fbpx
Wikipedia

Remote sensing

Remote sensing is the acquisition of information about an object or phenomenon without making physical contact with the object, in contrast to in situ or on-site observation. The term is applied especially to acquiring information about Earth and other planets. Remote sensing is used in numerous fields, including geophysics, geography, land surveying and most Earth science disciplines (e.g. exploration geophysics, hydrology, ecology, meteorology, oceanography, glaciology, geology); it also has military, intelligence, commercial, economic, planning, and humanitarian applications, among others.

Synthetic aperture radar image of Death Valley colored using polarimetry

In current usage, the term remote sensing generally refers to the use of satellite- or aircraft-based sensor technologies to detect and classify objects on Earth. It includes the surface and the atmosphere and oceans, based on propagated signals (e.g. electromagnetic radiation). It may be split into "active" remote sensing (when a signal is emitted by a satellite or aircraft to the object and its reflection detected by the sensor) and "passive" remote sensing (when the reflection of sunlight is detected by the sensor).[1][2][3][4]

Overview edit

This video is about how Landsat was used to identify areas of conservation in the Democratic Republic of the Congo, and how it was used to help map an area called MLW in the north.

Remote sensing can be divided into two types of methods: Passive remote sensing and Active remote sensing. Passive sensors gather radiation that is emitted or reflected by the object or surrounding areas. Reflected sunlight is the most common source of radiation measured by passive sensors. Examples of passive remote sensors include film photography, infrared, charge-coupled devices, and radiometers. Active collection, on the other hand, emits energy in order to scan objects and areas whereupon a sensor then detects and measures the radiation that is reflected or backscattered from the target. RADAR and LiDAR are examples of active remote sensing where the time delay between emission and return is measured, establishing the location, speed and direction of an object.

 
Illustration of remote sensing

Remote sensing makes it possible to collect data of dangerous or inaccessible areas. Remote sensing applications include monitoring deforestation in areas such as the Amazon Basin, glacial features in Arctic and Antarctic regions, and depth sounding of coastal and ocean depths. Military collection during the Cold War made use of stand-off collection of data about dangerous border areas. Remote sensing also replaces costly and slow data collection on the ground, ensuring in the process that areas or objects are not disturbed.

Orbital platforms collect and transmit data from different parts of the electromagnetic spectrum, which in conjunction with larger scale aerial or ground-based sensing and analysis, provides researchers with enough information to monitor trends such as El Niño and other natural long and short term phenomena. Other uses include different areas of the earth sciences such as natural resource management, agricultural fields such as land usage and conservation,[5][6] greenhouse gas monitoring,[7] oil spill detection and monitoring,[8] and national security and overhead, ground-based and stand-off collection on border areas.[9]

Types of data acquisition techniques edit

The basis for multispectral collection and analysis is that of examined areas or objects that reflect or emit radiation that stand out from surrounding areas. For a summary of major remote sensing satellite systems see the overview table.

Applications of remote sensing edit

 
Radar image of Aswan Dam, Egypt taken by Umbra
  • Conventional radar is mostly associated with aerial traffic control, early warning, and certain large-scale meteorological data. Doppler radar is used by local law enforcements' monitoring of speed limits and in enhanced meteorological collection such as wind speed and direction within weather systems in addition to precipitation location and intensity. Other types of active collection includes plasmas in the ionosphere. Interferometric synthetic aperture radar is used to produce precise digital elevation models of large scale terrain (See RADARSAT, TerraSAR-X, Magellan).
  • Laser and radar altimeters on satellites have provided a wide range of data. By measuring the bulges of water caused by gravity, they map features on the seafloor to a resolution of a mile or so. By measuring the height and wavelength of ocean waves, the altimeters measure wind speeds and direction, and surface ocean currents and directions.
  • Ultrasound (acoustic) and radar tide gauges measure sea level, tides and wave direction in coastal and offshore tide gauges.
  • Light detection and ranging (LIDAR) is well known in examples of weapon ranging, laser illuminated homing of projectiles. LIDAR is used to detect and measure the concentration of various chemicals in the atmosphere, while airborne LIDAR can be used to measure the heights of objects and features on the ground more accurately than with radar technology. Vegetation remote sensing is a principal application of LIDAR.[10]
  • Radiometers and photometers are the most common instrument in use, collecting reflected and emitted radiation in a wide range of frequencies. The most common are visible and infrared sensors, followed by microwave, gamma-ray, and rarely, ultraviolet. They may also be used to detect the emission spectra of various chemicals, providing data on chemical concentrations in the atmosphere.
 
Examples of remote sensing equipment deployed by
or interfaced with oceanographic research vessels.[11]
  • Radiometers are also used at night, because artificial light emissions are a key signature of human activity.[12] Applications include remote sensing of population, GDP, and damage to infrastructure from war or disasters.
  • Radiometers and radar onboard of satellites can be used to monitor volcanic eruptions [13][14]
  • Spectropolarimetric Imaging has been reported to be useful for target tracking purposes by researchers at the U.S. Army Research Laboratory. They determined that manmade items possess polarimetric signatures that are not found in natural objects. These conclusions were drawn from the imaging of military trucks, like the Humvee, and trailers with their acousto-optic tunable filter dual hyperspectral and spectropolarimetric VNIR Spectropolarimetric Imager.[15][16]
  • Stereographic pairs of aerial photographs have often been used to make topographic maps by imagery and terrain analysts in trafficability and highway departments for potential routes, in addition to modelling terrestrial habitat features.[17][18][19]
  • Simultaneous multi-spectral platforms such as Landsat have been in use since the 1970s. These thematic mappers take images in multiple wavelengths of electromagnetic radiation (multi-spectral) and are usually found on Earth observation satellites, including (for example) the Landsat program or the IKONOS satellite. Maps of land cover and land use from thematic mapping can be used to prospect for minerals, detect or monitor land usage, detect invasive vegetation, deforestation, and examine the health of indigenous plants and crops (satellite crop monitoring), including entire farming regions or forests.[20] Prominent scientists using remote sensing for this purpose include Janet Franklin and Ruth DeFries. Landsat images are used by regulatory agencies such as KYDOW to indicate water quality parameters including Secchi depth, chlorophyll density, and total phosphorus content. Weather satellites are used in meteorology and climatology.
  • Hyperspectral imaging produces an image where each pixel has full spectral information with imaging narrow spectral bands over a contiguous spectral range. Hyperspectral imagers are used in various applications including mineralogy, biology, defence, and environmental measurements.
  • Within the scope of the combat against desertification, remote sensing allows researchers to follow up and monitor risk areas in the long term, to determine desertification factors, to support decision-makers in defining relevant measures of environmental management, and to assess their impacts.[21]
  • Remotely sensed multi- and hyperspectral images can be used for assessing biodiversity at different scales. Since the spectral properties of different plants species are unique, it is possible to get information about properties that relates to biodiversity such as habitat heterogeneity, spectral diversity and plant functional trait.[22][23][24]
  • Remote sensing has been used to detect rare plants to aid in conservation efforts. Prediction, detection, and the ability to record biophysical conditions were possible from medium to very high resolutions.[25]

Geodetic edit

  • Geodetic remote sensing can be gravimetric or geometric. Overhead gravity data collection was first used in aerial submarine detection. This data revealed minute perturbations in the Earth's gravitational field that may be used to determine changes in the mass distribution of the Earth, which in turn may be used for geophysical studies, as in GRACE. Geometric remote sensing includes position and deformation imaging using InSAR, LIDAR, etc.[26]

Acoustic and near-acoustic edit

  • Sonar: passive sonar, listening for the sound made by another object (a vessel, a whale etc.); active sonar, emitting pulses of sounds and listening for echoes, used for detecting, ranging and measurements of underwater objects and terrain.
  • Seismograms taken at different locations can locate and measure earthquakes (after they occur) by comparing the relative intensity and precise timings.
  • Ultrasound: Ultrasound sensors, that emit high-frequency pulses and listening for echoes, used for detecting water waves and water level, as in tide gauges or for towing tanks.

To coordinate a series of large-scale observations, most sensing systems depend on the following: platform location and the orientation of the sensor. High-end instruments now often use positional information from satellite navigation systems. The rotation and orientation are often provided within a degree or two with electronic compasses. Compasses can measure not just azimuth (i. e. degrees to magnetic north), but also altitude (degrees above the horizon), since the magnetic field curves into the Earth at different angles at different latitudes. More exact orientations require gyroscopic-aided orientation, periodically realigned by different methods including navigation from stars or known benchmarks.

Data characteristics edit

The quality of remote sensing data consists of its spatial, spectral, radiometric and temporal resolutions.

Spatial resolution
The size of a pixel that is recorded in a raster image – typically pixels may correspond to square areas ranging in side length from 1 to 1,000 metres (3.3 to 3,280.8 ft).
Spectral resolution
The wavelength of the different frequency bands recorded – usually, this is related to the number of frequency bands recorded by the platform. Current Landsat collection is that of seven bands, including several in the infrared spectrum, ranging from a spectral resolution of 0.7 to 2.1 μm. The Hyperion sensor on Earth Observing-1 resolves 220 bands from 0.4 to 2.5 μm, with a spectral resolution of 0.10 to 0.11 μm per band.
Radiometric resolution
The number of different intensities of radiation the sensor is able to distinguish. Typically, this ranges from 8 to 14 bits, corresponding to 256 levels of the gray scale and up to 16,384 intensities or "shades" of colour, in each band. It also depends on the instrument noise.
Temporal resolution
The frequency of flyovers by the satellite or plane, and is only relevant in time-series studies or those requiring an averaged or mosaic image as in deforesting monitoring. This was first used by the intelligence community where repeated coverage revealed changes in infrastructure, the deployment of units or the modification/introduction of equipment. Cloud cover over a given area or object makes it necessary to repeat the collection of said location.

