon, European (particularly Scottish) salmon had the highest levels, and Chilean salmon the lowest.[55] The FDA and Health Canada have established a tolerance/limit for PCBs in commercial fish of 2000 ppb[56] A follow-up study confirmed this, and found levels of dioxins, chlorinated pesticides, PCBs and other contaminants up to ten times greater in farmed salmon than wild Pacific salmon.[57] On a positive note, further research using the same fish samples used in the previous study, showed that farmed salmon contained levels of beneficial fatty acids that were two to three times higher than wild salmon.[58] A follow-up benefit-risk analysis on salmon consumption balanced the cancer risks with the (n–3) fatty acid advantages of salmon consumption. For this reason, current methods for this type of analysis take into consideration the lipid content of the sample in question. PCBs specifically are lipophilic, so are found in higher concentrations in fattier fish in general,[59] thus the higher level of PCB in the farmed fish is in relation to the higher content of beneficial n–3 and n–6 lipids they contain. They found that recommended levels of (n-3) fatty acid consumption can be achieved eating farmed salmon with acceptable carcinogenic risks, but recommended levels of (n-3) EPA+DHA intake cannot be achieved solely from farmed (or wild) salmon without unacceptable carcinogenic risks.[60] The conclusions of this paper from 2005 were that

"...consumers should not eat farmed fish from Scotland, Norway and eastern Canada more than three times a year; farmed fish from Maine, western Canada and Washington state no more than three to six times a year; and farmed fish from Chile no more than about six times a year. Wild chum salmon can be consumed safely as often as once a week, pink salmon, Sockeye and Coho about twice a month and Chinook just under once a month."[52]

In 2005, Russia banned importing chilled fish from Norway, after samples of Norwegian farmed fish showed high levels of heavy metals. According to the Russian Minister of Agriculture Aleksey Gordeyev, levels of lead in the fish were 10 to 18 times higher than Russian safety standards and cadmium levels were almost four times higher.[61]

Pollutants or toxins introduced by pisciculturists edit

In 2006, eight Norwegian salmon producers were caught in unauthorized and unlabeled use of nitrite in smoked and cured salmon. Norway applies EU regulations on food additives, according to which nitrite is allowed as a food additive in certain types of meat, but not fish. Fresh salmon was not affected.[62]

Kurt Oddekalv, leader of the Green Warriors of Norway, argues that the scale of fish farming in Norway is unsustainable. Huge volumes of uneaten feed and fish excrement pollute the seabed, while chemicals designed to fight sea lice find their way into the food chain. He says: "If people knew this, they wouldn’t eat salmon", describing the farmed fish as "the most toxic food in the world".[63] Don Staniford—the former scientist turned activist/investigator and head of a small Global Alliance Against Industrial Aquaculture—agrees, saying that a 10-fold increase in the use of some chemicals was seen in the 2016-2017 timeframe. The use of the toxic drug emamectin is rising fast. The levels of chemicals used to kill sea lice have breached environmental safety limits more than 100 times in the last 10 years.[64]

Impact on wild salmonids edit

Farmed salmonids can, and often do, escape from sea cages. If the farmed salmonid is not native, it can compete with native wild species for food and habitat.[65][66] If the farmed salmonid is native, it can interbreed with the wild native salmonids. Such interbreeding can reduce genetic diversity, disease resistance, and adaptability.[67] In 2004, about 500,000 salmon and trout escaped from ocean net pens off Norway. Around Scotland, 600,000 salmon were released during storms.[13] Commercial fishermen targeting wild salmon frequently catch escaped farm salmon. At one stage, in the Faroe Islands, 20 to 40 percent of all fish caught were escaped farm salmon.[68] In 2017, about 263,000 farmed non-native Atlantic salmon escaped from a net in Washington waters in the 2017 Cypress Island Atlantic salmon pen break.[69]

Sea lice, particularly Lepeophtheirus salmonis and various Caligus species, including C. clemensi and C. rogercresseyi, can cause deadly infestations of both farm-grown and wild salmon.[70][71] Sea lice are naturally occurring and abundant ectoparasites which feed on mucus, blood, and skin, and migrate and latch onto the skin of salmon during planktonic nauplii and copepodid larval stages, which can persist for several days.[72][73][74] Large numbers of highly populated, open-net salmon farms can create exceptionally large concentrations of sea lice; when exposed in river estuaries containing large numbers of open-net farms, many young wild salmon are infected, and do not survive as a result.[75][76] Adult salmon may survive otherwise critical numbers of sea lice, but small, thin-skinned juvenile salmon migrating to sea are highly vulnerable. In 2007, mathematical studies of data available from the Pacific coast of Canada indicated the louse-induced mortality of pink salmon in some regions was over 80%.[42] Later that year, in reaction to the 2007 mathematical study mentioned above, Canadian federal fisheries scientists Kenneth Brooks and Simon Jones published a critique titled "Perspectives on Pink Salmon and Sea Lice: Scientific Evidence Fails to Support the Extinction Hypothesis "[77] The time since these studies has shown a general increase in abundance of Pink Salmon in the Broughton Archipelago. Another comment in the scientific literature by Canadian Government Fisheries scientists Brian Riddell and Richard Beamish et al. came to the conclusion that there is no correlation between farmed salmon louse numbers and returns of pink salmon to the Broughton Archipelago. And in relation to the 2007 Krkosek extinction theory: "the data was [sic] used selectively and conclusions do not match with recent observations of returning salmon".[43]

A 2008 meta-analysis of available data shows that salmonid farming reduces the survival of associated wild salmonid populations. This relationship has been shown to hold for Atlantic, steelhead, pink, chum, and coho salmon. The decrease in survival or abundance often exceeds 50%.[78] However, these studies are all correlation analysis and correlation doesn't equal causation, especially when similar salmon declines were occurring in Oregon and California, which have no salmon aquaculture or marine net pens. Independent of the predictions of the failure of salmon runs in Canada indicated by these studies, the wild salmon run in 2010 was a record harvest.[79]

A 2010 study that made the first use of sea lice count and fish production data from all salmon farms on the Broughton Archipelago found no correlation between the farm lice counts and wild salmon survival. The authors conclude that the 2002 stock collapse was not caused by the farm sea lice population: although the farm sea lice population during the out-migration of juvenile pink salmon was greater in 2000 than that of 2001, there was a record salmon returning to spawn in 2001 (from the juveniles in 2000) compared with a 97% collapse in 2002 (from the juveniles in 2001). The authors also note that initial studies had not investigated bacterial and viral causes for the event despite reports of bleeding at the base of the fins, a symptom often associated with infections, but not with sea lice exposure under laboratory conditions. [80]

Wild salmon are anadromous. They spawn inland in fresh water and when young migrate to the ocean where they grow up. Most salmon return to the river where they were born, although some stray to other rivers. Concern exists about of the role of genetic diversity within salmon runs. The resilience of the population depends on some fish being able to survive environmental shocks, such as unusual temperature extremes. The effect of hatchery production on the genetic diversity of salmon is also unclear.[7]

Genetic modification edit

Salmon have been genetically modified in laboratories so they can grow faster. A company, Aqua Bounty Farms, has developed a modified Atlantic salmon which grows nearly twice as fast (yielding a fully grown fish at 16–18 months rather than 30), and is more disease resistant, and cold tolerant. It also requires 10% less food. This was achieved using a chinook salmon gene sequence affecting growth hormones, and a promoter sequence from the ocean pout affecting antifreeze production.[81] Normally, salmon produce growth hormones only in the presence of light. The modified salmon does not switch growth hormone production off. The company first submitted the salmon for FDA approval in 1996.[82] In 2015, FDA has approved the AquAdvantage Salmon for commercial production.[83] A concern with transgenic salmon is what might happen if they escape into the wild. One study, in a laboratory setting, found that modified salmon mixed with their wild cohorts were aggressive in competing, but ultimately failed.[84]

Impact on wild predatory species edit

Sea cages can attract a variety of wild predators which can sometimes become entangled in associated netting, leading to injury or death. In Tasmania, Australian salmon-farming sea cages have entangled white-bellied sea eagles. This has prompted one company, Huon Aquaculture, to sponsor a bird rehabilitation centre and try more robust netting.[85]

Ecological edit

Juvenile farmed Chinook have been shown to have higher rates of predation due to their larger size than wild juveniles upon release into marine environments. Their size correlates with the preferred size of prey for predators like birds, seals, and fish. This may have ecological implications because of the effect on feeding.[86]

Impact on forage fish edit

The use of forage fish for fish meal production has been almost a constant for the last 30 years and at the maximum sustainable yield, while the market for fish meal has shifted from chicken, pig, and pet food to aquaculture diets.[16] This market shift at constant production appears an economic decision implying that the development of salmon aquaculture had no impact on forage fish harvest rates.

Fish do not actually produce omega-3 fatty acids, but instead accumulate them from either consuming microalgae that produce these fatty acids, as is the case with forage fish like herring and sardines, or consuming forage fish, as is the case with fatty predatory fish like salmon. To satisfy this requirement, more than 50% of the world fish oil production is fed to farmed salmon.[26]

In addition, salmon require nutritional intakes of protein, which is often supplied in the form of fish meal as the lowest-cost alternative. Consequently, farmed salmon consume more fish than they generate as a final product, though considerably more preferred as food.

Salmon Aquaculture Dialogue and ASC Salmon Standard edit

In 2004, the World Wide Fund for Nature (WWF)-USA initiated the Salmon Aquaculture Dialogue, one of several Aquaculture Dialogues.[11] The aim of the dialogues was to produce an environmental and social standard for farmed salmon and other species (12 species currently, as of 2018). Since 2012, the standards elaborated by the multi-stakeholder Dialogues were passed-on to the Aquaculture Stewardship Council (ASC) which was created in 2010 to administer and developed them further. The first such standard was the ASC Salmon Standard[87] (June 2012, and revised in 2017 after comprehensive public consultation). The WWF had originally identified what they called "seven key environmental and social impacts", characterised as:

  1. Benthic impacts and siting: Chemicals and excess nutrients from food and feces associated with salmon farms can disturb the flora and fauna on the ocean bottom (benthos).[88]
  2. Chemical inputs: Excessive use of chemicals – such as antibiotics, anti-foulants and pesticides – or the use of banned chemicals can have unintended consequences for marine organisms and human health.[89]
  3. Disease/parasites: Viruses and parasites can transfer between farmed and wild fish, as well as among farms.[90][91]
  4. Escapes: Escaped farmed salmon can compete with wild fish and interbreed with local wild stocks of the same population, altering the overall pool of genetic diversity.[92]
  5. Feed: A growing salmon farming business must control and reduce its dependency upon fishmeal and fishoil – a primary ingredient in salmon feed—so as not to put additional pressure on the world's fisheries. Fish caught to make fishmeal and oil currently represent one-third of the global fish harvest.[93]
  6. Nutrient loading and carrying capacity: Excess food and fish waste in the water have the potential to increase the levels of nutrients in the water. This can cause the growth of algae, which consumes oxygen that is meant for other plant and animal life.[94]
  7. Social issues: Salmon farming often employs a large number of workers on farms and in processing plants, potentially placing labor practices and worker rights under public scrutiny. Additionally, conflicts can arise among users of the shared coastal environment.
— World Wide Fund for Nature, [11]

Land-raised salmon edit

Recirculating aquaculture systems make it possible to farm salmon entirely on land, which as of 2019 is an ongoing initiative in the industry.[95] However, large farmed salmon companies such as Mowi and Cermaq were not investing in such systems.[96] In the United States, a major investor in the effort was Atlantic Sapphire, which plans to bring salmon raised in Florida to market in 2021.[96][97] Other companies investing in the effort include Nordic Acquafarms[98] and Whole Oceans.[99]

Species edit

Atlantic salmon edit

 
Atlantic salmon

In their natal streams, Atlantic salmon are considered a prized recreational fish, pursued by avid fly anglers during its annual runs. At one time, the species supported an important commercial fishery and a supplemental food fishery. However, the wild Atlantic salmon fishery is commercially dead; after extensive habitat damage and overfishing, wild fish make up only 0.5% of the Atlantic salmon available in world fish markets. The rest are farmed, predominantly from aquaculture in Chile, Canada, Norway, Russia, the United Kingdom, and Tasmania.[100]

Atlantic salmon is, by far, the species most often chosen for farming. It is easy to handle, grows well in sea cages, commands a high market value, and adapts well to being farmed away from its native habitats.[7]

Adult male and female fish are anesthetized. Eggs and sperm are "stripped", after the fish are cleaned and cloth dried. Sperm and eggs are mixed, washed, and placed into fresh water. Adults recover in flowing, clean, well-aerated water.[101] Some researchers have studied cryopreservation of the eggs.[102]

Fry are generally reared in large freshwater tanks for 12 to 20 months. Once the fish have reached the smolt phase, they are taken out to sea, where they are held for up to two years. During this time, the fish grow and mature in large cages off the coasts of Canada, the United States, or parts of Europe.[100] Generally, cages are made of two nets; inner nets, which wrap around the cages, hold the salmon while outer nets, which are held by floats, keep predators out.[101]

Many Atlantic salmon escape from cages at sea. Those salmon that further breed tend to lessen the genetic diversity of the species leading to lower survival rates, and lower catch rates. On the West Coast of North America, the non-native salmon could be an invasive threat, especially in Alaska and parts of Canada. This could cause them to compete with native salmon for resources. Extensive efforts are underway to prevent escapes and the potential spread of Atlantic salmon in the Pacific and elsewhere.[103] The risk of Atlantic Salmon becoming a legitimate invasive threat on the Pacific Coast of N. America is questionable in light of both Canadian and American governments deliberately introducing this species by the millions for a 100-year period starting in the 1900s. Despite these deliberate attempts to establish this species on the Pacific coast; no established populations have been reported.[104][105]

In 2007, 1,433,708 tonnes of Atlantic salmon were harvested worldwide with a value of $7.58 billion.[106] Ten years later, in 2017, over 2 million tonnes of farmed Atlantic salmon were harvested.[107]

Steelhead edit

 
Rainbow trout
 
Male ocean phase steelhead salmon

In 1989, steelhead were reclassified into the Pacific trout as Oncorhynchus mykiss from the former binominals of Salmo gairdneri (Columbia River redband trout) and S. irideus (coastal rainbow trout). Steelhead are an anadromous form of rainbow trout that migrate between lakes and rivers and the ocean, and are also known as steelhead salmon or ocean trout.

