fbpx
Wikipedia

Palynology

Palynology is the study of microorganisms and microscopic fragments of mega-organisms that are composed of acid-resistant organic material and occur in sediments, sedimentary rocks, and even some metasedimentary rocks. Palynomorphs are the microscopic, acid-resistant organic remains and debris produced by a wide variety plants, animals, and Protista that have existed since the late Proterozoic.[2][3]

Pine pollen under the microscope
A late Silurian sporangium bearing trilete spores. Such spores provide the earliest evidence of life on land.[1] Green: A spore tetrad. Blue: A spore bearing a trilete mark – the Y-shaped scar. The spores are about 30–35 μm across.

It is the science that studies contemporary and fossil palynomorphs (paleopalynology), including pollen, spores, orbicules, dinocysts, acritarchs, chitinozoans and scolecodonts, together with particulate organic matter (POM) and kerogen found in sedimentary rocks and sediments. Palynology does not include diatoms, foraminiferans or other organisms with siliceous or calcareous tests. The name of the science and organisms is derived from the Greek Greek: παλύνω, translit. palynō, "strew, sprinkle" and -logy) or of "particles that are strewn".[3][4]

Palynology is an interdisciplinary science that stands at the intersection of earth science (geology or geological science) and biological science (biology), particularly plant science (botany). In Biostratigraphy, a branch of paleontology and paleobotany, it involves fossil palynomorphs from the Precambrian to the Holocene for their usefulness in the relative dating and correlation of sedimentary strata. Palynology is also used to date and understand the evolution of many kinds of plants and animals. In paleoclimatology, fossil palynomorphs are studied for their usefullness in understanding ancient Earth history in terms of reconstructing paleoenvironments and paleoclimates.[3][4]

Palynology is quite useful in disciplines such as Archeology, in honey production, and criminal and civil law.[3][4] In archaeology, palynology is widely used to reconstruct ancient paleoenvironments and environmental shifts that significantly influenced past human societies and reconstruct the diet of prehistoric and historic humans. Melissopalynology, the study of pollen and other palynomorphs in honey, identifies the sources of pollen in terms of geographical location(s) and genera of plants. This not only provides important information on the ecology of honey bees, it also an important tool in discovering and policing the criminal adultriation and mislabeling of honey and its products. Forensic palynology uses palynomorphs as evidence in criminal and civil law to prove or disprove a physical link between objects, people, and places.[4][5]

Palynomorphs edit

Palynomorphs are broadly defined as the study of organic remains, including microfossils, and microscopic fragments of mega-organisms that are composed of acid-resistant organic material and range in size between 5 and 500 micrometres. They are extracted from soils, sedimentary rocks and sediment cores, and other materials by a combination of physical (ultrasonic treatment and wet sieving) and chemical (acid digestion) procedures to remove the non-organic fraction. Palynomorphs may be composed of organic material such as chitin, pseudochitin and sporopollenin.[6]

Palynomorphs form a geological record of importance in determining the type of prehistoric life that existed at the time the sedimentary strata was laid down. As a result, these microfossils give important clues to the prevailing climatic conditions of the time. Their paleontological utility derives from an abundance numbering in millions of palymorphs per gram in organic marine deposits, even when such deposits are generally not fossiliferous. Palynomorphs, however, generally have been destroyed in metamorphic or recrystallized rocks.[6]

Typical palynomorphs include dinoflagellate cysts, acritarchs, spores, pollen, plant tissue, fungi, scolecodonts (scleroprotein teeth, jaws, and associated features of polychaete annelid worms), arthropod organs (such as insect mouthparts), and chitinozoans. Palynomorph microscopic structures that are abundant in most sediments are resistant to routine pollen extraction.[6]

Palynofacies edit

A palynofacies is the complete assemblage of organic matter and palynomorphs in a fossil deposit. The term was introduced by the French geologist André Combaz [wikidata] in 1964. Palynofacies studies are often linked to investigations of the organic geochemistry of sedimentary rocks. The study of the palynofacies of a sedimentary depositional environment can be used to learn about the depositional palaeoenvironments of sedimentary rocks in exploration geology, often in conjunction with palynological analysis and vitrinite reflectance.[7][8][9]

Palynofacies can be used in two ways:

  • Organic palynofacies considers all the acid insoluble particulate organic matter (POM), including kerogen and palynomorphs in sediments and palynological preparations of sedimentary rocks. The sieved or unsieved preparations may be examined using strew mounts on microscope slides that may be examined using a transmitted light biological microscope or ultraviolet (UV) fluorescence microscope. The abundance, composition and preservation of the various components, together with the thermal alteration of the organic matter is considered.
  • Palynomorph palynofacies considers the abundance, composition and diversity of palynomorphs in a sieved palynological preparation of sediments or palynological preparation of sedimentary rocks. The ratio of marine fossil phytoplankton (acritarchs and dinoflagellate cysts), together with chitinozoans, to terrestrial palynomorphs (pollen and spores) can be used to derive a terrestrial input index in marine sediments.

