fbpx
Wikipedia

Railway platform height

Railway platform height is the built height – above top of rail (ATR) – of passenger platforms at stations. A connected term is train floor height, which refers to the ATR height of the floor of rail vehicles. Worldwide, there are many, frequently incompatible, standards for platform heights and train floor heights. Where raised platforms are in use, train widths must also be compatible, in order to avoid both large gaps between platform and trains and mechanical interference liable to cause equipment damage.

Typical commuter rail station in Boston, Massachusetts, with two platform heights: low-level for most cars and a full height platform to accommodate passengers in wheelchairs.

Differences in platform height (and platform gap) can pose a risk for passenger safety. Differences between platform height and train floor height may also make boarding much more difficult, or impossible, for wheelchair-using passengers and people with other mobility impairments, increasing station dwell time as platform or staff are required to deploy ramps to assist boarding. Platform ramps, steps, and platform gap fillers together with hazard warnings such as "mind the gap" are used to reduce risk and facilitate access. Platform height affects the loading gauge (the maximum size of train cars), and must conform to the structure gauge physical clearance specifications for the system. Tracks which are shared between freight and passenger service must have platforms which do not obstruct either type of railroad car.

To reduce construction costs, the platforms at stations on many railway systems are of low height, making it necessary for passenger cars to be equipped with external steps or internal stairs allowing passengers access to and from car floor levels. When railways were first introduced in the 19th century, low platforms were widely used from the 1880s, especially in rural areas, except in the United Kingdom. Over the years, raised platforms have become far more widespread, and are almost universal for high-speed express routes and universal in cities on commuter and rapid transit lines. Raised platforms on narrow gauge railways can prevent track gauge conversion to standard gauge or broad gauge.

Height categories

 
Low floor tram platform in Cologne

Buses, trams, trolleys and railway passenger cars are divided into several typical categories.

  • Ultra Low Floor tram – 180 mm (7 in)
  • Low floor tram – 300 to 350 mm (12 to 14 in)
  • High floor tram – more than 600 mm (24 in)
  • Low floor train – 550 mm (22 in)
  • Train (in UK or narrow gauge) – 800 to 1,200 mm (31.5 to 47.2 in)
  • Standard North American passenger cars – 1,300 mm (51 in)
  • Train (standard gauge (except UK) or broad gauge) – 1,300 to 1,370 mm (51 to 54 in)

These are floor heights. The platforms can be much lower, overcome by onboard staircases.

Africa

Algeria

Typical Algerian platforms are 550 mm (21.7 in) above rail.

Kenya

The 1,435 mm (4 ft 8+12 in) SGR platforms are two standard heights of 300 mm (11.8 in) and 1,250 mm (49.2 in) above rail heads. The 1,000 mm (3 ft 3+38 in) meter gauge platforms are 1100mm.

Asia

China

 
A Platform at Haining railway station consists of both "low" and "high platform".

China Railway platforms are classified into the following categories of "low" 380 mm (15.0 in), "medium" 550 mm (21.7 in), "high" 760 mm (29.9 in) and "ultra high" 1,250 mm (49.2 in) (latter 2 for most new and rebuilt platforms). Areas adjacent to broad gauge countries/regions, such as Xinjiang and Inner-Mongolia, are still equipped with low platforms. Under the concession period since late 2016, platforms on the southeastern corridor from Shenzhen to Ruili to be 1,250 mm (49.2 in) ATR, whereas the northern-, central-, and western-Chinese platforms to be 380 mm (15.0 in) ATR, are recommended.

Most CRH platforms are 1,250 millimetres (49.2 in) above top of rail, with the remainders being 760 millimetres (29.9 in).

The proposed 1,524 mm (5 ft) (Russian gauge) Rail North China[note 1] platforms will be 200 mm (7.9 in) above rails.

Hong Kong

Hong Kong's railway network consists of the local MTR network (including the former KCR), Hong Kong Tramways, and the Hong Kong section of the XRL high-speed line.

MTR network

Platforms on the MTR are 1,250 mm (49.213 in) above the rail for the Tung Chung line and Airport Express, collectively known as the Airport Railway lines.[1]

The height of platforms on the Disneyland Resort line and the urban lines are 1,100 mm (43.307 in). The urban lines include the Tsuen Wan line, Kwun Tong line, Tseung Kwan O line, Island line, and South Island line.

Former KCR network

All platforms on the East Rail line and Tuen Ma line are 1,066.8 mm (42 in) above rail heads.[2]

The light rail system uses a platform height of 910 mm (36 in) above rail level.[3]

Hong Kong Tramway

To be updated.

High-speed rail line

Trains at Hong Kong West Kowloon railway station travel along the XRL on China's high-speed rail system and so must be compliant with the platform height standard of 1,250 mm (49.213 in) above the rail.

India

There are two standard heights of the platforms, 200 mm (7.9 in) and 760 mm (29.9 in) above rail heads.

Indonesia

There are three standard heights of the platforms, 180 mm (7.1 in) (low), 430 mm (16.9 in) (medium), and 1,000 mm (39.4 in) (high) above rail heads.[4] Most railway stations in Indonesia use low platforms.[5]

Iran

Iranian platforms are 380 mm (15.0 in), 550 mm (21.7 in) and 760 mm (29.9 in). Like in China, areas adjacent to broad gauge countries/regions such as the eastern regions such as around Mashhad and Zahedan, still equipped low platforms.

Israel

Israel Railways platforms fall in the range between 760 mm (29.9 in) to 1,060 mm (41.7 in) above top of rail.[6]

Japan

The Japanese National Railways (JNR) for many years used a triple-standard for its conventional (Cape gauge) lines:

  • 760 mm (29.9 in) for long-distance trains (originally step-fitted passenger cars pulled by steam engines);
  • 1,100 mm (43.3 in) for commuter trains (step-less electric multiple units at a time when long-distance trains were not); and
  • 920 mm (36.2 in) shared platforms that could serve both with relatively little discomfort (roughly level with the step on passenger carriages but not too low to board commuter trains).

However, increasing electrification and the phasing-out of locomotive traction in favor of multiple units has made the distinction a matter of historical, rather than practical relevance. Recently, at Japan Railways Group stations in urban centers such as Tokyo and Osaka, whose lines were the earliest to be electrified, 1,100 mm (43.3 in) is the norm and lower-level platforms are generally raised to this height during station improvements or refurbishment. Elsewhere, such as Hokkaido and the Tohoku/Hokuriku region of Honshu, 920 mm (36.2 in) – and even 760 mm (29.9 in) platforms are still commonplace. As this represents a potential obstacle when boarding modern commuter trains, workarounds such as a step built into the floor of area-specific trainsets are often employed. Nevertheless, with accessibility becoming a greater concern as Japan's population ages, raising the level of the platform itself (in tandem with other improvements such as elevators and escalators) is seen as the most practical solution.

In at least one case, with the E721 series EMU used on JR East lines in the Tohoku region, the floor of the train itself is lowered to be nearly level to existing 920 mm (36.2 in) platforms. This makes level boarding feasible at many stations (and boarding less of a hassle at stations with the lowest 760 mm (29.9 in) platforms). However, this (along with a different standard of electrification) also makes through service southward to Tokyo impossible, and prevents them from running on certain through lines, such as the Senseki-Tohoku Line, since the Senseki Line portion uses the higher 1,100 mm (43.3 in) platforms (and DC electrification).

In contrast to the above standards, the standard gauge Shinkansen (Bullet Train) has, since its original inception, used only 1,250 mm (49.2 in) platforms. However, exceptions from this include the "Mini-Shinkansen" Yamagata Shinkansen and Akita Shinkansen lines, which use 1,100 mm (43.3 in) platforms to maintain compatibility with conventional JR trainsets.

Most standard gauge non-JR commuter railways, such as Kintetsu Nara Line and Keisei Line, use 1,250 mm (49.2 in) platforms.

North Korea

North Korean platforms are standardized at 1,250 mm (49.2 in) only. In there, 1,250 mm (49.2 in) is the norm, lower-level platforms are already raised to this height.

South Korea

Korail adopted 550 mm (21.7 in) high platforms to operate KTX. Typically, older platforms are lower than 500 mm. For metro trains, higher platforms which height after 1,135 mm (44.7 in)[7] are used. Nuriro trains are using mechanical steps to allow both type of platforms. Korail has a long-term plan to change platform standards to higher platforms; both KTX-Eum and EMU-320 are designed to use higher platforms.

Malaysia

will update later.

Philippines

 
Older 200 mm platforms (background) and newer 1,100 mm platforms at Santa Mesa station.

There are various platform heights for railway lines in the Philippines. For heavy rail and commuter rail systems such as the LRT Line 2 and the PNR Metro Commuter Line, most stations are generally set at 1,100 mm (43.3 in). For the LRT Line 1 and MRT Line 3 which use light rail vehicles, the platform heights are at 620 mm (24.4 in)[8] and 920 mm (36.2 in), respectively.[9][10] Future train lines such as the Metro Manila Subway and the North–South Commuter Railway will use the same heavy rail standard at 1,100 mm (43.3 in),[11] while the PNR South Long Haul's platform height will be the Chinese standard of 1,250 mm (49.2 in).[12] All cargo loading platforms are 1,250 mm (49.2 in).