Steelhead are raised in many countries throughout the world. Since the 1950s, production has grown exponentially, particularly in Europe and recently in Chile. Worldwide, in 2007, 604,695 tonnes of farmed steelhead were harvested, with a value of $2.59 billion.[108] The largest producer is Chile. In Chile and Norway, the ocean-cage production of steelhead has expanded to supply export markets. Inland production of rainbow trout to supply domestic markets has increased strongly in countries such as Italy, France, Germany, Denmark, and Spain. Other significant producing countries include the United States, Iran, Germany, and the UK.[108] Rainbow trout, including juvenile steelhead in fresh water, routinely feed on larval, pupal, and adult forms of aquatic insects (typically caddisflies, stoneflies, mayflies, and aquatic dipterana). They also eat fish eggs and adult forms of terrestrial insects (typically ants, beetles, grasshoppers, and crickets) that fall into the water. Other prey include small fish up to one-third of their length, crayfish, shrimp, and other crustaceans. As rainbow trout grow, the proportion of fish consumed increases in most populations. Some lake-dwelling forms may become planktonic feeders. In rivers and streams populated with other salmonid species, rainbow trout eat varied fish eggs, including those of salmon, brown and cutthroat trout, mountain whitefish, and the eggs of other rainbow trout. Rainbows also consume decomposing flesh from carcasses of other fish. Adult steelhead in the ocean feed primarily on other fish, squid, and amphipods.[109] Cultured steelhead are fed a diet formulated to closely resemble their natural diet that includes fish meal, fish oil, vitamins and minerals, and the carotenoid asthaxanthin for pigmentation.

The steelhead is especially susceptible to enteric redmouth disease. Considerable research has been conducted on redmouth disease, as its implications for steelhead farmers are significant. The disease does not affect humans.[110]

Coho salmon edit

 
Male ocean phase Coho salmon

The Coho salmon[14] is the state animal of Chiba, Japan.[failed verification]

Coho salmon mature after only one year in the sea, so two separate broodstocks (spawners) are needed, alternating each year.[dubious ] Broodfish are selected from the salmon in the seasites and transferred to freshwater tanks for maturation and spawning.[14]

Worldwide, in 2007, 115,376 tonnes of farmed Coho salmon were harvested with a value of $456 million.[111] Chile, with about 90 percent of world production, is the primary producer with Japan and Canada producing the rest.[14]

Chinook salmon edit

 
Male ocean-phase Chinook
 
Male freshwater-phase Chinook

Chinook salmon are the state fish of Oregon, and are known as "king salmon" because of their large size and flavourful flesh. Those from the Copper River in Alaska are particularly known for their color, rich flavor, firm texture, and high omega-3 oil content.[112] Alaska has a long-standing ban on finfish aquaculture that was enacted in 1989. (Alaska Stat. § 16.40.210[113])

Worldwide, in 2007, 11,542 tonnes (1,817,600 st) of farmed Chinook salmon were harvested with a value of $83 million.[114] New Zealand is the largest producer of farmed king salmon, accounting for over half of world production (7,400 tonnes in 2005).[115] Most of the salmon are farmed in the sea (mariculture) using a method sometimes called sea-cage ranching, which takes place in large floating net cages, about 25 m across and 15 m deep, moored to the sea floor in clean, fast-flowing coastal waters. Smolt (young fish) from freshwater hatcheries are transferred to cages containing several thousand salmon, and remain there for the rest of their lives. They are fed fishmeal pellets high in protein and oil.[115]

Chinook salmon are also farmed in net cages placed in freshwater rivers or raceways, using techniques similar to those used for sea-farmed salmon. A unique form of freshwater salmon farming occurs in some hydroelectric canals in New Zealand. A site in Tekapo, fed by fast, cold waters from the Southern Alps, is the highest salmon farm in the world, 677 m (2,221 ft) above sea level.[116]

Before they are killed, cage salmon are sometimes anaesthetised with a herbal extract. They are then spiked in the brain. The heart beats for a time as the animal is bled from its sliced gills. This method of relaxing the salmon when it is killed produces firm, long-keeping flesh.[115] Lack of disease in wild populations and low stocking densities used in the cages means that New Zealand salmon farmers do not use antibiotics and chemicals that are often needed elsewhere.[117]

Timeline edit

  • 1527: The life history of the Atlantic salmon is described by Hector Boece of the University of Aberdeen, Scotland.[81]
  • 1763: Fertilization trials for Atlantic salmon take place in Germany. Later biologists refined these in Scotland and France.[81]
  • 1854: Salmon spawing beds and rearing ponds built along the bank of a river by the Dohulla Fishery, Ballyconneely, Ireland.[118]
  • 1864: Hatchery raised Atlantic salmon fry were released in the River Plenty, Tasmania in a failed attempt to establish a population in Australia[119]
  • 1892: Hatchery raised Atlantic salmon fry were released in the Umkomass river in South Africa in a failed attempt to establish a population in Africa.[120]
  • Late 19th century: Salmon hatcheries are used in Europe, North America, and Japan to enhance wild populations.
  • 1961: Hatchery raised Atlantic salmon fry were released in the rivers of the Falkland Islands in a failed attempt to establish a population in the South Atlantic.[121]
  • Late 1960s: First salmon farms established in Norway and Scotland.
  • 1970: Hatchery raised Atlantic salmon fry were released in the rivers of the Kerguelen Islands in a failed attempt to establish a population in the Indian Ocean.[122]
  • Early 1970s: Salmon farms established in North America.
  • 1975: Gyrodactylus, a small monogenean parasite, spreads from Norwegian hatcheries to wild salmon, probably by means of fishing gear, and devastates some wild salmon populations.[38]
  • Late 1970s: Salmon farms established in Chile and New Zealand.
  • 1984: Infectious salmon anemia, a viral disease, is discovered in a Norwegian salmon hatchery. Eighty percent of the involved fish die.
  • 1985: Salmon farms established in Australia.
  • 1987: First reports of escaped Atlantic salmon being caught in wild Pacific salmon fisheries.
  • 1988: A storm hits the Faroe Islands releasing millions of Atlantic salmon.
  • 1989: Furunculosis, a bacterial disease, spreads through Norwegian salmon farms and wild salmon.
  • 1996: World farmed salmon production exceeds wild salmon harvest.
  • 2007: A 10-square-mile (26 km2) swarm of Pelagia noctiluca jellyfish wipes out a 100,000 fish salmon farm in Northern Ireland.[123]
  • 2019: The first salmon fish farm in the Middle East is established in the United Arab Emirates.[124]

