fbpx
Wikipedia

Planetary science

Planetary science (or more rarely, planetology) is the scientific study of planets (including Earth), celestial bodies (such as moons, asteroids, comets) and planetary systems (in particular those of the Solar System) and the processes of their formation. It studies objects ranging in size from micrometeoroids to gas giants, aiming to determine their composition, dynamics, formation, interrelations and history. It is a strongly interdisciplinary field, which originally grew from astronomy and Earth science,[1] and now incorporates many disciplines, including planetary geology, cosmochemistry, atmospheric science, physics, oceanography, hydrology, theoretical planetary science, glaciology, and exoplanetology.[1] Allied disciplines include space physics, when concerned with the effects of the Sun on the bodies of the Solar System, and astrobiology.

Photograph from Apollo 15 orbital unit of the rilles in the vicinity of the crater Aristarchus on the Moon.

There are interrelated observational and theoretical branches of planetary science. Observational research can involve combinations of space exploration, predominantly with robotic spacecraft missions using remote sensing, and comparative, experimental work in Earth-based laboratories. The theoretical component involves considerable computer simulation and mathematical modelling.

Planetary scientists are generally located in the astronomy and physics or Earth sciences departments of universities or research centres, though there are several purely planetary science institutes worldwide. Generally, planetary scientists study one of the Earth sciences, astronomy, astrophysics, geophysics, or physics at the graduate level and concentrate their research in planetary science disciplines. There are several major conferences each year, and a wide range of peer-reviewed journals. Some planetary scientists work at private research centres and often initiate partnership research tasks.

History

The history of planetary science may be said to have begun with the Ancient Greek philosopher Democritus, who is reported by Hippolytus as saying

The ordered worlds are boundless and differ in size, and that in some there is neither sun nor moon, but that in others, both are greater than with us, and yet with others more in number. And that the intervals between the ordered worlds are unequal, here more and there less, and that some increase, others flourish and others decay, and here they come into being and there they are eclipsed. But that they are destroyed by colliding with one another. And that some ordered worlds are bare of animals and plants and all water.[2]

In more modern times, planetary science began in astronomy, from studies of the unresolved planets. In this sense, the original planetary astronomer would be Galileo, who discovered the four largest moons of Jupiter, the mountains on the Moon, and first observed the rings of Saturn, all objects of intense later study. Galileo's study of the lunar mountains in 1609 also began the study of extraterrestrial landscapes: his observation "that the Moon certainly does not possess a smooth and polished surface" suggested that it and other worlds might appear "just like the face of the Earth itself".[3]

Advances in telescope construction and instrumental resolution gradually allowed increased identification of the atmospheric as well as surface details of the planets. The Moon was initially the most heavily studied, due to its proximity to the Earth, as it always exhibited elaborate features on its surface, and the technological improvements gradually produced more detailed lunar geological knowledge. In this scientific process, the main instruments were astronomical optical telescopes (and later radio telescopes) and finally robotic exploratory spacecraft, such as space probes.

The Solar System has now been relatively well-studied, and a good overall understanding of the formation and evolution of this planetary system exists. However, there are large numbers of unsolved questions,[4] and the rate of new discoveries is very high, partly due to the large number of interplanetary spacecraft currently exploring the Solar System.

Disciplines

Planetary science studies observational and theoretical astronomy, geology (astrogeology), atmospheric science, and an emerging subspecialty in planetary oceans, called planetary oceanography.[5]

Planetary astronomy

This is both an observational and a theoretical science. Observational researchers are predominantly concerned with the study of the small bodies of the Solar System: those that are observed by telescopes, both optical and radio, so that characteristics of these bodies such as shape, spin, surface materials and weathering are determined, and the history of their formation and evolution can be understood.

Theoretical planetary astronomy is concerned with dynamics: the application of the principles of celestial mechanics to the Solar System and extrasolar planetary systems. Observing exoplanets and determining their physical properties, exoplanetology, is a major area of research besides Solar System studies. Every planet has its own branch.

