fbpx
Wikipedia

Ocean thermal energy conversion

Ocean Thermal Energy Conversion (OTEC) uses the ocean thermal gradient between cooler deep and warmer shallow or surface seawaters to run a heat engine and produce useful work, usually in the form of electricity. OTEC can operate with a very high capacity factor and so can operate in base load mode.

Worldmap highlighting oceanic regions with high temperature gradients (between surface and 1000m depth)
OTEC diagram and applications

The denser cold water masses, formed by ocean surface water interaction with cold atmosphere in quite specific areas of the North Atlantic and the Southern Ocean, sink into the deep sea basins and spread in entire deep ocean by the thermohaline circulation. Upwelling of cold water from the deep ocean is replenished by the downwelling of cold surface sea water.

Among ocean energy sources, OTEC is one of the continuously available renewable energy resources that could contribute to base-load power supply.[1] The resource potential for OTEC is considered to be much larger than for other ocean energy forms.[2] Up to 88,000 TWh/yr of power could be generated from OTEC without affecting the ocean's thermal structure.[3]

Systems may be either closed-cycle or open-cycle. Closed-cycle OTEC uses working fluids that are typically thought of as refrigerants such as ammonia or R-134a. These fluids have low boiling points, and are therefore suitable for powering the system's generator to generate electricity. The most commonly used heat cycle for OTEC to date is the Rankine cycle, using a low-pressure turbine. Open-cycle engines use vapor from the seawater itself as the working fluid.

OTEC can also supply quantities of cold water as a by-product. This can be used for air conditioning and refrigeration and the nutrient-rich deep ocean water can feed biological technologies. Another by-product is fresh water distilled from the sea.[4]

OTEC theory was first developed in the 1880s and the first bench size demonstration model was constructed in 1926. Currently operating pilot-scale OTEC plants are located in Japan, overseen by Saga University, and Makai in Hawaii.[5]

History

Attempts to develop and refine OTEC technology started in the 1880s. In 1881, Jacques Arsene d'Arsonval, a French physicist, proposed tapping the thermal energy of the ocean. D'Arsonval's student, Georges Claude, built the first OTEC plant, in Matanzas, Cuba in 1930.[6][7] The system generated 22 kW of electricity with a low-pressure turbine.[8] The plant was later destroyed in a storm.[9]

In 1935, Claude constructed a plant aboard a 10,000-ton cargo vessel moored off the coast of Brazil. Weather and waves destroyed it before it could generate net power.[8] (Net power is the amount of power generated after subtracting power needed to run the system).

In 1956, French scientists designed a 3 MW plant for Abidjan, Ivory Coast. The plant was never completed, because new finds of large amounts of cheap petroleum made it uneconomical.[8]

In 1962, J. Hilbert Anderson and James H. Anderson, Jr. focused on increasing component efficiency. They patented their new "closed cycle" design in 1967.[10] This design improved upon the original closed-cycle Rankine system, and included this in an outline for a plant that would produce power at lower cost than oil or coal. At the time, however, their research garnered little attention since coal and nuclear were considered the future of energy.[9]

Japan is a major contributor to the development of OTEC technology.[11] Beginning in 1970 the Tokyo Electric Power Company successfully built and deployed a 100 kW closed-cycle OTEC plant on the island of Nauru.[11] The plant became operational on 14 October 1981, producing about 120 kW of electricity; 90 kW was used to power the plant and the remaining electricity was used to power a school and other places.[8] This set a world record for power output from an OTEC system where the power was sent to a real (as opposed to an experimental) power grid.[12] 1981 also saw a major development in OTEC technology when Russian engineer, Dr. Alexander Kalina, used a mixture of ammonia and water to produce electricity. This new ammonia-water mixture greatly improved the efficiency of the power cycle. In 1994 Saga University designed and constructed a 4.5 kW plant for the purpose of testing a newly invented Uehara cycle, also named after its inventor Haruo Uehara. This cycle included absorption and extraction processes that allow this system to outperform the Kalina cycle by 1-2%.[13] Currently, the Institute of Ocean Energy, Saga University, is the leader in OTEC power plant research and also focuses on many of the technology's secondary benefits.

The 1970s saw an uptick in OTEC research and development during the post 1973 Arab-Israeli War, which caused oil prices to triple. The U.S. federal government poured $260 million into OTEC research after President Carter signed a law that committed the US to a production goal of 10,000 MW of electricity from OTEC systems by 1999.[14]

 
View of a land based OTEC facility at Keahole Point on the Kona coast of Hawaii

In 1974, The U.S. established the Natural Energy Laboratory of Hawaii Authority (NELHA) at Keahole Point on the Kona coast of Hawaii. Hawaii is the best US OTEC location, due to its warm surface water, access to very deep, very cold water, and high electricity costs. The laboratory has become a leading test facility for OTEC technology.[15] In the same year, Lockheed received a grant from the U.S. National Science Foundation to study OTEC. This eventually led to an effort by Lockheed, the US Navy, Makai Ocean Engineering, Dillingham Construction, and other firms to build the world's first and only net-power producing OTEC plant, dubbed "Mini-OTEC"[16] For three months in 1979, a small amount of electricity was generated.