In popular culture edit

References edit

  1. ^ Based on data sourced from the relevant FAO Species Fact Sheets
  2. ^ "Fish Farming Information and Resources". farms.com. Retrieved November 25, 2018.
  3. ^ Joseph John Charbonneau; James Caudill (September 2010). "Conserving America's Fisheries-An Assessment of Economic Contributions from Fisheries and Aquatic Resource Conservation" (PDF). US Fish and Wildlife Service. p. 20. Retrieved 2015-01-21.
  4. ^ "Cultured Aquatic Species Information Programme Salmo trutta". Food and Agriculture Organization of the United Nations. Retrieved 2015-01-21.
  5. ^ "Responsible Sourcing Guide: Farmed Atlantic Salmon" (PDF). Seafish. 2015. Retrieved November 25, 2018.
  6. ^ "Commercial Fisheries". Alaska Department of Fish and Game. Retrieved 2015-01-12.
  7. ^ a b c Knapp, Gunnar; Roheim, Cathy A.; Anderson, James L. (January 2007). (PDF) (Report). World Wildlife Fund. ISBN 978-0-89164-175-9. Archived from the original (PDF) on 2017-11-07. Retrieved 2015-01-22.
  8. ^ "Incubation Biology". METRO EAST ANGLERS. from the original on 2018-08-16. Retrieved 2016-03-27.
  9. ^ a b (PDF). Watershed Watch Salmon Society. 2004. Archived from the original (PDF) on 2012-07-13. Retrieved 2015-01-22.
  10. ^ FAO (2008). "The State of World Fisheries and Aquaculture 2008" (PDF). Rome: FAO. p. 6. (PDF) from the original on 2018-03-12.
  11. ^ a b c . World Wildlife Fund. Archived from the original on 2015-01-23. Retrieved 2015-01-21.
  12. ^ "B.C. Supreme Court upholds right of anti-salmon farm activist to make defamatory remarks". Postmedia Network Inc. VANCOUVER SUN. 28 September 2012.
  13. ^ a b c d e (PDF). Seafood Choices Alliance. Spring 2005. Archived from the original (PDF) on 2015-09-24. Retrieved 2015-01-21.
  14. ^ a b c d e f FAO: Cultured Aquatic Species Information Programme: Oncorhynchus kisutch (Walbaum, 1792) Rome. Retrieved 8 May 2009.
  15. ^ Naylor R. L. (2005) "Search for Sustainable Solutions in Salmon Aquaculture" Stanford University.
  16. ^ a b Shepherd, Jonathan; Jackson, Andrew and Mittaine, Jean-Francois (July 4, 2007) . International Fishmeal and Fish Oil Organisation.
  17. ^ Durham, Sharon (2010-10-13). . USDA Agricultural Research Service. Archived from the original on 2016-03-25. Retrieved 2014-09-09.
  18. ^ Avant, Sandra (2014-07-14). "Process Turns Barley into High-protein Fish Food". USDA Agricultural Research Service. Retrieved 2014-09-09.
  19. ^ Merrit, Mike (13 January 2013) Sea-change as farm grows fish on land The Scotsman, Retrieved 22 January 2013
  20. ^ a b von Münchow, Otto (5 June 2019). "Gir Hardanger-laksen omega-3 fra alger importert fra Nebraska". Tu.no (in Norwegian). Teknisk Ukeblad.
  21. ^ Kadir Alsagoff, Syed A.; Clonts, Howard A.; Jolly, Curtis M. (1990). "An integrated poultry, multi-species aquaculture for Malaysian rice farmers: A mixed integer programming approach". Agricultural Systems. 32 (3): 207–231. doi:10.1016/0308-521X(90)90002-8.
  22. ^ Bell, J.G.; Pratoomyot, J.; Strachan, F.; Henderson, R.J.; Fontanillas, R.; Hebard, A.; Guy, D.R.; Hunter, D.; Tocher, D.R. (2010). "Growth, flesh adiposity and fatty acid composition of Atlantic salmon (Salmo salar) families with contrasting flesh adiposity: Effects of replacement of dietary fish oil with vegetable oils". Aquaculture. 306 (1–4): 225–232. doi:10.1016/j.aquaculture.2010.05.021. hdl:1893/2421.
  23. ^ Naylor, Rosamond L. (1998). (PDF). Science. 282 (5390): 883–884. doi:10.1126/science.282.5390.883. S2CID 129814837. Archived from the original (PDF) on 2009-03-26.
  24. ^ "Cargill, an intensely private firm, sheds light on the food chain". The Economist. Retrieved 2017-09-11.
  25. ^ "CARGILL AQUA NUTRITION SUSTAINABILITY REPORT 2016" (PDF). cargill.com. p. 20. Retrieved 2017-09-11.
  26. ^ a b FAO (2008), Fish oil, p. 58
  27. ^ "Farmed fish: a major provider or a major consumer of omega-3 oils?". GLOBEFISH. Food and Agriculture Organization of the United Nations. Retrieved 30 August 2018.
  28. ^ . seafoodmonitor.com. Archived from the original on 2004-09-02. Retrieved 2007-08-26. Astaxanthin (3,3'-hydroxy-β,β-carotene-4,4'-dione) is a carotenoid pigment, one of a large group of organic molecules related to vitamins and widely found in plants. In addition to providing red, orange, and yellow colours to various plant parts and playing a role in photosynthesis, carotenoids are powerful antioxidants, and some (notably various forms of carotene) are essential precursors to vitamin A synthesis in animals.
  29. ^ . The Fishery and Aquaculture Industry Research Fund (2010)
  30. ^ FAO: Species fact sheets Rome.
  31. ^ FAO: Species Fact Sheets, Salmo salar
  32. ^ Dietary Guidelines. health.gov. Retrieved on 2016-10-26.
  33. ^ . Health Canada. 2012-11-19. Archived from the original on 2018-10-28.
  34. ^ Pirquet, K. T. (May/June 2010) , Aquaculture North America, vol 16
  35. ^ Charron, Bertrand (April 2014). "Of Fairness… Seafood Watch & Farmed Salmon". www.seafoodintelligence.com.
  36. ^ Charron, Bertrand (May 2012). "Alaska salmon: ASMI vs. MSC?". Seafood Intelligence.
  37. ^ "2015 Alaska Preliminary Commercial Salmon Harvest and Exvessel Values". adfg.alaska.gov. Alaska Department of Fish and Game. October 16, 2015.
  38. ^ a b Stead, Selina M.; Laird, Lindsay (14 January 2002). The Handbook of Salmon Farming. Springer Science & Business Media. pp. 348–. ISBN 978-1-85233-119-1.
  39. ^ . FIS. Fish Information and Services. 2008-12-12. Archived from the original on 2011-07-11.
  40. ^ Fact Sheet – Atlantic Salmon Aquaculture Research 2010-12-29 at the Wayback Machine Fisheries and Oceans Canada. Retrieved 12 May 2009.
  41. ^ . saveourskeenasalmon.org
  42. ^ a b Krkosek, M.; Ford, J. S.; Morton, A.; Lele, S.; Myers, R. A.; Lewis, M. A. (2007). "Declining Wild Salmon Populations in Relation to Parasites from Farm Salmon". Science. 318 (5857): 1772–5. Bibcode:2007Sci...318.1772K. doi:10.1126/science.1148744. PMID 18079401. S2CID 86544687.
  43. ^ a b Riddell, B. E.; Beamish, R. J.; Richards, L. J.; Candy, J. R. (2008). "Comment on "Declining Wild Salmon Populations in Relation to Parasites from Farm Salmon"". Science. 322 (5909): 1790. Bibcode:2008Sci...322.1790R. doi:10.1126/science.1156341. PMID 19095926. S2CID 7901971.
  44. ^ Cleaner-fish keep salmon healthy by eating lice. Bbc.com (14 August 2015). Retrieved on 2016-10-26.
  45. ^ Integrated Sea Lice Management Strategies – Scottish Salmon Producers' Organisation 2018-06-23 at the Wayback Machine. Scottishsalmon.co.uk (2013-11-23). Retrieved on 2016-10-26.
  46. ^ Sarah Butler (2017-01-13). "Salmon retail prices set to leap owing to infestations of sea lice". The Guardian. Retrieved January 25, 2017.
  47. ^ Gwynn Guilford (22 Jan 2017). "The gross reason you'll be paying a lot more for salmon this year". Quartz. Retrieved January 25, 2017.
  48. ^ Sarah Knapton (12 August 2017). "Salmon farming has done 'enormous harm' to fish and environment, warns Jeremy Paxman". The Telegraph.
  49. ^ Dumiak, Michael. "Lice-Hunting Underwater Drone Protects Salmon With Lasers". IEEE Spectrum: Technology, Engineering, and Science News. Retrieved 2017-06-05.
  50. ^ Munson, A. Douglas; Elliott, Diane G.; Johnson, Keith (2010). "Management of Bacterial Kidney Disease in Chinook Salmon Hatcheries Based on Broodstock Testing by Enzyme-Linked Immunosorbent Assay: A Multiyear Study". North American Journal of Fisheries Management. 30 (4): 940–955. doi:10.1577/M09-044.1.
  51. ^ Bruno, D. W. (1986). "Changes in serum parameters of rainbow trout, Salmo gairdneri Richardson, and Atlantic salmon, Salmo salar L., infected with Renibacterium salmoninarum". Journal of Fish Diseases. 9 (3): 205–211. doi:10.1111/j.1365-2761.1986.tb01005.x.
  52. ^ a b Lang S. S. (2005) "Stick to wild salmon unless heart disease is a risk factor, risk/benefit analysis of farmed and wild fish shows" Chronicle Online, Cornell University.
  53. ^ Fish and Seafood Survey – Environmental Contaminants – Food Safety – Health Canada. Hc-sc.gc.ca (2007-03-26). Retrieved on 2016-10-26.
  54. ^ "Update of the monitoring of levels of dioxins and PCBs in food and feed". EFSA Journal. 10 (7): 2832. 2012. doi:10.2903/j.efsa.2012.2832.
  55. ^ Hites, R. A.; Foran, J. A.; Carpenter, D. O.; Hamilton, M. C.; Knuth, B. A.; Schwager, S. J. (2004). "Global Assessment of Organic Contaminants in Farmed Salmon". Science. 303 (5655): 226–9. Bibcode:2004Sci...303..226H. doi:10.1126/science.1091447. PMID 14716013. S2CID 24058620.
  56. ^ Santerre, Charles R. (2008). "Balancing the risks and benefits of fish for sensitive populations" (PDF). Journal of Foodservice. 19 (4): 205–212. CiteSeerX 10.1.1.570.4751. doi:10.1111/j.1748-0159.2008.00111.x.
  57. ^ Schwager, SJ (2005-05-01). "Risk-based consumption advice for farmed Atlantic and wild Pacific Salmon contaminated with dioxins and dioxin-like compounds". Environmental Health Perspectives. from the original on 2017-11-07.
  58. ^ Hamilton, M. Coreen; Hites, Ronald A.; Schwager, Steven J.; Foran, Jeffery A.; Knuth, Barbara A.; Carpenter, David O. (2005). "Lipid Composition and Contaminants in Farmed and Wild Salmon". Environmental Science & Technology. 39 (22): 8622–8629. Bibcode:2005EnST...39.8622H. doi:10.1021/es050898y. PMID 16323755.
  59. ^ Elskus, Adria A.; Collier, Tracy K.; Monosson, Emily (2005). "Ch. 4 Interactions between lipids and persistent organic pollutants in fish". In Moon, T.W.; Mommsen, T.P. (eds.). Environmental Toxicology. Elsevier. pp. 119–. doi:10.1016/S1873-0140(05)80007-4. ISBN 978-0-08-045873-1.
  60. ^ Foran, J. A.; Good, D. H.; Carpenter, D. O.; Hamilton, M. C.; Knuth, B. A.; Schwager, S. J. (2005). "Quantitative analysis of the benefits and risks of consuming farmed and wild salmon". The Journal of Nutrition. 135 (11): 2639–43. doi:10.1093/jn/135.11.2639. PMID 16251623.
  61. ^ "GAIN Report: Russia Bans Norwegian Fish" (PDF). USDA Foreign Agricultural Service. 2005-12-29. (PDF) from the original on 2017-02-01.
  62. ^ "Hard Times for Norwegian Salmon (2006)" (PDF).
  63. ^ Castle, Stephen (November 6, 2017). "As wild salmon decline, Norway pressures its giant fish farms". New York Times. Retrieved February 9, 2018.
  64. ^ Vidal, John (2017-01-01). "Salmon farming in crisis: 'We are seeing a chemical arms race in the seas'". The Guardian. Retrieved 2018-02-09.
  65. ^ Fleming, I. A.; Hindar, K; Mjølnerød, I. B.; Jonsson, B; Balstad, T; Lamberg, A (2000). "Lifetime success and interactions of farm salmon invading a native population". Proceedings of the Royal Society B: Biological Sciences. 267 (1452): 1517–1523. doi:10.1098/rspb.2000.1173. PMC 1690700. PMID 11007327.
  66. ^ Volpe, John P.; Taylor, Eric B.; Rimmer, David W.; Glickman, Barry W. (2000). "Evidence of Natural Reproduction of Aquaculture-Escaped Atlantic Salmon in a Coastal British Columbia River". Conservation Biology. 14 (3): 899–903. doi:10.1046/j.1523-1739.2000.99194.x. S2CID 86641677.
  67. ^ Gardner J. and D. L. Peterson (2003) "Making sense of the aquaculture debate: analysis of the issues related to netcage salmon farming and wild salmon in British Columbia", Pacific Fisheries Resource Conservation Council, Vancouver, BC.
  68. ^ Hansen L. P., J. A. Jacobsen and R. A. Lund (1999). "The incidence of escaped farmed Atlantic salmon, Salmo salar L., in the Faroese fishery and estimates of catches of wild salmon". ICES Journal of Marine Science. 56 (2): 200–206. doi:10.1006/jmsc.1998.0437.
  69. ^ Lee, Kessina; Windrope, Amy; Murphy, Kyle (Jan 2018). 2017 Cypress Island Atlantic Salmon Net Pen Failure: An Investigation and Review (PDF) (Report). Washington State Department of Natural Resources. pp. 1–120.
  70. ^ Sea Lice and Salmon: Elevating the dialogue on the farmed-wild salmon story 2010-12-14 at the Wayback Machine Watershed Watch Salmon Society, 2004.
  71. ^ Bravo, S. (2003). "Sea lice in Chilean salmon farms". Bull. Eur. Assoc. Fish Pathol. 23: 197–200.
  72. ^ Morton, A.; R. Routledge; C. Peet; A. Ladwig (2004). "Sea lice (Lepeophtheirus salmonis) infection rates on juvenile pink (Oncorhynchus gorbuscha) and chum (Oncorhynchus keta) salmon in the nearshore marine environment of British Columbia, Canada". Canadian Journal of Fisheries and Aquatic Sciences. 61 (2): 147–157. doi:10.1139/f04-016.
  73. ^ Peet, C. R. (2007). Interactions between sea lice (Lepeophtheirus salmonis and Caligus clemensii), juvenile salmon (Oncorhynchus keta and Oncorhynchus gorbuscha) and salmon farms in British Columbia. M.Sc. Thesis, University of Victoria, Victoria, British Columbia, Canada.
  74. ^ Krkošek, M.; A. Gottesfeld; B. Proctor; D. Rolston; C. Carr-Harris; M.A. Lewis (2007). "Effects of host migration, diversity and aquaculture on sea lice threats to Pacific salmon populations". Proceedings of the Royal Society B: Biological Sciences. 274 (1629): 3141–9. doi:10.1098/rspb.2007.1122. PMC 2293942. PMID 17939989.
  75. ^ Morton, A.; R. Routledge; M. Krkošek (2008). (PDF). North American Journal of Fisheries Management. 28 (2): 523–532. doi:10.1577/M07-042.1. Archived from the original (PDF) on 2013-08-29. Retrieved 2016-10-26.
  76. ^ Krkošek, M.; M.A. Lewis; A. Morton; L.N. Frazer; J.P. Volpe (2006). "Epizootics of wild fish induced by farm fish". Proceedings of the National Academy of Sciences. 103 (42): 15506–10. doi:10.1073/pnas.0603525103. PMC 1591297. PMID 17021017.
  77. ^ Brooks, Kenneth M.; Jones, Simon R. M. (2008). "Perspectives on Pink Salmon and Sea Lice: Scientific Evidence Fails to Support the Extinction Hypothesis". Reviews in Fisheries Science. 16 (4): 403–412. doi:10.1080/10641260801937131. S2CID 55689510.
  78. ^ Ford, Jennifer S; Myers, Ransom A (2008). "A Global Assessment of Salmon Aquaculture Impacts on Wild Salmonids". PLOS Biology. 6 (2): e33. doi:10.1371/journal.pbio.0060033. PMC 2235905. PMID 18271629.
  79. ^ Larkin, Kate (3 September 2010). "Canada sees shock salmon glut". Nature News. doi:10.1038/news.2010.449.
  80. ^ Marty, G. D.; Saksida, S. M.; Quinn, T. J. (2010). "Relationship of farm salmon, sea lice, and wild salmon populations". Proceedings of the National Academy of Sciences. 107 (52): 22599–604. Bibcode:2010PNAS..10722599M. doi:10.1073/pnas.1009573108. PMC 3012511. PMID 21149706.
  81. ^ a b c Knapp, G; Roheim, CA; Anderson, JA (2007). Chapter 5: The World Salmon Farming Industry (PDF). University of Alaska Anchorage. ISBN 978-0-89164-175-9. (PDF) from the original on 2019-05-22. {{cite book}}: |work= ignored (help)
  82. ^ "Fast Growing GM Salmon Swims Close to US Markets". The Fish Site. 2009-02-11. from the original on 2010-02-01.
  83. ^ "Genetically Engineered Animals - AquAdvantage Salmon". www.fda.gov. United States Food and Drug Administration. Retrieved 2017-06-19.
  84. ^ Devlin, R. H.; d'Andrade, M.; Uh, M.; Biagi, C. A. (2004). "Population effects of growth hormone transgenic coho salmon depend on food availability and genotype by environment interactions". Proceedings of the National Academy of Sciences. 101 (25): 9303–8. Bibcode:2004PNAS..101.9303D. doi:10.1073/pnas.0400023101. PMC 438972. PMID 15192145.
  85. ^ "Fish farmer sponsors new aviary for injured eagles". ABC News. 2014-06-16. Retrieved 2015-11-09.
  86. ^ Nelson, Benjamin W.; Shelton, Andrew O.; Anderson, Joseph H.; Ford, Michael J.; Ward, Eric J. (2019). "Ecological implications of changing hatchery practices for Chinook salmon in the Salish Sea". Ecosphere. 10 (11). doi:10.1002/ecs2.2922.
  87. ^ Aquaculture Stewardship Council, (ASC) (2017). ASC Salmon Standard (V1.1) (PDF). ASC.
  88. ^ (PDF). World Wide Fund for Nature. Archived from the original (PDF) on 2011-06-05.
  89. ^ (PDF). World Wide Fund for Nature. Archived from the original (PDF) on 2008-08-29.
  90. ^ (PDF). World Wide Fund for Nature. Archived from the original (PDF) on 2011-06-05.
  91. ^ (PDF). World Wide Fund for Nature. Archived from the original (PDF) on 2011-06-05.
  92. ^ (PDF). World Wide Fund for Nature. Archived from the original (PDF) on 2008-11-20.
  93. ^ (PDF). World Wide Fund for Nature. Archived from the original (PDF) on 2011-06-05.
  94. ^ (PDF). World Wide Fund for Nature. Archived from the original (PDF) on 2008-08-29.
  95. ^ Shore, Randy (2018-10-20). "Growing pains as companies try to move fish farms from ocean to land". Retrieved 2019-05-11.
  96. ^ a b "Report: Does 'big salmon' know something RAS startups don't?". Undercurrent News. Retrieved 2019-05-11.
  97. ^ "Will Your Next Salmon Come from a Massive Land Tank in Florida?". www.politico.com. Retrieved 2020-07-16.
  98. ^ "Nordic Aquafarms pursues US market before Maine salmon plant complete". Undercurrent News. Retrieved 2019-05-11.
  99. ^ "Land-based salmon farmer Whole Oceans eyeing west coast". IntraFish. 2019-03-04. Retrieved 2019-05-11.
  100. ^ a b Heen K. (1993). Salmon Aquaculture. Halstead Press.
  101. ^ a b Sedgwick, S. (1988). Salmon Farming Handbook. Fishing News Books LTD.
  102. ^ Bromage, N. (1995). Broodstock Management and Egg and Larval Quality. Blackwell Science.
  103. ^ Mills D. (1989). Ecology and Management of Atlantic Salmon. Springer-Verlag.
  104. ^ Nash, Colin E.; Waknitz, F.William (2003). "Interactions of Atlantic salmon in the Pacific Northwest". Fisheries Research. 62 (3): 237–254. doi:10.1016/S0165-7836(03)00063-8. ISSN 0165-7836.
  105. ^ MacCrimmon, Hugh R; Gots, Barra L (1979). World Distribution of Atlantic Salmon, Salmo salar. NRC Research Press.
  106. ^ FAO: Species Fact Sheets: Salmo salar (Linnaeus, 1758) Rome. Accessed 9 May 2009.
  107. ^ Integrated Annual Report 2017 - Leading the Blue Revolution (PDF). Marine Harvest. 2018. p. 246. (PDF) from the original on 2019-05-22.
  108. ^ a b "Species Fact Sheets: Oncorhynchus mykiss (Walbaum, 1792)". Rome: FAO. from the original on 2018-07-01. Retrieved 2009-05-09.
  109. ^ (PDF). British Columbia Ministry of Fisheries. Archived from the original (PDF) on 2013-07-18. Retrieved 2013-11-28.
  110. ^ Bullock, G. L. and Cipriano, R. C. (1990) . U.S. Department of the Interior, Fish and Wildlife Service.
  111. ^ FAO: Species Fact Sheets: Oncorhynchus kisutch (Walbaum, 1792) Rome. Accessed 9 May 2009.
  112. ^ Foodies...FREAK! Copper River Salmon Arrive 2010-02-14 at the Wayback Machine. Seattlest (2006-05-16). Retrieved on 2016-10-26.
  113. ^ "Alaska Statutes - Section 16.40.210.: Finfish farming prohibited". Findlaw. Retrieved 2015-01-21.
  114. ^ FAO: Species Fact Sheets: Oncorhynchus tshawytscha (Walbaum, 1792) Rome. Accessed 9 May 2009.
  115. ^ a b c Marine Aquaculture MFish. Updated 16 November 2007.
  116. ^ Wassilieff, Maggy Aquaculture: Salmon Te Ara – the Encyclopedia of New Zealand, updated 21 September 2007
  117. ^ Aquaculture in New Zealand aquaculture.govt.nz
  118. ^ . connemara.net. Archived from the original on 2012-02-24. Retrieved 2009-05-26.
  119. ^ Newton, Chris (2013). "The Strange Case of the Disappearing Salmon". The Trout's Tale – The Fish That Conquered an Empire. Ellesmere, Shropshire: Medlar Press. pp. 57–66. ISBN 978-1-907110-44-3.
  120. ^ Newton, Chris (2013). "Scotland with Lions". The Trout's Tale – The Fish That Conquered an Empire. Ellesmere, Shropshire: Medlar Press. p. 106. ISBN 978-1-907110-44-3.
  121. ^ Newton, Chris (2013). "Falklands' Silver". The Trout's Tale – The Fish That Conquered an Empire. Ellesmere, Shropshire: Medlar Press. p. 153. ISBN 978-1-907110-44-3.
  122. ^ Newton, Chris (2013). "The Monsters of Kerguelen". The Trout's Tale – The Fish That Conquered an Empire. Ellesmere, Shropshire: Medlar Press. p. 163. ISBN 978-1-907110-44-3.
  123. ^ "Billions of jellyfish wipe out salmon farm". NBC News. November 21, 2007. Retrieved 28 January 2010.
  124. ^ The National (29 March 2019). "Desert salmon farming becomes reality for Dubai-based company".