History edit

 
Pollen core sampling, Fort Bragg, North Carolina

Early history edit

The earliest reported observations of pollen under a microscope are likely to have been in the 1640s by the English botanist Nehemiah Grew,[10] who described pollen and the stamen, and concluded that pollen is required for sexual reproduction in flowering plants.

By the late 1870s, as optical microscopes improved and the principles of stratigraphy were worked out, Robert Kidston and P. Reinsch were able to examine the presence of fossil spores in the Devonian and Carboniferous coal seams and make comparisons between the living spores and the ancient fossil spores.[11] Early investigators include Christian Gottfried Ehrenberg (radiolarians, diatoms and dinoflagellate cysts), Gideon Mantell (desmids) and Henry Hopley White (dinoflagellate cysts).

1890s to 1940s edit

Quantitative analysis of pollen began with Lennart von Post's published work.[12] Although he published in the Swedish language, his methodology gained a wide audience through his lectures. In particular, his Kristiania lecture of 1916 was important in gaining a wider audience.[13] Because the early investigations were published in the Nordic languages (Scandinavian languages), the field of pollen analysis was confined to those countries.[14] The isolation ended with the German publication of Gunnar Erdtman's 1921 thesis. The methodology of pollen analysis became widespread throughout Europe and North America and revolutionized Quaternary vegetation and climate change research.[13][15]

Earlier pollen researchers include Früh (1885),[16] who enumerated many common tree pollen types, and a considerable number of spores and herb pollen grains. There is a study of pollen samples taken from sediments of Swedish lakes by Trybom (1888);[17] pine and spruce pollen was found in such profusion that he considered them to be serviceable as "index fossils". Georg F. L. Sarauw studied fossil pollen of middle Pleistocene age (Cromerian) from the harbour of Copenhagen.[18] Lagerheim (in Witte 1905) and C. A.Weber (in H. A. Weber 1918) appear to be among the first to undertake 'percentage frequency' calculations.

1940s to 1989 edit

The term palynology was introduced by Hyde and Williams in 1944, following correspondence with the Swedish geologist Ernst Antevs, in the pages of the Pollen Analysis Circular (one of the first journals devoted to pollen analysis, produced by Paul Sears in North America). Hyde and Williams chose palynology on the basis of the Greek words paluno meaning 'to sprinkle' and pale meaning 'dust' (and thus similar to the Latin word pollen).[19]

Pollen analysis in North America stemmed from Phyllis Draper, an MS student under Sears at the University of Oklahoma. During her time as a student, she developed the first pollen diagram from a sample that depicted the percentage of several species at different depths at Curtis Bog. This was the introduction of pollen analysis in North America;[20] pollen diagrams today still often remain in the same format with depth on the y-axis and abundances of species on the x-axis.

1990s to the 21st century edit

Pollen analysis advanced rapidly in this period due to advances in optics and computers. Much of the science was revised by Johannes Iversen and Knut Fægri in their textbook on the subject.[21]

Methods of studying palynomorphs edit

Chemical preparation edit

Chemical digestion follows a number of steps.[22] Initially the only chemical treatment used by researchers was treatment with Potassium hydroxide (KOH) to remove humic substances; defloculation was accomplished through surface treatment or ultra-sonic treatment, although sonification may cause the pollen exine to rupture.[14] In 1924, the use of hydrofluoric acid (HF) to digest silicate minerals was introduced by Assarson and Granlund, greatly reducing the amount of time required to scan slides for palynomorphs.[23] Palynological studies using peats presented a particular challenge because of the presence of well-preserved organic material, including fine rootlets, moss leaflets and organic litter. This was the last major challenge in the chemical preparation of materials for palynological study. Acetolysis was developed by Gunnar Erdtman and his brother to remove these fine cellulose materials by dissolving them.[24] In acetolysis the specimen is treated with acetic anhydride and sulfuric acid, dissolving cellulistic materials and thus providing better visibility for palynomorphs.

Some steps of the chemical treatments require special care for safety reasons, in particular the use of HF which diffuses very fast through the skin and, causes severe chemical burns, and can be fatal.[25]

Another treatment includes kerosene flotation for chitinous materials.

Analysis edit

Once samples have been prepared chemically, they are mounted on microscope slides using silicon oil, glycerol or glycerol-jelly and examined using light microscopy or mounted on a stub for scanning electron microscopy.