Planet: Subject: Named after (NB: these terms are rarely used)

Planetary geology

In planetary science, the term geology is used in its broadest sense, to mean the study of the surface and interior parts of planets and moons, from their core to their magnetosphere. The best known research topics of planetary geology deal with the planetary bodies in the near vicinity of the Earth: the Moon, and the two neighbouring planets: Venus and Mars. Of these, the Moon was studied first, using methods developed earlier on the Earth. Planetary geology focuses on the celestial objects that exhibit a solid surface or have significant solid physical states as part of their structure. Planetary geology applies geology, geophysics and geochemistry to planetary bodies. [6]

Planetary Geomorphology

Geomorphology studies the features on planetary surfaces and reconstructs the history of their formation, inferring the physical processes that acted on the surface. Planetary geomorphology includes the study of several classes of surface features:

  • Impact features (multi-ringed basins, craters)[7]
  • Volcanic and tectonic features (lava flows, fissures, rilles)[8]
  • Glacial features[7]
  • Aeolian features[8]
  • Space weathering – erosional effects generated by the harsh environment of space (continuous micro meteorite bombardment, high-energy particle rain, impact gardening). For example, the thin dust cover on the surface of the lunar regolith is a result of micro meteorite bombardment.
  • Hydrological features: the liquid involved can range from water to hydrocarbon and ammonia, depending on the location within the Solar System. This category includes the study of paleohydrological features (paleochannels, paleolakes).[9]

The history of a planetary surface can be deciphered by mapping features from top to bottom according to their deposition sequence, as first determined on terrestrial strata by Nicolas Steno. For example, stratigraphic mapping prepared the Apollo astronauts for the field geology they would encounter on their lunar missions. Overlapping sequences were identified on images taken by the Lunar Orbiter program, and these were used to prepare a lunar stratigraphic column and geological map of the Moon.

Cosmochemistry, geochemistry and petrology

One of the main problems when generating hypotheses on the formation and evolution of objects in the Solar System is the lack of samples that can be analysed in the laboratory, where a large suite of tools are available and the full body of knowledge derived from terrestrial geology can be brought to bear. Direct samples from the Moon, asteroids and Mars are present on Earth, removed from their parent bodies and delivered as meteorites. Some of these have suffered contamination from the oxidising effect of Earth's atmosphere and the infiltration of the biosphere, but those meteorites collected in the last few decades from Antarctica are almost entirely pristine.

The different types of meteorites that originate from the asteroid belt cover almost all parts of the structure of differentiated bodies: meteorites even exist that come from the core-mantle boundary (pallasites). The combination of geochemistry and observational astronomy has also made it possible to trace the HED meteorites back to a specific asteroid in the main belt, 4 Vesta.

The comparatively few known Martian meteorites have provided insight into the geochemical composition of the Martian crust, although the unavoidable lack of information about their points of origin on the diverse Martian surface has meant that they do not provide more detailed constraints on theories of the evolution of the Martian lithosphere.[10] As of July 24, 2013 65 samples of Martian meteorites have been discovered on Earth. Many were found in either Antarctica or the Sahara Desert.

During the Apollo era, in the Apollo program, 384 kilograms of lunar samples were collected and transported to the Earth, and three Soviet Luna robots also delivered regolith samples from the Moon. These samples provide the most comprehensive record of the composition of any Solar System body beside the Earth. The numbers of lunar meteorites are growing quickly in the last few years –[11] as of April 2008 there are 54 meteorites that have been officially classified as lunar. Eleven of these are from the US Antarctic meteorite collection, 6 are from the Japanese Antarctic meteorite collection, and the other 37 are from hot desert localities in Africa, Australia, and the Middle East. The total mass of recognized lunar meteorites is close to 50 kg.

Planetary Geophysics and Space Physics

Space probes made it possible to collect data in not only the visible light region, but in other areas of the electromagnetic spectrum. The planets can be characterized by their force fields: gravity and their magnetic fields, which are studied through geophysics and space physics.

Measuring the changes in acceleration experienced by spacecraft as they orbit has allowed fine details of the gravity fields of the planets to be mapped. For example, in the 1970s, the gravity field disturbances above lunar maria were measured through lunar orbiters, which led to the discovery of concentrations of mass, mascons, beneath the Imbrium, Serenitatis, Crisium, Nectaris and Humorum basins.

 
The solar wind is deflected by the magnetosphere (not to scale)

If a planet's magnetic field is sufficiently strong, its interaction with the solar wind forms a magnetosphere around a planet. Early space probes discovered the gross dimensions of the terrestrial magnetic field, which extends about 10 Earth radii towards the Sun. The solar wind, a stream of charged particles, streams out and around the terrestrial magnetic field, and continues behind the magnetic tail, hundreds of Earth radii downstream. Inside the magnetosphere, there are relatively dense regions of solar wind particles, the Van Allen radiation belts.

Planetary geophysics includes, but is not limited to, seismology and tectonophysics, geophysical fluid dynamics, mineral physics, geodynamics, mathematical geophysics, and geophysical surveying.