Further reading edit

  • Beveridge, Malcolm (1984) Cage and Pen fish farming: Carrying capacity models and environmental impact FAO Fisheries technical paper 255, Rome. ISBN 92-5-102163-5
  • Bjorndal, Trond (1990) The Economics of Salmon Aquaculture. Wiley-Blackwell. ISBN 978-0-632-02704-0
  • Coimbra, João (1 January 2001). Modern Aquaculture in the Coastal Zone: Lessons and Opportunities. IOS Press. pp. 32–. ISBN 978-0-9673355-6-8.
  • Harris, Graeme; Milner, Nigel (12 March 2007). Sea Trout: Biology, Conservation and Management. Wiley. pp. 18–. ISBN 978-1-4051-2991-6.
  • Heen K., Monahan R. L. and Utter F. (1993) Salmon Aquaculture, Wiley-Blackwell. ISBN 978-0-85238-204-2
  • Knapp G., Roheim C. A. and Anderson J. A. (2007) The Great Salmon Run: Competition between Wild and Farmed Salmon Report of the Institute of Social and Economic Research, University of Alaska Anchorage. ISBN 0-89164-175-0.
  • Lustig, B. Andrew; Brody, Baruch A.; McKenny, Gerald P. (1 November 2008). Altering Nature: Volume II: Religion, Biotechnology, and Public Policy. Springer Science & Business Media. pp. 321–. ISBN 978-1-4020-6923-9.
  • Pomeroy R., Bravo-Ureta B. E., Solis D. and Johnston R. J. (2008) "Bioeconomic modelling and salmon aquaculture: an overview of the literature" International Journal of Environment and Pollution 33(4) 485–500.
  • Quinn, Thomas P. (2005). The Behavior and Ecology of Pacific Salmon and Trout. American Fisheries Society. pp. 18–. ISBN 978-0-295-98457-5.
  • British Columbia Salmon Farming Association, "Did you Know"

External links edit

  • BC Salmon Farmers Association 2011-04-23 at the Wayback Machine – Trade association representing the salmon aquaculture industry in British Columbia, Canada.
  • CAIA – Canadian Industry Aquaculture Association Canadian association representing all salmon farms in Canada.
  • Creating Standards for Responsibly Farmed Salmon – Salmon Aquaculture Dialogue, a "multi-stakeholder roundtable" led by the World Wildlife Fund
  • Watershed Watch Salmon Society
  • Positive Aquaculture Awareness Independent association which promotes salmon farming in British Columbia, Canada.
  • What about this fish? – Video extract from Harvest of Fear.