Previously, the Philippine National Railways had lower platforms prior to the 2009 reconstruction of its network. Some stations such as Santa Mesa have its 200 mm (7.9 in) curb height platforms still intact as of 2020, while others such as Naga and EDSA have 760 mm (29.9 in) platforms built during the early 2000s.

Taiwan

Taiwan high-speed rail platforms are 1,250 mm (49.2 in) above rail.

 
Example of a platform whose height was raised.

Initially, Taiwan Railways Administration platforms were 760 mm (29.9 in) tall and passengers must take two stair steps to enter the train. In 2001, the platforms were raised to 960 mm (37.8 in), cutting the steps needed to one. Between 2016 and 2020, platforms were again raised to 1,150 mm (45.3 in), and the unnecessary gap on trains were filled in.[13]

Thailand

Old railway platforms are usually less than 500 mm (20 in) in height. New platforms along double tracking projects, red line projects, and metro stations are built at 1,100 mm (43.3 in) height. Bang Bamru railway station is built with both high and low platforms.

Eurasia

Russia

There are two standard heights of platforms in Russia; they are 200 and 1,100 mm (7.9 and 43.3 in) above rail heads. 1,100 mm (43.3 in) high platforms are gradually changing to 550 mm (21.7 in) platform height.[14] 200 mm (7.9 in) platforms are used primarily on lines with either small passenger flow or using double-decker trains.[citation needed]

In late 2015, there are three standard heights of platforms, which include:

  • 200 mm (7.9 in) for long-distance trains (originally locomotive-hauled step-fitted passenger carriages);
  • 1,100 mm (43.3 in) for direct-current only commuter trains (step-less direct current commuter electric multiple units at a time when long-distance trains were not); and
  • 550 mm (21.7 in) for shared platforms that could serve both with relatively little discomfort (roughly level with the steps on passenger carriages but not too low to board commuter trains).

In some urban areas, such as Moscow and St Petersburg, served only by local traffic, use 1,100 mm (43.3 in) platforms for direct-current electric multiple units. Elsewhere, 550 mm (21.7 in) - and even 200 mm (7.9 in) platforms are almost commonplace. In some cases, such as VR Sm4 of Finland, the floor of the train itself lowered to be nearly level to 550 mm (21.7 in) platforms. This makes level boarding feasible at some stations (and boarding less of a hassle at stations with the lowest 200 mm (7.9 in) platforms).

The proposed 1,676 mm (5 ft 6 in) Indian gauge Indo-Siberian railways[note 2] platforms will be 200 mm (7.9 in) above top of rail.

Turkey

In Turkey, the standard platform height for commuter railways is 1,050 mm (41.3 in) and for mainline & high-speed railways it's 550 mm (21.7 in). But most of the platforms throughout the network are old and thus out of standard.

Kazakhstan

In Kazakhstan, only Astana Nurly Jol station and Russian Railway's Petropavlovsk station have 550 mm (21.7 in) platforms. Almost everywhere else, the platforms are 200 mm (7.9 in) above top of rail.

Europe

Multi-country

European Union

 
Application of the EU standard heights for new construction; Green = 550 mm, Blue = 760 mm, Turquoise = both, dark gray = New builds in other heights than the EU standards

The European Union Commission issued a TSI (Technical Specifications for Interoperability) on 30 May 2002 (2002/735/EC) that sets out standard platform heights for passenger steps on high-speed rail. These standard heights are 550 and 760 mm (21.7 and 29.9 in) [15][note 3]. There are special cases: 840 mm (33.1 in) for the Netherlands, 915 mm (36.0 in) for Great Britain, and 915 mm (36.0 in) for Ireland.

Broad-gauge railways

The proposed 1,520 mm (4 ft 11+2732 in) (Russian gauge) railways (e.g. Arctic Railway and Kosice-Vienna broad gauge line) and the proposed 7 ft 14 in (2,140 mm) (Brunel gauge) railways will be 200 mm (7.9 in) for Sweden and Norway, 200 mm (7.9 in) and 550 mm (21.7 in) for Poland and Slovakia, and 380 mm (15.0 in) for Germany and Austria.

Channel Tunnel

Platforms for Eurotunnel Shuttle are 1,100 mm (43.3 in) above rails.

Rail Baltica

The 1,435 mm (4 ft 8+12 in) European standard gauge Rail Baltica II platforms will be 1,250 mm (49.2 in) above rails. Previously, this line would be 550 mm (21.7 in)[17] above rails, but cut off the Lithuanian sections and eliminate the freight transport provision make change to high-floor level-boarding trains on the European standard gauge tracks, much like the US's Brightline West and the UK's High Speed 2.

Belgium

Belgium has been using mixed type of platform heights (due to the age of the network, and the different companies running it before 1923). As of 2017 the most common platform heights for small stop places and stations are low platform heights of 280 mm (11.0 in).[18]

There is nevertheless a plan to comply with the European TSI by raising all low platform heights to one of the European Standard Heights. Most stations will by then be equipped with 550 mm platforms, and direct current EMUs dedicated platforms will be upgraded in their final version to 760 mm. Some stations, or stopping points, already having 760 mm platform heights will keep the platforms at these heights.

Finland

In Finland, the current standard platform height is 550 mm (21.7 in) in Helsinki/Turku urban areas. Platforms that in the reminder of the network are built to the older standard of ranging 127 mm (5.0 in) to 265 mm (10.4 in) above top of rail.[19]

The sole exception on the national railway network is the Nikkilä halt which has a platform height of 400 mm (15.8 in).[19]

The majority of the passenger rolling stocks in Finland and the other Russian gauge compatible network have bottom steps lower than 550 mm (21.7 in), thus the platforms with 550 mm (21.7 in) height can create negative vertical gaps, unlike the rest of Europe. There are current proposed figures:

  • Minimum height clearance of the overhead bridges must be 8.1 m (26 ft 7 in) above platform level to provide tracks raising/lowering to changing platform heights between 127 mm (5.0 in) and 550 mm (21.7 in) without major structural change, and also provide container double-stacking under 25kV AC overhead lines.
  • Platform heights of ranging 127 mm (5.0 in) to 265 mm (10.4 in) for long-distance trains.
  • Platform height of 550 mm (21.7 in) for commuter trains.
  • Platform height of 350 mm (13.8 in) for shared platforms.

Germany

 
Triple gauntlet track at Kaufungen, Germany. Wider mainline trains go down the centre; narrower trams switch either to the left, or right, to be closer to the relevant platform. Beyond the station, the rails return to single track.

Germany's EBO standard specifies an allowable range between 380 mm (15.0 in) and 960 mm (37.8 in) .[20] This does not include light rail systems that follow the BOStrab standard, with newer metro lines to use low-floor trams which have a usual floor height of 300 to 350 mm (11.8 to 13.8 in) so that platforms are constructed as low as 300 mm in accordance with BOStrab that requires the platform height not to be higher than the floor height.[21]

The traditional platforms had a very diverse height as the nationwide railway network is a union of earlier railway operators. Prior to followed by the European TSI standard the EBO standard requires that new platform construction be at a regular height of 760 mm (29.9 in) .[20][clarification needed] The TSI standard of 550 mm (21.7 in) height, historically common in the East, is widely used on regional lines. Only the S-Bahn suburban rail systems had a higher platform height and these are standardized on 960 mm (37.8 in).[20]

Ireland

While older platforms on the Dublin and Kingstown Railway were at lower levels, all platforms are now 915mm above rail and all new platforms are being built at that level. Amongst other work, there is an ongoing program of platform renewal. Both Irish railway companies (Irish Rail in the Republic of Ireland and Northern Ireland Railways in Northern Ireland) have had some derogations from EU standards as their mainline rail systems, while connected to each other, are not connected to any other system.

The electric DART fleet has carriage floors at 1,067 mm (42.0 in) above top of rail creating a step of 152 mm (6.0 in) , while the diesel fleet is typically one step (150 to 200 mm or 5.9 to 7.9 in) higher than the platform.

On Dublin's Luas tram system, platforms are approximately 280 mm (11 in) above rail. Tram floors are at the same height, but have internal steps over the bogies.

Luxembourg

The 760 mm (29.9 in) platforms for the Namur-Luxembourg line (with 3kV DC electrification). The remainder of the network, the platforms are 380 mm (15.0 in) above rails.

Netherlands

European Commission decision 2002/735/EC which concerns trans-European interoperability for high-speed rail specifies that rolling stock be built for operational suitability platform height of 840 mm (33.1 in) .[15] Dutch infrastructure maintainer ProRail has committed to upgrading all stations to 760 mm (29.9 in) platform height.[22][failed verification][23]

Poland

Typical Polish platform is 760 mm (29.9 in) high. In some rural or urban/suburban areas (e.g. around Warsaw) platforms used by local traffic are lower or higher (550 to 1,060 mm or 21.7 to 41.7 in), respectively. All newly built platforms are 550 or 760 mm (21.7 or 29.9 in) high.

Spain

While older Spanish platforms are lower than the rest of Europe, many platforms are now 680 mm (27 in) above rail. Following track gauge conversion from Iberian gauge to standard gauge, platforms to be raised to 1,250 mm (49.2 in) for new regional trainsets.