Researchers will often study either modern samples from a number of unique sites within a given area, or samples from a single site with a record through time, such as samples obtained from peat or lake sediments. More recent studies have used the modern analog technique in which paleo-samples are compared to modern samples for which the parent vegetation is known.[26]

When the slides are observed under a microscope, the researcher counts the number of grains of each pollen taxon. This record is next used to produce a pollen diagram. These data can be used to detect anthropogenic effects, such as logging,[27] traditional patterns of land use[28] or long term changes in regional climate[29]

Applications edit

Palynology can be applied to problems in many scientific disciplines including geology, botany, paleontology, archaeology, pedology (soil study), and physical geography:

Because the distribution of acritarchs, chitinozoans, dinoflagellate cysts, pollen and spores provides evidence of stratigraphical correlation through biostratigraphy and palaeoenvironmental reconstruction, one common and lucrative application of palynology is in oil and gas exploration.

See also edit

  • Aperture (botany) – Areas on the walls of a pollen grain, where the wall is thinner and/or softer
  • Aeroplankton – Tiny lifeforms floating and drifting in the air, carried by the wind

References edit

  1. ^ Gray, J.; Chaloner, W. G.; Westoll, T. S. (1985). "The Microfossil Record of Early Land Plants: Advances in Understanding of Early Terrestrialization, 1970–1984". Philosophical Transactions of the Royal Society B. 309 (1138): 167–195. Bibcode:1985RSPTB.309..167G. doi:10.1098/rstb.1985.0077. JSTOR 2396358.
  2. ^ Neuendorf, K.K.E., J.P. Mehl, Jr., and J.A. Jackson, eds., 2005, Glossary of Geology (5th ed.). Alexandria, Virginia, American Geological Institute. 779 pp. ISBN 0-922152-76-4
  3. ^ a b c d Williams, G., Fensome, R.A., Miller, M. and Bujak, J., 2020. Microfossils: palynology. In Sorkhabi, R., ed., 15 pp., Encyclopedia of Petroleum Geoscience. Geneva, Switzerland, Springer Nature. 1000 pp.
  4. ^ a b c d Kneller, M., and Fowell, F., 2009. Palynology. In Gornitz, V., ed., pp. 766-768., Encyclopedia of Paleoclimatology and Ancient Environments. Geneva, Switzerland, Springer Dordrecht. 1049 pp.
  5. ^ Laurence, A.R., and Bryant, V.M., 2009. Forensic Palynology. In Bruinsma, G., and Weisburd, D., ed., pp. 1471-1754., Encyclopedia of Criminology and Criminal Justice. New York, New York, Springer Science+Business Media. 5632 pp.
  6. ^ a b c Traverse, A., 2007, Paleopalynology (2nd ed.). Amsterdam, the Netherlands, Springer-Dordrecht. 813 pp. ISBN 978-1-4020-5609-3
  7. ^ Fonseca, Carolina; Mendonça Filho, João Graciano; Lézin, Carine; de Oliveira, António Donizeti; Duarte, Luís V. (December 2019). "Organic matter deposition and paleoenvironmental implications across the Cenomanian-Turonian boundary of the Subalpine Basin (SE France): Local and global controls". International Journal of Coal Geology. 218: 103364. doi:10.1016/j.coal.2019.103364.
  8. ^ Fonseca, Carolina; Mendonça Filho, João Graciano; Lézin, Carine; Duarte, Luís V.; Fauré, Phillipe (April 2018). "Organic facies variability during the Toarcian Oceanic Anoxic Event record of the Grands Causses and Quercy basins (southern France)". International Journal of Coal Geology. 190: 218–235. Bibcode:2018IJCG..190..218F. doi:10.1016/j.coal.2017.10.006.