A European initiative EUROCEAN - a privately funded joint venture of 9 European companies already active in offshore engineering - was active in promoting OTEC from 1979 to 1983. Initially a large scale offshore facility was studied. Later a 100 kW land based installation was studied combining land based OTEC with Desalination and Aquaculture nicknamed ODA. This was based on the results from a small scale aquaculture facility at the island of St Croix that used a deepwater supply line to feed the aquaculture basins. Also a shore based open cycle plant was investigated. The location of the case of study was the Dutch Kingdom related island Curaçao.[citation needed]

Research related to making open-cycle OTEC a reality began earnestly in 1979 at the Solar Energy Research Institute (SERI) with funding from the US Department of Energy. Evaporators and suitably configured direct-contact condensers were developed and patented by SERI (see[17][18][19]). An original design for a power-producing experiment, then called the 165-kW experiment was described by Kreith and Bharathan (,[20] and[21]) as the Max Jakob Memorial Award Lecture. The initial design used two parallel axial turbines, using last stage rotors taken from large steam turbines. Later, a team led by Dr. Bharathan at the National Renewable Energy Laboratory (NREL) developed the initial conceptual design for up-dated 210 kW open-cycle OTEC experiment ([22]). This design integrated all components of the cycle, namely, the evaporator, condenser and the turbine into one single vacuum vessel, with the turbine mounted on top to prevent any potential for water to reach it. The vessel was made of concrete as the first process vacuum vessel of its kind. Attempts to make all components using low-cost plastic material could not be fully achieved, as some conservatism was required for the turbine and the vacuum pumps developed as the first of their kind. Later Dr. Bharathan worked with a team of engineers at the Pacific Institute for High Technology Research (PICHTR) to further pursue this design through preliminary and final stages. It was renamed the Net Power Producing Experiment (NPPE) and was constructed at the Natural Energy Laboratory of Hawaii (NELH) by PICHTR by a team led by Chief Engineer Don Evans and the project was managed by Dr. Luis Vega.

 
India – pipes used for OTEC (left) and floating OTEC plant constructed in 2000 (right)

In 2002, India tested a 1 MW floating OTEC pilot plant near Tamil Nadu. The plant was ultimately unsuccessful due to a failure of the deep sea cold water pipe.[23] Its government continues to sponsor research.[24]

In 2006, Makai Ocean Engineering was awarded a contract from the U.S. Office of Naval Research (ONR) to investigate the potential for OTEC to produce nationally significant quantities of hydrogen in at-sea floating plants located in warm, tropical waters. Realizing the need for larger partners to actually commercialize OTEC, Makai approached Lockheed Martin to renew their previous relationship and determine if the time was ready for OTEC. And so in 2007, Lockheed Martin resumed work in OTEC and became a subcontractor to Makai to support their SBIR, which was followed by other subsequent collaborations[16]

In March 2011, Ocean Thermal Energy Corporation signed an Energy Services Agreement (ESA) with the Baha Mar resort, Nassau, Bahamas, for the world's first and largest seawater air conditioning (SWAC) system.[25] In June 2015, the project was put on pause while the resort resolved financial and ownership issues.[26] In August 2016, it was announced that the issues had been resolved and that the resort would open in March 2017.[27] It is expected that the SWAC system's construction will resume at that time.

In July 2011, Makai Ocean Engineering completed the design and construction of an OTEC Heat Exchanger Test Facility at the Natural Energy Laboratory of Hawaii. The purpose of the facility is to arrive at an optimal design for OTEC heat exchangers, increasing performance and useful life while reducing cost (heat exchangers being the #1 cost driver for an OTEC plant).[28] And in March 2013, Makai announced an award to install and operate a 100 kilowatt turbine on the OTEC Heat Exchanger Test Facility, and once again connect OTEC power to the grid.[29][30]

In July 2016, the Virgin Islands Public Services Commission approved Ocean Thermal Energy Corporation's application to become a Qualified Facility. The company is thus permitted to begin negotiations with the Virgin Islands Water and Power Authority (WAPA) for a Power Purchase Agreement (PPA) pertaining to an Ocean Thermal Energy Conversion (OTEC) plant on the island of St. Croix. This would be the world's first commercial OTEC plant.[31][32]

Currently operating OTEC plants

In March 2013, Saga University with various Japanese industries completed the installation of a new OTEC plant. Okinawa Prefecture announced the start of the OTEC operation testing at Kume Island on April 15, 2013. The main aim is to prove the validity of computer models and demonstrate OTEC to the public. The testing and research will be conducted with the support of Saga University until the end of FY 2016. IHI Plant Construction Co. Ltd, Yokogawa Electric Corporation, and Xenesys Inc were entrusted with constructing the 100 kilowatt class plant within the grounds of the Okinawa Prefecture Deep Sea Water Research Center. The location was specifically chosen in order to utilize existing deep seawater and surface seawater intake pipes installed for the research center in 2000. The pipe is used for the intake of deep sea water for research, fishery, and agricultural use.[19] The plant consists of two 50 kW units in double Rankine configuration.[33] The OTEC facility and deep seawater research center are open to free public tours by appointment in English and Japanese.[34] Currently, this is one of only two fully operational OTEC plants in the world. This plant operates continuously when specific tests are not underway.