Sweden

Sweden has generally 380 to 580 mm (15.0 to 22.8 in) platforms for mainline trains. Stockholm Commuter Rail has almost always its own platforms at 730 mm (28.7 in) height which allows stepless trains of type X60. The Arlanda Express service has 1,150 mm (45.3 in) platform height with floor at platform level. They have their own platforms and trains, which are incompatible with mainline platforms and trains, even if the Arlanda Express goes on a mainline. The stations Sundbyberg and Knivsta have one platform each used by both commuter trains and regional mainline trains, which can cause uncomfortable steps, but is accepted. Sundbyberg has 730 mm and Knivsta has around 500 mm. Stockholm Central station has after the commuter trains moved to the "City" station, two high 730 mm platforms, now used for mainline trains. The Stockholm Metro and Saltsjöbanan have 1,125 mm (44.3 in),[24] while tramways in general have a very low platform, often also used by buses which must allow boarding from places without platform.

United Kingdom

The standard height for platforms is 915 mm (36.02 in) with a margin of ± 25 mm (0.98 in).[15][25] On the Heathrow Express the platform height is specified at 1,100 mm (43.3 in) .[26]

High Speed 2 is being built with a platform height of 1,115 mm (43.9 in), which does not conform to the European Union technical standards for interoperability for high-speed rail (EU Directive 96/48/EC).[27] This is to provide true step free access to trains at the new HS2 stations, which is not possible using European Standards or UK standard heights. HS2 trains will operate outside of the HS2 line using existing infrastructure, which will not be step free.[28] High Speed 1 has a platform height of 760 mm (29.9 in) on its international platforms.[29] The Great Western Main Line, North London Line, Gospel Oak to Barking Line and Great Eastern Main Line platforms will be mixture of 760 mm (29.9 in) (for intercity trains) and 1,100 mm (43.3 in) (for London commuter trains).[citation needed]

France

The standard height for all platforms is 550 mm (21.7 in), following the european guidelines. However, this rule is not respected for parts of the RER and Transilien network.

North America

Canada

Intercity and commuter rail

Via Rail intercity trains have level boarding with platforms 48 inches (1,219 mm) above the top of rail at stub platforms at Montreal Central Station, Quebec City Gare du Palais and a single platform at Ottawa station.[citation needed] The remainder of stations in the Via Rail network have low platforms 5 inches (127 mm) to 8 inches (203 mm) above the rail.[citation needed]

GO Transit regional trains have a floor height of 610 millimetres (24 in) above the top of rail, and GO Transit plans to raise platforms to provide level boarding at that height.[30] Currently, platforms are 127 millimetres (5 in) above the top of rail, with a raised "mini-platform" (550 millimetres (22 in) above rails) which provides level boarding from one door of the train.[30]

Exo commuter trains have level boarding with platforms 48 inches (1,219 mm), 50 inches (1,270 mm), or 51 inches (1,295 mm) above the top of rail at Montreal Central (stub platforms and REM platforms), Côte-de-Liesse, Repentigny, Terrebonne, and Mascouche stations.[31] The remainder of stations in the Exo network have low platforms 5 inches (127 mm) or 8 inches (203 mm) above the top of rail.[31]

All UP Express stations have level boarding with platforms 48 inches (1,219 mm) above the top of rail.[citation needed]

West Coast Express has accessible boarding platforms at all stations. However, unlike the SkyTrain, there is a small height difference and door-level for wheelchair access are provided at all stations.[32][33]

Metro and light rail

All rapid transit and light rail systems, except for the Toronto streetcar system, provide level boarding between trains and platforms. The platform heights vary per line, as per the table below.

City Network/Line Platform Height
Calgary C-Train LRT 890 millimetres (35 in)
Edmonton High-Floor LRT 890 millimetres (35 in)[34]
Low-Floor LRT 329 millimetres (13 in)
Kitchener-Waterloo Ion LRT 329 millimetres (13 in)[35]
Montreal Metro 1,194 millimetres (47 in) above top of rail[citation needed]
REM Unknown
Ottawa Electric LRT (Lines 1,3) unknown
Diesel LRT (Lines 2,4) 553 millimetres (22 in)[36]
Toronto Subway (Lines 1,2,4) 1,105 millimetres (44 in)[37]
RT (Line 3) Unknown
LRT (Lines 5,6) 329 millimetres (13 in)
Vancouver Skytrain Unknown

On the Toronto streetcar system, most stops are in mixed traffic accessed from the road surface, without raised platforms. Where raised platforms do exist, they are at sidewalk curb height and not at the height of the vehicle floor. As a result, people using wheeled mobility aids need to use the wheelchair ramp even at stops where a raised platform exists.

United States

 
Gauntlet track on Conrail Shared Assets Operation Lehigh Line at New Jersey Transit's Raritan Valley Line Union station. Freight trains run on the outer track so as to clear the platform

New and substantially renovated stations in the United States must comply with the Americans with Disabilities Act, which requires level boarding. Most intercity and commuter rail systems use either 48-inch (1,219 mm) high platforms that allow level boarding, or 8-inch (203 mm) low platforms. Metro and light rail systems feature a variety of different platform heights.

Intercity and commuter rail with high platforms

Most commuter rail systems in the northeastern United States have standardized on 48-inch (1,219 mm) high platforms, and is in general the floor height of single-deck trains. This height was introduced in the 1960s on the Long Island Rail Road with the M1 railcars.[38]: 212  MBTA Commuter Rail, CTrail's Hartford Line and Shore Line East, Long Island Rail Road, Metro-North Railroad, NJ Transit, and SEPTA Regional Rail all use this height for new and renovated stations, though low platforms remain at some older stations.

Outside the Northeast, Metra Electric District, South Shore Line, RTD, WES Commuter Rail, and SMART also use 48-inch platforms.[39] MARC has high-level platforms at most Penn Line stations; although low platforms are used on the Camden Line and Brunswick Line due to freight clearances (and in the latter case, the need to operate with the low-floor-only Superliner), Baltimore-Camden and Monocacy (stations outside of freight routes) as well as Greenbelt (a station with passing tracks) still feature high platforms.

Amtrak intercity services feature high-level platforms on the Northeast Corridor, Keystone Corridor, Empire Corridor, and New Haven–Springfield Line, although some stations on these lines have not been retrofitted with high platforms. High-level platforms are also present at a small number of stations on other lines, including Worcester, Roanoke, Raleigh, and several Downeaster stations. Brightline service in Florida also uses high level platforms.

At some stations, a desired high-level platform is impractical due to wide freight trains or other practicalities. (Gauntlet tracks, which permit wide freights to pass full-length high-level platforms, have practical issues of their own[which?].) At these locations, mini-high platforms are often used for accessibility. Mini-high platforms have a short length of high platform, long enough for one or two doors, with an accessible ramp to the longer low platform. The platform edge is usually hinged so that it can be flipped out of the way of passing freights.

Intercity and commuter rail with low platforms

Most other commuter rail systems in the U.S. and Amtrak stations have 8-inch (203 mm) low-level platforms to accommodate freight trains, with mini-high platforms or portable lifts to reach the 22-inch (559 mm)-high floors of low-level bilevel railcars. Single-deck cars, which generally serve the prevalent high platforms in the Northeast, feature trapdoors that expose stairs so that passengers can access the low platforms.

Double-deck commuter railcars are designed to be compatible with single-deck cars by having a third, intermediate deck above the bogies at both ends, with a matching floor height of 48 inches (1,219 mm). (Mixed consists of double decks and single decks can sometimes be seen in the FrontRunner system in Utah.) The Bombardier BiLevel Coach is used on many commuter rail networks in North America, with Coaster having 22-inch (559 mm) platforms to match their floor height.[39] Once electrified, the new Caltrain trains will be equipped for both 22-and-50.5-inch (559 and 1,283 mm) platform heights in anticipation of sharing facilities with California High-Speed Rail trains.[40] A small number of systems do use low-floor single deck trains, including TEXRail and others that use Stadler FLIRT and GTW rolling stock.

All of Amtrak's bilevel cars, which are all Superliners, are entirely low-floor and have step-free passthroughs on the upper deck, with the exception of "transition" sleeper cars where one end features stairs to maintain compatibility with single-deck cars (including Amtrak's own baggage cars).

Metro and light rail

Platform heights of metro systems vary by system and even by line. For example, on the MBTA subway system, Blue Line platforms are 41.5 inches (1,054 mm) above top of rail (ATR), while Orange Line platforms are at 45 inches (1,143 mm), and Red Line platforms are at 49 inches (1,245 mm).[41] Bay Area Rapid Transit stations have platform heights of 39 inches (991 mm).[42]

Most light rail systems have platforms around 12–14 inches (300–360 mm) ATR, allowing level boarding on low-floor light rail vehicles. Most new systems are built to this standard, and some older systems like VTA light rail have been converted. Several systems including MetroLink use higher platforms with level boarding. Several older light rail systems have high-floor vehicles but low platforms, with mini-high platforms or lifts for accessibility. Some, like the MBTA Green Line, are being converted to low-floor rolling stock, while others, like Baltimore Light Rail have permanent mini-high platforms. Muni Metro has 34-inch (864 mm) high platforms in the subway section as well as some surface stops, and mini-high platforms at other surface stops; the vehicles have movable stairs inside to serve both high and low platforms.[43]

Oceania

Australia

The majority of railway systems in Australia use high level platforms with a platform height a small distance below the train floor level. Exception to this include Queensland who have narrow gauge trains and lower platforms, and South Australia who have trains fitted with low level steps to enable the use of low level platforms.[citation needed]

In New South Wales, by 2000, the platform step (the difference between the platform height and the train floor height) had been allowed to grow to a maximum of about 300 mm (11.8 in), which was uncomfortably large. For Sydney's 2000 Olympics, new and altered platforms were designed to match the Tangara trains, which are 3,000 mm (9 ft 10+18 in) wide, leaving a platform gap of about 80 mm (3+18 in) and a step height close to zero. This has become the standard for all subsequent platforms and trains in NSW.