  9. ^ Fonseca, Carolina; Oliveira Mendonça, Joalice; Mendonça Filho, João Graciano; Lézin, Carine; Duarte, Luís V. (March 2018). "Thermal maturity assessment study of the late Pliensbachian-early Toarcian organic-rich sediments in southern France: Grands Causses, Quercy and Pyrenean basins". Marine and Petroleum Geology. 91: 338–349. Bibcode:2018MarPG..91..338F. doi:10.1016/j.marpetgeo.2018.01.017.
  10. ^ Bradbury, S. (1967). The Evolution of the Microscope. New York: Pergamon Press. pp. 375 p.
  11. ^ Jansonius, J.; D.C. McGregor (1996). . AASP Foundation. 1: 1–10. Archived from the original on 2007-07-09.
  12. ^ Traverse, Alfred and Sullivan, Herbert J. "The Background, Origin, and Early History of the American Association of Stratigraphic Palynologists" Palynology 7: 7-18 (1983)
  13. ^ a b Fægri, Knut; Johs. Iversen (1964). . Oxford: Blackwell Scientific Publications. Archived from the original on 2010-04-03.
  14. ^ a b Faegri, Knut (1973). "In memoriam O. Gunnar E. Erdtman". Pollen et Spores. 15: 5–12.
  15. ^ von Post, L (1918) "Skogsträdpollen i sydsvenska torvmosslagerföljder", Forhandlinger ved de Skandinaviske naturforskeres 16. møte i Kristiania 1916: p. 433
  16. ^ Früh, J (1885) "Kritische Beiträge zur Kenntnis des Torfes", Jahrb.k.k.Geol.Reichsanstalt 35
  17. ^ Trybom, F (1888) "Bottenprof fran svenska insjöar", Geol.Foren.Forhandl.10
  18. ^ Sarauw, G. F. L. (1897). "Cromer-skovlaget i Frihavnen og trælevningerne i de ravførende sandlag ved København" [The Cromer Forest layer in the Free Harbour and Wood Remains in the Amber containing strata near Copenhagen] (PDF). Meddelelser Fra Dansk Geologisk Forening / Bulletin of the Geological Society of Denmark (in Danish). 1 (4): 17–44.
  19. ^ Hyde, H.A.; D.A. Williams (1944). . Pollen Analysis Circular. 8: 6. Archived from the original on 2007-06-18.
  20. ^ Draper, Phyllis. "A DEMONSTRATION OF THE TECHNIQUE OF POLLEN ANALYSIS". {{cite journal}}: Cite journal requires |journal= (help)
  21. ^ Fægri, K. & Iversen, J. (1989) Textbook of pollen analysis. 4th ed. John Wiley & Sons, Chichester. 328 p.
  22. ^ Bennett, K.D.; Willis, K.J. (2001). "Pollen". In Smol, John P.; Birks, H. John B.; Last, William M. (eds.). Tracking Environmental Change Using Lake Sediments. Volume 3: Terrestrial, algal, and siliceous indicators. Dordrecht: Kluwer Academic Publishers. pp. 5–32.
  23. ^ Assarson, G. och E.; Granlund, E. (1924). "En metod for pollenanalys av minerogena jordarter". Geologiska Föreningen i Stockholm Förhandlingar. 46 (1–2): 76–82. doi:10.1080/11035892409444879.
  24. ^ Erdtman, O.G.E. "Uber die Verwendung von Essigsaureanhydrid bei Pollenuntersuchungen". Sven. Bot. Tidskr. 28: 354–358.
  25. ^ "Hydrofluoric acid fatality in Perth - hazard alert". 1995-03-06. Retrieved 2011-12-18.
  26. ^ Overpeck, J. T.; T. Webb; I. C. Prentice (1985). "Quantitative interpretation of fossil pollen spectra: Dissimilarity coefficients and the method of modern analogs". Quaternary Research. 23 (1): 87–108. Bibcode:1985QuRes..23...87O. doi:10.1016/0033-5894(85)90074-2. S2CID 129797797.
  27. ^ Niklasson, Mats; Matts Lindbladh; Leif Björkman (2002). "A long-term record of Quercus decline, logging and fires in a southern Swedish Fagus-Picea forest". Journal of Vegetation Science. 13 (6): 765–774. doi:10.1658/1100-9233(2002)013[0765:ALROQD]2.0.CO;2. S2CID 84934798.
  28. ^ Hebda, R.J.; R.W. Mathewes (1984). "Holocene history of cedar and native cultures on the North American Pacific Coast". Science. 225 (4663): 711–713. Bibcode:1984Sci...225..711H. doi:10.1126/science.225.4663.711. PMID 17810290. S2CID 39998080.
  29. ^ Heusser, Calvin J.; L.E. Heusser; D.M. Peteet (1985). "Late-Quaternary climatic change on the American North Pacific coast". Nature. 315 (6019): 485–487. Bibcode:1985Natur.315..485H. doi:10.1038/315485a0. S2CID 4345551.