Planetary geodesy (also known as planetary geodetics) deals with the measurement and representation of the planets of the Solar System, their gravitational fields and geodynamic phenomena (polar motion in three-dimensional, time-varying space. The science of geodesy has elements of both astrophysics and planetary sciences. The shape of the Earth is to a large extent the result of its rotation, which causes its equatorial bulge, and the competition of geologic processes such as the collision of plates and of vulcanism, resisted by the Earth's gravity field. These principles can be applied to the solid surface of Earth (orogeny; Few mountains are higher than 10 km (6 mi), few deep sea trenches deeper than that because quite simply, a mountain as tall as, for example, 15 km (9 mi), would develop so much pressure at its base, due to gravity, that the rock there would become plastic, and the mountain would slump back to a height of roughly 10 km (6 mi) in a geologically insignificant time. Some or all of these geologic principles can be applied to other planets besides Earth. For instance on Mars, whose surface gravity is much less, the largest volcano, Olympus Mons, is 27 km (17 mi) high at its peak, a height that could not be maintained on Earth. The Earth geoid is essentially the figure of the Earth abstracted from its topographic features. Therefore, the Mars geoid (areoid is essentially the figure of Mars abstracted from its topographic features. Surveying and mapping are two important fields of application of geodesy.

Planetary Atmospheric science

 
Cloud bands clearly visible on Jupiter.

The atmosphere is an important transitional zone between the solid planetary surface and the higher rarefied ionizing and radiation belts. Not all planets have atmospheres: their existence depends on the mass of the planet, and the planet's distance from the Sun – too distant and frozen atmospheres occur. Besides the four gas giant planets, almost all of the terrestrial planets (Earth, Venus, and Mars) have significant atmospheres. Two moons have significant atmospheres: Saturn's moon Titan and Neptune's moon Triton. A tenuous atmosphere exists around Mercury.

The effects of the rotation rate of a planet about its axis can be seen in atmospheric streams and currents. Seen from space, these features show as bands and eddies in the cloud system, and are particularly visible on Jupiter and Saturn.

Planetary oceanography

Exoplanetology

Exoplanetology studies exoplanets, the planets existing outside our Solar System. Until recently, the means of studying exoplanets have been extremely limited, but with the current rate of innovation in research technology, exoplanetology has become a rapidly developing subfield of astronomy.

Comparative planetary science

Planetary science frequently makes use of the method of comparison to give a greater understanding of the object of study. This can involve comparing the dense atmospheres of Earth and Saturn's moon Titan, the evolution of outer Solar System objects at different distances from the Sun, or the geomorphology of the surfaces of the terrestrial planets, to give only a few examples.

The main comparison that can be made is to features on the Earth, as it is much more accessible and allows a much greater range of measurements to be made. Earth analogue studies are particularly common in planetary geology, geomorphology, and also in atmospheric science.

The use of terrestrial analogues was first described by Gilbert (1886).[8]

Professional activity

Journals

Professional bodies

Major conferences

Smaller workshops and conferences on particular fields occur worldwide throughout the year.

Major institutions

This non-exhaustive list includes those institutions and universities with major groups of people working in planetary science. Alphabetical order is used.

National space agencies

Other institutions


Basic concepts

See also

References

  1. ^ a b Taylor, Stuart Ross (29 July 2004). "Why can't planets be like stars?". Nature. 430 (6999): 509. Bibcode:2004Natur.430..509T. doi:10.1038/430509a. PMID 15282586. S2CID 12316875.
  2. ^ Hippolytus (Antipope); Origen (1921). Philosophumena (Digitized 9 May 2006). Vol. 1. Translation by Francis Legge, F.S.A. Original from Harvard University.: Society for promoting Christian knowledge. Retrieved 22 May 2009.
  3. ^ Taylor, Stuart Ross (1994). "Silent upon a peak in Darien". Nature. 369 (6477): 196–197. Bibcode:1994Natur.369..196T. doi:10.1038/369196a0. S2CID 4349517.
  4. ^ Stern, Alan. "Ten Things I Wish We Really Knew In Planetary Science". Retrieved 2009-05-22.
  5. ^ Is Extraterrestrial Life Suppressed on Subsurface Ocean Worlds due to the Paucity of Bioessential Elements?, The Astronomical Journal, 156:151, October 2018.
  6. ^ "Planetary Geology". Encyclopedia of Geology (Second Edition), 2021. Retrieved 12 March 2022.
  7. ^ a b Hargitai, Henrik; Kereszturi, Ákos, eds. (2015). Encyclopedia of Planetary Landforms. New York: Springer. doi:10.1007/978-1-4614-3134-3. ISBN 978-1-4614-3133-6. S2CID 132406061.
  8. ^ a b c Hargitai, Henrik; Kereszturi, Ákos, eds. (2015). Encyclopedia of Planetary Landforms. New York: Springer. doi:10.1007/978-1-4614-3134-3. ISBN 978-1-4614-3133-6. S2CID 132406061.
  9. ^ Lefort, Alexandra; Williams, Rebecca; Korteniemi, Jarmo (2015), "Inverted Channel", in Hargitai, Henrik; Kereszturi, Ákos (eds.), Encyclopedia of Planetary Landforms, New York: Springer, pp. 1048–1052, doi:10.1007/978-1-4614-3134-3_202, ISBN 978-1-4614-3133-6
  10. ^ "UW – Laramie, Wyoming | University of Wyoming".
  11. ^ {curator.jsc.nasa.gov/antmet/lmc/lmcintro.pdf}