In Victoria, the standard platform height for metropolitan and regional stations is 1080mm above the top of rail.[44]

The standard gauge lines in South Australia, Western Australia and Northern Territory, most platforms are 200 mm (7.9 in) above rails.

Metro and light rail

The tramway network in Melbourne have some low level platforms and low floor vehicles, but most trams have steps and are boarded from the road. The Adelaide Tram line has low platforms at almost all stops and operates almost entirely with low-floor trams which also have retractable ramps for street boarding where required by persons unable to step up.[citation needed] The Gold Coast and Sydney light rail networks have low floor trams and platforms at all stops.

South America

Argentina

Platforms for long-distance trains are 200 mm (7.9 in) above rail, and platforms for Buenos Aires commuter trains are 1,100 mm (43.3 in).

See also

Notes

  1. ^ The proposed 1,524 mm (5 ft) Russian gauge railways for northern China which will seamless link with Russia, Mongolia and Kazakhstan.
  2. ^ The proposed 1,676 mm (5 ft 6 in) Indian gauge railways which will seamless link from the Indian subcontinent to the Russian Far East and the Russian Arctic, through Central Asia.
  3. ^ In reference to EU documentation on interoperability of trans-national high-speed rail (see EU Directive 96/48/EC) platform height is measured from the top of the running surface of the rail[16]

References

  1. ^ Redevelopment of Kowloon Station, 1995, HKU Scholars Hub
  2. ^ Under the Wires to Lo Wu, The Railway Magazine, November 1983
  3. ^ Yu, Jonathan (1995). "LRT in Hong Kong's New Suburbs" (PDF). Transportation Research Record. 1361 (8): 58.
  4. ^ "Peraturan Menteri Perhubungan Nomor PM. 29 Tahun 2011 tentang Persyaratan Teknis Bangunan Stasiun Kereta Api" [Regulation of the Minister of Transportation Number PM. 29 of 2011 concerning Technical Requirements for Railway Station Buildings] (PDF) (in Indonesian). Ministry of Transportation. Retrieved 11 January 2021.
  5. ^ Syamsudin, M. (5 August 2011). "Aspek Yuridis Pembangunan Peron Tinggi di Stasiun Kereta Api sebagai Sarana Perlindungan Hukum Konsumen" [Juridical Aspects of Construction of High Platforms at Railway Stations as a Means of Protection of Consumer Laws]. Prosiding SNaPP: Sosial, Ekonomi dan Humaniora (in Indonesian). 2 (1): 345–352. ISSN 2303-2472. Retrieved 11 January 2021.
  6. ^ "TENDER No. 51403 for the Supply and Maintenance of Electric Multiple Units: Technical Specifications" (PDF). www.rail.co.il. Retrieved 19 November 2020.
  7. ^ "Info". www.law.go.kr. Retrieved 8 September 2019.
  8. ^ Department of Transportation and Communications; Light Rail Transit Authority (4 June 2012). MANILA LRT1 EXTENSION, OPERATIONS AND MAINTENANCE PROJECT (PDF) (Report). Retrieved 9 April 2018.
  9. ^ "菲律宾马尼拉3号线车辆". CRRC Dalian (in Chinese).
  10. ^ (PDF). Voith.com. Voith. Archived from the original (PDF) on 14 July 2021. Retrieved 28 May 2020.
  11. ^ B) TECHNICAL REQUIREMENTS from BIDDING DOCUMENTS FOR THE PROCUREMENT OF PACKAGE CP03: ROLLING STOCK (Report). Vol. 2. July 2018.
  12. ^ Basic Design Report. Project Management Consultancy of the Philippine National Railways South Long Haul Project (North South Railway Project) (Package 1, Banlic to Daraga with San Pablo Depot) (Report). Vol. 1. China Railway Design Corporation. 30 June 2021. Retrieved 2 July 2021.{{cite report}}: CS1 maint: url-status (link)
  13. ^ "台鐵車廂無階化 2020年全達標". China Times. Retrieved 14 September 2020.
  14. ^ "ГОСТ 9238-2013". 1 July 2014.
  15. ^ a b c 2002/735/EC, sections 7.3.4 and 4.2.5
  16. ^ "Commission Recommendation of 21 March 2001 on the basic parameters of the trans-European high-speed rail system referred to in Article 5(3)(b) of Directive 96/48/EC". eur-lex.europa.eu. European Union. 21 March 2001. section 6.1. Retrieved 7 March 2013. Platform height is measured between the track running surface and the platform surface along the perpendicular
  17. ^ "Technical Standards and Specifications Manual of Rail Baltica" (PDF).
  18. ^ "De Belgische Kamer van volksvertegenwoordigers". www.dekamer.be.
  19. ^ a b Finnish Transport Infrastructure Agency (2019). Railway Network Statement 2021 (PDF). Helsinki: Finnish Transport Infrastructure Agency. pp. Appendix 3B 13–24. ISBN 978-952-317-744-4.
  20. ^ a b c "Eisenbahn-Bau- und Betriebsordnung (EBO)" (PDF) (in German). Bundesministeriums der Justiz / juris GmbH. Section 13: Bahnsteige, Rampen. Retrieved 7 March 2013. 13.1 : Bei Neubauten oder umfassenden Umbauten von Personenbahnsteigen sollen in der Regel die Bahnsteigkanten auf eine Höhe von 0,76 m über Schienenoberkante gelegt werden; Höhen von unter 0,38 m und über 0,96 m sind unzulässig. Bahnsteige, an denen ausschließlich Stadtschnellbahnen halten, sollen auf eine Höhe von 0,96 m über Schienenoberkante gelegt werden. In Gleisbogen ist auf die Überhöhung Rücksicht zu nehmen
  21. ^ BOStrab § 31 (1) "Haltestellen sollen Bahnsteige besitzen (...)."; § 31 (8) "Die Bahnsteigoberfläche soll nicht höher liegen als der Fahrzeugfußboden in seiner tiefsten Lage (...)."
  22. ^ (PDF). www.prorail.nl. Prorail. 22 January 2009 [12 December 2008]. Archived from the original (PDF) on 21 October 2012. Retrieved 7 March 2013.
  23. ^ . www.prorail.nl (Press release). Prorail. 13 October 2009. Archived from the original on 28 November 2010.
  24. ^ "Lokaliseringsutredning Sofia-Gullmarsplan/söderort" (PDF).
  25. ^ Ellis' British Railway Engineering Encyclopaedia. Iain Ellis. 2006. ISBN 9781847286437. Retrieved 7 March 2013.
  26. ^ Institution of Mechanical Engineers (Great Britain). Railway Division, Institution of Civil Engineers (Great Britain) (2001). Railway infrastructure, Issue 3. John Wiley and Sons. 3.1.2 Specification of the System, p.19. ISBN 9781860583506.
  27. ^ Department for Transport (11 March 2010). High Speed Rail – Command Paper (PDF). The Stationery Office. section 8.4, p.127. ISBN 978-0-10-178272-2.
  28. ^ https://www.railengineer.co.uk/2019/03/01/buying-hs2s-high-speed-trains/[dead link]
  29. ^ (PDF). www.highspeed1.com. 17 August 2009. section 3.3.1.2 "Track Gauge & Structure Gauge", page 14. Archived from the original (PDF) on 14 April 2014. Retrieved 7 March 2013.
  30. ^ a b "Level Boarding: Passive Protection" (PDF). GO Transit. Retrieved 10 May 2021.
  31. ^ a b "Plan de développement accessibilité - AMT". Agence Métropolitaine du Transport. 5 June 2015. Retrieved 11 May 2021.
  32. ^ Vancouver, City of. "Accessible public transit". vancouver.ca. Retrieved 24 November 2022.
  33. ^ "West Coast Express". www.translink.ca. Retrieved 24 November 2022.
  34. ^ "LRT Design Guidelines" (PDF). City of Edmonton. Retrieved 10 May 2021.
  35. ^ "Design and construction performance output specifications" (PDF). Region of Waterloo. Retrieved 10 May 2021.
  36. ^ "Ottawa LRT Schedule 15-2" (PDF). Retrieved 10 May 2021.
  37. ^ "T1 Series Cars". TransitToronto. Retrieved 11 May 2021.
  38. ^ Cudahy, Brian J. (2003). A Century of Subways: Celebrating 100 Years of New York's Underground Railways. New York: Fordham University Press. ISBN 0-8232-2292-6.
  39. ^ a b SMA Rail Consulting (April 2016). "California Passenger Rail Network Schematics" (PDF). California Department of Transportation.
  40. ^ "KISS Double-Decker Electric Multiple Unit EMU for Peninsula Corridor Joint Powers Board (CALTRAIN), California, USA" (PDF). Retrieved 16 October 2016.
  41. ^ Robin Washington (25 February 2015). "On the T, One Sized Doesn't Fit All". Boston Globe. Retrieved 21 January 2019.
  42. ^ "BART-San Francisco Airport Extension Final Environmental Impact Report/Final Environmental Impact Statement". Federal Transit Administration. June 1996. pp. 3–501 – via Internet Archive.
  43. ^ "S200 SF Light Rail Vehicle" (PDF). Siemens. Retrieved 18 May 2016.
  44. ^ "002.1 - Railway Station Design Standard and Guidelines", Victorian Rail Industry Operators Group Standards, State Government of Victoria, 29 March 2011, 18.3.1, retrieved 24 August 2022

Sources

  • "2002/735/EC: Commission Decision of 30 May 2002 concerning the technical specification for interoperability relating to the rolling stock subsystem of the trans-European high-speed rail system referred to in Article 6(1) of Directive 96/48/EC". eur-lex.europa.eu. European Union. 12 September 2002. sections 7.3.4. and 4.2.5. Retrieved 7 March 2013.