In 2011, Makai Ocean Engineering completed a heat exchanger test facility at NELHA. Used to test a variety of heat exchange technologies for use in OTEC, Makai has received funding to install a 105 kW turbine.[35] Installation will make this facility the largest operational OTEC facility, though the record for largest power will remain with the Open Cycle plant also developed in Hawaii.

In July 2014, DCNS group partnered with Akuo Energy announced NER 300 funding for their NEMO project. If successful, the 16MW gross 10MW net offshore plant will be the largest OTEC facility to date. DCNS plans to have NEMO operational by 2020.[36][failed verification]

An ocean thermal energy conversion power plant built by Makai Ocean Engineering went operational in Hawaii in August 2015 . The governor of Hawaii, David Ige, "flipped the switch" to activate the plant. This is the first true closed-cycle ocean Thermal Energy Conversion (OTEC) plant to be connected to a U.S. electrical grid . It is a demo plant capable of generating 105 kilowatts, enough to power about 120 homes.[37]

Thermodynamic efficiency

A heat engine gives greater efficiency when run with a large temperature difference. In the oceans the temperature difference between surface and deep water is greatest in the tropics, although still a modest 20 to 25 °C. It is therefore in the tropics that OTEC offers the greatest possibilities.[4] OTEC has the potential to offer global amounts of energy that are 10 to 100 times greater than other ocean energy options such as wave power.[38][39]

OTEC plants can operate continuously providing a base load supply for an electrical power generation system.[4]

The main technical challenge of OTEC is to generate significant amounts of power efficiently from small temperature differences. It is still considered an emerging technology. Early OTEC systems were 1 to 3 percent thermally efficient, well below the theoretical maximum 6 and 7 percent for this temperature difference.[40] Modern designs allow performance approaching the theoretical maximum Carnot efficiency.

Power cycle types

Cold seawater is an integral part of each of the three types of OTEC systems: closed-cycle, open-cycle, and hybrid. To operate, the cold seawater must be brought to the surface. The primary approaches are active pumping and desalination. Desalinating seawater near the sea floor lowers its density, which causes it to rise to the surface.[41]

The alternative to costly pipes to bring condensing cold water to the surface is to pump vaporized low boiling point fluid into the depths to be condensed, thus reducing pumping volumes and reducing technical and environmental problems and lowering costs.[42]

Closed

 
Diagram of a closed cycle OTEC plant

Closed-cycle systems use fluid with a low boiling point, such as ammonia (having a boiling point around -33 °C at atmospheric pressure), to power a turbine to generate electricity. Warm surface seawater is pumped through a heat exchanger to vaporize the fluid. The expanding vapor turns the turbo-generator. Cold water, pumped through a second heat exchanger, condenses the vapor into a liquid, which is then recycled through the system.

In 1979, the Natural Energy Laboratory and several private-sector partners developed the "mini OTEC" experiment, which achieved the first successful at-sea production of net electrical power from closed-cycle OTEC.[43] The mini OTEC vessel was moored 1.5 miles (2.4 km) off the Hawaiian coast and produced enough net electricity to illuminate the ship's light bulbs and run its computers and television.

Open

 
Diagram of an open cycle OTEC plant

Open-cycle OTEC uses warm surface water directly to make electricity. The warm seawater is first pumped into a low-pressure container, which causes it to boil. In some schemes, the expanding vapor drives a low-pressure turbine attached to an electrical generator. The vapor, which has left its salt and other contaminants in the low-pressure container, is pure fresh water. It is condensed into a liquid by exposure to cold temperatures from deep-ocean water. This method produces desalinized fresh water, suitable for drinking water, irrigation or aquaculture.[44]

In other schemes, the rising vapor is used in a gas lift technique of lifting water to significant heights. Depending on the embodiment, such vapor lift pump techniques generate power from a hydroelectric turbine either before or after the pump is used.[45]

In 1984, the Solar Energy Research Institute (now known as the National Renewable Energy Laboratory) developed a vertical-spout evaporator to convert warm seawater into low-pressure steam for open-cycle plants. Conversion efficiencies were as high as 97% for seawater-to-steam conversion (overall steam production would only be a few percent of the incoming water). In May 1993, an open-cycle OTEC plant at Keahole Point, Hawaii, produced close to 80 kW of electricity during a net power-producing experiment.[46] This broke the record of 40 kW set by a Japanese system in 1982.[46]