aquaculture, salmonids, aquaculture, salmonids, farming, harvesting, salmonid, fish, under, controlled, conditions, both, commercial, recreational, purposes, salmonids, particularly, salmon, rainbow, trout, along, with, carp, tilapia, three, most, important, f. The aquaculture of salmonids is the farming and harvesting of salmonid fish under controlled conditions for both commercial and recreational purposes Salmonids particularly salmon and rainbow trout along with carp and tilapia are the three most important fish groups in aquaculture 2 The most commonly commercially farmed salmonid is the Atlantic salmon Salmo salar Aquaculture production of salmonids in tonnes1950 2010 as reported by the FAO 1 Salmon farm in the archipelago of Finland In the United States Chinook salmon and rainbow trout are the most commonly farmed salmonids for recreational and subsistence fishing through the National Fish Hatchery System 3 In Europe brown trout are the most commonly reared fish for recreational restocking 4 Commonly farmed non salmonid fish groups include tilapia catfish black sea bass and bream In 2007 the aquaculture of salmonids was worth USD 10 7 billion globally Salmonid aquaculture production grew over ten fold during the 25 years from 1982 to 2007 In 2012 the leading producers of salmonids were Norway Chile Scotland and Canada 5 Much controversy exists about the ecological and health impacts of intensive salmonids aquaculture Of particular concern are the impacts on wild salmon and other marine life Contents 1 Methods 1 1 Hatcheries 1 2 Sea cages 1 3 Feeding 1 3 1 Other feed additives 1 4 Harvesting 2 Wild versus farmed 3 Issues 3 1 Disease and parasites 3 2 Pollution and contaminants 3 3 Pollutants or toxins introduced by pisciculturists 3 4 Impact on wild salmonids 3 5 Genetic modification 3 6 Impact on wild predatory species 3 7 Ecological 3 8 Impact on forage fish 3 9 Salmon Aquaculture Dialogue and ASC Salmon Standard 4 Land raised salmon 5 Species 5 1 Atlantic salmon 5 2 Steelhead 5 3 Coho salmon 5 4 Chinook salmon 6 Timeline 7 In popular culture 8 References 9 Further reading 10 External linksMethods edit nbsp Assynt salmon hatchery near Inchnadamph in the Scottish Highlands nbsp Very young fertilised salmon eggs notice the developing eyes and vertebral column nbsp Salmon egg hatching In about 24 hr it will be a fry without the yolk sac The aquaculture or farming of salmonids can be contrasted with capturing wild salmonids using commercial fishing techniques However the concept of wild salmon as used by the Alaska Seafood Marketing Institute includes stock enhancement fish produced in hatcheries that have historically been considered ocean ranching The percentage of the Alaska salmon harvest resulting from ocean ranching depends upon the species of salmon and location 6 not specific enough to verify Methods of salmonid aquaculture originated in late 18th century fertilization trials in Europe In the late 19th century salmon hatcheries were used in Europe and North America From the late 1950s enhancement programs based on hatcheries were established in the United States Canada Japan and the USSR The contemporary technique using floating sea cages originated in Norway in the late 1960s 7 Salmonids are usually farmed in two stages and in some places maybe more First the salmon are hatched from eggs and raised on land in freshwater tanks Increasing the accumulated thermal units of water during incubation reduces time to hatching 8 When they are 12 to 18 months old the smolt juvenile salmon are transferred to floating sea cages or net pens anchored in sheltered bays or fjords along a coast This farming in a marine environment is known as mariculture There they are fed pelleted feed for another 12 to 24 months when they are harvested 9 Norway produces 33 of the world s farmed salmonids and Chile produces 31 10 The coastlines of these countries have suitable water temperatures and many areas well protected from storms Chile is close to large forage fisheries which supply fish meal for salmon aquaculture Scotland and Canada are also significant producers 11 failed verification and it was reported in 2012 that the Norwegian government at that time controlled a significant fraction of the Canadian industry 12 Modern salmonid farming systems are intensive Their ownership is often under the control of huge agribusiness corporations operating mechanized assembly lines on an industrial scale In 2003 nearly half of the world s farmed salmon was produced by just five companies 13 Hatcheries edit Modern commercial hatcheries for supplying salmon smolts to aquaculture net pens have been shifting to recirculating aquaculture systems RAS s where the water is recycled within the hatchery This allows location of the hatchery to be independent of a significant fresh water supply and allows economical temperature control to both speed up and slow down the growth rate to match the needs of the net pens Conventional hatchery systems operate flow through where spring water or other water sources flow into the hatchery The eggs are then hatched in trays and the salmon smolts are produced in raceways The waste products from the growing salmon fry and the feed are usually discharged into the local river Conventional flow through hatcheries for example the majority of Alaska s enhancement hatcheries use more than 100 tonnes 16 000 st of water to produce a kg of smolts An alternative method to hatching in freshwater tanks is to use spawning channels These are artificial streams usually parallel to an existing stream with concrete or rip rap sides and gravel bottoms Water from the adjacent stream is piped into the top of the channel sometimes via a header pond to settle out sediment Spawning success is often much better in channels than in adjacent streams due to the control of floods which in some years can wash out the natural redds Because of the lack of floods spawning channels must sometimes be cleaned out to remove accumulated sediment The same floods which destroy natural redds also clean them out Spawning channels preserve the natural selection of natural streams as no temptation exists as in hatcheries to use prophylactic chemicals to control diseases However exposing fish to wild parasites and pathogens using uncontrolled water supplies combined with the high cost of spawning channels makes this technology unsuitable for salmon aquaculture businesses This type of technology is only useful for stock enhancement programs Sea cages edit Sea cages also called sea pens or net pens are usually made of mesh framed with steel or plastic They can be square or circular 10 to 32 m 33 to 105 ft across and 10 m 33 ft deep with volumes between 1 000 and 10 000 m3 35 000 and 353 000 cu ft A large sea cage can contain up to 90 000 fish They are usually placed side by side to form a system called a seafarm or seasite with a floating wharf and walkways along the net boundaries Additional nets can also surround the seafarm to keep out predatory marine mammals Stocking densities range from 8 to 18 kg 18 to 40 lb m3 for Atlantic salmon and 5 to 10 kilograms 11 to 22 lb m3 for Chinook salmon 9 14 In contrast to closed or recirculating systems the open net cages of salmonid farming lower production costs but provide no effective barrier to the discharge of wastes parasites and disease into the surrounding coastal waters 13 Farmed salmon in open net cages can escape into wild habitats for example during storms An emerging wave in aquaculture is applying the same farming methods used for salmonids to other carnivorous finfish species such as cod bluefin tuna halibut and snapper However this is likely to have the same environmental drawbacks as salmon farming 13 15 See also Copper alloys in aquaculture A second emerging wave in aquaculture is the development of copper alloys as netting materials Copper alloys have become important netting materials because they are antimicrobial i e they destroy bacteria viruses fungi algae and other microbes so they prevent biofouling i e the undesirable accumulation adhesion and growth of microorganisms plants algae tubeworms barnacles mollusks and other organisms By inhibiting microbial growth copper alloy aquaculture cages avoid costly net changes that are necessary with other materials The resistance of organism growth on copper alloy nets also provides a cleaner and healthier environment for farmed fish to grow and thrive Feeding edit With the amount of worldwide fish meal production being almost a constant amount for the last 30 years and at maximum sustainable yield much of the fish meal market has shifted from chicken and pig feed to fish and shrimp feeds as aquaculture has grown in this time 16 Work continues on developing salmonid diet made from concentrated plant protein 17 As of 2014 an enzymatic process can be used to lower the carbohydrate content of barley making it a high protein fish feed suitable for salmon 18 Many other substitutions for fish meal are known and diets containing zero fish meal are possible For example a planned closed containment salmon fish farm in Scotland uses ragworms algae and amino acids as feed 19 Some of the eicosapentaenoic acid EPA and docosahexaenoic acid DHA in Omega 3 fatty acids may be replaced by land based non marine algae oil reducing the harvest of wild fish as fish meal 20 However commercial economic animal diets are determined by least cost linear programming models that are effectively competing with similar models for chicken and pig feeds for the same feed ingredients and these models show that fish meal is more useful in aquatic diets than in chicken diets where they can make the chickens taste like fish 21 Unfortunately this substitution can result in lower levels of the highly valued omega 3 content in the farmed product However when vegetable oil is used in the growing diet as an energy source and a different finishing diet containing high omega 3 content fatty acids from either fish oil algae oils or some vegetable oils are used a few months before harvest this problem is eliminated 22 On a dry dry basis 2 4 kg of wild caught fish are needed to produce 1 kg of salmon 23 The ratio may be reduced if non fish sources are added 20 Wild salmon require about 10 kg of forage fish to produce 1 kg of salmon as part of the normal trophic level energy transfer The difference between the two numbers is related to farmed salmon feed containing other ingredients beyond fish meal and because farmed fish do not expend energy hunting In 2017 it was reported that the American company Cargill has been researching and developing alternative feeds with EWOS through its internal COMPASS programs in Norway resulting in the proprietary RAPID feed blend These methods studied macronutrient profiles of fish feed based upon geography and season Using RAPID feed salmon farms reduced the time to maturity of salmon to about 15 months in a period one fifth faster than usual 24 25 Other feed additives edit As of 2008 update 50 80 of the world fish oil production is fed to farmed salmonids 26 27 Farm raised salmonids are also fed the carotenoids astaxanthin and canthaxanthin so their flesh colour matches wild salmon which also contain the same carotenoid pigments from their diet in the wild 28 Harvesting edit Modern harvesting methods are shifting towards using wet well ships to transport live salmon to the processing plant This allows the fish to be killed bled and filleted before rigor has occurred This results in superior product quality to the customer along with more humane processing To obtain maximum quality minimizing the level of stress is necessary in the live salmon until actually being electrically and percussively killed and the gills slit for bleeding 29 These improvements in processing time and freshness to the final customer are commercially significant and forcing the commercial wild fisheries to upgrade their processing to the benefit of all seafood consumers An older method of harvesting is to use a sweep net which operates a bit like a purse seine net The sweep net is a big net with weights along the bottom edge It is stretched across the pen with the bottom edge extending to the bottom of the pen Lines attached to the bottom corners are raised herding some fish into the purse where they are netted Before killing the fish are usually rendered unconscious in water saturated in carbon dioxide although this practice is being phased out in some countries due to ethical and product quality concerns More advanced systems use a percussive stun harvest system that kills the fish instantly and humanely with a blow to the head from a pneumatic piston They are then bled by cutting the gill arches and immediately immersing them in iced water Harvesting and killing methods are designed to minimize scale loss and avoid the fish releasing stress hormones which negatively affect flesh quality 14 Wild versus farmed editWild salmonids are captured from wild habitats using commercial fishing techniques Most wild salmonids are caught in North American Japanese and Russian fisheries The following table shows the changes in production of wild salmonids and farmed salmonids over a period of 25 years as reported by the FAO 30 Russia Japan and Alaska all operate major hatchery based stock enhancement programs The resulting fish hatchery fish are defined as wild for FAO and marketing purposes Salmonid production in tonnes by species Species 1982 2007 2013Wild Farmed Wild FarmedAtlantic salmon 10 326 13 265 2 989 1 433 708 2 087 110 31 Steelhead 171 946 604 695Coho salmon 42 281 2 921 17 200 115 376Chinook salmon 25 147 8 906 11 542Pink salmon 170 373 495 986Chum salmon 182 561 303 205Sockeye salmon 128 176 164 222Total salmonid production 1982 2007tonnes percent tonnes percentWild 558 864 75 992 508 31Farmed 188 132 25 2 165 321 69Overall 746 996 3 157 831Issues editThe US in their dietary guidelines for 2010 recommends eating 8 ounces per week of a variety of seafood and 12 ounces for lactating mothers with no upper limits set and no restrictions on eating farmed or wild salmon 32 In 2018 Canadian dietary guidelines recommended eating at least two servings of fish each week and choosing fish such as char herring mackerel salmon sardines and trout 33 Currently much controversy exists about the ecological and health impacts of intensive salmonid aquaculture Of particular concern are the impacts on wild salmonids and other marine life and on the incomes of commercial salmonid fishermen 34 However the enhanced production of salmon juveniles which for instance lead to a double digit proportion 20 50 of the Alaska s yearly wild salmon harvest is not void of controversy and the Alaska salmon harvest are highly dependent on the operation of Alaska s Regional Aquaculture Associations Furthermore the sustainability of enhanced hatchery based wild caught salmon has long been hotly debated 35 both from a scientific and political marketing perspective Such debate and positions were central to a halt in the re certification of Alaska salmon fisheries by the Marine Stewardship Council MSC in 2012 36 The Alaska salmon fisheries subsequently re attained MSC certification status however the heavily hatchery dependent Prince William Sound PWS unit of certification one of the most valuable fishing area in the State 37 was for several years excluded from the MSC certification it remained under assessment pending further analysis Disease and parasites edit See also Diseases and parasites in salmon In 1972 Gyrodactylus a monogenean parasite was introduced with live trout and salmon from Sweden Baltic stocks are resistant to it into government operated hatcheries in Norway From the hatcheries infected eggs smolt and fry were implanted in many rivers with the goal to strengthen the wild salmon stocks but caused instead devastation to some of the wild salmon populations affected 38 In 1984 infectious salmon anemia ISAv was discovered in Norway in an Atlantic salmon hatchery Eighty percent of the fish in the outbreak died ISAv a viral disease is now a major threat to the viability of Atlantic salmon farming It is