External links

railway, platform, height, built, height, above, rail, passenger, platforms, stations, connected, term, train, floor, height, which, refers, height, floor, rail, vehicles, worldwide, there, many, frequently, incompatible, standards, platform, heights, train, f. Railway platform height is the built height above top of rail ATR of passenger platforms at stations A connected term is train floor height which refers to the ATR height of the floor of rail vehicles Worldwide there are many frequently incompatible standards for platform heights and train floor heights Where raised platforms are in use train widths must also be compatible in order to avoid both large gaps between platform and trains and mechanical interference liable to cause equipment damage Typical commuter rail station in Boston Massachusetts with two platform heights low level for most cars and a full height platform to accommodate passengers in wheelchairs Differences in platform height and platform gap can pose a risk for passenger safety Differences between platform height and train floor height may also make boarding much more difficult or impossible for wheelchair using passengers and people with other mobility impairments increasing station dwell time as platform or staff are required to deploy ramps to assist boarding Platform ramps steps and platform gap fillers together with hazard warnings such as mind the gap are used to reduce risk and facilitate access Platform height affects the loading gauge the maximum size of train cars and must conform to the structure gauge physical clearance specifications for the system Tracks which are shared between freight and passenger service must have platforms which do not obstruct either type of railroad car To reduce construction costs the platforms at stations on many railway systems are of low height making it necessary for passenger cars to be equipped with external steps or internal stairs allowing passengers access to and from car floor levels When railways were first introduced in the 19th century low platforms were widely used from the 1880s especially in rural areas except in the United Kingdom Over the years raised platforms have become far more widespread and are almost universal for high speed express routes and universal in cities on commuter and rapid transit lines Raised platforms on narrow gauge railways can prevent track gauge conversion to standard gauge or broad gauge Contents 1 Height categories 2 Africa 2 1 Algeria 2 2 Kenya 3 Asia 3 1 China 3 2 Hong Kong 3 2 1 MTR network 3 2 2 Former KCR network 3 2 3 Hong Kong Tramway 3 2 4 High speed rail line 3 3 India 3 4 Indonesia 3 5 Iran 3 6 Israel 3 7 Japan 3 8 North Korea 3 9 South Korea 3 10 Malaysia 3 11 Philippines 3 12 Taiwan 3 13 Thailand 4 Eurasia 4 1 Russia 4 2 Turkey 4 3 Kazakhstan 5 Europe 5 1 Multi country 5 1 1 European Union 5 1 2 Broad gauge railways 5 1 3 Channel Tunnel 5 1 4 Rail Baltica 5 2 Belgium 5 3 Finland 5 4 Germany 5 5 Ireland 5 6 Luxembourg 5 7 Netherlands 5 8 Poland 5 9 Spain 5 10 Sweden 5 11 United Kingdom 5 12 France 6 North America 6 1 Canada 6 1 1 Intercity and commuter rail 6 1 2 Metro and light rail 6 2 United States 6 2 1 Intercity and commuter rail with high platforms 6 2 2 Intercity and commuter rail with low platforms 6 2 3 Metro and light rail 7 Oceania 7 1 Australia 7 1 1 Metro and light rail 8 South America 8 1 Argentina 9 See also 10 Notes 11 References 11 1 Sources 12 External linksHeight categories Edit Low floor tram platform in Cologne Buses trams trolleys and railway passenger cars are divided into several typical categories Ultra Low Floor tram 180 mm 7 in Low floor tram 300 to 350 mm 12 to 14 in High floor tram more than 600 mm 24 in Low floor train 550 mm 22 in Train in UK or narrow gauge 800 to 1 200 mm 31 5 to 47 2 in Standard North American passenger cars 1 300 mm 51 in Train standard gauge except UK or broad gauge 1 300 to 1 370 mm 51 to 54 in These are floor heights The platforms can be much lower overcome by onboard staircases Africa EditAlgeria Edit Typical Algerian platforms are 550 mm 21 7 in above rail Kenya Edit The 1 435 mm 4 ft 8 1 2 in SGR platforms are two standard heights of 300 mm 11 8 in and 1 250 mm 49 2 in above rail heads The 1 000 mm 3 ft 3 3 8 in meter gauge platforms are 1100mm Asia EditThis article needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed Find sources Railway platform height news newspapers books scholar JSTOR March 2021 Learn how and when to remove this template message China Edit A Platform at Haining railway station consists of both low and high platform China Railway platforms are classified into the following categories of low 380 mm 15 0 in medium 550 mm 21 7 in high 760 mm 29 9 in and ultra high 1 250 mm 49 2 in latter 2 for most new and rebuilt platforms Areas adjacent to broad gauge countries regions such as Xinjiang and Inner Mongolia are still equipped with low platforms Under the concession period since late 2016 platforms on the southeastern corridor from Shenzhen to Ruili to be 1 250 mm 49 2 in ATR whereas the northern central and western Chinese platforms to be 380 mm 15 0 in ATR are recommended Most CRH platforms are 1 250 millimetres 49 2 in above top of rail with the remainders being 760 millimetres 29 9 in The proposed 1 524 mm 5 ft Russian gauge Rail North China note 1 platforms will be 200 mm 7 9 in above rails Hong Kong Edit Hong Kong s railway network consists of the local MTR network including the former KCR Hong Kong Tramways and the Hong Kong section of the XRL high speed line MTR network Edit Platforms on the MTR are 1 250 mm 49 213 in above the rail for the Tung Chung line and Airport Express collectively known as the Airport Railway lines 1 The height of platforms on the Disneyland Resort line and the urban lines are 1 100 mm 43 307 in The urban lines include the Tsuen Wan line Kwun Tong line Tseung Kwan O line Island line and South Island line Former KCR network Edit All platforms on the East Rail line and Tuen Ma line are 1 066 8 mm 42 in above rail heads 2 The light rail system uses a platform height of 910 mm 36 in above rail level 3 Hong Kong Tramway Edit To be updated High speed rail line Edit Trains at Hong Kong West Kowloon railway station travel along the XRL on China s high speed rail system and so must be compliant with the platform height standard of 1 250 mm 49 213 in above the rail India Edit There are two standard heights of the platforms 200 mm 7 9 in and 760 mm 29 9 in above rail heads Indonesia Edit There are three standard heights of the platforms 180 mm 7 1 in low 430 mm 16 9 in medium and 1 000 mm 39 4 in high above rail heads 4 Most railway stations in Indonesia use low platforms 5 Iran Edit Iranian platforms are 380 mm 15 0 in 550 mm 21 7 in and 760 mm 29 9 in Like in China areas adjacent to broad gauge countries regions such as the eastern regions such as around Mashhad and Zahedan still equipped low platforms Israel Edit Israel Railways platforms fall in the range between 760 mm 29 9 in to 1 060 mm 41 7 in above top of rail 6 Japan Edit The Japanese National Railways JNR for many years used a triple standard for its conventional Cape gauge lines 760 mm 29 9 in for long distance trains originally step fitted passenger cars pulled by steam engines 1 100 mm 43 3 in for commuter trains step less electric multiple units at a time when long distance trains were not and 920 mm 36 2 in shared platforms that could serve both with relatively little discomfort roughly level with the step on passenger carriages but not too low to board commuter trains However increasing electrification and the phasing out of locomotive traction in favor of multiple units has made the distinction a matter of historical rather than practical relevance Recently at Japan Railways Group stations in urban centers such as Tokyo and Osaka whose lines were the earliest to be electrified 1 100 mm 43 3 in is the norm and lower level platforms are generally raised to this height during station improvements or refurbishment Elsewhere such as Hokkaido and the Tohoku Hokuriku region of Honshu 920 mm 36 2 in and even 760 mm 29 9 in platforms are still commonplace As this represents a potential obstacle when boarding modern commuter trains workarounds such as a step built into the floor of area specific trainsets are often employed Nevertheless with accessibility becoming a greater concern as Japan s population ages raising the level of the platform itself in tandem with other improvements such as elevators and escalators is seen as the most practical solution In at least one case with the E721 series EMU used on JR East lines in the Tohoku region the floor of the train itself is lowered to be nearly level to existing 920 mm 36 2 in platforms This makes level boarding feasible at many stations and boarding less of a hassle at stations with the lowest 760 mm 29 9 in platforms However this along with a different standard of electrification also makes through service southward to Tokyo impossible and prevents them from running on certain through lines such as the Senseki Tohoku Line since the Senseki Line portion uses the higher 1 100 mm 43 3 in platforms and DC electrification In contrast to the above standards the standard gauge Shinkansen Bullet Train has since its original inception used only 1 250 mm 49 2 in platforms However exceptions from this include the Mini Shinkansen Yamagata Shinkansen and Akita Shinkansen lines which use 1 100 mm 43 3 in platforms to maintain compatibility with conventional JR trainsets Most standard gauge non JR commuter railways such as Kintetsu Nara Line and Keisei Line use 1 250 mm 49 2 in platforms North Korea Edit North Korean platforms are standardized at 1 250 mm 49 2 in only In there 1 250 mm 49 2 in is the norm lower level platforms are already raised to this height South Korea Edit Korail adopted 550 mm 21 7 in high platforms to operate KTX Typically older platforms are lower than 500 mm For metro trains higher platforms