Hybrid

A hybrid cycle combines the features of the closed- and open-cycle systems. In a hybrid, warm seawater enters a vacuum chamber and is flash-evaporated, similar to the open-cycle evaporation process. The steam vaporizes the ammonia working fluid of a closed-cycle loop on the other side of an ammonia vaporizer. The vaporized fluid then drives a turbine to produce electricity. The steam condenses within the heat exchanger and provides desalinated water (see heat pipe).[47]

Working fluids

A popular choice of working fluid is ammonia, which has superior transport properties, easy availability, and low cost. Ammonia, however, is toxic and flammable. Fluorinated carbons such as CFCs and HCFCs are not toxic or flammable, but they contribute to ozone layer depletion. Hydrocarbons too are good candidates, but they are highly flammable; in addition, this would create competition for use of them directly as fuels. The power plant size is dependent upon the vapor pressure of the working fluid. With increasing vapor pressure, the size of the turbine and heat exchangers decreases while the wall thickness of the pipe and heat exchangers increase to endure high pressure especially on the evaporator side.

Land, shelf and floating sites

OTEC has the potential to produce gigawatts of electrical power, and in conjunction with electrolysis, could produce enough hydrogen to completely replace all projected global fossil fuel consumption.[citation needed] Reducing costs remains an unsolved challenge, however. OTEC plants require a long, large diameter intake pipe, which is submerged a kilometer or more into the ocean's depths, to bring cold water to the surface.

Land-based

Land-based and near-shore facilities offer three main advantages over those located in deep water. Plants constructed on or near land do not require sophisticated mooring, lengthy power cables, or the more extensive maintenance associated with open-ocean environments. They can be installed in sheltered areas so that they are relatively safe from storms and heavy seas. Electricity, desalinated water, and cold, nutrient-rich seawater could be transmitted from near-shore facilities via trestle bridges or causeways. In addition, land-based or near-shore sites allow plants to operate with related industries such as mariculture or those that require desalinated water.

Favored locations include those with narrow shelves (volcanic islands), steep (15-20 degrees) offshore slopes, and relatively smooth sea floors. These sites minimize the length of the intake pipe. A land-based plant could be built well inland from the shore, offering more protection from storms, or on the beach, where the pipes would be shorter. In either case, easy access for construction and operation helps lower costs.

Land-based or near-shore sites can also support mariculture or chilled water agriculture. Tanks or lagoons built on shore allow workers to monitor and control miniature marine environments. Mariculture products can be delivered to market via standard transport.

One disadvantage of land-based facilities arises from the turbulent wave action in the surf zone. OTEC discharge pipes should be placed in protective trenches to prevent subjecting them to extreme stress during storms and prolonged periods of heavy seas. Also, the mixed discharge of cold and warm seawater may need to be carried several hundred meters offshore to reach the proper depth before it is released, requiring additional expense in construction and maintenance.

One way that OTEC systems can avoid some of the problems and expenses of operating in a surf zone is by building them just offshore in waters ranging from 10 to 30 meters deep (Ocean Thermal Corporation 1984). This type of plant would use shorter (and therefore less costly) intake and discharge pipes, which would avoid the dangers of turbulent surf. The plant itself, however, would require protection from the marine environment, such as breakwaters and erosion-resistant foundations, and the plant output would need to be transmitted to shore.[48]

Shelf based

To avoid the turbulent surf zone as well as to move closer to the cold-water resource, OTEC plants can be mounted to the continental shelf at depths up to 100 meters (330 ft). A shelf-mounted plant could be towed to the site and affixed to the sea bottom. This type of construction is already used for offshore oil rigs. The complexities of operating an OTEC plant in deeper water may make them more expensive than land-based approaches. Problems include the stress of open-ocean conditions and more difficult product delivery. Addressing strong ocean currents and large waves adds engineering and construction expense. Platforms require extensive pilings to maintain a stable base. Power delivery can require long underwater cables to reach land. For these reasons, shelf-mounted plants are less attractive.[48][citation needed]

Floating

Floating OTEC facilities operate off-shore. Although potentially optimal for large systems, floating facilities present several difficulties. The difficulty of mooring plants in very deep water complicates power delivery. Cables attached to floating platforms are more susceptible to damage, especially during storms. Cables at depths greater than 1000 meters are difficult to maintain and repair. Riser cables, which connect the sea bed and the plant, need to be constructed to resist entanglement.[48]

As with shelf-mounted plants, floating plants need a stable base for continuous operation. Major storms and heavy seas can break the vertically suspended cold-water pipe and interrupt warm water intake as well. To help prevent these problems, pipes can be made of flexible polyethylene attached to the bottom of the platform and gimballed with joints or collars. Pipes may need to be uncoupled from the plant to prevent storm damage. As an alternative to a warm-water pipe, surface water can be drawn directly into the platform; however, it is necessary to prevent the intake flow from being damaged or interrupted during violent motions caused by heavy seas.[48]