Further reading

  • Carr, Michael H., Saunders, R. S., Strom, R. G., Wilhelms, D. E. 1984. The Geology of the Terrestrial Planets. NASA.
  • Morrison, David. 1994. Exploring Planetary Worlds. W. H. Freeman. ISBN 0-7167-5043-0
  • Hargitai H et al. (2015) Classification and Characterization of Planetary Landforms. In: Hargitai H (ed) Encyclopedia of Planetary Landforms. Springer. doi:10.1007/978-1-4614-3134-3 https://link.springer.com/content/pdf/bbm%3A978-1-4614-3134-3%2F1.pdf
  • Hauber E et al. (2019) Planetary geologic mapping. In: Hargitai H (ed) Planetary Cartography and GIS. Springer.
  • Page D (2015) The Geology of Planetary Landforms. In: Hargitai H (ed) Encyclopedia of Planetary Landforms. Springer.
  • Rossi, A.P., van Gasselt S (eds) (2018) Planetary Geology. Springer

External links

  • Planetary Science Research Discoveries (articles)
  • (world's largest space-interest group: see also their active news blog)
  • Planetary Exploration Newsletter (PSI-published professional newsletter, weekly distribution)
  • Women in Planetary Science (professional networking and news)

planetary, science, more, rarely, planetology, scientific, study, planets, including, earth, celestial, bodies, such, moons, asteroids, comets, planetary, systems, particular, those, solar, system, processes, their, formation, studies, objects, ranging, size, . Planetary science or more rarely planetology is the scientific study of planets including Earth celestial bodies such as moons asteroids comets and planetary systems in particular those of the Solar System and the processes of their formation It studies objects ranging in size from micrometeoroids to gas giants aiming to determine their composition dynamics formation interrelations and history It is a strongly interdisciplinary field which originally grew from astronomy and Earth science 1 and now incorporates many disciplines including planetary geology cosmochemistry atmospheric science physics oceanography hydrology theoretical planetary science glaciology and exoplanetology 1 Allied disciplines include space physics when concerned with the effects of the Sun on the bodies of the Solar System and astrobiology Photograph from Apollo 15 orbital unit of the rilles in the vicinity of the crater Aristarchus on the Moon There are interrelated observational and theoretical branches of planetary science Observational research can involve combinations of space exploration predominantly with robotic spacecraft missions using remote sensing and comparative experimental work in Earth based laboratories The theoretical component involves considerable computer simulation and mathematical modelling Planetary scientists are generally located in the astronomy and physics or Earth sciences departments of universities or research centres though there are several purely planetary science institutes worldwide Generally planetary scientists study one of the Earth sciences astronomy astrophysics geophysics or physics at the graduate level and concentrate their research in planetary science disciplines There are several major conferences each year and a wide range of peer reviewed journals Some planetary scientists work at private research centres and often initiate partnership research tasks Contents 1 History 2 Disciplines 2 1 Planetary astronomy 2 2 Planetary geology 2 2 1 Planetary Geomorphology 2 2 2 Cosmochemistry geochemistry and petrology 2 2 3 Planetary Geophysics and Space Physics 2 3 Planetary Atmospheric science 2 4 Planetary oceanography 2 5 Exoplanetology 3 Comparative planetary science 4 Professional activity 4 1 Journals 4 2 Professional bodies 4 3 Major conferences 4 4 Major institutions 4 4 1 National space agencies 4 4 2 Other institutions 5 Basic concepts 6 See also 7 References 8 Further reading 9 External linksHistory EditThe history of planetary science may be said to have begun with the Ancient Greek philosopher Democritus who is reported by Hippolytus as sayingThe ordered worlds are boundless and differ in size and that in some there is neither sun nor moon but that in others both are greater than with us and yet with others more in number And that the intervals between the ordered worlds are unequal here more and there less and that some increase others flourish and others decay and here they come into being and there they are eclipsed But that they are destroyed by colliding with one another And that some ordered worlds are bare of animals and plants and all water 2 In more modern times planetary science began in astronomy from studies of the unresolved planets In this sense the original planetary astronomer would be Galileo who discovered the four largest moons of Jupiter the mountains on the Moon and first observed the rings of Saturn all objects of intense later study Galileo s study of the lunar mountains in 1609 also began the study of extraterrestrial landscapes his observation that the Moon certainly does not possess a smooth and polished surface suggested that it and other worlds might appear