Data processing edit

In order to create sensor-based maps, most remote sensing systems expect to extrapolate sensor data in relation to a reference point including distances between known points on the ground. This depends on the type of sensor used. For example, in conventional photographs, distances are accurate in the center of the image, with the distortion of measurements increasing the farther you get from the center. Another factor is that of the platen against which the film is pressed can cause severe errors when photographs are used to measure ground distances. The step in which this problem is resolved is called georeferencing and involves computer-aided matching of points in the image (typically 30 or more points per image) which is extrapolated with the use of an established benchmark, "warping" the image to produce accurate spatial data. As of the early 1990s, most satellite images are sold fully georeferenced.

In addition, images may need to be radiometrically and atmospherically corrected.

Radiometric correction
Allows avoidance of radiometric errors and distortions. The illumination of objects on the Earth's surface is uneven because of different properties of the relief. This factor is taken into account in the method of radiometric distortion correction.[27] Radiometric correction gives a scale to the pixel values, e. g. the monochromatic scale of 0 to 255 will be converted to actual radiance values.
Topographic correction (also called terrain correction)
In rugged mountains, as a result of terrain, the effective illumination of pixels varies considerably. In a remote sensing image, the pixel on the shady slope receives weak illumination and has a low radiance value, in contrast, the pixel on the sunny slope receives strong illumination and has a high radiance value. For the same object, the pixel radiance value on the shady slope will be different from that on the sunny slope. Additionally, different objects may have similar radiance values. These ambiguities seriously affected remote sensing image information extraction accuracy in mountainous areas. It became the main obstacle to the further application of remote sensing images. The purpose of topographic correction is to eliminate this effect, recovering the true reflectivity or radiance of objects in horizontal conditions. It is the premise of quantitative remote sensing application.
Atmospheric correction
Elimination of atmospheric haze by rescaling each frequency band so that its minimum value (usually realised in water bodies) corresponds to a pixel value of 0. The digitizing of data also makes it possible to manipulate the data by changing gray-scale values.

Interpretation is the critical process of making sense of the data. The first application was that of aerial photographic collection which used the following process; spatial measurement through the use of a light table in both conventional single or stereographic coverage, added skills such as the use of photogrammetry, the use of photomosaics, repeat coverage, Making use of objects' known dimensions in order to detect modifications. Image Analysis is the recently developed automated computer-aided application that is in increasing use.

Object-Based Image Analysis (OBIA) is a sub-discipline of GIScience devoted to partitioning remote sensing (RS) imagery into meaningful image-objects, and assessing their characteristics through spatial, spectral and temporal scale.

Old data from remote sensing is often valuable because it may provide the only long-term data for a large extent of geography. At the same time, the data is often complex to interpret, and bulky to store. Modern systems tend to store the data digitally, often with lossless compression. The difficulty with this approach is that the data is fragile, the format may be archaic, and the data may be easy to falsify. One of the best systems for archiving data series is as computer-generated machine-readable ultrafiche, usually in typefonts such as OCR-B, or as digitized half-tone images. Ultrafiches survive well in standard libraries, with lifetimes of several centuries. They can be created, copied, filed and retrieved by automated systems. They are about as compact as archival magnetic media, and yet can be read by human beings with minimal, standardized equipment.

Generally speaking, remote sensing works on the principle of the inverse problem: while the object or phenomenon of interest (the state) may not be directly measured, there exists some other variable that can be detected and measured (the observation) which may be related to the object of interest through a calculation. The common analogy given to describe this is trying to determine the type of animal from its footprints. For example, while it is impossible to directly measure temperatures in the upper atmosphere, it is possible to measure the spectral emissions from a known chemical species (such as carbon dioxide) in that region. The frequency of the emissions may then be related via thermodynamics to the temperature in that region.

Data processing levels edit

To facilitate the discussion of data processing in practice, several processing "levels" were first defined in 1986 by NASA as part of its Earth Observing System[28] and steadily adopted since then, both internally at NASA (e. g.,[29]) and elsewhere (e. g.,[30]); these definitions are:

Level Description
0 Reconstructed, unprocessed instrument and payload data at full resolution, with any and all communications artifacts (e. g., synchronization frames, communications headers, duplicate data) removed.
1a Reconstructed, unprocessed instrument data at full resolution, time-referenced, and annotated with ancillary information, including radiometric and geometric calibration coefficients and georeferencing parameters (e. g., platform ephemeris) computed and appended but not applied to the Level 0 data (or if applied, in a manner that level 0 is fully recoverable from level 1a data).
1b Level 1a data that have been processed to sensor units (e. g., radar backscatter cross section, brightness temperature, etc.); not all instruments have Level 1b data; level 0 data is not recoverable from level 1b data.
2 Derived geophysical variables (e. g., ocean wave height, soil moisture, ice concentration) at the same resolution and location as Level 1 source data.
3 Variables mapped on uniform spacetime grid scales, usually with some completeness and consistency (e. g., missing points interpolated, complete regions mosaicked together from multiple orbits, etc.).
4 Model output or results from analyses of lower level data (i. e., variables that were not measured by the instruments but instead are derived from these measurements).

A Level 1 data record is the most fundamental (i. e., highest reversible level) data record that has significant scientific utility, and is the foundation upon which all subsequent data sets are produced. Level 2 is the first level that is directly usable for most scientific applications; its value is much greater than the lower levels. Level 2 data sets tend to be less voluminous than Level 1 data because they have been reduced temporally, spatially, or spectrally. Level 3 data sets are generally smaller than lower level data sets and thus can be dealt with without incurring a great deal of data handling overhead. These data tend to be generally more useful for many applications. The regular spatial and temporal organization of Level 3 datasets makes it feasible to readily combine data from different sources.

While these processing levels are particularly suitable for typical satellite data processing pipelines, other data level vocabularies have been defined and may be appropriate for more heterogeneous workflows.

History edit

 
The TR-1 reconnaissance/surveillance aircraft
 
The 2001 Mars Odyssey used spectrometers and imagers to hunt for evidence of past or present water and volcanic activity on Mars.

The modern discipline of remote sensing arose with the development of flight. The balloonist G. Tournachon (alias Nadar) made photographs of Paris from his balloon in 1858.[31] Messenger pigeons, kites, rockets and unmanned balloons were also used for early images. With the exception of balloons, these first, individual images were not particularly useful for map making or for scientific purposes.

Systematic aerial photography was developed for military surveillance and reconnaissance purposes beginning in World War I.[32] After WWI, remote sensing technology was quickly adapted to civilian applications.[33] This is demonstrated by the first line of a 1941 textbook titled "Aerophotography and Aerosurverying," which stated the following:

"There is no longer any need to preach for aerial photography-not in the United States- for so widespread has become its use and so great its value that even the farmer who plants his fields in a remote corner of the country knows its value."

— James Bagley, [33]

The development of remote sensing technology reached a climax during the Cold War with the use of modified combat aircraft such as the P-51, P-38, RB-66 and the F-4C, or specifically designed collection platforms such as the U2/TR-1, SR-71, A-5 and the OV-1 series both in overhead and stand-off collection.[34] A more recent development is that of increasingly smaller sensor pods such as those used by law enforcement and the military, in both manned and unmanned platforms. The advantage of this approach is that this requires minimal modification to a given airframe. Later imaging technologies would include infrared, conventional, Doppler and synthetic aperture radar.[35]

The development of artificial satellites in the latter half of the 20th century allowed remote sensing to progress to a global scale as of the end of the Cold War.[36] Instrumentation aboard various Earth observing and weather satellites such as Landsat, the Nimbus and more recent missions such as RADARSAT and UARS provided global measurements of various data for civil, research, and military purposes. Space probes to other planets have also provided the opportunity to conduct remote sensing studies in extraterrestrial environments, synthetic aperture radar aboard the Magellan spacecraft provided detailed topographic maps of Venus, while instruments aboard SOHO allowed studies to be performed on the Sun and the solar wind, just to name a few examples.[37][38]

Recent developments include, beginning in the 1960s and 1970s, the development of image processing of satellite imagery. The use of the term "remote sensing" began in the early 1960s when Evelyn Pruitt realized that advances in science meant that aerial photography was no longer an adequate term to describe the data streams being generated by new technologies.[39][40] With assistance from her fellow staff member at the Office of Naval Research, Walter Bailey, she coined the term "remote sensing".[41][42] Several research groups in Silicon Valley including NASA Ames Research Center, GTE, and ESL Inc. developed Fourier transform techniques leading to the first notable enhancement of imagery data. In 1999 the first commercial satellite (IKONOS) collecting very high resolution imagery was launched.[43]

Training and education edit

Remote Sensing has a growing relevance in the modern information society. It represents a key technology as part of the aerospace industry and bears increasing economic relevance – new sensors e.g. TerraSAR-X and RapidEye are developed constantly and the demand for skilled labour is increasing steadily. Furthermore, remote sensing exceedingly influences everyday life, ranging from weather forecasts to reports on climate change or natural disasters. As an example, 80% of the German students use the services of Google Earth; in 2006 alone the software was downloaded 100 million times. But studies have shown that only a fraction of them know more about the data they are working with.[44] There exists a huge knowledge gap between the application and the understanding of satellite images. Remote sensing only plays a tangential role in schools, regardless of the political claims to strengthen the support for teaching on the subject.[45] A lot of the computer software explicitly developed for school lessons has not yet been implemented due to its complexity. Thereby, the subject is either not at all integrated into the curriculum or does not pass the step of an interpretation of analogue images. In fact, the subject of remote sensing requires a consolidation of physics and mathematics as well as competences in the fields of media and methods apart from the mere visual interpretation of satellite images.

Many teachers have great interest in the subject "remote sensing", being motivated to integrate this topic into teaching, provided that the curriculum is considered. In many cases, this encouragement fails because of confusing information.[46] In order to integrate remote sensing in a sustainable manner organizations like the EGU or Digital Earth[47] encourage the development of learning modules and learning portals. Examples include: FIS – Remote Sensing in School Lessons,[48] Geospektiv,[49] Ychange,[50] or Spatial Discovery,[51] to promote media and method qualifications as well as independent learning.

Software edit

Remote sensing data are processed and analyzed with computer software, known as a remote sensing application. A large number of proprietary and open source applications exist to process remote sensing data.