now the first of the diseases classified on List One of the European Commission s fish health regimen Amongst other measures this requires the total eradication of the entire fish stock should an outbreak of the disease be confirmed on any farm ISAv seriously affects salmon farms in Chile Norway Scotland and Canada causing major economic losses to infected farms 39 As the name implies it causes severe anemia of infected fish Unlike mammals the red blood cells of fish have ribosomes and can become infected with viruses The fish develop pale gills and may swim close to the water surface gulping for air However the disease can also develop without the fish showing any external signs of illness the fish maintain a normal appetite and then they suddenly die The disease can progress slowly throughout an infected farm and in the worst cases death rates may approach 100 It is also a threat to the dwindling stocks of wild salmon Management strategies include developing a vaccine and improving genetic resistance to the disease 40 In the wild diseases and parasites are normally at low levels and kept in check by natural predation on weakened individuals In crowded net pens they can become epidemics Diseases and parasites also transfer from farmed to wild salmon populations A recent study in British Columbia links the spread of parasitic sea lice from river salmon farms to wild pink salmon in the same river 13 The European Commission 2002 concluded The reduction of wild salmonid abundance is also linked to other factors but there is more and more scientific evidence establishing a direct link between the number of lice infested wild fish and the presence of cages in the same estuary 41 It is reported that wild salmon on the west coast of Canada are being driven to extinction by sea lice from nearby salmon farms 42 These predictions have been disputed by other scientists 43 and recent harvests have indicated that the predictions were in error In 2011 Scottish salmon farming introduced the use of farmed wrasse for the purpose of cleaning farmed salmon of ectoparasites 44 45 Globally salmon production fell around 9 in 2015 in large part due to acute outbreaks of sea lice in Scotland and Norway 46 47 48 Lasers are used to reduce lice infections 49 In the mid 1980s to the 1990s bacterial kidney disease BKD caused by Renibacterium salmoninarum heavily impacted Chinook hatcheries in Idaho 50 The disease causes granulomatous inflammation that can lead to abscesses in the liver spleen and kidneys 51 Pollution and contaminants edit Salmonid farms are typically sited in marine ecosystems with good water quality high water exchange rates current speeds fast enough to prevent pollution of the bottom but slow enough to prevent pen damage protection from major storms reasonable water depth and a reasonable distance from major infrastructure such as ports processing plants and logistical facilities such as airports Logistical considerations are significant and feed and maintenance labor must be transported to the facility and the product returned Siting decisions are complicated by complex politically driven permit problems in many countries that prevents optimal locations for the farms In sites without adequate currents heavy metals can accumulate on the benthos seafloor near the salmon farms particularly copper and zinc 14 Contaminants are commonly found in the flesh of farmed and wild salmon 52 Health Canada in 2002 published measurements of PCBs dioxins and furans and PDBEs in several varieties of fish The farmed salmonids population had nearly 3 times the level of PCBs more than 3 times the level of PDBEs and nearly twice the level of dioxins and furans seen in the wild population 53 On the other hand Update of the monitoring of levels of dioxins and PCBs in food and feed a 2012 study from the European Food Safety Authority stated that farmed salmon and trout contained on average a many times lesser fraction of dioxins and PCBs than wild caught salmon and trout 54 A 2004 study reported in Science analysed farmed and wild salmon for organochlorine contaminants They found the contaminants were higher in farmed salmon Within the farmed salmon European particularly Scottish salmon had the highest levels and Chilean salmon the lowest 55 The FDA and Health Canada have established a tolerance limit for PCBs in commercial fish of 2000 ppb 56 A follow up study confirmed this and found levels of dioxins chlorinated pesticides PCBs and other contaminants up to ten times greater in farmed salmon than wild Pacific salmon 57 On a positive note further research using the same fish samples used in the previous study showed that farmed salmon contained levels of beneficial fatty acids that were two to three times higher than wild salmon 58 A follow up benefit risk analysis on salmon consumption balanced the cancer risks with the n 3 fatty acid advantages of salmon consumption For this reason current methods for this type of analysis take into consideration the lipid content of the sample in question PCBs specifically are lipophilic so are found in higher concentrations in fattier fish in general 59 thus the higher level of PCB in the farmed fish is in relation to the higher content of beneficial n 3 and n 6 lipids they contain They found that recommended levels of n 3 fatty acid consumption can be achieved eating farmed salmon with acceptable carcinogenic risks but recommended levels of n 3 EPA DHA intake cannot be achieved solely from farmed or wild salmon without unacceptable carcinogenic risks 60 The conclusions of this paper from 2005 were that consumers should not eat farmed fish from Scotland Norway and eastern Canada more than three times a year farmed fish from Maine western Canada and Washington state no more than three to six times a year and farmed fish from Chile no more than about six times a year Wild chum salmon can be consumed safely as often as once a week pink salmon Sockeye and Coho about twice a month and Chinook just under once a month 52 In 2005 Russia banned importing chilled fish from Norway after samples of Norwegian farmed fish showed high levels of heavy metals According to the Russian Minister of Agriculture Aleksey Gordeyev levels of lead in the fish were 10 to 18 times higher than Russian safety standards and cadmium levels were almost four times higher 61 Pollutants or toxins introduced by pisciculturists edit In 2006 eight Norwegian salmon producers were caught in unauthorized and unlabeled use of nitrite in smoked and cured salmon Norway applies EU regulations on food additives according to which nitrite is allowed as a food additive in certain types of meat but not fish Fresh salmon was not affected 62 Kurt Oddekalv leader of the Green Warriors of Norway argues that the scale of fish farming in Norway is unsustainable Huge volumes of uneaten feed and fish excrement pollute the seabed while chemicals designed to fight sea lice find their way into the food chain He says If people knew this they wouldn t eat salmon describing the farmed fish as the most toxic food in the world 63 Don Staniford the former scientist turned activist investigator and head of a small Global Alliance Against Industrial Aquaculture agrees saying that a 10 fold increase in the use of some chemicals was seen in the 2016 2017 timeframe The use of the toxic drug emamectin is rising fast The levels of chemicals used to kill sea lice have breached environmental safety limits more than 100 times in the last 10 years 64 Impact on wild salmonids edit Farmed salmonids can and often do escape from sea cages If the farmed salmonid is not native it can compete with native wild species for food and habitat 65 66 If the farmed salmonid is native it can interbreed with the wild native salmonids Such interbreeding can reduce genetic diversity disease resistance and adaptability 67 In 2004 about 500 000 salmon and trout escaped from ocean net pens off Norway Around Scotland 600 000 salmon were released during storms 13 Commercial fishermen targeting wild salmon frequently catch escaped farm salmon At one stage in the Faroe Islands 20 to 40 percent of all fish caught were escaped farm salmon 68 In 2017 about 263 000 farmed non native Atlantic salmon escaped from a net in Washington waters in the 2017 Cypress Island Atlantic salmon pen break 69 Sea lice particularly Lepeophtheirus salmonis and various Caligus species including C clemensi and C rogercresseyi can cause deadly infestations of both farm grown and wild salmon 70 71 Sea lice are naturally occurring and abundant ectoparasites which feed on mucus blood and skin and migrate and latch onto the skin of salmon during planktonic nauplii and copepodid larval stages which can persist for several days 72 73 74 Large numbers of highly populated open net salmon farms can create exceptionally large concentrations of sea lice when exposed in river estuaries containing large numbers of open net farms many young wild salmon are infected and do not survive as a result 75 76 Adult salmon may survive otherwise critical numbers of sea lice but small thin skinned juvenile salmon migrating to sea are highly vulnerable In 2007 mathematical studies of data available from the Pacific coast of Canada indicated the louse induced mortality of pink salmon in some regions was over 80 42 Later that year in reaction to the 2007 mathematical study mentioned above Canadian federal fisheries scientists Kenneth Brooks and Simon Jones published a critique titled Perspectives on Pink Salmon and Sea Lice Scientific Evidence Fails to Support the Extinction Hypothesis 77 The time since these studies has shown a general increase in abundance of Pink Salmon in the Broughton Archipelago Another comment in the scientific literature by Canadian Government Fisheries scientists Brian Riddell and Richard Beamish et al came to the conclusion that there is no correlation between farmed salmon louse numbers and returns of pink salmon to the Broughton Archipelago And in relation to the 2007 Krkosek extinction theory the data was sic used selectively and conclusions do not match with recent observations of returning salmon 43 A 2008 meta analysis of available data shows that salmonid farming reduces the survival of associated wild salmonid populations This relationship has been shown to hold for Atlantic steelhead pink chum and coho salmon The decrease in survival or abundance often exceeds 50 78 However these studies are all correlation analysis and correlation doesn t equal causation especially when similar salmon declines were occurring in Oregon and California which have no salmon aquaculture or marine net pens Independent of the predictions of the failure of salmon runs in Canada indicated by these studies the wild salmon run in 2010 was a record harvest 79 A 2010 study that made the first use of sea lice count and fish production data from all salmon farms on the Broughton Archipelago found no correlation between the farm lice counts and wild salmon survival The authors conclude that the 2002 stock collapse was not caused by the farm sea lice population although the farm sea lice population during the out migration of juvenile pink salmon was greater in 2000 than that of 2001 there was a record salmon returning to spawn in 2001 from the juveniles in 2000 compared with a 97 collapse in 2002 from the juveniles in 2001 The authors also note that initial studies had not investigated bacterial and viral causes for the event despite reports of bleeding at the base of the fins a symptom often associated with infections but not with sea lice exposure under laboratory conditions 80 Wild salmon are anadromous They spawn inland in fresh water and when young migrate to the ocean where they grow up Most salmon return to the river where they were born although some stray to other rivers Concern exists about of the role of genetic diversity within salmon runs The resilience of the population depends on some fish being able to survive environmental shocks such as unusual temperature extremes The effect of hatchery production on the genetic diversity of salmon is also unclear 7 Genetic modification edit Main article Genetically modified salmon Salmon have been genetically modified in laboratories so they can grow faster A company Aqua Bounty Farms has developed a modified Atlantic salmon which grows nearly twice as fast yielding a fully grown fish at 16 18 months rather than 30 and is more disease resistant and cold tolerant It also requires 10 less food This was achieved using a chinook salmon gene sequence affecting growth hormones and a promoter sequence from the ocean pout affecting antifreeze production 81 Normally salmon produce growth hormones only in the presence of light The modified salmon does not switch growth hormone production off The company first submitted the salmon for FDA approval in 1996 82 In 2015 FDA has approved the AquAdvantage Salmon for commercial production 83 A concern with transgenic salmon is what might happen if they escape into the wild One study in a laboratory setting found that modified salmon mixed with their wild cohorts were aggressive in competing but ultimately failed 84 Impact on wild predatory species edit Sea cages can attract a variety of wild predators which can sometimes become entangled in associated netting leading to injury or death In Tasmania Australian salmon farming sea cages have entangled white bellied sea eagles This has prompted one company Huon Aquaculture to sponsor a bird rehabilitation centre and try more robust netting 85 Ecological edit Juvenile farmed Chinook have been shown to have higher rates of predation due to their larger size than wild juveniles upon release into marine environments Their size correlates with the preferred size of prey for predators like birds seals and fish This may have ecological implications because of the effect on feeding 86 Impact on forage fish edit The use of forage fish for fish meal production has been almost a constant for the last 30 years and at the maximum sustainable yield while the market for fish meal has shifted from chicken pig and pet food to aquaculture diets 16 This market shift at constant production appears an economic decision implying that the development of salmon aquaculture had no impact on forage fish harvest rates Fish do not actually produce omega 3 fatty acids but instead accumulate them from either consuming microalgae that produce these fatty acids as is the case with forage fish like herring and sardines or consuming forage fish as is the case with fatty predatory fish like salmon To satisfy this requirement more than 50 of the world fish oil production is fed to farmed salmon 26 In addition salmon require nutritional intakes of protein which is often supplied in the form of fish meal as the lowest cost alternative Consequently farmed salmon consume more fish than they generate as a final product though considerably more preferred as food Salmon Aquaculture Dialogue and ASC Salmon Standard edit In 2004 the World Wide Fund for Nature WWF USA initiated the Salmon Aquaculture Dialogue one of several Aquaculture Dialogues 11 The aim of the dialogues was to produce an environmental and social standard for farmed salmon and other species 12 species currently as of 2018 Since 2012 the standards elaborated by the multi stakeholder Dialogues were passed on to the Aquaculture Stewardship Council ASC which was created in 2010 to administer and developed them further The first such standard was the ASC Salmon Standard 87 June 2012 and revised in 2017 after comprehensive public consultation The WWF had originally identified what they called seven key environmental and social impacts characterised as Benthic impacts and siting Chemicals and excess nutrients from food and feces associated with salmon farms can disturb the flora and fauna on the ocean bottom benthos 88 Chemical inputs Excessive use of chemicals such as antibiotics anti foulants and pesticides or the use of banned chemicals can have unintended consequences for marine organisms and human health 89 Disease parasites Viruses and parasites can transfer between farmed and wild fish as well