Connecting a floating plant to power delivery cables requires the plant to remain relatively stationary. Mooring is an acceptable method, but current mooring technology is limited to depths of about 2,000 meters (6,600 ft). Even at shallower depths, the cost of mooring may be prohibitive.[49]

Political concerns

Because OTEC facilities are more-or-less stationary surface platforms, their exact location and legal status may be affected by the United Nations Convention on the Law of the Sea treaty (UNCLOS). This treaty grants coastal nations 12-and-200-nautical-mile (22 and 370 km) zones of varying legal authority from land, creating potential conflicts and regulatory barriers. OTEC plants and similar structures would be considered artificial islands under the treaty, giving them no independent legal status. OTEC plants could be perceived as either a threat or potential partner to fisheries or to seabed mining operations controlled by the International Seabed Authority.

Cost and economics

Because OTEC systems have not yet been widely deployed, cost estimates are uncertain. A 2010 study by University of Hawaii estimated the cost of electricity for OTEC at 94.0 cents per kilowatt hour (kWh) for a 1.4 MW plant, 44.0 cents per kWh for a 10 MW plant, and 18.0 cents per kWh for a 100 MW plant.[50] A 2015 report by the organization Ocean Energy Systems under the International Energy Agency gave an estimate of about 20.0 cents per kWh for 100 MW plants.[51] Another study estimated power generation costs as low as 7.0 cents per kWh.[52] Comparing to other energy sources, a 2019 study by Lazard estimated the unsubsidized cost of electricity to 3.2 to 4.2 cents per kWh for Solar PV at utility scale and 2.8 to 5.4 cents per kWh for wind power.[53]

A report published by IRENA in 2014 claimed that commercial use of OTEC technology can be scaled in a variety of ways. “...small-scale OTEC plants can be made to accommodate the electricity production of small communities (5 000-50 000 residents), but would require the production of valuable by-products – like fresh water or cooling – to be economically viable”. Larger scaled OTEC plants would have a much higher overhead and installation costs.[54]

Beneficial factors that should be taken into account include OTEC's lack of waste products and fuel consumption, the area in which it is available[citation needed] (often within 20° of the equator),[55] the geopolitical effects of petroleum dependence, compatibility with alternate forms of ocean power such as wave energy, tidal energy and methane hydrates, and supplemental uses for the seawater.[56]

Some proposed projects

OTEC projects under consideration include a small plant for the U.S. Navy base on the British overseas territory island of Diego Garcia in the Indian Ocean. Ocean Thermal Energy Corporation (formerly OCEES International, Inc.) is working with the U.S. Navy on a design for a proposed 13-MW OTEC plant, to replace the current diesel generators. The OTEC plant would also provide 1.25 million gallons[clarification needed] per day of potable water. This project is currently[when?] waiting for changes in US military contract policies. OTE has proposed building a 10-MW OTEC plant on Guam.

Bahamas

Ocean Thermal Energy Corporation (OTE) currently[when?] has plans to install two 10 MW OTEC plants in the US Virgin Islands and a 5-10 MW OTEC facility in The Bahamas. OTE has also designed the world's largest Seawater Air Conditioning (SWAC) plant for a resort in The Bahamas, which will use cold deep seawater as a method of air-conditioning.[57] In mid-2015, the 95%-complete project was temporarily put on hold while the resort resolved financial and ownership issues.[58] On August 22, 2016, the government of the Bahamas announced that a new agreement had been signed under which the Baha Mar resort will be completed.[27] On September 27, 2016, Bahamian Prime Minister Perry Christie announced that construction had resumed on Baha Mar, and that the resort was slated to open in March 2017.[59]

This is on hold, and may never resume.[60]

Hawaii

Lockheed Martin's Alternative Energy Development team has partnered with Makai Ocean Engineering[61] to complete the final design phase of a 10-MW closed cycle OTEC pilot system which planned to become operational in Hawaii in the 2012-2013 time frame. This system was designed to expand to 100-MW commercial systems in the near future. In November, 2010 the U.S. Naval Facilities Engineering Command (NAVFAC) awarded Lockheed Martin a US$4.4 million contract modification to develop critical system components and designs for the plant, adding to the 2009 $8.1 million contract and two Department of Energy grants totaling over $1 million in 2008 and March 2010.[62] A small but operational ocean thermal energy conversion (OTEC) plant was inaugurated in Hawaii in August 2015. The opening of the research and development 100-kilowatt facility marked the first time a closed-cycle OTEC plant was connected to the U.S. grid.[63]

Hainan

On April 13, 2013, Lockheed contracted with the Reignwood Group to build a 10 megawatt plant off the coast of southern China to provide power for a planned resort on Hainan island.[64] A plant of that size would power several thousand homes.[65][66] The Reignwood Group acquired Opus Offshore in 2011 which forms its Reignwood Ocean Engineering division which also is engaged in development of deepwater drilling.[67]