Remote Sensing with gamma rays edit

There are applications of gamma rays to mineral exploration through remote sensing. In 1972 more than two million dollars were spent on remote sensing applications with gamma rays to mineral exploration. Gamma rays are used to search for deposits of uranium. By observing radioactivity from potassium, porphyry copper deposits can be located. A high ratio of uranium to thorium has been found to be related to the presence of hydrothermal copper deposits. Radiation patterns have also been known to occur above oil and gas fields, but some of these patterns were thought to be due to surface soils instead of oil and gas.[52]

Satellites edit

 
Six Earth observation satellites comprising the A-train satellite constellation as of 2014.

An Earth observation satellite or Earth remote sensing satellite is a satellite used or designed for Earth observation (EO) from orbit, including spy satellites and similar ones intended for non-military uses such as environmental monitoring, meteorology, cartography and others. The most common type are Earth imaging satellites, that take satellite images, analogous to aerial photographs; some EO satellites may perform remote sensing without forming pictures, such as in GNSS radio occultation.

The first occurrence of satellite remote sensing can be dated to the launch of the first artificial satellite, Sputnik 1, by the Soviet Union on October 4, 1957.[53] Sputnik 1 sent back radio signals, which scientists used to study the ionosphere.[54] The United States Army Ballistic Missile Agency launched the first American satellite, Explorer 1, for NASA's Jet Propulsion Laboratory on January 31, 1958. The information sent back from its radiation detector led to the discovery of the Earth's Van Allen radiation belts.[55] The TIROS-1 spacecraft, launched on April 1, 1960, as part of NASA's Television Infrared Observation Satellite (TIROS) program, sent back the first television footage of weather patterns to be taken from space.[53]

In 2008, more than 150 Earth observation satellites were in orbit, recording data with both passive and active sensors and acquiring more than 10 terabits of data daily.[53] By 2021, that total had grown to over 950, with the largest number of satellites operated by US-based company Planet Labs.[56]

Most Earth observation satellites carry instruments that should be operated at a relatively low altitude. Most orbit at altitudes above 500 to 600 kilometers (310 to 370 mi). Lower orbits have significant air-drag, which makes frequent orbit reboost maneuvers necessary. The Earth observation satellites ERS-1, ERS-2 and Envisat of European Space Agency as well as the MetOp spacecraft of EUMETSAT are all operated at altitudes of about 800 km (500 mi). The Proba-1, Proba-2 and SMOS spacecraft of European Space Agency are observing the Earth from an altitude of about 700 km (430 mi). The Earth observation satellites of UAE, DubaiSat-1 & DubaiSat-2 are also placed in Low Earth Orbits (LEO) orbits and providing satellite imagery of various parts of the Earth.[57][58]

To get global coverage with a low orbit, a polar orbit is used. A low orbit will have an orbital period of roughly 100 minutes and the Earth will rotate around its polar axis about 25° between successive orbits. The ground track moves towards the west 25° each orbit, allowing a different section of the globe to be scanned with each orbit. Most are in Sun-synchronous orbits.

A geostationary orbit, at 36,000 km (22,000 mi), allows a satellite to hover over a constant spot on the earth since the orbital period at this altitude is 24 hours. This allows uninterrupted coverage of more than 1/3 of the Earth per satellite, so three satellites, spaced 120° apart, can cover the whole Earth. This type of orbit is mainly used for meteorological satellites.