Sources edit

  • Moore, P.D., et al. (1991), Pollen Analysis (Second Edition). Blackwell Scientific Publications. ISBN 0-632-02176-4
  • Traverse, A. (1988), Paleopalynology. Unwin Hyman. ISBN 0-04-561001-0
  • Roberts, N. (1998), The Holocene an environmental history, Blackwell Publishing. ISBN 0-631-18638-7

External links edit

  • The AASP - The Palynological Society
  • PalDat, palynological database hosted by the University of Vienna, Austria
  • The Micropalaeontological Society
  • Commission Internationale de Microflore du Paléozoique (CIMP), International Commission for Palaeozoic Palynology
  • Linnean Society Palynology Specialist Group (LSPSG)
  • Canadian Association of Palynologists
  • Palynologische Kring, The Netherlands and Belgium
  • Palynofacies, an annotated link directory.
  • Acosta et al., 2018. Climate change and peopling of the Neotropics during the Pleistocene-Holocene transition. Boletín de la Sociedad Geológica Mexicana. http://boletinsgm.igeolcu.unam.mx/bsgm/index.php/component/content/article/368-sitio/articulos/cuarta-epoca/7001/1857-7001-1-Acosta

palynology, study, microorganisms, microscopic, fragments, mega, organisms, that, composed, acid, resistant, organic, material, occur, sediments, sedimentary, rocks, even, some, metasedimentary, rocks, palynomorphs, microscopic, acid, resistant, organic, remai. Palynology is the study of microorganisms and microscopic fragments of mega organisms that are composed of acid resistant organic material and occur in sediments sedimentary rocks and even some metasedimentary rocks Palynomorphs are the microscopic acid resistant organic remains and debris produced by a wide variety plants animals and Protista that have existed since the late Proterozoic 2 3 Pine pollen under the microscopeA late Silurian sporangium bearing trilete spores Such spores provide the earliest evidence of life on land 1 Green A spore tetrad Blue A spore bearing a trilete mark the Y shaped scar The spores are about 30 35 mm across It is the science that studies contemporary and fossil palynomorphs paleopalynology including pollen spores orbicules dinocysts acritarchs chitinozoans and scolecodonts together with particulate organic matter POM and kerogen found in sedimentary rocks and sediments Palynology does not include diatoms foraminiferans or other organisms with siliceous or calcareous tests The name of the science and organisms is derived from the Greek Greek palynw translit palynō strew sprinkle and logy or of particles that are strewn 3 4 Palynology is an interdisciplinary science that stands at the intersection of earth science geology or geological science and biological science biology particularly plant science botany In Biostratigraphy a branch of paleontology and paleobotany it involves fossil palynomorphs from the Precambrian to the Holocene for their usefulness in the relative dating and correlation of sedimentary strata Palynology is also used to date and understand the evolution of many kinds of plants and animals In paleoclimatology fossil palynomorphs are studied for their usefullness in understanding ancient Earth history in terms of reconstructing paleoenvironments and paleoclimates 3 4 Palynology is quite useful in disciplines such as Archeology in honey production and criminal and civil law 3 4 In archaeology palynology is widely used to reconstruct ancient paleoenvironments and environmental shifts that significantly influenced past human societies and reconstruct the diet of prehistoric and historic humans Melissopalynology the study of pollen and other palynomorphs in honey identifies the sources of pollen in terms of geographical location s and genera of plants This not only provides important information on the ecology of honey bees it also an important tool in discovering and policing the criminal adultriation and mislabeling of honey and its products Forensic palynology uses palynomorphs as evidence in criminal and civil law to prove or disprove a physical link between objects people and places 4 5 Contents 1 Palynomorphs 2 Palynofacies 3 History 3 1 Early history 3 2 1890s to 1940s 3 3 1940s to 1989 3 4 1990s to the 21st century 4 Methods of studying palynomorphs 4 1 Chemical preparation 4 2 Analysis 5 Applications 6 See also 7 References 8 Sources 9 External linksPalynomorphs editPalynomorphs are broadly defined as the study of organic remains including microfossils and microscopic fragments of mega organisms that are composed of acid resistant organic material and range in size between 5 and 500 micrometres They are extracted from soils sedimentary rocks and sediment cores and other materials by a combination of physical ultrasonic treatment and wet sieving and chemical acid digestion procedures to remove the non organic fraction Palynomorphs may be composed of organic material such as chitin pseudochitin and sporopollenin 6 Palynomorphs form a geological record of importance in determining the type of prehistoric life that existed at the time the sedimentary strata was laid down As a result these microfossils give important clues to the prevailing climatic conditions of the time Their paleontological utility derives from an abundance numbering in millions of palymorphs per gram in organic marine deposits even when such deposits are generally not fossiliferous Palynomorphs however generally have been destroyed in metamorphic or recrystallized rocks 6 Typical palynomorphs include dinoflagellate cysts acritarchs spores pollen plant tissue fungi scolecodonts scleroprotein teeth jaws and associated features of polychaete annelid worms