which height after 1 135 mm 44 7 in 7 are used Nuriro trains are using mechanical steps to allow both type of platforms Korail has a long term plan to change platform standards to higher platforms both KTX Eum and EMU 320 are designed to use higher platforms Malaysia Edit will update later Philippines Edit Older 200 mm platforms background and newer 1 100 mm platforms at Santa Mesa station There are various platform heights for railway lines in the Philippines For heavy rail and commuter rail systems such as the LRT Line 2 and the PNR Metro Commuter Line most stations are generally set at 1 100 mm 43 3 in For the LRT Line 1 and MRT Line 3 which use light rail vehicles the platform heights are at 620 mm 24 4 in 8 and 920 mm 36 2 in respectively 9 10 Future train lines such as the Metro Manila Subway and the North South Commuter Railway will use the same heavy rail standard at 1 100 mm 43 3 in 11 while the PNR South Long Haul s platform height will be the Chinese standard of 1 250 mm 49 2 in 12 All cargo loading platforms are 1 250 mm 49 2 in Previously the Philippine National Railways had lower platforms prior to the 2009 reconstruction of its network Some stations such as Santa Mesa have its 200 mm 7 9 in curb height platforms still intact as of 2020 while others such as Naga and EDSA have 760 mm 29 9 in platforms built during the early 2000s Taiwan Edit Taiwan high speed rail platforms are 1 250 mm 49 2 in above rail Example of a platform whose height was raised Initially Taiwan Railways Administration platforms were 760 mm 29 9 in tall and passengers must take two stair steps to enter the train In 2001 the platforms were raised to 960 mm 37 8 in cutting the steps needed to one Between 2016 and 2020 platforms were again raised to 1 150 mm 45 3 in and the unnecessary gap on trains were filled in 13 Thailand Edit Old railway platforms are usually less than 500 mm 20 in in height New platforms along double tracking projects red line projects and metro stations are built at 1 100 mm 43 3 in height Bang Bamru railway station is built with both high and low platforms Eurasia EditRussia Edit There are two standard heights of platforms in Russia they are 200 and 1 100 mm 7 9 and 43 3 in above rail heads 1 100 mm 43 3 in high platforms are gradually changing to 550 mm 21 7 in platform height 14 200 mm 7 9 in platforms are used primarily on lines with either small passenger flow or using double decker trains citation needed In late 2015 there are three standard heights of platforms which include 200 mm 7 9 in for long distance trains originally locomotive hauled step fitted passenger carriages 1 100 mm 43 3 in for direct current only commuter trains step less direct current commuter electric multiple units at a time when long distance trains were not and 550 mm 21 7 in for shared platforms that could serve both with relatively little discomfort roughly level with the steps on passenger carriages but not too low to board commuter trains In some urban areas such as Moscow and St Petersburg served only by local traffic use 1 100 mm 43 3 in platforms for direct current electric multiple units Elsewhere 550 mm 21 7 in and even 200 mm 7 9 in platforms are almost commonplace In some cases such as VR Sm4 of Finland the floor of the train itself lowered to be nearly level to 550 mm 21 7 in platforms This makes level boarding feasible at some stations and boarding less of a hassle at stations with the lowest 200 mm 7 9 in platforms The proposed 1 676 mm 5 ft 6 in Indian gauge Indo Siberian railways note 2 platforms will be 200 mm 7 9 in above top of rail Turkey Edit In Turkey the standard platform height for commuter railways is 1 050 mm 41 3 in and for mainline amp high speed railways it s 550 mm 21 7 in But most of the platforms throughout the network are old and thus out of standard Kazakhstan Edit In Kazakhstan only Astana Nurly Jol station and Russian Railway s Petropavlovsk station have 550 mm 21 7 in platforms Almost everywhere else the platforms are 200 mm 7 9 in above top of rail Europe EditThis article needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed Find sources Railway platform height news newspapers books scholar JSTOR March 2021 Learn how and when to remove this template message Multi country Edit European Union Edit Application of the EU standard heights for new construction Green 550 mm Blue 760 mm Turquoise both dark gray New builds in other heights than the EU standards The European Union Commission issued a TSI Technical Specifications for Interoperability on 30 May 2002 2002 735 EC that sets out standard platform heights for passenger steps on high speed rail These standard heights are 550 and 760 mm 21 7 and 29 9 in 15 note 3 There are special cases 840 mm 33 1 in for the Netherlands 915 mm 36 0 in for Great Britain and 915 mm 36 0 in for Ireland Broad gauge railways Edit The proposed 1 520 mm 4 ft 11 27 32 in Russian gauge railways e g Arctic Railway and Kosice Vienna broad gauge line and the proposed 7 ft 1 4 in 2 140 mm Brunel gauge railways will be 200 mm 7 9 in for Sweden and Norway 200 mm 7 9 in and 550 mm 21 7 in for Poland and Slovakia and 380 mm 15 0 in for Germany and Austria Channel Tunnel Edit Platforms for Eurotunnel Shuttle are 1 100 mm 43 3 in above rails Rail Baltica Edit The 1 435 mm 4 ft 8 1 2 in European standard gauge Rail Baltica II platforms will be 1 250 mm 49 2 in above rails Previously this line would be 550 mm 21 7 in 17 above rails but cut off the Lithuanian sections and eliminate the freight transport provision make change to high floor level boarding trains on the European standard gauge tracks much like the US s Brightline West and the UK s High Speed 2 Belgium Edit Belgium has been using mixed type of platform heights due to the age of the network and the different companies running it before 1923 As of 2017 the most common platform heights for small stop places and stations are low platform heights of 280 mm 11 0 in 18 There is nevertheless a plan to comply with the European TSI by raising all low platform heights to one of the European Standard Heights Most stations will by then be equipped with 550 mm platforms and direct current EMUs dedicated platforms will be upgraded in their final version to 760 mm Some stations or stopping points already having 760 mm platform heights will keep the platforms at these heights Finland Edit In Finland the current standard platform height is 550 mm 21 7 in in Helsinki Turku urban areas Platforms that in the reminder of the network are built to the older standard of ranging 127 mm 5 0 in to 265 mm 10 4 in above top of rail 19 The sole exception on the national railway network is the Nikkila halt which has a platform height of 400 mm 15 8 in 19 The majority of the passenger rolling stocks in Finland and the other Russian gauge compatible network have bottom steps lower than 550 mm 21 7 in thus the platforms with 550 mm 21 7 in height can create negative vertical gaps unlike the rest of Europe There are current proposed figures Minimum height clearance of the overhead bridges must be 8 1 m 26 ft 7 in above platform level to provide tracks raising lowering to changing platform heights between 127 mm 5 0 in and 550 mm 21 7 in without major structural change and also provide container double stacking under 25kV AC overhead lines Platform heights of ranging 127 mm 5 0 in to 265 mm 10 4 in for long distance trains Platform height of 550 mm 21 7 in for commuter trains Platform height of 350 mm 13 8 in for shared platforms Germany Edit Triple gauntlet track at Kaufungen Germany Wider mainline trains go down the centre narrower trams switch either to the left or right to be closer to the relevant platform Beyond the station the rails return to single track Germany s EBO standard specifies an allowable range between 380 mm 15 0 in and 960 mm 37 8 in 20 This does not include light rail systems that follow the BOStrab standard with newer metro lines to use low floor trams which have a usual floor height of 300 to 350 mm 11 8 to 13 8 in so that platforms are constructed as low as 300 mm in accordance with BOStrab that requires the platform height not to be higher than the floor height 21 The traditional platforms had a very diverse height as the nationwide railway network is a union of earlier railway operators Prior to followed by the European TSI standard the EBO standard requires that new platform construction be at a regular height of 760 mm 29 9 in 20 clarification needed The TSI standard of 550 mm 21 7 in height historically common in the East is widely used on regional lines Only the S Bahn suburban rail systems had a higher platform height and these are standardized on 960 mm 37 8 in 20 Ireland Edit While older platforms on the Dublin and Kingstown Railway were at lower levels all platforms are now 915mm above rail and all new platforms are being built at that level Amongst other work there is an ongoing program of platform renewal Both Irish railway companies Irish Rail in the Republic of Ireland and Northern Ireland Railways in Northern Ireland have had some derogations from EU standards as their mainline rail systems while connected to each other are not connected to any other system The electric DART fleet has carriage floors at 1 067 mm 42 0 in above top of rail creating a step of 152 mm 6 0 in while the diesel fleet is typically one step 150 to 200 mm or 5 9 to 7 9 in higher than the platform On Dublin s Luas tram system platforms are approximately 280 mm 11 in above rail Tram floors are at the same height but have internal steps over the bogies Luxembourg Edit The 760 mm 29 9 in platforms for the Namur Luxembourg line with 3kV DC electrification The remainder of the network the platforms are 380 mm 15 0 in above rails Netherlands Edit European Commission decision 2002 735 EC which concerns trans European interoperability for high speed rail specifies that rolling stock be built for operational suitability platform height of 840 mm 33 1 in 15 Dutch infrastructure maintainer