See also edit

References edit

  1. ^ Schowengerdt, Robert A. (2007). Remote sensing: models and methods for image processing (3rd ed.). Academic Press. p. 2. ISBN 978-0-12-369407-2. from the original on 1 May 2016. Retrieved 15 November 2015.
  2. ^ Schott, John Robert (2007). Remote sensing: the image chain approach (2nd ed.). Oxford University Press. p. 1. ISBN 978-0-19-517817-3. from the original on 24 April 2016. Retrieved 15 November 2015.
  3. ^ Guo, Huadong; Huang, Qingni; Li, Xinwu; Sun, Zhongchang; Zhang, Ying (2013). "Spatiotemporal analysis of urban environment based on the vegetation–impervious surface–soil model" (PDF). Journal of Applied Remote Sensing. 8: 084597. Bibcode:2014JARS....8.4597G. doi:10.1117/1.JRS.8.084597. S2CID 28430037. (PDF) from the original on 19 July 2018. Retrieved 27 October 2021.
  4. ^ Liu, Jian Guo & Mason, Philippa J. (2009). Essential Image Processing for GIS and Remote Sensing. Wiley-Blackwell. p. 4. ISBN 978-0-470-51032-2. Retrieved 2 April 2023.
  5. ^ "Saving the monkeys". SPIE Professional. from the original on 4 February 2016. Retrieved 1 January 2016.
  6. ^ Howard, A.; et al. (19 August 2015). "Remote sensing and habitat mapping for bearded capuchin monkeys (Sapajus libidinosus): landscapes for the use of stone tools". Journal of Applied Remote Sensing. 9 (1): 096020. doi:10.1117/1.JRS.9.096020. S2CID 120031016.
  7. ^ Innocenti, Fabrizio; Robinson, Rod; Gardiner, Tom; Finlayson, Andrew; Connor, Andy (2017). "Differential Absorption Lidar (DIAL) Measurements of Landfill Methane Emissions". Remote Sensing. 9 (9): 953. Bibcode:2017RemS....9..953.. doi:10.3390/rs9090953.
  8. ^ C. Bayindir; J. D. Frost; C. F. Barnes (January 2018). "Assessment and enhancement of SAR noncoherent change detection of sea-surface oil spills". IEEE J. Ocean. Eng. 43 (1): 211–220. Bibcode:2018IJOE...43..211B. doi:10.1109/JOE.2017.2714818. S2CID 44706251.
  9. ^ . Archived from the original on 29 September 2006. Retrieved 18 February 2009.
  10. ^ Zhao, Kaiguang; Suarez, Juan C; Garcia, Mariano; Hu, Tongxi; Wang, Cheng; Londo, Alexis (2018). "Utility of multitemporal lidar for forest and carbon monitoring: Tree growth, biomass dynamics, and carbon flux". Remote Sensing of Environment. 204: 883-897. Bibcode:2018RSEnv.204..883Z. doi:10.1016/j.rse.2017.09.007.
  11. ^ Just Sit Right Back and You'll Hear a Tale, a Tale of a Plankton Trip 10 August 2021 at the Wayback Machine NASA Earth Expeditions, 15 August 2018.
  12. ^ Levin, Noam; Kyba, Christopher C.M.; Zhang, Qingling; Sánchez de Miguel, Alejandro; Román, Miguel O.; Li, Xi; Portnov, Boris A.; Molthan, Andrew L.; Jechow, Andreas; Miller, Steven D.; Wang, Zhuosen; Shrestha, Ranjay M.; Elvidge, Christopher D. (February 2020). "Remote sensing of night lights: A review and an outlook for the future". Remote Sensing of Environment. 237: 111443. Bibcode:2020RSEnv.23711443L. doi:10.1016/j.rse.2019.111443. hdl:10871/40052. S2CID 214254543.
  13. ^ Corradino, Claudia; Ganci, Gaetana; Bilotta, Giuseppe; Cappello, Annalisa; Del Negro, Ciro; Fortuna, Luigi (January 2019). "Smart Decision Support Systems for Volcanic Applications". Energies. 12 (7): 1216. doi:10.3390/en12071216.
  14. ^ Corradino, Claudia; Ganci, Gaetana; Cappello, Annalisa; Bilotta, Giuseppe; Hérault, Alexis; Del Negro, Ciro (January 2019). "Mapping Recent Lava Flows at Mount Etna Using Multispectral Sentinel-2 Images and Machine Learning Techniques". Remote Sensing. 11 (16): 1916. Bibcode:2019RemS...11.1916C. doi:10.3390/rs11161916.
  15. ^ Goldberg, A.; Stann, B.; Gupta, N. (July 2003). "Multispectral, Hyperspectral, and Three-Dimensional Imaging Research at the U.S. Army Research Laboratory" (PDF). Proceedings of the International Conference on International Fusion [6th]. 1: 499–506.
  16. ^ Makki, Ihab; Younes, Rafic; Francis, Clovis; Bianchi, Tiziano; Zucchetti, Massimo (1 February 2017). "A survey of landmine detection using hyperspectral imaging". ISPRS Journal of Photogrammetry and Remote Sensing. 124: 40–53. Bibcode:2017JPRS..124...40M. doi:10.1016/j.isprsjprs.2016.12.009. ISSN 0924-2716.
  17. ^ Mills, J.P.; et al. (1997). "Photogrammetry from Archived Digital Imagery for Seal Monitoring". The Photogrammetric Record. 15 (89): 715–724. doi:10.1111/0031-868X.00080. S2CID 140189982.
  18. ^ Twiss, S.D.; et al. (2001). "Topographic spatial characterisation of grey seal Halichoerus grypus breeding habitat at a sub-seal size spatial grain". Ecography. 24 (3): 257–266. doi:10.1111/j.1600-0587.2001.tb00198.x.
  19. ^ Stewart, J.E.; et al. (2014). "Finescale ecological niche modeling provides evidence that lactating gray seals (Halichoerus grypus) prefer access to fresh water in order to drink" (PDF). Marine Mammal Science. 30 (4): 1456–1472. Bibcode:2014MMamS..30.1456S. doi:10.1111/mms.12126. (PDF) from the original on 13 July 2021. Retrieved 27 October 2021.
  20. ^ Zhang, Chuanrong; Li, Xinba (September 2022). "Land Use and Land Cover Mapping in the Era of Big Data". Land. 11 (10): 1692. doi:10.3390/land11101692.
  21. ^ "Begni G. Escadafal R. Fontannaz D. and Hong-Nga Nguyen A.-T. (2005). Remote sensing: a tool to monitor and assess desertification. Les dossiers thématiques du CSFD. Issue 2. 44 pp". from the original on 26 May 2019. Retrieved 27 October 2021.
  22. ^ Wang, Ran; Gamon, John A. (15 September 2019). "Remote sensing of terrestrial plant biodiversity". Remote Sensing of Environment. 231: 111218. Bibcode:2019RSEnv.23111218W. doi:10.1016/j.rse.2019.111218. ISSN 0034-4257. S2CID 197567301.
  23. ^ Rocchini, Duccio; Boyd, Doreen S.; Féret, Jean-Baptiste; Foody, Giles M.; He, Kate S.; Lausch, Angela; Nagendra, Harini; Wegmann, Martin; Pettorelli, Nathalie (February 2016). Skidmore, Andrew; Chauvenet, Alienor (eds.). "Satellite remote sensing to monitor species diversity: potential and pitfalls". Remote Sensing in Ecology and Conservation. 2 (1): 25–36. Bibcode:2016RSEC....2...25R. doi:10.1002/rse2.9. hdl:11585/720672. ISSN 2056-3485. S2CID 59446258.
  24. ^ Schweiger, Anna K.; Cavender-Bares, Jeannine; Townsend, Philip A.; Hobbie, Sarah E.; Madritch, Michael D.; Wang, Ran; Tilman, David; Gamon, John A. (June 2018). "Plant spectral diversity integrates functional and phylogenetic components of biodiversity and predicts ecosystem function". Nature Ecology & Evolution. 2 (6): 976–982. Bibcode:2018NatEE...2..976S. doi:10.1038/s41559-018-0551-1. ISSN 2397-334X. PMID 29760440. S2CID 256718584.
  25. ^ Cerrejón, Carlos; Valeria, Osvaldo; Marchand, Philippe; Caners, Richard T.; Fenton, Nicole J. (18 February 2021). "No place to hide: Rare plant detection through remote sensing". Diversity and Distributions. 27 (6): 948–961. Bibcode:2021DivDi..27..948C. doi:10.1111/ddi.13244. ISSN 1366-9516. S2CID 233886263.
  26. ^ "Geodetic Imaging". from the original on 2 October 2016. Retrieved 29 September 2016.
  27. ^ Grigoriev А.N. (2015). "Мethod of radiometric distortion correction of multispectral data for the earth remote sensing". Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 15 (4): 595–602. doi:10.17586/2226-1494-2015-15-4-595-602.
  28. ^ NASA (1986), Report of the EOS data panel, Earth Observing System, Data and Information System, Data Panel Report, Vol. IIa., NASA Technical Memorandum 87777, June 1986, 62 pp. Available at http://hdl.handle.net/2060/19860021622 27 October 2021 at the Wayback Machine
  29. ^ C. L. Parkinson, A. Ward, M. D. King (Eds.) Earth Science Reference Handbook – A Guide to NASA's Earth Science Program and Earth Observing Satellite Missions, National Aeronautics and Space Administration Washington, D. C. Available at http://eospso.gsfc.nasa.gov/ftp_docs/2006ReferenceHandbook.pdf 15 April 2010 at the Wayback Machine
  30. ^ GRAS-SAF (2009), Product User Manual, GRAS Satellite Application Facility, Version 1.2.1, 31 March 2009. Available at http://www.grassaf.org/general-documents/products/grassaf_pum_v121.pdf 26 July 2011 at the Wayback Machine
  31. ^ Maksel, Rebecca. "Flight of the Giant". Air & Space Magazine. from the original on 18 August 2021. Retrieved 19 February 2019.
  32. ^ IWM, Alan Wakefield
    Head of photographs at (4 April 2014). . The Daily Telegraph. ISSN 0307-1235. Archived from the original on 18 April 2014. Retrieved 19 February 2019.
  33. ^ a b Bagley, James (1941). Aerophotography and Aerosurverying (1st ed.). York, PA: The Maple Press Company.
  34. ^ "Air Force Magazine". www.airforcemag.com. from the original on 19 February 2019. Retrieved 19 February 2019.
  35. ^ "Military Imaging and Surveillance Technology (MIST)". www.darpa.mil. from the original on 18 August 2021. Retrieved 19 February 2019.
  36. ^ The Indian Society of International Law - Newsletter: VOL. 15, No. 4, October - December 2016 (Report). doi:10.1163/2210-7975_hrd-9920-2016004.
  37. ^ "In Depth | Magellan". Solar System Exploration: NASA Science. from the original on 19 October 2021. Retrieved 19 February 2019.
  38. ^ Garner, Rob (15 April 2015). "SOHO - Solar and Heliospheric Observatory". NASA. from the original on 18 September 2021. Retrieved 19 February 2019.
  39. ^ Campbell, James B.; Wynne, Randolph H. (21 June 2011). Introduction to Remote Sensing (5th ed.). New York London: The Guilford Press. ISBN 978-1-60918-176-5.
  40. ^ Ryerson, Robert A. (2010). Why 'where' matters : understanding and profiting from GPS, GIS, and remote sensing : practical advice for individuals, communities, companies and countries. Internet Archive. Manotick, ON : Kim Geomatics Corp. ISBN 978-0-9866376-0-5.
  41. ^ Fussell, Jay; Rundquist, Donald; Harrington, John A. (September 1986). (PDF). Photogrammetric Engineering and Remote Sensing. 52 (9): 1507–1511. Archived from the original (PDF) on 4 October 2021.
  42. ^ Pruitt, Evelyn L. (1979). "The Office of Naval Research and Geography". Annals of the Association of American Geographers. 69 (1): 103–108. doi:10.1111/j.1467-8306.1979.tb01235.x. ISSN 0004-5608. JSTOR 2569553.
  43. ^ Colen, Jerry (8 April 2015). "Ames Research Center Overview". NASA. from the original on 28 September 2021. Retrieved 19 February 2019.
  44. ^ Ditter, R., Haspel, M., Jahn, M., Kollar, I., Siegmund, A., Viehrig, K., Volz, D., Siegmund, A. (2012) Geospatial technologies in school – theoretical concept and practical implementation in K-12 schools. In: International Journal of Data Mining, Modelling and Management (IJDMMM): FutureGIS: Riding the Wave of a Growing Geospatial Technology Literate Society; Vol. X
  45. ^ Stork, E.J., Sakamoto, S.O., and Cowan, R.M. (1999) "The integration of science explorations through the use of earth images in middle school curriculum", Proc. IEEE Trans. Geosci. Remote Sensing 37, 1801–1817
  46. ^ Bednarz, S.W.; Whisenant, S.E. (July 2000). "Mission Geography: Linking national geography standards, innovative technologies and NASA". IGARSS 2000. IEEE 2000 International Geoscience and Remote Sensing Symposium. Taking the Pulse of the Planet: The Role of Remote Sensing in Managing the Environment. Proceedings (Cat. No.00CH37120). Vol. 6. pp. 2780–2782 vol.6. doi:10.1109/IGARSS.2000.859713. ISBN 0-7803-6359-0. S2CID 62414447.
  47. ^
  48. ^ "FIS – Remote Sensing in School Lessons". from the original on 26 October 2012. Retrieved 25 October 2012.
  49. ^ "geospektiv". from the original on 2 May 2018. Retrieved 1 June 2018.
  50. ^ "YCHANGE". from the original on 17 August 2018. Retrieved 1 June 2018.
  51. ^ "Landmap – Spatial Discovery". from the original on 29 November 2014. Retrieved 27 October 2021.
  52. ^ Grasty, R (1976). Applications of Gamma Radiation in Remote Sensing (1st ed.). Berlin: Springer-Verlag. p. 267. ISBN 978-3-642-66238-6.
  53. ^ a b c Tatem, Andrew J.; Goetz, Scott J.; Hay, Simon I. (2008). "Fifty Years of Earth-observation Satellites". American Scientist. 96 (5): 390–398. doi:10.1511/2008.74.390. PMC 2690060. PMID 19498953.
  54. ^ Kuznetsov, V.D.; Sinelnikov, V.M.; Alpert, S.N. (June 2015). "Yakov Alpert: Sputnik-1 and the first satellite ionospheric experiment". Advances in Space Research. 55 (12): 2833–2839. Bibcode:2015AdSpR..55.2833K. doi:10.1016/j.asr.2015.02.033.
  55. ^ "James A. Van Allen". nmspacemuseum.org. New Mexico Museum of Space History. Retrieved 14 May 2018.
  56. ^ "How many Earth observation satellites are orbiting the planet in 2021?". 18 August 2021.
  57. ^ . Mohammed Bin Rashid Space Centre. Archived from the original on 17 January 2019. Retrieved 4 July 2016.
  58. ^ . Mohammed Bin Rashid Space Centre. Archived from the original on 4 March 2016. Retrieved 4 July 2016.

Further reading edit

  • Campbell, J. B. (2002). Introduction to remote sensing (3rd ed.). The Guilford Press. ISBN 978-1-57230-640-0.
  • Jensen, J. R. (2007). Remote sensing of the environment: an Earth resource perspective (2nd ed.). Prentice Hall. ISBN 978-0-13-188950-7.
  • Jensen, J. R. (2005). Digital Image Processing: a Remote Sensing Perspective (3rd ed.). Prentice Hall.
  • Lentile, Leigh B.; Holden, Zachary A.; Smith, Alistair M. S.; Falkowski, Michael J.; Hudak, Andrew T.; Morgan, Penelope; Lewis, Sarah A.; Gessler, Paul E.; Benson, Nate C. (2006). . International Journal of Wildland Fire. 3 (15): 319–345. doi:10.1071/WF05097. S2CID 724358. Archived from the original on 12 August 2014. Retrieved 4 February 2010.
  • Lillesand, T. M.; R. W. Kiefer; J. W. Chipman (2003). Remote sensing and image interpretation (5th ed.). Wiley. ISBN 978-0-471-15227-9.
  • Richards, J. A.; X. Jia (2006). Remote sensing digital image analysis: an introduction (4th ed.). Springer. ISBN 978-3-540-25128-6.
  • Datla, R.U.; Rice, J.P.; Lykke, K.R.; Johnson, B.C.; Butler, J.J.; Xiong, X. (March–April 2011). "Best practice guidelines for pre-launch characterization and calibration of instruments for passive optical remote sensing". Journal of Research of the National Institute of Standards and Technology. 116 (2): 612–646. doi:10.6028/jres.116.009. PMC 4550341. PMID 26989588.
  • KUENZER, C. ZHANG, J., TETZLAFF, A., and S. DECH, 2013: Thermal Infrared Remote Sensing of Surface and underground Coal Fires. In (eds.) Kuenzer, C. and S. Dech 2013: Thermal Infrared Remote Sensing – Sensors, Methods, Applications. Remote Sensing and Digital Image Processing Series, Volume 17, 572 pp., ISBN 978-94-007-6638-9, pp. 429–451
  • Kuenzer, C. and S. Dech 2013: Thermal Infrared Remote Sensing – Sensors, Methods, Applications. Remote Sensing and Digital Image Processing Series, Volume 17, 572 pp., ISBN 978-94-007-6638-9
  • Lasaponara, R. and Masini N. 2012: Satellite Remote Sensing - A new tool for Archaeology. Remote Sensing and Digital Image Processing Series, Volume 16, 364 pp., ISBN 978-90-481-8801-7.
  • Dupuis, C.; Lejeune, P.; Michez, A.; Fayolle, A. How Can Remote Sensing Help Monitor Tropical Moist Forest Degradation?—A Systematic Review. Remote Sens. 2020, 12, 1087. https://www.mdpi.com/2072-4292/12/7/1087