arthropod organs such as insect mouthparts and chitinozoans Palynomorph microscopic structures that are abundant in most sediments are resistant to routine pollen extraction 6 Palynofacies editA palynofacies is the complete assemblage of organic matter and palynomorphs in a fossil deposit The term was introduced by the French geologist Andre Combaz wikidata in 1964 Palynofacies studies are often linked to investigations of the organic geochemistry of sedimentary rocks The study of the palynofacies of a sedimentary depositional environment can be used to learn about the depositional palaeoenvironments of sedimentary rocks in exploration geology often in conjunction with palynological analysis and vitrinite reflectance 7 8 9 Palynofacies can be used in two ways Organic palynofacies considers all the acid insoluble particulate organic matter POM including kerogen and palynomorphs in sediments and palynological preparations of sedimentary rocks The sieved or unsieved preparations may be examined using strew mounts on microscope slides that may be examined using a transmitted light biological microscope or ultraviolet UV fluorescence microscope The abundance composition and preservation of the various components together with the thermal alteration of the organic matter is considered Palynomorph palynofacies considers the abundance composition and diversity of palynomorphs in a sieved palynological preparation of sediments or palynological preparation of sedimentary rocks The ratio of marine fossil phytoplankton acritarchs and dinoflagellate cysts together with chitinozoans to terrestrial palynomorphs pollen and spores can be used to derive a terrestrial input index in marine sediments History edit nbsp Pollen core sampling Fort Bragg North CarolinaEarly history edit The earliest reported observations of pollen under a microscope are likely to have been in the 1640s by the English botanist Nehemiah Grew 10 who described pollen and the stamen and concluded that pollen is required for sexual reproduction in flowering plants By the late 1870s as optical microscopes improved and the principles of stratigraphy were worked out Robert Kidston and P Reinsch were able to examine the presence of fossil spores in the Devonian and Carboniferous coal seams and make comparisons between the living spores and the ancient fossil spores 11 Early investigators include Christian Gottfried Ehrenberg radiolarians diatoms and dinoflagellate cysts Gideon Mantell desmids and Henry Hopley White dinoflagellate cysts 1890s to 1940s edit Quantitative analysis of pollen began with Lennart von Post s published work 12 Although he published in the Swedish language his methodology gained a wide audience through his lectures In particular his Kristiania lecture of 1916 was important in gaining a wider audience 13 Because the early investigations were published in the Nordic languages Scandinavian languages the field of pollen analysis was confined to those countries 14 The isolation ended with the German publication of Gunnar Erdtman s 1921 thesis The methodology of pollen analysis became widespread throughout Europe and North America and revolutionized Quaternary vegetation and climate change research 13 15 Earlier pollen researchers include Fruh 1885 16 who enumerated many common tree pollen types and a considerable number of spores and herb pollen grains There is a study of pollen samples taken from sediments of Swedish lakes by Trybom 1888 17 pine and spruce pollen was found in such profusion that he considered them to be serviceable as index fossils Georg F L Sarauw studied fossil pollen of middle Pleistocene age Cromerian from the harbour of Copenhagen 18 Lagerheim in Witte 1905 and C A Weber in H A Weber 1918 appear to be among the first to undertake percentage frequency calculations 1940s to 1989 edit The term palynology was introduced by Hyde and Williams in 1944 following correspondence with the Swedish geologist Ernst Antevs in the pages of the Pollen Analysis Circular one of the first journals devoted to pollen analysis produced by Paul Sears in North America Hyde and Williams chose palynology on the basis of the Greek words paluno meaning to sprinkle and pale meaning dust and thus similar to the Latin word pollen 19 Pollen analysis in North America stemmed from Phyllis Draper an MS student under Sears at the University of Oklahoma During her time as a student she developed the first pollen diagram from a sample that depicted the percentage of several species at different depths at Curtis Bog This was the introduction of pollen analysis in North America 20 pollen diagrams today still often remain in the same format with depth on the y axis and abundances of species on the x axis 1990s to the 21st century edit Pollen analysis advanced rapidly in this period due to advances in optics and computers Much of the science was revised by Johannes Iversen and Knut Faegri in their textbook on the subject 21 Methods of studying palynomorphs editChemical preparation edit Chemical digestion follows a number of steps 22 Initially the only chemical treatment used by researchers was treatment with Potassium hydroxide KOH to remove humic substances defloculation was accomplished through surface treatment or ultra sonic treatment although sonification may cause the pollen exine to rupture 14 In 1924 the use of hydrofluoric acid HF to digest silicate minerals was introduced by Assarson and Granlund greatly reducing the amount of time required to scan slides for palynomorphs 23 Palynological studies using peats presented a particular challenge because of