Japan

Currently the only continuously operating OTEC system is located in Okinawa Prefecture, Japan. The Governmental support, local community support, and advanced research carried out by Saga University were key for the contractors, IHI Plant Construction Co. Ltd, Yokogawa Electric Corporation, and Xenesys Inc, to succeed with this project. Work is being conducted to develop a 1MW facility on Kume Island requiring new pipelines. In July 2014, more than 50 members formed the Global Ocean reSource and Energy Association () an international organization formed to promote the development of the Kumejima Model and work towards the installation of larger deep seawater pipelines and a 1MW OTEC Facility.[68] The companies involved in the current OTEC projects, along with other interested parties have developed plans for offshore OTEC systems as well.[69] - For more details, see "Currently Operating OTEC Plants" above.

United States Virgin Islands

On March 5, 2014, Ocean Thermal Energy Corporation (OTEC)[70] and the 30th Legislature of the United States Virgin Islands (USVI) signed a Memorandum of Understanding to move forward with a study to evaluate the feasibility and potential benefits to the USVI of installing on-shore Ocean Thermal Energy Conversion (OTEC) renewable energy power plants and Seawater Air Conditioning (SWAC) facilities.[71] The benefits to be assessed in the USVI study include both the baseload (24/7) clean electricity generated by OTEC, as well as the various related products associated with OTEC and SWAC, including abundant fresh drinking water, energy-saving air conditioning, sustainable aquaculture and mariculture, and agricultural enhancement projects for the Islands of St Thomas and St Croix.[72]

On July 18, 2016, OTE's application to be a Qualifying Facility was approved by the Virgin Islands Public Services Commission.[31] OTE also received permission to begin negotiating contracts associated with this project.[32]

Kiribati

South Korea's Research Institute of Ships and Ocean Engineering (KRISO) received Approval in Principal from Bureau Veritas for their 1MW offshore OTEC design. No timeline was given for the project which will be located 6 km offshore of the Republic of Kiribati.[73]

Martinique

Akuo Energy and DCNS were awarded NER300 funding on July 8, 2014[74] for their NEMO (New Energy for Martinique and Overseas) project which is expected to be a 10.7MW-net offshore facility completed in 2020.[75] The award to help with development totaled 72 million Euro.[76]

Maldives

On February 16, 2018, Global OTEC Resources announced plans[77] to build a 150 kW plant in the Maldives, designed bespoke for hotels and resorts.[78] "All these resorts draw their power from diesel generators. Moreover, some individual resorts consume 7,000 litres of diesel a day to meet demands which equates to over 6,000 tonnes of CO2 annually," said Director Dan Grech.[79] The EU awarded a grant and Global OTEC resources launched a crowdfunding campaign for the rest.[77]

Related activities

OTEC has uses other than power production.

Desalination

Desalinated water can be produced in open- or hybrid-cycle plants using surface condensers to turn evaporated seawater into potable water. System analysis indicates that a 2-megawatt plant could produce about 4,300 cubic metres (150,000 cu ft) of desalinated water each day.[80] Another system patented by Richard Bailey creates condensate water by regulating deep ocean water flow through surface condensers correlating with fluctuating dew-point temperatures.[81] This condensation system uses no incremental energy and has no moving parts.

On March 22, 2015, Saga University opened a Flash-type desalination demonstration facility on Kumejima.[82] This satellite of their Institute of Ocean Energy uses post-OTEC deep seawater from the Okinawa OTEC Demonstration Facility and raw surface seawater to produce desalinated water. Air is extracted from the closed system with a vacuum pump. When raw sea water is pumped into the flash chamber it boils, allowing pure steam to rise and the salt and remaining seawater to be removed. The steam is returned to liquid in a heat exchanger with cold post-OTEC deep seawater.[83] The desalinated water can be used in hydrogen production or drinking water (if minerals are added).

The NELHA plant established in 1993 produced an average of 7,000 gallons of freshwater per day. KOYO USA was established in 2002 to capitalize on this new economic opportunity. KOYO bottles the water produced by the NELHA plant in Hawaii. With the capacity to produce one million bottles of water every day, KOYO is now Hawaii's biggest exporter with $140 million in sales.[81]

Air conditioning

The 41 °F (5 °C) cold seawater made available by an OTEC system creates an opportunity to provide large amounts of cooling to industries and homes near the plant. The water can be used in chilled-water coils to provide air conditioning for buildings. It is estimated that a pipe 1 foot (0.30 m) in diameter can deliver 4,700 gallons of water per minute. Water at 43 °F (6 °C) could provide more than enough air conditioning for a large building. Operating 8,000 hours per year in lieu of electrical conditioning selling for 5-10¢ per kilowatt-hour, it would save $200,000-$400,000 in energy bills annually.[84]

The InterContinental Resort and Thalasso-Spa on the island of Bora Bora uses an SWAC system to air-condition its buildings.[85] The system passes seawater through a heat exchanger where it cools freshwater in a closed loop system. This freshwater is then pumped to buildings and directly cools the air.