External links edit

  •   Media related to Remote sensing at Wikimedia Commons
  • Remote Sensing at Curlie

remote, sensing, this, article, needs, additional, citations, verification, please, help, improve, this, article, adding, citations, reliable, sources, unsourced, material, challenged, removed, find, sources, news, newspapers, books, scholar, jstor, september,. This article needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed Find sources Remote sensing news newspapers books scholar JSTOR September 2023 Learn how and when to remove this template message For other uses see Remote sensing disambiguation Remote sensing is the acquisition of information about an object or phenomenon without making physical contact with the object in contrast to in situ or on site observation The term is applied especially to acquiring information about Earth and other planets Remote sensing is used in numerous fields including geophysics geography land surveying and most Earth science disciplines e g exploration geophysics hydrology ecology meteorology oceanography glaciology geology it also has military intelligence commercial economic planning and humanitarian applications among others Synthetic aperture radar image of Death Valley colored using polarimetryIn current usage the term remote sensing generally refers to the use of satellite or aircraft based sensor technologies to detect and classify objects on Earth It includes the surface and the atmosphere and oceans based on propagated signals e g electromagnetic radiation It may be split into active remote sensing when a signal is emitted by a satellite or aircraft to the object and its reflection detected by the sensor and passive remote sensing when the reflection of sunlight is detected by the sensor 1 2 3 4 Contents 1 Overview 2 Types of data acquisition techniques 2 1 Applications of remote sensing 2 2 Geodetic 2 3 Acoustic and near acoustic 3 Data characteristics 4 Data processing 4 1 Data processing levels 5 History 6 Training and education 7 Software 8 Remote Sensing with gamma rays 9 Satellites 10 See also 11 References 12 Further reading 13 External linksOverview edit source source source source source This video is about how Landsat was used to identify areas of conservation in the Democratic Republic of the Congo and how it was used to help map an area called MLW in the north Remote sensing can be divided into two types of methods Passive remote sensing and Active remote sensing Passive sensors gather radiation that is emitted or reflected by the object or surrounding areas Reflected sunlight is the most common source of radiation measured by passive sensors Examples of passive remote sensors include film photography infrared charge coupled devices and radiometers Active collection on the other hand emits energy in order to scan objects and areas whereupon a sensor then detects and measures the radiation that is reflected or backscattered from the target RADAR and LiDAR are examples of active remote sensing where the time delay between emission and return is measured establishing the location speed and direction of an object nbsp Illustration of remote sensingRemote sensing makes it possible to collect data of dangerous or inaccessible areas Remote sensing applications include monitoring deforestation in areas such as the Amazon Basin glacial features in Arctic and Antarctic regions and depth sounding of coastal and ocean depths Military collection during the Cold War made use of stand off collection of data about dangerous border areas Remote sensing also replaces costly and slow data collection on the ground ensuring in the process that areas or objects are not disturbed Orbital platforms collect and transmit data from different parts of the electromagnetic spectrum which in conjunction with larger scale aerial or ground based sensing and analysis provides researchers with enough information to monitor trends such as El Nino and other natural long and short term phenomena Other uses include different areas of the earth sciences such as natural resource management agricultural fields such as land usage and conservation 5 6 greenhouse gas monitoring 7 oil spill detection and monitoring 8 and national security and overhead ground based and stand off collection on border areas 9 Types of data acquisition techniques editThe basis for multispectral collection and analysis is that of examined areas or objects that reflect or emit radiation that stand out from surrounding areas For a summary of major remote sensing satellite systems see the overview table Applications of remote sensing edit Further information Remote sensing geology and Remote sensing in archaeology nbsp Radar image of Aswan Dam Egypt taken by UmbraConventional radar is mostly associated with aerial traffic control early warning and certain large scale meteorological data Doppler radar is used by local law enforcements monitoring of speed limits and in enhanced meteorological collection such as wind speed and direction within weather systems in addition to precipitation location and intensity Other types of active collection includes plasmas in the ionosphere Interferometric synthetic aperture radar is used to produce precise digital elevation models of large scale terrain See RADARSAT TerraSAR X Magellan Laser and radar altimeters on satellites have provided a wide range of data By measuring the bulges of water caused by gravity they map features on the seafloor to a resolution of a mile or so By measuring the height and wavelength of ocean waves the altimeters measure wind speeds and direction and surface ocean currents and directions Ultrasound acoustic and radar tide gauges measure sea level tides and wave direction in coastal and offshore tide gauges Light detection and ranging LIDAR is well known in examples of weapon ranging laser illuminated homing of projectiles LIDAR is used to detect and measure the concentration of various chemicals in the atmosphere while airborne LIDAR can be used to measure the heights of objects and features on the ground more accurately than with radar technology Vegetation remote sensing is a principal application of LIDAR 10 Radiometers and photometers are the most common instrument in use collecting reflected and emitted radiation in a wide range of frequencies The most common are visible and infrared sensors followed by microwave gamma ray and rarely ultraviolet They may also be used to detect the emission spectra of various chemicals providing data on chemical concentrations in the atmosphere nbsp Examples of remote sensing equipment deployed byor interfaced with oceanographic research vessels 11 Radiometers are also used at night because artificial light emissions are a key signature of human activity 12 Applications include remote sensing of population GDP and damage to infrastructure from war or disasters Radiometers and radar onboard of satellites can be used to monitor volcanic eruptions 13 14 Spectropolarimetric Imaging has been reported to be useful for target tracking purposes by researchers at the U S Army Research Laboratory They determined that manmade items possess polarimetric signatures that are not found in natural objects These conclusions were drawn from the imaging of military trucks like the Humvee and trailers with their acousto optic tunable filter dual hyperspectral and spectropolarimetric VNIR Spectropolarimetric Imager 15 16 Stereographic pairs of aerial photographs have often been used to make topographic maps by imagery and terrain analysts in trafficability and highway departments for potential routes in addition to modelling terrestrial habitat features 17 18 19 Simultaneous multi spectral platforms such as Landsat have been in use since the 1970s These thematic mappers take images in multiple wavelengths of electromagnetic radiation multi spectral and are usually found on Earth observation satellites including for example the Landsat program or the IKONOS satellite Maps of land cover and land use from thematic mapping can be used to prospect for minerals detect or monitor land usage detect invasive vegetation deforestation and examine the health of indigenous plants and crops satellite crop monitoring including entire farming regions or forests 20 Prominent scientists using remote sensing for this purpose include Janet Franklin and Ruth DeFries Landsat images are used by regulatory agencies such as KYDOW to indicate water quality parameters including Secchi depth chlorophyll density and total phosphorus content Weather satellites are used in meteorology and climatology Hyperspectral imaging produces an image where each pixel has full spectral information with imaging narrow spectral bands over a contiguous spectral range Hyperspectral imagers are used in various applications including mineralogy biology defence and environmental measurements Within the scope of the combat against desertification remote sensing allows researchers to follow up and monitor risk areas in the long term to determine desertification factors to support decision makers in defining relevant measures of environmental management and to assess their impacts 21 Remotely sensed multi and hyperspectral images can be used for assessing biodiversity at different scales Since the spectral properties of different plants species are unique it is possible to get information about properties that relates to biodiversity such as habitat heterogeneity spectral diversity and plant functional trait 22 23 24 Remote sensing has been used to detect rare plants to aid in conservation efforts Prediction detection and the ability to record biophysical conditions were possible from medium to very high resolutions 25 Geodetic edit Further information Satellite geodesy Geodetic remote sensing can be gravimetric or geometric Overhead gravity data collection was first used in aerial submarine detection This data revealed minute perturbations in the Earth s gravitational field that may be used to determine changes in the mass distribution of the Earth which in turn may be used for geophysical studies as in GRACE Geometric remote sensing includes position and deformation imaging using InSAR LIDAR etc 26 Acoustic and near acoustic edit Sonar passive sonar listening for the sound made by another object a vessel a whale etc active sonar emitting pulses of sounds and listening for echoes used for detecting ranging and measurements of underwater objects and terrain Seismograms taken at different locations can locate and measure earthquakes after they occur by comparing the relative intensity and precise timings Ultrasound Ultrasound sensors that emit high frequency pulses and listening for echoes used for detecting water waves and water level as in tide gauges or for towing tanks To coordinate a series of large scale observations most sensing systems depend on the following platform location and the orientation of the sensor High end instruments now often use positional information from satellite navigation systems The rotation and orientation are often provided within a degree or two with electronic compasses Compasses can measure not just azimuth i e degrees to magnetic north but also altitude degrees above the horizon since the magnetic field curves into