ProRail has committed to upgrading all stations to 760 mm 29 9 in platform height 22 failed verification 23 Poland Edit Typical Polish platform is 760 mm 29 9 in high In some rural or urban suburban areas e g around Warsaw platforms used by local traffic are lower or higher 550 to 1 060 mm or 21 7 to 41 7 in respectively All newly built platforms are 550 or 760 mm 21 7 or 29 9 in high Spain Edit While older Spanish platforms are lower than the rest of Europe many platforms are now 680 mm 27 in above rail Following track gauge conversion from Iberian gauge to standard gauge platforms to be raised to 1 250 mm 49 2 in for new regional trainsets Sweden Edit Sweden has generally 380 to 580 mm 15 0 to 22 8 in platforms for mainline trains Stockholm Commuter Rail has almost always its own platforms at 730 mm 28 7 in height which allows stepless trains of type X60 The Arlanda Express service has 1 150 mm 45 3 in platform height with floor at platform level They have their own platforms and trains which are incompatible with mainline platforms and trains even if the Arlanda Express goes on a mainline The stations Sundbyberg and Knivsta have one platform each used by both commuter trains and regional mainline trains which can cause uncomfortable steps but is accepted Sundbyberg has 730 mm and Knivsta has around 500 mm Stockholm Central station has after the commuter trains moved to the City station two high 730 mm platforms now used for mainline trains The Stockholm Metro and Saltsjobanan have 1 125 mm 44 3 in 24 while tramways in general have a very low platform often also used by buses which must allow boarding from places without platform United Kingdom Edit The standard height for platforms is 915 mm 36 02 in with a margin of 25 mm 0 98 in 15 25 On the Heathrow Express the platform height is specified at 1 100 mm 43 3 in 26 High Speed 2 is being built with a platform height of 1 115 mm 43 9 in which does not conform to the European Union technical standards for interoperability for high speed rail EU Directive 96 48 EC 27 This is to provide true step free access to trains at the new HS2 stations which is not possible using European Standards or UK standard heights HS2 trains will operate outside of the HS2 line using existing infrastructure which will not be step free 28 High Speed 1 has a platform height of 760 mm 29 9 in on its international platforms 29 The Great Western Main Line North London Line Gospel Oak to Barking Line and Great Eastern Main Line platforms will be mixture of 760 mm 29 9 in for intercity trains and 1 100 mm 43 3 in for London commuter trains citation needed France Edit The standard height for all platforms is 550 mm 21 7 in following the european guidelines However this rule is not respected for parts of the RER and Transilien network North America EditThis section needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed Find sources Railway platform height news newspapers books scholar JSTOR April 2021 Learn how and when to remove this template message Canada Edit Intercity and commuter rail Edit Via Rail intercity trains have level boarding with platforms 48 inches 1 219 mm above the top of rail at stub platforms at Montreal Central Station Quebec City Gare du Palais and a single platform at Ottawa station citation needed The remainder of stations in the Via Rail network have low platforms 5 inches 127 mm to 8 inches 203 mm above the rail citation needed GO Transit regional trains have a floor height of 610 millimetres 24 in above the top of rail and GO Transit plans to raise platforms to provide level boarding at that height 30 Currently platforms are 127 millimetres 5 in above the top of rail with a raised mini platform 550 millimetres 22 in above rails which provides level boarding from one door of the train 30 Exo commuter trains have level boarding with platforms 48 inches 1 219 mm 50 inches 1 270 mm or 51 inches 1 295 mm above the top of rail at Montreal Central stub platforms and REM platforms Cote de Liesse Repentigny Terrebonne and Mascouche stations 31 The remainder of stations in the Exo network have low platforms 5 inches 127 mm or 8 inches 203 mm above the top of rail 31 All UP Express stations have level boarding with platforms 48 inches 1 219 mm above the top of rail citation needed West Coast Express has accessible boarding platforms at all stations However unlike the SkyTrain there is a small height difference and door level for wheelchair access are provided at all stations 32 33 Metro and light rail Edit All rapid transit and light rail systems except for the Toronto streetcar system provide level boarding between trains and platforms The platform heights vary per line as per the table below City Network Line Platform HeightCalgary C Train LRT 890 millimetres 35 in Edmonton High Floor LRT 890 millimetres 35 in 34 Low Floor LRT 329 millimetres 13 in Kitchener Waterloo Ion LRT 329 millimetres 13 in 35 Montreal Metro 1 194 millimetres 47 in above top of rail citation needed REM UnknownOttawa Electric LRT Lines 1 3 unknownDiesel LRT Lines 2 4 553 millimetres 22 in 36 Toronto Subway Lines 1 2 4 1 105 millimetres 44 in 37 RT Line 3 UnknownLRT Lines 5 6 329 millimetres 13 in Vancouver Skytrain UnknownOn the Toronto streetcar system most stops are in mixed traffic accessed from the road surface without raised platforms Where raised platforms do exist they are at sidewalk curb height and not at the height of the vehicle floor As a result people using wheeled mobility aids need to use the wheelchair ramp even at stops where a raised platform exists United States Edit Gauntlet track on Conrail Shared Assets Operation Lehigh Line at New Jersey Transit s Raritan Valley Line Union station Freight trains run on the outer track so as to clear the platform New and substantially renovated stations in the United States must comply with the Americans with Disabilities Act which requires level boarding Most intercity and commuter rail systems use either 48 inch 1 219 mm high platforms that allow level boarding or 8 inch 203 mm low platforms Metro and light rail systems feature a variety of different platform heights Intercity and commuter rail with high platforms Edit Most commuter rail systems in the northeastern United States have standardized on 48 inch 1 219 mm high platforms and is in general the floor height of single deck trains This height was introduced in the 1960s on the Long Island Rail Road with the M1 railcars 38 212 MBTA Commuter Rail CTrail s Hartford Line and Shore Line East Long Island Rail Road Metro North Railroad NJ Transit and SEPTA Regional Rail all use this height for new and renovated stations though low platforms remain at some older stations Outside the Northeast Metra Electric District South Shore Line RTD WES Commuter Rail and SMART also use 48 inch platforms 39 MARC has high level platforms at most Penn Line stations although low platforms are used on the Camden Line and Brunswick Line due to freight clearances and in the latter case the need to operate with the low floor only Superliner Baltimore Camden and Monocacy stations outside of freight routes as well as Greenbelt a station with passing tracks still feature high platforms Amtrak intercity services feature high level platforms on the Northeast Corridor Keystone Corridor Empire Corridor and New Haven Springfield Line although some stations on these lines have not been retrofitted with high platforms High level platforms are also present at a small number of stations on other lines including Worcester Roanoke Raleigh and several Downeaster stations Brightline service in Florida also uses high level platforms At some stations a desired high level platform is impractical due to wide freight trains or other practicalities Gauntlet tracks which permit wide freights to pass full length high level platforms have practical issues of their own which At these locations mini high platforms are often used for accessibility Mini high platforms have a short length of high platform long enough for one or two doors with an accessible ramp to the longer low platform The platform edge is usually hinged so that it can be flipped out of the way of passing freights Intercity and commuter rail with low platforms Edit Most other commuter rail systems in the U S and Amtrak stations have 8 inch 203 mm low level platforms to accommodate freight trains with mini high platforms or portable lifts to reach the 22 inch 559 mm high floors of low level bilevel railcars Single deck cars which generally serve the prevalent high platforms in the Northeast feature trapdoors that expose stairs so that passengers can access the low platforms Double deck commuter railcars are designed to be compatible with single deck cars by having a third intermediate deck above the bogies at both ends with a matching floor height of 48 inches 1 219 mm Mixed consists of double decks and single decks can sometimes be seen in the FrontRunner system in Utah The Bombardier BiLevel Coach is used on many commuter rail networks in North America with Coaster having 22 inch 559 mm platforms to match their floor height 39 Once electrified the new Caltrain trains will be equipped for both 22 and 50 5 inch 559 and 1 283 mm platform heights in anticipation of sharing facilities with California High Speed Rail trains 40 A small number of systems do use low floor single deck trains including TEXRail and others that use Stadler FLIRT and GTW rolling stock All of Amtrak s bilevel cars which are all Superliners are entirely low floor and have step free passthroughs on the upper deck with the exception of transition sleeper cars where one end features stairs to maintain compatibility with single deck cars including Amtrak s own baggage cars Metro and light rail Edit Platform heights of metro systems vary by system and even by line For example on the MBTA subway system Blue Line platforms are 41 5 inches 1 054 mm above top of rail ATR while Orange Line platforms are at 45 inches 1 143 mm and Red Line platforms