just like the face of the Earth itself 3 Advances in telescope construction and instrumental resolution gradually allowed increased identification of the atmospheric as well as surface details of the planets The Moon was initially the most heavily studied due to its proximity to the Earth as it always exhibited elaborate features on its surface and the technological improvements gradually produced more detailed lunar geological knowledge In this scientific process the main instruments were astronomical optical telescopes and later radio telescopes and finally robotic exploratory spacecraft such as space probes The Solar System has now been relatively well studied and a good overall understanding of the formation and evolution of this planetary system exists However there are large numbers of unsolved questions 4 and the rate of new discoveries is very high partly due to the large number of interplanetary spacecraft currently exploring the Solar System Disciplines EditPlanetary science studies observational and theoretical astronomy geology astrogeology atmospheric science and an emerging subspecialty in planetary oceans called planetary oceanography 5 Planetary astronomy Edit This is both an observational and a theoretical science Observational researchers are predominantly concerned with the study of the small bodies of the Solar System those that are observed by telescopes both optical and radio so that characteristics of these bodies such as shape spin surface materials and weathering are determined and the history of their formation and evolution can be understood Theoretical planetary astronomy is concerned with dynamics the application of the principles of celestial mechanics to the Solar System and extrasolar planetary systems Observing exoplanets and determining their physical properties exoplanetology is a major area of research besides Solar System studies Every planet has its own branch Planet Subject Named after NB these terms are rarely used Mercury Hermology Hermes Venus Cytherology Cytherea Earth Geology Gaia Moon Selenology Selene Mars Areology Ares Ceres Demeterology Demeter Jupiter Zenology Zeus Saturn Kronology Kronos Uranus Uranology Uranus Neptune Poseidology Poseidon Pluto Hadeology Hades Eris Eridology ErisPlanetary geology Edit Main article Planetary geology See also Geology of solar terrestrial planets and Icy moon In planetary science the term geology is used in its broadest sense to mean the study of the surface and interior parts of planets and moons from their core to their magnetosphere The best known research topics of planetary geology deal with the planetary bodies in the near vicinity of the Earth the Moon and the two neighbouring planets Venus and Mars Of these the Moon was studied first using methods developed earlier on the Earth Planetary geology focuses on the celestial objects that exhibit a solid surface or have significant solid physical states as part of their structure Planetary geology applies geology geophysics and geochemistry to planetary bodies 6 Planetary Geomorphology Edit Main article Geomorphology Geomorphology studies the features on planetary surfaces and reconstructs the history of their formation inferring the physical processes that acted on the surface Planetary geomorphology includes the study of several classes of surface features Impact features multi ringed basins craters 7 Volcanic and tectonic features lava flows fissures rilles 8 Glacial features 7 Aeolian features 8 Space weathering erosional effects generated by the harsh environment of space continuous micro meteorite bombardment high energy particle rain impact gardening For example the thin dust cover on the surface of the lunar regolith is a result of micro meteorite bombardment Hydrological features the liquid involved can range from water to hydrocarbon and ammonia depending on the location within the Solar System This category includes the study of paleohydrological features paleochannels paleolakes 9 The history of a planetary surface can be deciphered by mapping features from top to bottom according to their deposition sequence as first determined on terrestrial strata by Nicolas Steno For example stratigraphic mapping prepared the Apollo astronauts for the field geology they would encounter on their lunar missions Overlapping sequences were identified on images taken by the Lunar Orbiter program and these were used to prepare a lunar stratigraphic column and geological map of the Moon Further information Geology of the Moon Cosmochemistry geochemistry and petrology Edit Main articles Cosmochemistry Geochemistry and Petrology One of the main problems when generating hypotheses on the formation and evolution of objects in the Solar System is the lack of samples that can be analysed in the laboratory where a large suite of tools are available and the full body of knowledge derived from terrestrial geology can be brought to bear Direct samples from the Moon asteroids and Mars are present on Earth removed from their parent