the Earth at different angles at different latitudes More exact orientations require gyroscopic aided orientation periodically realigned by different methods including navigation from stars or known benchmarks Data characteristics editThe quality of remote sensing data consists of its spatial spectral radiometric and temporal resolutions Spatial resolution The size of a pixel that is recorded in a raster image typically pixels may correspond to square areas ranging in side length from 1 to 1 000 metres 3 3 to 3 280 8 ft Spectral resolution The wavelength of the different frequency bands recorded usually this is related to the number of frequency bands recorded by the platform Current Landsat collection is that of seven bands including several in the infrared spectrum ranging from a spectral resolution of 0 7 to 2 1 mm The Hyperion sensor on Earth Observing 1 resolves 220 bands from 0 4 to 2 5 mm with a spectral resolution of 0 10 to 0 11 mm per band Radiometric resolution The number of different intensities of radiation the sensor is able to distinguish Typically this ranges from 8 to 14 bits corresponding to 256 levels of the gray scale and up to 16 384 intensities or shades of colour in each band It also depends on the instrument noise Temporal resolution The frequency of flyovers by the satellite or plane and is only relevant in time series studies or those requiring an averaged or mosaic image as in deforesting monitoring This was first used by the intelligence community where repeated coverage revealed changes in infrastructure the deployment of units or the modification introduction of equipment Cloud cover over a given area or object makes it necessary to repeat the collection of said location Data processing editIn order to create sensor based maps most remote sensing systems expect to extrapolate sensor data in relation to a reference point including distances between known points on the ground This depends on the type of sensor used For example in conventional photographs distances are accurate in the center of the image with the distortion of measurements increasing the farther you get from the center Another factor is that of the platen against which the film is pressed can cause severe errors when photographs are used to measure ground distances The step in which this problem is resolved is called georeferencing and involves computer aided matching of points in the image typically 30 or more points per image which is extrapolated with the use of an established benchmark warping the image to produce accurate spatial data As of the early 1990s most satellite images are sold fully georeferenced In addition images may need to be radiometrically and atmospherically corrected Radiometric correction Allows avoidance of radiometric errors and distortions The illumination of objects on the Earth s surface is uneven because of different properties of the relief This factor is taken into account in the method of radiometric distortion correction 27 Radiometric correction gives a scale to the pixel values e g the monochromatic scale of 0 to 255 will be converted to actual radiance values Topographic correction also called terrain correction In rugged mountains as a result of terrain the effective illumination of pixels varies considerably In a remote sensing image the pixel on the shady slope receives weak illumination and has a low radiance value in contrast the pixel on the sunny slope receives strong illumination and has a high radiance value For the same object the pixel radiance value on the shady slope will be different from that on the sunny slope Additionally different objects may have similar radiance values These ambiguities seriously affected remote sensing image information extraction accuracy in mountainous areas It became the main obstacle to the further application of remote sensing images The purpose of topographic correction is to eliminate this effect recovering the true reflectivity or radiance of objects in horizontal conditions It is the premise of quantitative remote sensing application Atmospheric correction Elimination of atmospheric haze by rescaling each frequency band so that its minimum value usually realised in water bodies corresponds to a pixel value of 0 The digitizing of data also makes it possible to manipulate the data by changing gray scale values Interpretation is the critical process of making sense of the data The first application was that of aerial photographic collection which used the following process spatial measurement through the use of a light table in both conventional single or stereographic coverage added skills such as the use of photogrammetry the use of photomosaics repeat coverage Making use of objects known dimensions in order to detect modifications Image Analysis is the recently developed automated computer aided application that is in increasing use Object Based Image Analysis OBIA is a sub discipline of GIScience devoted to partitioning remote sensing RS imagery into meaningful image objects and assessing their characteristics through spatial spectral and temporal scale Old data from remote sensing is often valuable because it may provide the only long term data for a large extent of geography At the same time the data is often complex to interpret and bulky to store Modern systems tend to store the data digitally often with lossless compression The difficulty with this approach is that the data is fragile the format may be archaic and the data may be easy to falsify One of the best systems for archiving data series is as computer generated machine readable ultrafiche usually in typefonts such as OCR B or as digitized half tone images Ultrafiches survive well in standard libraries with lifetimes of several centuries They can be created copied filed and retrieved by automated systems They are about as compact as archival magnetic media and yet can be read by human beings with minimal standardized equipment Generally speaking remote sensing works on the principle of the inverse problem while the object or phenomenon of interest the state may not be directly measured there exists some other variable that can be detected and measured the observation which may be related to the object of interest through a calculation The common analogy given to describe this is trying to determine the type of animal from its footprints For example while it is impossible to directly measure temperatures in the upper atmosphere it is possible to measure the spectral emissions from a known chemical species such as carbon dioxide in that region The frequency of the emissions may then be related via thermodynamics to the temperature in that region Data processing levels edit To facilitate the discussion of data processing in practice several processing levels were first defined in 1986 by NASA as part of its Earth Observing System 28 and steadily adopted since then both internally at NASA e g 29 and elsewhere e g 30 these definitions are Level Description0 Reconstructed unprocessed instrument and payload data at full resolution with any and all communications artifacts e g synchronization frames communications headers duplicate data removed 1a Reconstructed unprocessed instrument data at full resolution time referenced and annotated with ancillary information including radiometric and geometric calibration coefficients and georeferencing parameters e g platform ephemeris computed and appended but not applied to the Level 0 data or if applied in a manner that level 0 is fully recoverable from level 1a data 1b Level 1a data that have been processed to sensor units e g radar backscatter cross section brightness temperature etc not all instruments have Level 1b data level 0 data is not recoverable from level 1b data 2 Derived geophysical variables e g ocean wave height soil moisture ice concentration at the same resolution and location as Level 1 source data 3 Variables mapped on uniform spacetime grid scales usually with some completeness and consistency e g missing points interpolated complete regions mosaicked together from multiple orbits etc 4 Model output or results from analyses of lower level data i e variables that were not measured by the instruments but instead are derived from these measurements A Level 1 data record is the most fundamental i e highest reversible level data record that has significant scientific utility and is the foundation upon which all subsequent data sets are produced Level 2 is the first level that is directly usable for most scientific applications its value is much greater than the lower levels Level 2 data sets tend to be less voluminous than Level 1 data because they have been reduced temporally spatially or spectrally Level 3 data sets are generally smaller than lower level data sets and thus can be dealt with without incurring a great deal of data handling overhead These data tend to be generally more useful for many applications The regular spatial and temporal organization of Level 3 datasets makes it feasible to readily combine data from different sources While these processing levels are particularly suitable for typical satellite data processing pipelines other data level vocabularies have been defined and may be appropriate for more heterogeneous workflows History edit nbsp The TR 1 reconnaissance surveillance aircraft nbsp The 2001 Mars Odyssey used spectrometers and imagers to hunt for evidence of past or present water and volcanic activity on Mars The modern discipline of remote sensing arose with the development of flight The balloonist G Tournachon alias Nadar made photographs of Paris from his balloon in 1858 31 Messenger pigeons kites rockets and unmanned balloons were also used for early images With the exception of balloons these first individual images were not particularly useful for map making or for scientific purposes Systematic aerial photography was developed for military surveillance and reconnaissance purposes beginning in World War I 32 After WWI remote sensing technology was quickly adapted to civilian applications 33 This is demonstrated by the first line of a 1941 textbook titled Aerophotography and Aerosurverying which stated the following There is no longer any need to preach for aerial photography not in the United States for so widespread has become its use and so great its value that even the farmer who plants his fields in a remote corner of the country knows its value James Bagley 33 The development of remote sensing technology reached a climax during the Cold War with the use of modified combat aircraft such as the P 51 P 38 RB 66 and the F 4C or specifically designed collection platforms such as the U2 TR 1 SR 71 A 5 and the OV 1 series both in overhead and stand off collection 34 A more recent development is that of increasingly smaller sensor pods such as those used by law enforcement and the military in both manned and unmanned platforms The advantage of this approach is that this requires minimal modification to a given airframe Later imaging technologies would include infrared conventional Doppler and synthetic aperture radar 35 The development of artificial satellites in the latter half of the 20th century allowed remote sensing to progress to a global scale as of