In 2010, Copenhagen Energy opened a district cooling plant in Copenhagen, Denmark. The plant delivers cold seawater to commercial and industrial buildings, and has reduced electricity consumption by 80 percent.[86] Ocean Thermal Energy Corporation (OTE) has designed a 9800-ton SDC system for a vacation resort in The Bahamas.

Chilled-soil agriculture

OTEC technology supports chilled-soil agriculture. When cold seawater flows through underground pipes, it chills the surrounding soil. The temperature difference between roots in the cool soil and leaves in the warm air allows plants that evolved in temperate climates to be grown in the subtropics. Dr. John P. Craven, Dr. Jack Davidson and Richard Bailey patented this process and demonstrated it at a research facility at the Natural Energy Laboratory of Hawaii Authority (NELHA).[87] The research facility demonstrated that more than 100 different crops can be grown using this system. Many normally could not survive in Hawaii or at Keahole Point.[citation needed]

Japan has also been researching agricultural uses of Deep Sea Water since 2000 at the Okinawa Deep Sea Water Research Institute on Kume Island. The Kume Island facilities use regular water cooled by Deep Sea Water in a heat exchanger run through pipes in the ground to cool soil. Their techniques have developed an important resource for the island community as they now produce spinach, a winter vegetable, commercially year round. An expansion of the deep seawater agriculture facility was completed by Kumejima Town next to the OTEC Demonstration Facility in 2014. The new facility is for researching the economic practicality of chilled-soil agriculture on a larger scale.[88]

Aquaculture

Aquaculture is the best-known byproduct, because it reduces the financial and energy costs of pumping large volumes of water from the deep ocean. Deep ocean water contains high concentrations of essential nutrients that are depleted in surface waters due to biological consumption. This artificial upwelling mimics the natural upwellings that are responsible for fertilizing and supporting the world's largest marine ecosystems, and the largest densities of life on the planet.

Cold-water sea animals, such as salmon and lobster, thrive in this nutrient-rich, deep seawater. Microalgae such as Spirulina, a health food supplement, also can be cultivated. Deep-ocean water can be combined with surface water to deliver water at an optimal temperature.

Non-native species such as salmon, lobster, abalone, trout, oysters, and clams can be raised in pools supplied by OTEC-pumped water. This extends the variety of fresh seafood products available for nearby markets. Such low-cost refrigeration can be used to maintain the quality of harvested fish, which deteriorate quickly in warm tropical regions. In Kona, Hawaii, aquaculture companies working with NELHA generate about $40 million annually, a significant portion of Hawaii's GDP.[89]

Hydrogen production

Hydrogen can be produced via electrolysis using OTEC electricity. Generated steam with electrolyte compounds added to improve efficiency is a relatively pure medium for hydrogen production. OTEC can be scaled to generate large quantities of hydrogen. The main challenge is cost relative to other energy sources and fuels.[90]

Mineral extraction

The ocean contains 57 trace elements in salts and other forms and dissolved in solution. In the past, most economic analyses concluded that mining the ocean for trace elements would be unprofitable, in part because of the energy required to pump the water. Mining generally targets minerals that occur in high concentrations, and can be extracted easily, such as magnesium. With OTEC plants supplying water, the only cost is for extraction.[91] The Japanese investigated the possibility of extracting uranium and found developments in other technologies (especially materials sciences) were improving the prospects.[92]

Climate control

Ocean thermal gradient can be used to enhance rainfall and moderate the high ambient summer temperatures in tropics to benefit enormously the mankind and the flora and fauna.[citation needed] When sea surface temperatures are relatively high on an area, lower atmospheric pressure area is formed compared to atmospheric pressure prevailing on the nearby land mass inducing winds from the landmass towards the ocean. Oceanward winds are dry and warm which would not contribute to good rainfall on the landmass compared to landward moist winds. For adequate rainfall and comfortable summer ambient temperatures (below 35 °C) on the landmass, it is preferred to have landward moist winds from the ocean. Creating high pressure zones by artificial upwelling on sea area selectively can also be used to deflect / guide the normal monsoon global winds towards the landmass. Artificial upwelling of nutrient-rich deep ocean water to the surface also enhances fisheries growth in areas with tropical and temperate weather.[93] It would also lead to enhanced carbon sequestration by the oceans from improved algae growth and mass gain by glaciers from the extra snow fall mitigating sea level rise or global warming process.[citation needed] Tropical cyclones also do not pass through the high pressure zones as they intensify by gaining energy from the warm surface waters of the sea.