the presence of well preserved organic material including fine rootlets moss leaflets and organic litter This was the last major challenge in the chemical preparation of materials for palynological study Acetolysis was developed by Gunnar Erdtman and his brother to remove these fine cellulose materials by dissolving them 24 In acetolysis the specimen is treated with acetic anhydride and sulfuric acid dissolving cellulistic materials and thus providing better visibility for palynomorphs Some steps of the chemical treatments require special care for safety reasons in particular the use of HF which diffuses very fast through the skin and causes severe chemical burns and can be fatal 25 Another treatment includes kerosene flotation for chitinous materials Analysis edit Once samples have been prepared chemically they are mounted on microscope slides using silicon oil glycerol or glycerol jelly and examined using light microscopy or mounted on a stub for scanning electron microscopy Researchers will often study either modern samples from a number of unique sites within a given area or samples from a single site with a record through time such as samples obtained from peat or lake sediments More recent studies have used the modern analog technique in which paleo samples are compared to modern samples for which the parent vegetation is known 26 When the slides are observed under a microscope the researcher counts the number of grains of each pollen taxon This record is next used to produce a pollen diagram These data can be used to detect anthropogenic effects such as logging 27 traditional patterns of land use 28 or long term changes in regional climate 29 Applications editPalynology can be applied to problems in many scientific disciplines including geology botany paleontology archaeology pedology soil study and physical geography Biostratigraphy and geochronology Geologists use palynological studies in biostratigraphy to correlate strata and determine the relative age of a given bed horizon formation or stratigraphical sequence Because the distribution of acritarchs chitinozoans dinoflagellate cysts pollen and spores provides evidence of stratigraphical correlation through biostratigraphy and palaeoenvironmental reconstruction one common and lucrative application of palynology is in oil and gas exploration Paleoecology and climate change Palynology can be used to reconstruct past vegetation land plants and marine and Freshwater phytoplankton communities and so infer past environmental palaeoenvironmental and palaeoclimatic conditions in an area thousands or millions of years ago a fundamental part of research into climate change Organic palynofacies studies which examine the preservation of the particulate organic matter and palynomorphs provides information on the depositional environment of sediments and depositional palaeoenvironments of sedimentary rocks Geothermal alteration studies examine the colour of palynomorphs extracted from rocks to give the thermal alteration and maturation of sedimentary sequences which provides estimates of maximum palaeotemperatures Limnology studies Freshwater palynomorphs and animal and plant fragments including the prasinophytes and desmids green algae can be used to study past lake levels and long term climate change Taxonomy and evolutionary studies Involving the use of pollen morphological characters as source of taxonomic data to delimit plant species under same family or genus Pollen apertural status is frequently used for differential sorting or finding similarities between species of the same taxa This is also called Palynotaxonomy Forensic palynology the study of pollen and other palynomorphs for evidence at a crime scene Allergy studies and pollen counting Studies of the geographic distribution and seasonal production of pollen can be used to forecast pollen conditions helping sufferers of allergies such as hay fever Melissopalynology the study of pollen and spores found in honey Archaeological palynology examines human uses of plants in the past This can help determine seasonality of site occupation presence or absence of agricultural practices or products and plant related activity areas within an archaeological context Bonfire Shelter is one such example of this application See also editAperture botany Areas on the walls of a pollen grain where the wall is thinner and or softer Aeroplankton Tiny lifeforms floating and drifting in the air carried by the windReferences edit Gray J Chaloner W G Westoll T S 1985 The Microfossil Record of Early Land Plants Advances in Understanding of Early Terrestrialization 1970 1984 Philosophical Transactions of the Royal Society B 309 1138 167 195 Bibcode 1985RSPTB 309 167G doi 10 1098 rstb 1985 0077 JSTOR 2396358 Neuendorf K K E J P Mehl Jr and J A Jackson eds 2005 Glossary of Geology 5th ed Alexandria Virginia American Geological Institute 779 pp ISBN 0 922152 76 4 a b c d Williams G Fensome R A Miller M and Bujak J 2020 Microfossils palynology In Sorkhabi R ed 15 pp Encyclopedia of Petroleum Geoscience Geneva Switzerland Springer Nature 1000 pp a b c d Kneller M and Fowell F 2009 Palynology In Gornitz V ed pp 766 768 Encyclopedia of Paleoclimatology and Ancient Environments Geneva Switzerland Springer Dordrecht 1049 pp Laurence A R and Bryant V M 2009 Forensic Palynology In Bruinsma G and Weisburd D ed pp 1471 1754 Encyclopedia of Criminology and Criminal Justice New York New York Springer Science Business Media 5632 pp a b c Traverse A 2007 Paleopalynology 2nd ed Amsterdam the Netherlands Springer Dordrecht 813 pp ISBN 978 1 4020 