bodies and delivered as meteorites Some of these have suffered contamination from the oxidising effect of Earth s atmosphere and the infiltration of the biosphere but those meteorites collected in the last few decades from Antarctica are almost entirely pristine The different types of meteorites that originate from the asteroid belt cover almost all parts of the structure of differentiated bodies meteorites even exist that come from the core mantle boundary pallasites The combination of geochemistry and observational astronomy has also made it possible to trace the HED meteorites back to a specific asteroid in the main belt 4 Vesta The comparatively few known Martian meteorites have provided insight into the geochemical composition of the Martian crust although the unavoidable lack of information about their points of origin on the diverse Martian surface has meant that they do not provide more detailed constraints on theories of the evolution of the Martian lithosphere 10 As of July 24 2013 65 samples of Martian meteorites have been discovered on Earth Many were found in either Antarctica or the Sahara Desert During the Apollo era in the Apollo program 384 kilograms of lunar samples were collected and transported to the Earth and three Soviet Luna robots also delivered regolith samples from the Moon These samples provide the most comprehensive record of the composition of any Solar System body beside the Earth The numbers of lunar meteorites are growing quickly in the last few years 11 as of April 2008 there are 54 meteorites that have been officially classified as lunar Eleven of these are from the US Antarctic meteorite collection 6 are from the Japanese Antarctic meteorite collection and the other 37 are from hot desert localities in Africa Australia and the Middle East The total mass of recognized lunar meteorites is close to 50 kg Planetary Geophysics and Space Physics Edit Main articles Geophysics and Space physics Space probes made it possible to collect data in not only the visible light region but in other areas of the electromagnetic spectrum The planets can be characterized by their force fields gravity and their magnetic fields which are studied through geophysics and space physics Measuring the changes in acceleration experienced by spacecraft as they orbit has allowed fine details of the gravity fields of the planets to be mapped For example in the 1970s the gravity field disturbances above lunar maria were measured through lunar orbiters which led to the discovery of concentrations of mass mascons beneath the Imbrium Serenitatis Crisium Nectaris and Humorum basins The solar wind is deflected by the magnetosphere not to scale If a planet s magnetic field is sufficiently strong its interaction with the solar wind forms a magnetosphere around a planet Early space probes discovered the gross dimensions of the terrestrial magnetic field which extends about 10 Earth radii towards the Sun The solar wind a stream of charged particles streams out and around the terrestrial magnetic field and continues behind the magnetic tail hundreds of Earth radii downstream Inside the magnetosphere there are relatively dense regions of solar wind particles the Van Allen radiation belts Planetary geophysics includes but is not limited to seismology and tectonophysics geophysical fluid dynamics mineral physics geodynamics mathematical geophysics and geophysical surveying Planetary geodesy also known as planetary geodetics deals with the measurement and representation of the planets of the Solar System their gravitational fields and geodynamic phenomena polar motion in three dimensional time varying space The science of geodesy has elements of both astrophysics and planetary sciences The shape of the Earth is to a large extent the result of its rotation which causes its equatorial bulge and the competition of geologic processes such as the collision of plates and of vulcanism resisted by the Earth s gravity field These principles can be applied to the solid surface of Earth orogeny Few mountains are higher than 10 km 6 mi few deep sea trenches deeper than that because quite simply a mountain as tall as for example 15 km 9 mi would develop so much pressure at its base due to gravity that the rock there would become plastic and the mountain would slump back to a height of roughly 10 km 6 mi in a geologically insignificant time Some or all of these geologic principles can be applied to other planets besides Earth For instance on Mars whose surface gravity is much less the largest volcano Olympus Mons is 27 km 17 mi high at its peak a height that could not be maintained on Earth The Earth geoid is essentially the figure of the Earth abstracted from its topographic features Therefore the Mars geoid areoid is essentially the figure of Mars abstracted from its topographic features Surveying and mapping are two important fields of application of geodesy Planetary Atmospheric science Edit Main articles Atmospheric science and Global climate model Cloud bands clearly