the end of the Cold War 36 Instrumentation aboard various Earth observing and weather satellites such as Landsat the Nimbus and more recent missions such as RADARSAT and UARS provided global measurements of various data for civil research and military purposes Space probes to other planets have also provided the opportunity to conduct remote sensing studies in extraterrestrial environments synthetic aperture radar aboard the Magellan spacecraft provided detailed topographic maps of Venus while instruments aboard SOHO allowed studies to be performed on the Sun and the solar wind just to name a few examples 37 38 Recent developments include beginning in the 1960s and 1970s the development of image processing of satellite imagery The use of the term remote sensing began in the early 1960s when Evelyn Pruitt realized that advances in science meant that aerial photography was no longer an adequate term to describe the data streams being generated by new technologies 39 40 With assistance from her fellow staff member at the Office of Naval Research Walter Bailey she coined the term remote sensing 41 42 Several research groups in Silicon Valley including NASA Ames Research Center GTE and ESL Inc developed Fourier transform techniques leading to the first notable enhancement of imagery data In 1999 the first commercial satellite IKONOS collecting very high resolution imagery was launched 43 Training and education editRemote Sensing has a growing relevance in the modern information society It represents a key technology as part of the aerospace industry and bears increasing economic relevance new sensors e g TerraSAR X and RapidEye are developed constantly and the demand for skilled labour is increasing steadily Furthermore remote sensing exceedingly influences everyday life ranging from weather forecasts to reports on climate change or natural disasters As an example 80 of the German students use the services of Google Earth in 2006 alone the software was downloaded 100 million times But studies have shown that only a fraction of them know more about the data they are working with 44 There exists a huge knowledge gap between the application and the understanding of satellite images Remote sensing only plays a tangential role in schools regardless of the political claims to strengthen the support for teaching on the subject 45 A lot of the computer software explicitly developed for school lessons has not yet been implemented due to its complexity Thereby the subject is either not at all integrated into the curriculum or does not pass the step of an interpretation of analogue images In fact the subject of remote sensing requires a consolidation of physics and mathematics as well as competences in the fields of media and methods apart from the mere visual interpretation of satellite images Many teachers have great interest in the subject remote sensing being motivated to integrate this topic into teaching provided that the curriculum is considered In many cases this encouragement fails because of confusing information 46 In order to integrate remote sensing in a sustainable manner organizations like the EGU or Digital Earth 47 encourage the development of learning modules and learning portals Examples include FIS Remote Sensing in School Lessons 48 Geospektiv 49 Ychange 50 or Spatial Discovery 51 to promote media and method qualifications as well as independent learning Software editMain article Remote sensing software Remote sensing data are processed and analyzed with computer software known as a remote sensing application A large number of proprietary and open source applications exist to process remote sensing data Remote Sensing with gamma rays editThere are applications of gamma rays to mineral exploration through remote sensing In 1972 more than two million dollars were spent on remote sensing applications with gamma rays to mineral exploration Gamma rays are used to search for deposits of uranium By observing radioactivity from potassium porphyry copper deposits can be located A high ratio of uranium to thorium has been found to be related to the presence of hydrothermal copper deposits Radiation patterns have also been known to occur above oil and gas fields but some of these patterns were thought to be due to surface soils instead of oil and gas 52 Satellites editThis section is an excerpt from Earth observation satellite edit nbsp Six Earth observation satellites comprising the A train satellite constellation as of 2014 An Earth observation satellite or Earth remote sensing satellite is a satellite used or designed for Earth observation EO from orbit including spy satellites and similar ones intended for non military uses such as environmental monitoring meteorology cartography and others The most common type are Earth imaging satellites that take satellite images analogous to aerial photographs some EO satellites may perform remote sensing without forming pictures such as in GNSS radio occultation The first occurrence of satellite remote sensing can be dated to the launch of the first artificial satellite Sputnik 1 by the Soviet Union on October 4 1957 53 Sputnik 1 sent back radio signals which scientists used to study the ionosphere 54 The United States Army Ballistic Missile Agency launched the first American satellite Explorer 1 for NASA s Jet Propulsion Laboratory on January 31 1958 The information sent back from its radiation detector led to the discovery of the Earth s Van Allen radiation belts 55 The TIROS 1 spacecraft launched on April 1 1960 as part of NASA s Television Infrared Observation Satellite TIROS program sent back the first television footage of weather patterns to be taken from space 53 In 2008 more than 150 Earth observation satellites were in orbit recording data with both passive and active sensors and acquiring more than 10 terabits of data daily 53 By 2021 that total had grown to over 950 with the largest number of satellites operated by US based company Planet Labs 56 Most Earth observation satellites carry instruments that should be operated at a relatively low altitude Most orbit at altitudes above 500 to 600 kilometers 310 to 370 mi Lower orbits have significant air drag which makes frequent orbit reboost maneuvers necessary The Earth observation satellites ERS 1 ERS 2 and Envisat of European Space Agency as well as the MetOp spacecraft of EUMETSAT are all operated at altitudes of about 800 km 500 mi The Proba 1 Proba 2 and SMOS spacecraft of European Space Agency are observing the Earth from an altitude of about 700 km 430 mi The Earth observation satellites of UAE DubaiSat 1 amp DubaiSat 2 are also placed in Low Earth Orbits LEO orbits and providing satellite imagery of various parts of the Earth 57 58 To get global coverage with a low orbit a polar orbit is used A low orbit will have an orbital period of roughly 100 minutes and the Earth will rotate around its polar axis about 25 between successive orbits The ground track moves towards the west 25 each orbit allowing a different section of the globe to be scanned with each orbit Most are in Sun synchronous orbits A geostationary orbit at 36 000 km 22 000 mi allows a satellite to hover over a constant spot on the earth since the orbital period at this altitude is 24 hours This allows uninterrupted coverage of more than 1 3 of the Earth per satellite so three satellites spaced 120 apart can cover the whole Earth This type of orbit is mainly used for meteorological satellites See also editMain category Remote sensing Airborne Real time Cueing Hyperspectral Enhanced Reconnaissance American Society for Photogrammetry and Remote Sensing Archaeological imagery Asian Association on Remote Sensing CLidar Coastal management Crateology First images of Earth from space Full spectral imaging Geographic information system GIS GIS and hydrology Geoinformatics Geophysical survey Global Positioning System GPS Ground truth Remote sensing IEEE Geoscience and Remote Sensing Society Image mosaic Imagery analysis Imaging science International Society for Photogrammetry and Remote Sensing Land change science Liquid crystal tunable filter List of Earth observation satellites Mobile mapping Multispectral pattern recognition National Center for Remote Sensing Air and Space Law National LIDAR Dataset Normalized difference water index Orthophoto Pictometry Radiometry Remote monitoring and control Technical geography TopoFlight Vector MapReferences edit Schowengerdt Robert A 2007 Remote sensing models and methods for image processing 3rd ed Academic Press p 2 ISBN 978 0 12 369407 2 Archived from the original on 1 May 2016 Retrieved 15 November 2015 Schott John Robert 2007 Remote sensing the image chain approach 2nd ed Oxford University Press p 1 ISBN 978 0 19 517817 3 Archived from the original on 24 April 2016 Retrieved 15 November 2015 Guo Huadong Huang Qingni Li Xinwu Sun Zhongchang Zhang Ying 2013 Spatiotemporal analysis of urban environment based on the vegetation impervious surface soil model PDF Journal of Applied Remote Sensing 8 084597 Bibcode 2014JARS 8 4597G doi 10 1117 1 JRS 8 084597 S2CID 28430037 Archived PDF from the original on 19 July 2018 Retrieved 27 October 2021 Liu Jian Guo amp Mason Philippa J 2009 Essential Image Processing for GIS and Remote Sensing Wiley Blackwell p 4 ISBN 978 0 470 51032 2 Retrieved 2 April 2023 Saving the monkeys SPIE Professional Archived from the original on 4 February 2016 Retrieved 1 January 2016 Howard A et al 19 August 2015 Remote sensing and habitat mapping for bearded capuchin monkeys Sapajus libidinosus landscapes for the use of stone tools Journal of Applied Remote Sensing 9 1 096020 doi 10 1117 1 JRS 9 096020 S2CID 120031016 Innocenti Fabrizio Robinson Rod Gardiner Tom Finlayson Andrew Connor Andy 2017 Differential Absorption Lidar DIAL Measurements of Landfill Methane Emissions Remote Sensing 9 9 953 Bibcode 2017RemS 9 953 doi 10 3390 rs9090953 C Bayindir J D Frost C F Barnes January 2018 Assessment and enhancement of SAR noncoherent change detection of sea surface oil spills IEEE J Ocean Eng 43 1 211 220 Bibcode 2018IJOE 43 211B doi 10 1109 JOE 2017 2714818 S2CID 44706251 Science nasa Technology Remote Sensing Archived from the original on 29 September 2006 Retrieved 18 February 2009 Zhao Kaiguang Suarez Juan C Garcia Mariano Hu Tongxi Wang Cheng Londo Alexis 2018 Utility of multitemporal lidar for forest and carbon monitoring Tree growth biomass dynamics and carbon flux Remote Sensing of Environment 204 883 897 Bibcode 2018RSEnv 204 883Z doi 10 1016 j rse 2017 09 007 Just Sit Right Back and You ll Hear a Tale a Tale of a Plankton Trip Archived 10 August 2021 at the Wayback Machine NASA Earth Expeditions 15 August 2018 Levin Noam Kyba Christopher C M Zhang Qingling Sanchez de Miguel Alejandro Roman Miguel O Li Xi Portnov Boris A Molthan Andrew L Jechow Andreas Miller Steven D Wang Zhuosen Shrestha Ranjay M Elvidge Christopher D February 2020 Remote sensing of night lights A review and an outlook for the future Remote Sensing of Environment 237 111443 Bibcode 2020RSEnv 23711443L doi 10 1016 j rse 2019 111443 hdl 10871 40052 S2CID 214254543 Corradino Claudia Ganci Gaetana Bilotta Giuseppe Cappello Annalisa Del Negro Ciro Fortuna Luigi January 2019 Smart Decision Support Systems