are at 49 inches 1 245 mm 41 Bay Area Rapid Transit stations have platform heights of 39 inches 991 mm 42 Most light rail systems have platforms around 12 14 inches 300 360 mm ATR allowing level boarding on low floor light rail vehicles Most new systems are built to this standard and some older systems like VTA light rail have been converted Several systems including MetroLink use higher platforms with level boarding Several older light rail systems have high floor vehicles but low platforms with mini high platforms or lifts for accessibility Some like the MBTA Green Line are being converted to low floor rolling stock while others like Baltimore Light Rail have permanent mini high platforms Muni Metro has 34 inch 864 mm high platforms in the subway section as well as some surface stops and mini high platforms at other surface stops the vehicles have movable stairs inside to serve both high and low platforms 43 Oceania EditAustralia Edit The majority of railway systems in Australia use high level platforms with a platform height a small distance below the train floor level Exception to this include Queensland who have narrow gauge trains and lower platforms and South Australia who have trains fitted with low level steps to enable the use of low level platforms citation needed In New South Wales by 2000 the platform step the difference between the platform height and the train floor height had been allowed to grow to a maximum of about 300 mm 11 8 in which was uncomfortably large For Sydney s 2000 Olympics new and altered platforms were designed to match the Tangara trains which are 3 000 mm 9 ft 10 1 8 in wide leaving a platform gap of about 80 mm 3 1 8 in and a step height close to zero This has become the standard for all subsequent platforms and trains in NSW In Victoria the standard platform height for metropolitan and regional stations is 1080mm above the top of rail 44 The standard gauge lines in South Australia Western Australia and Northern Territory most platforms are 200 mm 7 9 in above rails Metro and light rail Edit The tramway network in Melbourne have some low level platforms and low floor vehicles but most trams have steps and are boarded from the road The Adelaide Tram line has low platforms at almost all stops and operates almost entirely with low floor trams which also have retractable ramps for street boarding where required by persons unable to step up citation needed The Gold Coast and Sydney light rail networks have low floor trams and platforms at all stops South America EditArgentina Edit Platforms for long distance trains are 200 mm 7 9 in above rail and platforms for Buenos Aires commuter trains are 1 100 mm 43 3 in See also EditBerne gauge Gauntlet track High floor Loading gauge Platform gap Street running Tram stopNotes Edit The proposed 1 524 mm 5 ft Russian gauge railways for northern China which will seamless link with Russia Mongolia and Kazakhstan The proposed 1 676 mm 5 ft 6 in Indian gauge railways which will seamless link from the Indian subcontinent to the Russian Far East and the Russian Arctic through Central Asia In reference to EU documentation on interoperability of trans national high speed rail see EU Directive 96 48 EC platform height is measured from the top of the running surface of the rail 16 References Edit Redevelopment of Kowloon Station 1995 HKU Scholars Hub Under the Wires to Lo Wu The Railway Magazine November 1983 Yu Jonathan 1995 LRT in Hong Kong s New Suburbs PDF Transportation Research Record 1361 8 58 Peraturan Menteri Perhubungan Nomor PM 29 Tahun 2011 tentang Persyaratan Teknis Bangunan Stasiun Kereta Api Regulation of the Minister of Transportation Number PM 29 of 2011 concerning Technical Requirements for Railway Station Buildings PDF in Indonesian Ministry of Transportation Retrieved 11 January 2021 Syamsudin M 5 August 2011 Aspek Yuridis Pembangunan Peron Tinggi di Stasiun Kereta Api sebagai Sarana Perlindungan Hukum Konsumen Juridical Aspects of Construction of High Platforms at Railway Stations as a Means of Protection of Consumer Laws Prosiding SNaPP Sosial Ekonomi dan Humaniora in Indonesian 2 1 345 352 ISSN 2303 2472 Retrieved 11 January 2021 TENDER No 51403 for the Supply and Maintenance of Electric Multiple Units Technical Specifications PDF www rail co il Retrieved 19 November 2020 Info www law go kr Retrieved 8 September 2019 Department of Transportation and Communications Light Rail Transit Authority 4 June 2012 MANILA LRT1 EXTENSION OPERATIONS AND MAINTENANCE PROJECT PDF Report Retrieved 9 April 2018 菲律宾马尼拉3号线车辆 CRRC Dalian in Chinese Electric traction system High floor LRV Manila MRT3 Metro Rail Transit Corporation PDF Voith com Voith Archived from the original PDF on 14 July 2021 Retrieved 28 May 2020 B TECHNICAL REQUIREMENTS from BIDDING DOCUMENTS FOR THE PROCUREMENT OF PACKAGE CP03 ROLLING STOCK Report Vol 2 July 2018 Basic Design Report Project Management Consultancy of the Philippine National Railways South Long Haul Project North South Railway Project Package 1 Banlic to Daraga with San Pablo Depot Report Vol 1 China Railway Design Corporation 30 June 2021 Retrieved 2 July 2021 a href Template Cite report html title Template Cite report cite report a CS1 maint url status link 台鐵車廂無階化 2020年全達標 China Times Retrieved 14 September 2020 GOST 9238 2013 1 July 2014 a b c 2002 735 EC sections 7 3 4 and 4 2 5 Commission Recommendation of 21 March 2001 on the basic parameters of the trans European high speed rail system referred to in Article 5 3 b of Directive 96 48 EC eur lex europa eu European Union 21 March 2001 section 6 1 Retrieved 7 March 2013 Platform height is measured between the track running surface and the platform surface along the perpendicular Technical Standards and Specifications Manual of Rail Baltica PDF De Belgische Kamer van volksvertegenwoordigers www dekamer be a b Finnish Transport Infrastructure Agency 2019 Railway Network Statement 2021 PDF Helsinki Finnish Transport Infrastructure Agency pp Appendix 3B 13 24 ISBN 978 952 317 744 4 a b c Eisenbahn Bau und Betriebsordnung EBO PDF in German Bundesministeriums der Justiz juris GmbH Section 13 Bahnsteige Rampen Retrieved 7 March 2013 13 1 Bei Neubauten oder umfassenden Umbauten von Personenbahnsteigen sollen in der Regel die Bahnsteigkanten auf eine Hohe von 0 76 m uber Schienenoberkante gelegt werden Hohen von unter 0 38 m und uber 0 96 m sind unzulassig Bahnsteige an denen ausschliesslich Stadtschnellbahnen halten sollen auf eine Hohe von 0 96 m uber Schienenoberkante gelegt werden In Gleisbogen ist auf die Uberhohung Rucksicht zu nehmen BOStrab 31 1 Haltestellen sollen Bahnsteige besitzen 31 8 Die Bahnsteigoberflache soll nicht hoher liegen als der Fahrzeugfussboden in seiner tiefsten Lage Network Statement 2010 Combined Network based on the Railways Act PDF www prorail nl Prorail 22 January 2009 12 December 2008 Archived from the original PDF on 21 October 2012 Retrieved 7 March 2013 ProRail invests 450 million euros in accessibility www prorail nl Press release Prorail 13 October 2009 Archived from the original on 28 November 2010 Lokaliseringsutredning Sofia Gullmarsplan soderort PDF Ellis British Railway Engineering Encyclopaedia Iain Ellis 2006 ISBN 9781847286437 Retrieved 7 March 2013 Institution of Mechanical Engineers Great Britain Railway Division Institution of Civil Engineers Great Britain 2001 Railway infrastructure Issue 3 John Wiley and Sons 3 1 2 Specification of the System p 19 ISBN 9781860583506 Department for Transport 11 March 2010 High Speed Rail Command Paper PDF The Stationery Office section 8 4 p 127 ISBN 978 0 10 178272 2 https www railengineer co uk 2019 03 01 buying hs2s high speed trains dead link HS1 Network Statement PDF www highspeed1 com 17 August 2009 section 3 3 1 2 Track Gauge amp Structure Gauge page 14 Archived from the original PDF on 14 April 2014 Retrieved 7 March 2013 a b Level Boarding Passive Protection PDF GO Transit Retrieved 10 May 2021 a b Plan de developpement accessibilite AMT Agence Metropolitaine du Transport 5 June 2015 Retrieved 11 May 2021 Vancouver City of Accessible public transit vancouver ca Retrieved 24 November 2022 West Coast Express www translink ca Retrieved 24 November 2022 LRT Design Guidelines PDF City of Edmonton Retrieved 10 May 2021 Design and construction performance output specifications PDF Region of Waterloo Retrieved 10 May 2021 Ottawa LRT Schedule 15 2 PDF Retrieved 10 May 2021 T1 Series Cars TransitToronto Retrieved 11 May 2021 Cudahy Brian J 2003 A Century of Subways Celebrating 100 Years of New York s Underground Railways New York Fordham University Press ISBN 0 8232 2292 6 a b SMA Rail Consulting April 2016 California Passenger Rail Network Schematics PDF California Department of Transportation KISS Double Decker Electric Multiple Unit EMU for Peninsula Corridor Joint Powers Board CALTRAIN California USA PDF Retrieved 16 October 2016 Robin Washington 25 February 2015 On the T One Sized Doesn t Fit All Boston Globe Retrieved 21 January 2019 BART San Francisco Airport Extension Final Environmental Impact Report Final Environmental Impact Statement Federal Transit Administration June 1996 pp 3 501 via Internet Archive S200 SF Light Rail Vehicle PDF Siemens Retrieved 18 May 2016 002 1 Railway Station Design Standard and Guidelines Victorian Rail Industry Operators Group Standards State Government of Victoria 29 March 2011 18 3 1 retrieved 24 August 2022 Sources Edit 2002 735 EC Commission Decision of 30 May 2002 concerning the technical specification for interoperability relating to the rolling stock subsystem of the trans European high speed rail system referred to in Article 6 1 of Directive 96 48 EC eur lex europa eu European Union 12 September 2002 sections 7 3 4 and 4 2 5 Retrieved 7 March 2013 External links Edit Wikimedia Commons has media related to Railway station Retrieved from https en wikipedia org w index php title Railway platform height amp oldid 1132687382, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.