as among farms 90 91 Escapes Escaped farmed salmon can compete with wild fish and interbreed with local wild stocks of the same population altering the overall pool of genetic diversity 92 Feed A growing salmon farming business must control and reduce its dependency upon fishmeal and fishoil a primary ingredient in salmon feed so as not to put additional pressure on the world s fisheries Fish caught to make fishmeal and oil currently represent one third of the global fish harvest 93 Nutrient loading and carrying capacity Excess food and fish waste in the water have the potential to increase the levels of nutrients in the water This can cause the growth of algae which consumes oxygen that is meant for other plant and animal life 94 Social issues Salmon farming often employs a large number of workers on farms and in processing plants potentially placing labor practices and worker rights under public scrutiny Additionally conflicts can arise among users of the shared coastal environment World Wide Fund for Nature 11 Land raised salmon editRecirculating aquaculture systems make it possible to farm salmon entirely on land which as of 2019 is an ongoing initiative in the industry 95 However large farmed salmon companies such as Mowi and Cermaq were not investing in such systems 96 In the United States a major investor in the effort was Atlantic Sapphire which plans to bring salmon raised in Florida to market in 2021 96 97 Other companies investing in the effort include Nordic Acquafarms 98 and Whole Oceans 99 Species editAtlantic salmon edit nbsp Atlantic salmonIn their natal streams Atlantic salmon are considered a prized recreational fish pursued by avid fly anglers during its annual runs At one time the species supported an important commercial fishery and a supplemental food fishery However the wild Atlantic salmon fishery is commercially dead after extensive habitat damage and overfishing wild fish make up only 0 5 of the Atlantic salmon available in world fish markets The rest are farmed predominantly from aquaculture in Chile Canada Norway Russia the United Kingdom and Tasmania 100 Atlantic salmon is by far the species most often chosen for farming It is easy to handle grows well in sea cages commands a high market value and adapts well to being farmed away from its native habitats 7 Adult male and female fish are anesthetized Eggs and sperm are stripped after the fish are cleaned and cloth dried Sperm and eggs are mixed washed and placed into fresh water Adults recover in flowing clean well aerated water 101 Some researchers have studied cryopreservation of the eggs 102 Fry are generally reared in large freshwater tanks for 12 to 20 months Once the fish have reached the smolt phase they are taken out to sea where they are held for up to two years During this time the fish grow and mature in large cages off the coasts of Canada the United States or parts of Europe 100 Generally cages are made of two nets inner nets which wrap around the cages hold the salmon while outer nets which are held by floats keep predators out 101 Many Atlantic salmon escape from cages at sea Those salmon that further breed tend to lessen the genetic diversity of the species leading to lower survival rates and lower catch rates On the West Coast of North America the non native salmon could be an invasive threat especially in Alaska and parts of Canada This could cause them to compete with native salmon for resources Extensive efforts are underway to prevent escapes and the potential spread of Atlantic salmon in the Pacific and elsewhere 103 The risk of Atlantic Salmon becoming a legitimate invasive threat on the Pacific Coast of N America is questionable in light of both Canadian and American governments deliberately introducing this species by the millions for a 100 year period starting in the 1900s Despite these deliberate attempts to establish this species on the Pacific coast no established populations have been reported 104 105 In 2007 1 433 708 tonnes of Atlantic salmon were harvested worldwide with a value of 7 58 billion 106 Ten years later in 2017 over 2 million tonnes of farmed Atlantic salmon were harvested 107 Steelhead edit nbsp Rainbow trout nbsp Male ocean phase steelhead salmonIn 1989 steelhead were reclassified into the Pacific trout as Oncorhynchus mykiss from the former binominals of Salmo gairdneri Columbia River redband trout and S irideus coastal rainbow trout Steelhead are an anadromous form of rainbow trout that migrate between lakes and rivers and the ocean and are also known as steelhead salmon or ocean trout Steelhead are raised in many countries throughout the world Since the 1950s production has grown exponentially particularly in Europe and recently in Chile Worldwide in 2007 604 695 tonnes of farmed steelhead were harvested with a value of 2 59 billion 108 The largest producer is Chile In Chile and Norway the ocean cage production of steelhead has expanded to supply export markets Inland production of rainbow trout to supply domestic markets has increased strongly in countries such as Italy France Germany Denmark and Spain Other significant producing countries include the United States Iran Germany and the UK 108 Rainbow trout including juvenile steelhead in fresh water routinely feed on larval pupal and adult forms of aquatic insects typically caddisflies stoneflies mayflies and aquatic dipterana They also eat fish eggs and adult forms of terrestrial insects typically ants beetles grasshoppers and crickets that fall into the water Other prey include small fish up to one third of their length crayfish shrimp and other crustaceans As rainbow trout grow the proportion of fish consumed increases in most populations Some lake dwelling forms may become planktonic feeders In rivers and streams populated with other salmonid species rainbow trout eat varied fish eggs including those of salmon brown and cutthroat trout mountain whitefish and the eggs of other rainbow trout Rainbows also consume decomposing flesh from carcasses of other fish Adult steelhead in the ocean feed primarily on other fish squid and amphipods 109 Cultured steelhead are fed a diet formulated to closely resemble their natural diet that includes fish meal fish oil vitamins and minerals and the carotenoid asthaxanthin for pigmentation The steelhead is especially susceptible to enteric redmouth disease Considerable research has been conducted on redmouth disease as its implications for steelhead farmers are significant The disease does not affect humans 110 Coho salmon edit nbsp Male ocean phase Coho salmonThe Coho salmon 14 is the state animal of Chiba Japan failed verification Coho salmon mature after only one year in the sea so two separate broodstocks spawners are needed alternating each year dubious discuss Broodfish are selected from the salmon in the seasites and transferred to freshwater tanks for maturation and spawning 14 Worldwide in 2007 115 376 tonnes of farmed Coho salmon were harvested with a value of 456 million 111 Chile with about 90 percent of world production is the primary producer with Japan and Canada producing the rest 14 Chinook salmon edit nbsp Male ocean phase Chinook nbsp Male freshwater phase ChinookChinook salmon are the state fish of Oregon and are known as king salmon because of their large size and flavourful flesh Those from the Copper River in Alaska are particularly known for their color rich flavor firm texture and high omega 3 oil content 112 Alaska has a long standing ban on finfish aquaculture that was enacted in 1989 Alaska Stat 16 40 210 113 Worldwide in 2007 11 542 tonnes 1 817 600 st of farmed Chinook salmon were harvested with a value of 83 million 114 New Zealand is the largest producer of farmed king salmon accounting for over half of world production 7 400 tonnes in 2005 115 Most of the salmon are farmed in the sea mariculture using a method sometimes called sea cage ranching which takes place in large floating net cages about 25 m across and 15 m deep moored to the sea floor in clean fast flowing coastal waters Smolt young fish from freshwater hatcheries are transferred to cages containing several thousand salmon and remain there for the rest of their lives They are fed fishmeal pellets high in protein and oil 115 Chinook salmon are also farmed in net cages placed in freshwater rivers or raceways using techniques similar to those used for sea farmed salmon A unique form of freshwater salmon farming occurs in some hydroelectric canals in New Zealand A site in Tekapo fed by fast cold waters from the Southern Alps is the highest salmon farm in the world 677 m 2 221 ft above sea level 116 Before they are killed cage salmon are sometimes anaesthetised with a herbal extract They are then spiked in the brain The heart beats for a time as the animal is bled from its sliced gills This method of relaxing the salmon when it is killed produces firm long keeping flesh 115 Lack of disease in wild populations and low stocking densities used in the cages means that New Zealand salmon farmers do not use antibiotics and chemicals that are often needed elsewhere 117 Timeline edit1527 The life history of the Atlantic salmon is described by Hector Boece of the University of Aberdeen Scotland 81 1763 Fertilization trials for Atlantic salmon take place in Germany Later biologists refined these in Scotland and France 81 1854 Salmon spawing beds and rearing ponds built along the bank of a river by the Dohulla Fishery Ballyconneely Ireland 118 1864 Hatchery raised Atlantic salmon fry were released in the River Plenty Tasmania in a failed attempt to establish a population in Australia 119 1892 Hatchery raised Atlantic salmon fry were released in the Umkomass river in South Africa in a failed attempt to establish a population in Africa 120 Late 19th century Salmon hatcheries are used in Europe North America and Japan to enhance wild populations 1961 Hatchery raised Atlantic salmon fry were released in the rivers of the Falkland Islands in a failed attempt to establish a population in the South Atlantic 121 Late 1960s First salmon farms established in Norway and Scotland 1970 Hatchery raised Atlantic salmon fry were released in the rivers of the Kerguelen Islands in a failed attempt to establish a population in the Indian Ocean 122 Early 1970s Salmon farms established in North America 1975 Gyrodactylus a small monogenean parasite spreads from Norwegian hatcheries to wild salmon probably by means of fishing gear and devastates some wild salmon populations 38 Late 1970s Salmon farms established in Chile and New Zealand 1984 Infectious salmon anemia a viral disease is discovered in a Norwegian salmon hatchery Eighty percent of the involved fish die 1985 Salmon farms established in Australia 1987 First reports of escaped Atlantic salmon being caught in wild Pacific salmon fisheries 1988 A storm hits the Faroe Islands releasing millions of Atlantic salmon 1989 Furunculosis a bacterial disease spreads through Norwegian salmon farms and wild salmon 1996 World farmed salmon production exceeds wild salmon harvest 2007 A 10 square mile 26 km2 swarm of Pelagia noctiluca jellyfish wipes out a 100 000 fish salmon farm in Northern Ireland 123 2019 The first salmon fish farm in the Middle East is established in the United Arab Emirates 124 In popular culture editChapter 14 of Paul Torday s 2007 novel Salmon Fishing in the Yemen includes a description of a visit to the McSalmon Aqua Farms where salmon are raised caged in a sea loch in Scotland References edit Based on data sourced from the relevant FAO Species Fact Sheets Fish Farming Information and Resources farms com Retrieved November 25 2018 Joseph John Charbonneau James Caudill September 2010 Conserving America s Fisheries An Assessment of Economic Contributions from Fisheries and Aquatic Resource Conservation PDF US Fish and Wildlife Service p 20 Retrieved 2015 01 21 Cultured Aquatic Species Information Programme Salmo trutta Food and Agriculture Organization of the United Nations Retrieved 2015 01 21 Responsible Sourcing Guide Farmed Atlantic Salmon PDF Seafish 2015 Retrieved November 25 2018 Commercial Fisheries Alaska Department of Fish and Game Retrieved 2015 01 12 a b c Knapp Gunnar Roheim Cathy A Anderson James L January 2007 The Great Salmon Run Competition Between Wild And Farmed Salmon PDF Report World Wildlife Fund ISBN 978 0 89164 175 9 Archived from the original PDF on 2017 11 07 Retrieved 2015 01 22 Incubation Biology METRO EAST ANGLERS Archived from the original on 2018 08 16 Retrieved 2016 03 27 a b Sea Lice and Salmon Elevating the dialogue on the farmed wild salmon story PDF Watershed Watch Salmon Society 2004 Archived from the original PDF on 2012 07 13 Retrieved 2015 01 22 FAO 2008 The State of World Fisheries and Aquaculture 2008 PDF Rome FAO p 6 Archived PDF from the original on 2018 03 12 a b c Farmed Seafood World Wildlife Fund Archived from the original on 2015 01 23 Retrieved 2015 01 21 B C Supreme Court upholds right of anti salmon farm activist to make defamatory remarks Postmedia Network Inc VANCOUVER SUN 28 September 2012 a b c d e It s all about salmon Salmon Aquaculture PDF Seafood Choices Alliance Spring 2005 Archived from the original PDF on 2015 09 24 Retrieved 2015 01 21 a b c d e f FAO Cultured Aquatic Species Information Programme Oncorhynchus kisutch Walbaum 1792 Rome Retrieved 8 May 2009 Naylor R L 2005 Search for Sustainable Solutions in Salmon Aquaculture Stanford University a b Shepherd Jonathan Jackson Andrew and Mittaine Jean Francois July 4 2007 Fishmeal industry overview International Fishmeal and Fish Oil Organisation Durham Sharon 2010 10 13 Alternative Fish Feeds Use Less Fishmeal and Fish Oils USDA Agricultural Research Service Archived from the original on 2016 03 25 Retrieved 2014 09 09 Avant Sandra 2014 07 14 Process Turns Barley into High protein Fish Food USDA Agricultural Research Service Retrieved 2014 09 09 Merrit Mike 13 January 2013 Sea change as farm grows fish on land The Scotsman Retrieved 22 January 2013 a b von Munchow Otto 5 June 2019 Gir Hardanger laksen omega 3 fra alger importert fra Nebraska Tu no in Norwegian Teknisk Ukeblad Kadir Alsagoff Syed A Clonts Howard A Jolly Curtis M 1990 An integrated poultry multi species aquaculture for Malaysian rice farmers A mixed integer programming approach Agricultural Systems 32 3 207 231 doi 10 1016 0308 521X 90 90002 8 Bell J G Pratoomyot J Strachan F Henderson R J Fontanillas R Hebard A Guy D R Hunter D Tocher D R 2010 Growth flesh adiposity and fatty acid composition of Atlantic salmon Salmo salar families with contrasting flesh adiposity Effects of replacement of dietary fish oil with vegetable oils Aquaculture 306 1 4 225 232 doi 10 1016 j aquaculture 2010 05 021 hdl 1893 2421 Naylor Rosamond L 1998 Nature s Subsidies to Shrimp and Salmon Farming PDF Science 282 5390 883 884 doi 10 1126 science 282 5390 883 S2CID 129814837 Archived from the original PDF on 2009 03 26 Cargill an intensely private firm sheds light on the food chain The Economist Retrieved 2017 09 11 CARGILL AQUA NUTRITION SUSTAINABILITY REPORT 2016 PDF cargill com p 20 Retrieved 2017 09 11 a b FAO 2008 Fish oil p 58 Farmed fish a major provider or a major consumer of omega 3 oils GLOBEFISH Food and Agriculture Organization of the United Nations Retrieved 30 August 2018 Pigments in Salmon Aquaculture How to Grow a Salmon coloured Salmon seafoodmonitor com Archived from the original on 2004 09 02 Retrieved 2007 08 26 Astaxanthin 3 3 hydroxy b b carotene 4 4 dione is a carotenoid pigment one of a large group of organic molecules related to vitamins and widely found in plants In addition to providing red orange and yellow colours to various plant parts and playing a role in photosynthesis carotenoids are powerful antioxidants and some notably various forms of carotene are essential precursors to vitamin A synthesis in animals Modern Salmon Harvest The Fishery and Aquaculture Industry Research Fund 2010 FAO Species fact sheets Rome FAO Species Fact Sheets Salmo salar Dietary Guidelines health gov Retrieved on 2016 10 26 Meat and Alternatives Canada s Food Guide Health Canada 2012 11 19 Archived from