visible on Jupiter The atmosphere is an important transitional zone between the solid planetary surface and the higher rarefied ionizing and radiation belts Not all planets have atmospheres their existence depends on the mass of the planet and the planet s distance from the Sun too distant and frozen atmospheres occur Besides the four gas giant planets almost all of the terrestrial planets Earth Venus and Mars have significant atmospheres Two moons have significant atmospheres Saturn s moon Titan and Neptune s moon Triton A tenuous atmosphere exists around Mercury The effects of the rotation rate of a planet about its axis can be seen in atmospheric streams and currents Seen from space these features show as bands and eddies in the cloud system and are particularly visible on Jupiter and Saturn Planetary oceanography Edit Main article Planetary oceanography Exoplanetology Edit Main article Exoplanetology Exoplanetology studies exoplanets the planets existing outside our Solar System Until recently the means of studying exoplanets have been extremely limited but with the current rate of innovation in research technology exoplanetology has become a rapidly developing subfield of astronomy Comparative planetary science EditMain article Comparative planetary science Planetary science frequently makes use of the method of comparison to give a greater understanding of the object of study This can involve comparing the dense atmospheres of Earth and Saturn s moon Titan the evolution of outer Solar System objects at different distances from the Sun or the geomorphology of the surfaces of the terrestrial planets to give only a few examples The main comparison that can be made is to features on the Earth as it is much more accessible and allows a much greater range of measurements to be made Earth analogue studies are particularly common in planetary geology geomorphology and also in atmospheric science The use of terrestrial analogues was first described by Gilbert 1886 8 Professional activity EditJournals Edit Main category Planetary science journals Annual Review of Earth and Planetary Sciences Earth and Planetary Science Letters Earth Moon and Planets Geochimica et Cosmochimica Acta Icarus Journal of Geophysical Research Planets Meteoritics and Planetary Science Planetary and Space Science The Planetary Science Journal Professional bodies Edit Division for Planetary Sciences DPS of the American Astronomical Society American Geophysical Union Meteoritical Society EuroplanetMajor conferences Edit Lunar and Planetary Science Conference LPSC organized by the Lunar and Planetary Institute in Houston Held annually since 1970 occurs in March Division for Planetary Sciences DPS meeting held annually since 1970 at a different location each year predominantly within the mainland US Occurs around October American Geophysical Union AGU annual Fall meeting in December in San Francisco American Geophysical Union AGU Joint Assembly co sponsored with other societies in April May in various locations around the world Meteoritical Society annual meeting held during the Northern Hemisphere summer generally alternating between North America and Europe European Planetary Science Congress EPSC held annually around September at a location within Europe Smaller workshops and conferences on particular fields occur worldwide throughout the year Major institutions Edit This non exhaustive list includes those institutions and universities with major groups of people working in planetary science Alphabetical order is used National space agencies Edit Canadian Space Agency CSA Annual budget CAD 488 7 million 2013 2014 China National Space Administration CNSA People s Republic of China Budget 0 5 1 3 billion est Centre national d etudes spatiales French National Centre of Space Research Budget 1 920 billion 2012 Deutsches Zentrum fur Luft und Raumfahrt e V German abbreviated DLR the German Aerospace Center Budget 2 billion 2010 European Space Agency ESA Budget 5 51 billion 2013 Indian Space Research Organisation ISRO Israel Space Agency ISA Italian Space Agency Budget 1 billion 2010 Japan Aerospace Exploration Agency JAXA Budget 2 15 billion 2012 NASA Considerable number of research groups including the JPL GSFC Ames Budget 18 72 billion 2011 National Space Organization Taiwan Russian Federal Space Agency Budget 5 61 billion 2013 UK Space Agency UKSA Other institutions Edit This article s use of external links may not follow Wikipedia s policies or guidelines Please improve this article by removing excessive or inappropriate external links and converting useful links where appropriate into footnote references January 2020 Learn how and when to remove this template message Arctic Planetary Science Institute Arizona State University s School of Earth and Space Exploration The Australian National University s Planetary Science Institute Brown University Planetary Geosciences Group Archived 2009 10 10 at the Wayback Machine Caltech s Division of Geological and Planetary Sciences and