5609 3 Fonseca Carolina Mendonca Filho Joao Graciano Lezin Carine de Oliveira Antonio Donizeti Duarte Luis V December 2019 Organic matter deposition and paleoenvironmental implications across the Cenomanian Turonian boundary of the Subalpine Basin SE France Local and global controls International Journal of Coal Geology 218 103364 doi 10 1016 j coal 2019 103364 Fonseca Carolina Mendonca Filho Joao Graciano Lezin Carine Duarte Luis V Faure Phillipe April 2018 Organic facies variability during the Toarcian Oceanic Anoxic Event record of the Grands Causses and Quercy basins southern France International Journal of Coal Geology 190 218 235 Bibcode 2018IJCG 190 218F doi 10 1016 j coal 2017 10 006 Fonseca Carolina Oliveira Mendonca Joalice Mendonca Filho Joao Graciano Lezin Carine Duarte Luis V March 2018 Thermal maturity assessment study of the late Pliensbachian early Toarcian organic rich sediments in southern France Grands Causses Quercy and Pyrenean basins Marine and Petroleum Geology 91 338 349 Bibcode 2018MarPG 91 338F doi 10 1016 j marpetgeo 2018 01 017 Bradbury S 1967 The Evolution of the Microscope New York Pergamon Press pp 375 p Jansonius J D C McGregor 1996 Introduction Palynology Principles and Applications AASP Foundation 1 1 10 Archived from the original on 2007 07 09 Traverse Alfred and Sullivan Herbert J The Background Origin and Early History of the American Association of Stratigraphic Palynologists Palynology 7 7 18 1983 a b Faegri Knut Johs Iversen 1964 Textbook of Pollen Analysis Oxford Blackwell Scientific Publications Archived from the original on 2010 04 03 a b Faegri Knut 1973 In memoriam O Gunnar E Erdtman Pollen et Spores 15 5 12 von Post L 1918 Skogstradpollen i sydsvenska torvmosslagerfoljder Forhandlinger ved de Skandinaviske naturforskeres 16 mote i Kristiania 1916 p 433 Fruh J 1885 Kritische Beitrage zur Kenntnis des Torfes Jahrb k k Geol Reichsanstalt 35 Trybom F 1888 Bottenprof fran svenska insjoar Geol Foren Forhandl 10 Sarauw G F L 1897 Cromer skovlaget i Frihavnen og traelevningerne i de ravforende sandlag ved Kobenhavn The Cromer Forest layer in the Free Harbour and Wood Remains in the Amber containing strata near Copenhagen PDF Meddelelser Fra Dansk Geologisk Forening Bulletin of the Geological Society of Denmark in Danish 1 4 17 44 Hyde H A D A Williams 1944 The Right Word Pollen Analysis Circular 8 6 Archived from the original on 2007 06 18 Draper Phyllis A DEMONSTRATION OF THE TECHNIQUE OF POLLEN ANALYSIS a href Template Cite journal html title Template Cite journal cite journal a Cite journal requires journal help Faegri K amp Iversen J 1989 Textbook of pollen analysis 4th ed John Wiley amp Sons Chichester 328 p Bennett K D Willis K J 2001 Pollen In Smol John P Birks H John B Last William M eds Tracking Environmental Change Using Lake Sediments Volume 3 Terrestrial algal and siliceous indicators Dordrecht Kluwer Academic Publishers pp 5 32 Assarson G och E Granlund E 1924 En metod for pollenanalys av minerogena jordarter Geologiska Foreningen i Stockholm Forhandlingar 46 1 2 76 82 doi 10 1080 11035892409444879 Erdtman O G E Uber die Verwendung von Essigsaureanhydrid bei Pollenuntersuchungen Sven Bot Tidskr 28 354 358 Hydrofluoric acid fatality in Perth hazard alert 1995 03 06 Retrieved 2011 12 18 Overpeck J T T Webb I C Prentice 1985 Quantitative interpretation of fossil pollen spectra Dissimilarity coefficients and the method of modern analogs Quaternary Research 23 1 87 108 Bibcode 1985QuRes 23 87O doi 10 1016 0033 5894 85 90074 2 S2CID 129797797 Niklasson Mats Matts Lindbladh Leif Bjorkman 2002 A long term record of Quercus decline logging and fires in a southern Swedish Fagus Picea forest Journal of Vegetation Science 13 6 765 774 doi 10 1658 1100 9233 2002 013 0765 ALROQD 2 0 CO 2 S2CID 84934798 Hebda R J R W Mathewes 1984 Holocene history of cedar and native cultures on the North American Pacific Coast Science 225 4663 711 713 Bibcode 1984Sci 225 711H doi 10 1126 science 225 4663 711 PMID 17810290 S2CID 39998080 Heusser Calvin J L E Heusser D M Peteet 1985 Late Quaternary climatic change on the American North Pacific coast Nature 315 6019 485 487 Bibcode 1985Natur 315 485H doi 10 1038 315485a0 S2CID 4345551 Sources editMoore P D et al 1991 Pollen Analysis Second Edition Blackwell Scientific Publications ISBN 0 632 02176 4 Traverse A 1988 Paleopalynology Unwin Hyman ISBN 0 04 561001 0 Roberts N 1998 The Holocene an environmental history Blackwell Publishing ISBN 0 631 18638 7External links editThe AASP The Palynological Society International Federation of Palynological Societies Palynology Laboratory French Institute of Pondicherry India The Palynology Unit Kew Gardens UK PalDat palynological database hosted by the University of Vienna Austria The Micropalaeontological Society Commission Internationale de Microflore du Paleozoique CIMP International Commission for Palaeozoic Palynology Centre for Palynology University of Sheffield UK Linnean Society Palynology Specialist Group LSPSG Canadian Association of Palynologists Pollen and Spore Identification Literature Palynologische Kring The Netherlands and Belgium Palynofacies an annotated link directory Acosta et al 2018 Climate change and peopling of the Neotropics during the Pleistocene Holocene transition Boletin de la Sociedad Geologica Mexicana http boletinsgm igeolcu unam mx bsgm index php component content article 368 sitio articulos cuarta epoca 7001 1857 7001 1 Acosta Retrieved from https en wikipedia org w index php title Palynology amp oldid 1188072179, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.