the original on 2018 10 28 Pirquet K T May June 2010 Follow the Money Aquaculture North America vol 16 Charron Bertrand April 2014 Of Fairness Seafood Watch amp Farmed Salmon www seafoodintelligence com Charron Bertrand May 2012 Alaska salmon ASMI vs MSC Seafood Intelligence 2015 Alaska Preliminary Commercial Salmon Harvest and Exvessel Values adfg alaska gov Alaska Department of Fish and Game October 16 2015 a b Stead Selina M Laird Lindsay 14 January 2002 The Handbook of Salmon Farming Springer Science amp Business Media pp 348 ISBN 978 1 85233 119 1 New Brunswick to help Chile beat disease FIS Fish Information and Services 2008 12 12 Archived from the original on 2011 07 11 Fact Sheet Atlantic Salmon Aquaculture Research Archived 2010 12 29 at the Wayback Machine Fisheries and Oceans Canada Retrieved 12 May 2009 Scientific Evidence of Sea Lice from Fishfarms Seriously Harming Wild Stocks saveourskeenasalmon org a b Krkosek M Ford J S Morton A Lele S Myers R A Lewis M A 2007 Declining Wild Salmon Populations in Relation to Parasites from Farm Salmon Science 318 5857 1772 5 Bibcode 2007Sci 318 1772K doi 10 1126 science 1148744 PMID 18079401 S2CID 86544687 a b Riddell B E Beamish R J Richards L J Candy J R 2008 Comment on Declining Wild Salmon Populations in Relation to Parasites from Farm Salmon Science 322 5909 1790 Bibcode 2008Sci 322 1790R doi 10 1126 science 1156341 PMID 19095926 S2CID 7901971 Cleaner fish keep salmon healthy by eating lice Bbc com 14 August 2015 Retrieved on 2016 10 26 Integrated Sea Lice Management Strategies Scottish Salmon Producers Organisation Archived 2018 06 23 at the Wayback Machine Scottishsalmon co uk 2013 11 23 Retrieved on 2016 10 26 Sarah Butler 2017 01 13 Salmon retail prices set to leap owing to infestations of sea lice The Guardian Retrieved January 25 2017 Gwynn Guilford 22 Jan 2017 The gross reason you ll be paying a lot more for salmon this year Quartz Retrieved January 25 2017 Sarah Knapton 12 August 2017 Salmon farming has done enormous harm to fish and environment warns Jeremy Paxman The Telegraph Dumiak Michael Lice Hunting Underwater Drone Protects Salmon With Lasers IEEE Spectrum Technology Engineering and Science News Retrieved 2017 06 05 Munson A Douglas Elliott Diane G Johnson Keith 2010 Management of Bacterial Kidney Disease in Chinook Salmon Hatcheries Based on Broodstock Testing by Enzyme Linked Immunosorbent Assay A Multiyear Study North American Journal of Fisheries Management 30 4 940 955 doi 10 1577 M09 044 1 Bruno D W 1986 Changes in serum parameters of rainbow trout Salmo gairdneri Richardson and Atlantic salmon Salmo salar L infected with Renibacterium salmoninarum Journal of Fish Diseases 9 3 205 211 doi 10 1111 j 1365 2761 1986 tb01005 x a b Lang S S 2005 Stick to wild salmon unless heart disease is a risk factor risk benefit analysis of farmed and wild fish shows Chronicle Online Cornell University Fish and Seafood Survey Environmental Contaminants Food Safety Health Canada Hc sc gc ca 2007 03 26 Retrieved on 2016 10 26 Update of the monitoring of levels of dioxins and PCBs in food and feed EFSA Journal 10 7 2832 2012 doi 10 2903 j efsa 2012 2832 Hites R A Foran J A Carpenter D O Hamilton M C Knuth B A Schwager S J 2004 Global Assessment of Organic Contaminants in Farmed Salmon Science 303 5655 226 9 Bibcode 2004Sci 303 226H doi 10 1126 science 1091447 PMID 14716013 S2CID 24058620 Santerre Charles R 2008 Balancing the risks and benefits of fish for sensitive populations PDF Journal of Foodservice 19 4 205 212 CiteSeerX 10 1 1 570 4751 doi 10 1111 j 1748 0159 2008 00111 x Schwager SJ 2005 05 01 Risk based consumption advice for farmed Atlantic and wild Pacific Salmon contaminated with dioxins and dioxin like compounds Environmental Health Perspectives Archived from the original on 2017 11 07 Hamilton M Coreen Hites Ronald A Schwager Steven J Foran Jeffery A Knuth Barbara A Carpenter David O 2005 Lipid Composition and Contaminants in Farmed and Wild Salmon Environmental Science amp Technology 39 22 8622 8629 Bibcode 2005EnST 39 8622H doi 10 1021 es050898y PMID 16323755 Elskus Adria A Collier Tracy K Monosson Emily 2005 Ch 4 Interactions between lipids and persistent organic pollutants in fish In Moon T W Mommsen T P eds Environmental Toxicology Elsevier pp 119 doi 10 1016 S1873 0140 05 80007 4 ISBN 978 0 08 045873 1 Foran J A Good D H Carpenter D O Hamilton M C Knuth B A Schwager S J 2005 Quantitative analysis of the benefits and risks of consuming farmed and wild salmon The Journal of Nutrition 135 11 2639 43 doi 10 1093 jn 135 11 2639 PMID 16251623 GAIN Report Russia Bans Norwegian Fish PDF USDA Foreign Agricultural Service 2005 12 29 Archived PDF from the original on 2017 02 01 Hard Times for Norwegian Salmon 2006 PDF Castle Stephen November 6 2017 As wild salmon decline Norway pressures its giant fish farms New York Times Retrieved February 9 2018 Vidal John 2017 01 01 Salmon farming in crisis We are seeing a chemical arms race in the seas The Guardian Retrieved 2018 02 09 Fleming I A Hindar K Mjolnerod I B Jonsson B Balstad T Lamberg A 2000 Lifetime success and interactions of farm salmon invading a native population Proceedings of the Royal Society B Biological Sciences 267 1452 1517 1523 doi 10 1098 rspb 2000 1173 PMC 1690700 PMID 11007327 Volpe John P Taylor Eric B Rimmer David W Glickman Barry W 2000 Evidence of Natural Reproduction of Aquaculture Escaped Atlantic Salmon in a Coastal British Columbia River Conservation Biology 14 3 899 903 doi 10 1046 j 1523 1739 2000 99194 x S2CID 86641677 Gardner J and D L Peterson 2003 Making sense of the aquaculture debate analysis of the issues related to netcage salmon farming and wild salmon in British Columbia Pacific Fisheries Resource Conservation Council Vancouver BC Hansen L P J A Jacobsen and R A Lund 1999 The incidence of escaped farmed Atlantic salmon Salmo salar L in the Faroese fishery and estimates of catches of wild salmon ICES Journal of Marine Science 56 2 200 206 doi 10 1006 jmsc 1998 0437 Lee Kessina Windrope Amy Murphy Kyle Jan 2018 2017 Cypress Island Atlantic Salmon Net Pen Failure An Investigation and Review PDF Report Washington State Department of Natural Resources pp 1 120 Sea Lice and Salmon Elevating the dialogue on the farmed wild salmon story Archived 2010 12 14 at the Wayback Machine Watershed Watch Salmon Society 2004 Bravo S 2003 Sea lice in Chilean salmon farms Bull Eur Assoc Fish Pathol 23 197 200 Morton A R Routledge C Peet A Ladwig 2004 Sea lice Lepeophtheirus salmonis infection rates on juvenile pink Oncorhynchus gorbuscha and chum Oncorhynchus keta salmon in the nearshore marine environment of British Columbia Canada Canadian Journal of Fisheries and Aquatic Sciences 61 2 147 157 doi 10 1139 f04 016 Peet C R 2007 Interactions between sea lice Lepeophtheirus salmonis and Caligus clemensii juvenile salmon Oncorhynchus keta and Oncorhynchus gorbuscha and salmon farms in British Columbia M Sc Thesis University of Victoria Victoria British Columbia Canada Krkosek M A Gottesfeld B Proctor D Rolston C Carr Harris M A Lewis 2007 Effects of host migration diversity and aquaculture on sea lice threats to Pacific salmon populations Proceedings of the Royal Society B Biological Sciences 274 1629 3141 9 doi 10 1098 rspb 2007 1122 PMC 2293942 PMID 17939989 Morton A R Routledge M Krkosek 2008 Sea Louse Infestation in Wild Juvenile Salmon and Pacific Herring Associated with Fish Farms off the East Central Coast of Vancouver Island British Columbia PDF North American Journal of Fisheries Management 28 2 523 532 doi 10 1577 M07 042 1 Archived from the original PDF on 2013 08 29 Retrieved 2016 10 26 Krkosek M M A Lewis A Morton L N Frazer J P Volpe 2006 Epizootics of wild fish induced by farm fish Proceedings of the National Academy of Sciences 103 42 15506 10 doi 10 1073 pnas 0603525103 PMC 1591297 PMID 17021017 Brooks Kenneth M Jones Simon R M 2008 Perspectives on Pink Salmon and Sea Lice Scientific Evidence Fails to Support the Extinction Hypothesis Reviews in Fisheries Science 16 4 403 412 doi 10 1080 10641260801937131 S2CID 55689510 Ford Jennifer S Myers Ransom A 2008 A Global Assessment of Salmon Aquaculture Impacts on Wild Salmonids PLOS Biology 6 2 e33 doi 10 1371 journal pbio 0060033 PMC 2235905 PMID 18271629 Larkin Kate 3 September 2010 Canada sees shock salmon glut Nature News doi 10 1038 news 2010 449 Marty G D Saksida S M Quinn T J 2010 Relationship of farm salmon sea lice and wild salmon populations Proceedings of the National Academy of Sciences 107 52 22599 604 Bibcode 2010PNAS 10722599M doi 10 1073 pnas 1009573108 PMC 3012511 PMID 21149706 a b c Knapp G Roheim CA Anderson JA 2007 Chapter 5 The World Salmon Farming Industry PDF University of Alaska Anchorage ISBN 978 0 89164 175 9 Archived PDF from the original on 2019 05 22 a href Template Cite book html title Template Cite book cite book a work ignored help Fast Growing GM Salmon Swims Close to US Markets The Fish Site 2009 02 11 Archived from the original on 2010 02 01 Genetically Engineered Animals AquAdvantage Salmon www fda gov United States Food and Drug Administration Retrieved 2017 06 19 Devlin R H d Andrade M Uh M Biagi C A 2004 Population effects of growth hormone transgenic coho salmon depend on food availability and genotype by environment interactions Proceedings of the National Academy of Sciences 101 25 9303 8 Bibcode 2004PNAS 101 9303D doi 10 1073 pnas 0400023101 PMC 438972 PMID 15192145 Fish farmer sponsors new aviary for injured eagles ABC News 2014 06 16 Retrieved 2015 11 09 Nelson Benjamin W Shelton Andrew O Anderson Joseph H Ford Michael J Ward Eric J 2019 Ecological implications of changing hatchery practices for Chinook salmon in the Salish Sea Ecosphere 10 11 doi 10 1002 ecs2 2922 Aquaculture Stewardship Council ASC 2017 ASC Salmon Standard V1 1 PDF ASC Salmon Aquaculture Dialogue Benthic impacts report PDF World Wide Fund for Nature Archived from the original PDF on 2011 06 05 Salmon Aquaculture Dialogue Chemical report PDF World Wide Fund for Nature Archived from the original PDF on 2008 08 29 Salmon Aquaculture Dialogue Disease report PDF World Wide Fund for Nature Archived from the original PDF on 2011 06 05 Salmon Aquaculture Dialogue Sealice report PDF World Wide Fund for Nature Archived from the original PDF on 2011 06 05 Salmon Aquaculture Dialogue Escapes report PDF World Wide Fund for Nature Archived from the original PDF on 2008 11 20 Salmon Aquaculture Dialogue Feed report PDF World Wide Fund for Nature Archived from the original PDF on 2011 06 05 Salmon Aquaculture Dialogue Nutrient loading PDF World Wide Fund for Nature Archived from the original PDF on 2008 08 29 Shore Randy 2018 10 20 Growing pains as companies try to move fish farms from ocean to land Retrieved 2019 05 11 a b Report Does big salmon know something RAS startups don t Undercurrent News Retrieved 2019 05 11 Will Your Next Salmon Come from a Massive Land Tank in Florida www politico com Retrieved 2020 07 16 Nordic Aquafarms pursues US market before Maine salmon plant complete Undercurrent News Retrieved 2019 05 11 Land based salmon farmer Whole Oceans eyeing west coast IntraFish 2019 03 04 Retrieved 2019 05 11 a b Heen K 1993 Salmon Aquaculture Halstead Press a b Sedgwick S 1988 Salmon Farming Handbook Fishing News Books LTD Bromage N 1995 Broodstock Management and Egg and Larval Quality Blackwell Science Mills D 1989 Ecology and Management of Atlantic Salmon Springer Verlag Nash Colin E Waknitz F William 2003 Interactions of Atlantic salmon in the Pacific Northwest Fisheries Research 62 3 237 254 doi 10 1016 S0165 7836 03 00063 8 ISSN 0165 7836 MacCrimmon Hugh R Gots Barra L 1979 World Distribution of Atlantic Salmon Salmo salar NRC Research Press FAO Species Fact Sheets Salmo salar Linnaeus 1758 Rome Accessed 9 May 2009 Integrated Annual Report 2017 Leading the Blue Revolution PDF Marine Harvest 2018 p 246 Archived PDF from the original on 2019 05 22 a b Species Fact Sheets Oncorhynchus mykiss Walbaum 1792 Rome FAO Archived from the original on 2018 07 01 Retrieved 2009 05 09 BC Fish Facts Steelhead PDF British Columbia Ministry of Fisheries Archived from the original PDF on 2013 07 18 Retrieved 2013 11 28 Bullock G L and Cipriano R C 1990 LSC Fish Disease Leaflet 82 Enteric Redmouth Disease of Salmonids U S Department of the Interior Fish and Wildlife Service FAO Species Fact Sheets Oncorhynchus kisutch Walbaum 1792 Rome Accessed 9 May 2009 Foodies FREAK Copper River Salmon Arrive Archived 2010 02 14 at the Wayback Machine Seattlest 2006 05 16 Retrieved on 2016 10 26 Alaska Statutes Section 16 40 210 Finfish farming prohibited Findlaw Retrieved 2015 01 21 FAO Species Fact Sheets Oncorhynchus tshawytscha Walbaum 1792 Rome Accessed 9 May 2009 a b c Marine Aquaculture MFish Updated 16 November 2007 Wassilieff Maggy Aquaculture Salmon Te Ara the Encyclopedia of New Zealand updated 21 September 2007 Aquaculture in New Zealand aquaculture govt nz History of Ballyconneely from earliest settlers to the present day connemara net Archived from the original on 2012 02 24 Retrieved 2009 05 26 Newton Chris 2013 The Strange Case of the Disappearing Salmon The Trout s Tale The Fish That Conquered an Empire Ellesmere Shropshire Medlar Press pp 57 66 ISBN 978 1 907110 44 3 Newton Chris 2013 Scotland with Lions The Trout s Tale The Fish That Conquered an Empire Ellesmere Shropshire Medlar Press p 106 ISBN 978 1 907110 44 3 Newton Chris 2013 Falklands Silver The Trout s Tale The Fish That Conquered an Empire Ellesmere Shropshire Medlar Press p 153 ISBN 978 1 907110 44 3 Newton Chris 2013 The Monsters of Kerguelen The Trout s Tale The Fish That Conquered an Empire Ellesmere Shropshire Medlar Press p 163 ISBN 978 1 907110 44 3 Billions of jellyfish wipe out salmon farm NBC News November 21 2007 Retrieved 28 January 2010 The National 29 March 2019 Desert salmon farming becomes reality for Dubai based company Further reading editBeveridge Malcolm 1984 Cage and Pen fish farming Carrying capacity models and environmental impact FAO Fisheries technical paper 255 Rome ISBN 92 5 102163 5 Bjorndal Trond 1990 The Economics of Salmon Aquaculture Wiley Blackwell ISBN 978 0 632 02704 0 Coimbra Joao 1 January 2001 Modern Aquaculture in the Coastal Zone Lessons and Opportunities IOS Press pp 32 ISBN 978 0 9673355 6 8 Harris Graeme Milner Nigel 12 March 2007 Sea Trout Biology Conservation and Management Wiley pp 18 ISBN 978 1 4051 2991 6 Heen K Monahan R L and Utter F 1993 Salmon Aquaculture Wiley Blackwell ISBN 978 0 85238 204 2 Knapp G Roheim C A and Anderson J A 2007 The Great Salmon Run Competition between Wild and Farmed Salmon Report of the Institute of Social and Economic Research University of Alaska Anchorage ISBN 0 89164 175 0 Lustig B Andrew Brody Baruch A McKenny Gerald P 1 November 2008 Altering Nature Volume II Religion Biotechnology and Public Policy Springer Science amp Business Media pp 321 ISBN 978 1 4020 6923 9 Pomeroy R Bravo Ureta B E Solis D and Johnston R J 2008 Bioeconomic modelling and salmon aquaculture an overview of the literature International Journal of Environment and Pollution 33 4 485 500 Quinn Thomas P 2005 The Behavior and Ecology of Pacific Salmon and Trout American Fisheries Society pp 18 ISBN 978 0 295 98457 5 British Columbia Salmon Farming Association Did you Know 1 External links edit nbsp Wikimedia Commons has media related to Salmon farms BC Salmon Farmers Association Archived 2011 04 23 at the Wayback Machine Trade association representing the salmon aquaculture industry in British Columbia Canada CAIA Canadian Industry Aquaculture Association Canadian association representing all salmon farms in Canada Creating Standards for Responsibly Farmed Salmon Salmon Aquaculture Dialogue a multi stakeholder roundtable led by the World Wildlife Fund Watershed Watch Salmon Society Positive Aquaculture Awareness Independent association which promotes salmon farming in British Columbia Canada What about this fish Video extract from Harvest of Fear Retrieved from https en wikipedia org w index php title Aquaculture of salmonids amp oldid 1186062928 Sea cages, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.