Planetary Sciences subdivision Archived 2018 02 18 at the Wayback Machine Cornell University s Space and Planetary Science Curtin University s School of Earth and Planetary Sciences Florida Institute of Technology s Department of Physics and Space Sciences Johns Hopkins University s Applied Physics Laboratory Lunar and Planetary Institute Max Planck Institute for Solar System Research s Department Planets and Comets MIT Dept of Earth Atmospheric and Planetary Sciences Open University Planetary and Space Sciences Research Institute Planetary Science Institute Stony Brook University s Geosciences Department and soon to open Center for Planetary Exploration UCL Birkbeck s Centre for Planetary Sciences University of Arizona s Lunar and Planetary Lab University of Arkansas s Center for Space and Planetary Sciences University of California Los Angeles s Department of Earth Planetary and Space Sciences University of California Santa Cruz s Department of Earth amp Planetary Sciences University of Hawaii s Hawaii Institute of Geophysics and Planetology University of Copenhagen s Center for Planetary Research University of Central Florida Planetary Sciences Group University of British Columbia Department of Earth Ocean and Atmospheric Sciences University of Western Ontario s Centre for Planetary Science and Exploration University of Tennessee Department of Earth and Planetary Sciences University of Colorado s Department of Astrophysical and Planetary Sciences Washington University in St Louis s Department of Earth and Planetary Sciences INAF Istituto di Astrofisica e Planetologia Spaziali it Basic concepts EditAsteroid Celestial mechanics Comet Dwarf planet Extrasolar planet Gas giant Icy moon Kuiper belt Magnetosphere Minor planet Planet Planetary differentiation Planetary system Definition of a planet Space weather Synestia Terrestrial planetSee also EditAreography geography of Mars Planetary cartography Planetary coordinate system Selenography study of the surface and physical features of the Moon Theoretical planetology Timeline of Solar System explorationReferences Edit a b Taylor Stuart Ross 29 July 2004 Why can t planets be like stars Nature 430 6999 509 Bibcode 2004Natur 430 509T doi 10 1038 430509a PMID 15282586 S2CID 12316875 Hippolytus Antipope Origen 1921 Philosophumena Digitized 9 May 2006 Vol 1 Translation by Francis Legge F S A Original from Harvard University Society for promoting Christian knowledge Retrieved 22 May 2009 Taylor Stuart Ross 1994 Silent upon a peak in Darien Nature 369 6477 196 197 Bibcode 1994Natur 369 196T doi 10 1038 369196a0 S2CID 4349517 Stern Alan Ten Things I Wish We Really Knew In Planetary Science Retrieved 2009 05 22 Is Extraterrestrial Life Suppressed on Subsurface Ocean Worlds due to the Paucity of Bioessential Elements The Astronomical Journal 156 151 October 2018 Planetary Geology Encyclopedia of Geology Second Edition 2021 Retrieved 12 March 2022 a b Hargitai Henrik Kereszturi Akos eds 2015 Encyclopedia of Planetary Landforms New York Springer doi 10 1007 978 1 4614 3134 3 ISBN 978 1 4614 3133 6 S2CID 132406061 a b c Hargitai Henrik Kereszturi Akos eds 2015 Encyclopedia of Planetary Landforms New York Springer doi 10 1007 978 1 4614 3134 3 ISBN 978 1 4614 3133 6 S2CID 132406061 Lefort Alexandra Williams Rebecca Korteniemi Jarmo 2015 Inverted Channel in Hargitai Henrik Kereszturi Akos eds Encyclopedia of Planetary Landforms New York Springer pp 1048 1052 doi 10 1007 978 1 4614 3134 3 202 ISBN 978 1 4614 3133 6 UW Laramie Wyoming University of Wyoming curator jsc nasa gov antmet lmc lmcintro pdf Further reading EditCarr Michael H Saunders R S Strom R G Wilhelms D E 1984 The Geology of the Terrestrial Planets NASA Morrison David 1994 Exploring Planetary Worlds W H Freeman ISBN 0 7167 5043 0 Hargitai H et al 2015 Classification and Characterization of Planetary Landforms In Hargitai H ed Encyclopedia of Planetary Landforms Springer doi 10 1007 978 1 4614 3134 3 https link springer com content pdf bbm 3A978 1 4614 3134 3 2F1 pdf Hauber E et al 2019 Planetary geologic mapping In Hargitai H ed Planetary Cartography and GIS Springer Page D 2015 The Geology of Planetary Landforms In Hargitai H ed Encyclopedia of Planetary Landforms Springer Rossi A P van Gasselt S eds 2018 Planetary Geology SpringerExternal links EditPlanetary science at Wikipedia s sister projects Definitions from Wiktionary Media from Commons News from Wikinews Quotations from Wikiquote Texts from Wikisource Textbooks from Wikibooks Resources from Wikiversity Planetary Science Research Discoveries articles The Planetary Society world s largest space interest group see also their active news blog Planetary Exploration Newsletter PSI published professional newsletter weekly distribution Women in Planetary Science professional networking and news Portals Astronomy Stars Spaceflight Outer space Solar System Retrieved from https en wikipedia org w index php title Planetary science amp oldid 1131588524, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.