for Volcanic Applications Energies 12 7 1216 doi 10 3390 en12071216 Corradino Claudia Ganci Gaetana Cappello Annalisa Bilotta Giuseppe Herault Alexis Del Negro Ciro January 2019 Mapping Recent Lava Flows at Mount Etna Using Multispectral Sentinel 2 Images and Machine Learning Techniques Remote Sensing 11 16 1916 Bibcode 2019RemS 11 1916C doi 10 3390 rs11161916 Goldberg A Stann B Gupta N July 2003 Multispectral Hyperspectral and Three Dimensional Imaging Research at the U S Army Research Laboratory PDF Proceedings of the International Conference on International Fusion 6th 1 499 506 Makki Ihab Younes Rafic Francis Clovis Bianchi Tiziano Zucchetti Massimo 1 February 2017 A survey of landmine detection using hyperspectral imaging ISPRS Journal of Photogrammetry and Remote Sensing 124 40 53 Bibcode 2017JPRS 124 40M doi 10 1016 j isprsjprs 2016 12 009 ISSN 0924 2716 Mills J P et al 1997 Photogrammetry from Archived Digital Imagery for Seal Monitoring The Photogrammetric Record 15 89 715 724 doi 10 1111 0031 868X 00080 S2CID 140189982 Twiss S D et al 2001 Topographic spatial characterisation of grey seal Halichoerus grypus breeding habitat at a sub seal size spatial grain Ecography 24 3 257 266 doi 10 1111 j 1600 0587 2001 tb00198 x Stewart J E et al 2014 Finescale ecological niche modeling provides evidence that lactating gray seals Halichoerus grypus prefer access to fresh water in order to drink PDF Marine Mammal Science 30 4 1456 1472 Bibcode 2014MMamS 30 1456S doi 10 1111 mms 12126 Archived PDF from the original on 13 July 2021 Retrieved 27 October 2021 Zhang Chuanrong Li Xinba September 2022 Land Use and Land Cover Mapping in the Era of Big Data Land 11 10 1692 doi 10 3390 land11101692 Begni G Escadafal R Fontannaz D and Hong Nga Nguyen A T 2005 Remote sensing a tool to monitor and assess desertification Les dossiers thematiques du CSFD Issue 2 44 pp Archived from the original on 26 May 2019 Retrieved 27 October 2021 Wang Ran Gamon John A 15 September 2019 Remote sensing of terrestrial plant biodiversity Remote Sensing of Environment 231 111218 Bibcode 2019RSEnv 23111218W doi 10 1016 j rse 2019 111218 ISSN 0034 4257 S2CID 197567301 Rocchini Duccio Boyd Doreen S Feret Jean Baptiste Foody Giles M He Kate S Lausch Angela Nagendra Harini Wegmann Martin Pettorelli Nathalie February 2016 Skidmore Andrew Chauvenet Alienor eds Satellite remote sensing to monitor species diversity potential and pitfalls Remote Sensing in Ecology and Conservation 2 1 25 36 Bibcode 2016RSEC 2 25R doi 10 1002 rse2 9 hdl 11585 720672 ISSN 2056 3485 S2CID 59446258 Schweiger Anna K Cavender Bares Jeannine Townsend Philip A Hobbie Sarah E Madritch Michael D Wang Ran Tilman David Gamon John A June 2018 Plant spectral diversity integrates functional and phylogenetic components of biodiversity and predicts ecosystem function Nature Ecology amp Evolution 2 6 976 982 Bibcode 2018NatEE 2 976S doi 10 1038 s41559 018 0551 1 ISSN 2397 334X PMID 29760440 S2CID 256718584 Cerrejon Carlos Valeria Osvaldo Marchand Philippe Caners Richard T Fenton Nicole J 18 February 2021 No place to hide Rare plant detection through remote sensing Diversity and Distributions 27 6 948 961 Bibcode 2021DivDi 27 948C doi 10 1111 ddi 13244 ISSN 1366 9516 S2CID 233886263 Geodetic Imaging Archived from the original on 2 October 2016 Retrieved 29 September 2016 Grigoriev A N 2015 Method of radiometric distortion correction of multispectral data for the earth remote sensing Scientific and Technical Journal of Information Technologies Mechanics and Optics 15 4 595 602 doi 10 17586 2226 1494 2015 15 4 595 602 NASA 1986 Report of the EOS data panel Earth Observing System Data and Information System Data Panel Report Vol IIa NASA Technical Memorandum 87777 June 1986 62 pp Available at http hdl handle net 2060 19860021622 Archived 27 October 2021 at the Wayback Machine C L Parkinson A Ward M D King Eds Earth Science Reference Handbook A Guide to NASA s Earth Science Program and Earth Observing Satellite Missions National Aeronautics and Space Administration Washington D C Available at http eospso gsfc nasa gov ftp docs 2006ReferenceHandbook pdf Archived 15 April 2010 at the Wayback Machine GRAS SAF 2009 Product User Manual GRAS Satellite Application Facility Version 1 2 1 31 March 2009 Available at http www grassaf org general documents products grassaf pum v121 pdf Archived 26 July 2011 at the Wayback Machine Maksel Rebecca Flight of the Giant Air amp Space Magazine Archived from the original on 18 August 2021 Retrieved 19 February 2019 IWM Alan WakefieldHead of photographs at 4 April 2014 A bird s eye view of the battlefield aerial photography The Daily Telegraph ISSN 0307 1235 Archived from the original on 18 April 2014 Retrieved 19 February 2019 a b Bagley James 1941 Aerophotography and Aerosurverying 1st ed York PA The Maple Press Company Air Force Magazine www airforcemag com Archived from the original on 19 February 2019 Retrieved 19 February 2019 Military Imaging and Surveillance Technology MIST www darpa mil Archived from the original on 18 August 2021 Retrieved 19 February 2019 The Indian Society of International Law Newsletter VOL 15 No 4 October December 2016 Report doi 10 1163 2210 7975 hrd 9920 2016004 In Depth Magellan Solar System Exploration NASA Science Archived from the original on 19 October 2021 Retrieved 19 February 2019 Garner Rob 15 April 2015 SOHO Solar and Heliospheric Observatory NASA Archived from the original on 18 September 2021 Retrieved 19 February 2019 Campbell James B Wynne Randolph H 21 June 2011 Introduction to Remote Sensing 5th ed New York London The Guilford Press ISBN 978 1 60918 176 5 Ryerson Robert A 2010 Why where matters understanding and profiting from GPS GIS and remote sensing practical advice for individuals communities companies and countries Internet Archive Manotick ON Kim Geomatics Corp ISBN 978 0 9866376 0 5 Fussell Jay Rundquist Donald Harrington John A September 1986 On defining remote sensing PDF Photogrammetric Engineering and Remote Sensing 52 9 1507 1511 Archived from the original PDF on 4 October 2021 Pruitt Evelyn L 1979 The Office of Naval Research and Geography Annals of the Association of American Geographers 69 1 103 108 doi 10 1111 j 1467 8306 1979 tb01235 x ISSN 0004 5608 JSTOR 2569553 Colen Jerry 8 April 2015 Ames Research Center Overview NASA Archived from the original on 28 September 2021 Retrieved 19 February 2019 Ditter R Haspel M Jahn M Kollar I Siegmund A Viehrig K Volz D Siegmund A 2012 Geospatial technologies in school theoretical concept and practical implementation in K 12 schools In International Journal of Data Mining Modelling and Management IJDMMM FutureGIS Riding the Wave of a Growing Geospatial Technology Literate Society Vol X Stork E J Sakamoto S O and Cowan R M 1999 The integration of science explorations through the use of earth images in middle school curriculum Proc IEEE Trans Geosci Remote Sensing 37 1801 1817 Bednarz S W Whisenant S E July 2000 Mission Geography Linking national geography standards innovative technologies and NASA IGARSS 2000 IEEE 2000 International Geoscience and Remote Sensing Symposium Taking the Pulse of the Planet The Role of Remote Sensing in Managing the Environment Proceedings Cat No 00CH37120 Vol 6 pp 2780 2782 vol 6 doi 10 1109 IGARSS 2000 859713 ISBN 0 7803 6359 0 S2CID 62414447 Digital Earth FIS Remote Sensing in School Lessons Archived from the original on 26 October 2012 Retrieved 25 October 2012 geospektiv Archived from the original on 2 May 2018 Retrieved 1 June 2018 YCHANGE Archived from the original on 17 August 2018 Retrieved 1 June 2018 Landmap Spatial Discovery Archived from the original on 29 November 2014 Retrieved 27 October 2021 Grasty R 1976 Applications of Gamma Radiation in Remote Sensing 1st ed Berlin Springer Verlag p 267 ISBN 978 3 642 66238 6 a b c Tatem Andrew J Goetz Scott J Hay Simon I 2008 Fifty Years of Earth observation Satellites American Scientist 96 5 390 398 doi 10 1511 2008 74 390 PMC 2690060 PMID 19498953 Kuznetsov V D Sinelnikov V M Alpert S N June 2015 Yakov Alpert Sputnik 1 and the first satellite ionospheric experiment Advances in Space Research 55 12 2833 2839 Bibcode 2015AdSpR 55 2833K doi 10 1016 j asr 2015 02 033 James A Van Allen nmspacemuseum org New Mexico Museum of Space History Retrieved 14 May 2018 How many Earth observation satellites are orbiting the planet in 2021 18 August 2021 DubaiSat 2 Earth Observation Satellite of UAE Mohammed Bin Rashid Space Centre Archived from the original on 17 January 2019 Retrieved 4 July 2016 DubaiSat 1 Earth Observation Satellite of UAE Mohammed Bin Rashid Space Centre Archived from the original on 4 March 2016 Retrieved 4 July 2016 Further reading editThis further reading section may need cleanup Please read the editing guide and help improve the section January 2022 Learn how and when to remove this template message Campbell J B 2002 Introduction to remote sensing 3rd ed The Guilford Press ISBN 978 1 57230 640 0 Jensen J R 2007 Remote sensing of the environment an Earth resource perspective 2nd ed Prentice Hall ISBN 978 0 13 188950 7 Jensen J R 2005 Digital Image Processing a Remote Sensing Perspective 3rd ed Prentice Hall Lentile Leigh B Holden Zachary A Smith Alistair M S Falkowski Michael J Hudak Andrew T Morgan Penelope Lewis Sarah A Gessler Paul E Benson Nate C 2006 Remote sensing techniques to assess active fire characteristics and post fire effects International Journal of Wildland Fire 3 15 319 345 doi 10 1071 WF05097 S2CID 724358 Archived from the original on 12 August 2014 Retrieved 4 February 2010 Lillesand T M R W Kiefer J W Chipman 2003 Remote sensing and image interpretation 5th ed Wiley ISBN 978 0 471 15227 9 Richards J A X Jia 2006 Remote sensing digital image analysis an introduction 4th ed Springer ISBN 978 3 540 25128 6 Datla R U Rice J P Lykke K R Johnson B C Butler J J Xiong X March April 2011 Best practice guidelines for pre launch characterization and calibration of instruments for passive optical remote sensing Journal of Research of the National Institute of Standards and Technology 116 2 612 646 doi 10 6028 jres 116 009 PMC 4550341 PMID 26989588 KUENZER C ZHANG J TETZLAFF A and S DECH 2013 Thermal Infrared Remote Sensing of Surface and underground Coal Fires In eds Kuenzer C and S Dech 2013 Thermal Infrared Remote Sensing Sensors Methods Applications Remote Sensing and Digital Image Processing Series Volume 17 572 pp ISBN 978 94 007 6638 9 pp 429 451 Kuenzer C and S Dech 2013 Thermal Infrared Remote Sensing Sensors Methods Applications Remote Sensing and Digital Image Processing Series Volume 17 572 pp ISBN 978 94 007 6638 9 Lasaponara R and Masini N 2012 Satellite Remote Sensing A new tool for Archaeology Remote Sensing and Digital Image Processing Series Volume 16 364 pp ISBN 978 90 481 8801 7 Dupuis C Lejeune P Michez A Fayolle A How Can Remote Sensing Help Monitor Tropical Moist Forest Degradation A Systematic Review Remote Sens 2020 12 1087 https www mdpi com 2072 4292 12 7 1087External links edit nbsp Media related to Remote sensing at Wikimedia Commons Remote Sensing at Curlie Retrieved from https en wikipedia org w index php title Remote sensing amp oldid 1193168308, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.