The cold deep sea water (<10 °C) is pumped to the sea surface area to suppress the sea surface temperature (>26 °C) by artificial means using electricity produced by mega scale floating wind turbine plants on the deep sea. The lower sea water surface temperature would enhance the local ambient pressure so that atmospheric landward winds are created. For upwelling the cold sea water, a stationary hydraulically driven propeller (≈50 m diameter) is located on the deep sea floor at 500 to 1000 m depth with a flexible draft tube extending up to the sea surface. The draft tube is anchored to the sea bed at its bottom side and top side to floating pontoons at the sea surface. The flexible draft tube would not collapse as its inside pressure is more compared to outside pressure when the colder water is pumped to the sea surface. Middle east, north east Africa, Indian subcontinent and Australia can get relief from hot and dry weather in summer season, also prone to erratic rainfall, by pumping deep sea water to the sea surface from the Persian gulf, Red sea, Indian Ocean and Pacific Ocean respectively.[citation needed]

Thermodynamics

A rigorous treatment of OTEC reveals that a 20 °C temperature difference will provide as much energy as a hydroelectric plant with 34 m head for the same volume of water flow.[citation needed] The low temperature difference means that water volumes must be very large to extract useful amounts of heat. A 100MW power plant would be expected to pump on the order of 12 million gallons (44,400 tonnes) per minute.[94] For comparison, pumps must move a mass of water greater than the weight of the battleship Bismarck, which weighed 41,700 tonnes, every minute. This makes pumping a substantial parasitic drain on energy production in OTEC systems, with one Lockheed design consuming 19.55 MW in pumping costs for every 49.8 MW net electricity generated. For OTEC schemes using heat exchangers, to handle this volume of water the exchangers need to be enormous compared to those used in conventional thermal power generation plants,[95] making them one of the most critical components due to their impact on overall efficiency. A 100 MW OTEC power plant would require 200 exchangers each larger than a 20-foot shipping container making them the single most expensive component.[96]

Variation of ocean temperature with depth

 
Graph of different thermoclines (depth vs. temperature) based on seasons and latitude

The total insolation received by the oceans (covering 70% of the earth's surface, with clearness index of 0.5 and average energy retention of 15%) is: 5.45×1018 MJ/yr × 0.7 × 0.5 × 0.15 = 2.87×1017 MJ/yr

We can use Beer–Lambert–Bouguer's law to quantify the solar energy absorption by water,

 

where, y is the depth of water, I is intensity and μ is the absorption coefficient. Solving the above differential equation,

 

The absorption coefficient μ may range from 0.05 m−1 for very clear fresh water to 0.5 m−1 for very salty water.

Since the intensity falls exponentially with depth y, heat absorption is concentrated at the top layers. Typically in the tropics, surface temperature values are in excess of 25 °C (77 °F), while at 1 kilometer (0.62 mi), the temperature is about 5–10 °C (41–50 °F). The warmer (and hence lighter) waters at the surface means there are no thermal convection currents. Due to the small temperature gradients, heat transfer by conduction is too low to equalize the temperatures. The ocean is thus both a practically infinite heat source and a practically infinite heat sink.[clarification needed]

This temperature difference varies with latitude and season, with the maximum in tropical, subtropical and equatorial waters. Hence the tropics are generally the best OTEC locations.

Open/Claude cycle

In this scheme, warm surface water at around 27 °C (81 °F) enters an evaporator at pressure slightly below the saturation pressures causing it to vaporize.

 

Where Hf is enthalpy of liquid water at the inlet temperature, T1.

 

This temporarily superheated water undergoes volume boiling as opposed to pool boiling in conventional boilers where the heating surface is in contact. Thus the water partially flashes to steam with two-phase equilibrium prevailing. Suppose that the pressure inside the evaporator is maintained at the saturation pressure, T2.

 

Here, x2 is the fraction of water by mass that vaporizes. The warm water mass flow rate per unit turbine mass flow rate is 1/x2.

The low pressure in the evaporator is maintained by a vacuum pump that also removes the dissolved non-condensable gases from the evaporator. The evaporator now contains a mixture of water and steam of very low vapor quality (steam content). The steam is separated from the water as saturated vapor. The remaining water is saturated and is discharged to the ocean in the open cycle. The steam is a low pressure/high specific volume working fluid. It expands in a special low pressure turbine.

 

Here, Hg corresponds to T2. For an ideal isentropic (reversible adiabatic) turbine,

 

The above equation corresponds to the temperature at the exhaust of the turbine, T5. x5,s is the mass fraction of vapor at state 5.

The enthalpy at T5 is,

 

This enthalpy is lower. The adiabatic reversible turbine work = H3-H5,s .

Actual turbine work WT = (H3-H5,s) x polytropic efficiency

 

The condenser temperature and pressure are lower. Since the turbine exhaust is to be discharged back into the ocean, a direct contact condenser is used to mix the exhaust with cold water, which results in a near-saturated water. That water is now discharged back to the ocean.

H6=Hf, at T5. T7 is the temperature of the exhaust mixed with cold sea water, as the vapor content now is negligible,

 

The temperature differences between stages include that between warm surface water and working steam, that between exhaust steam and cooling water, and that between cooling water reaching the condenser and deep water. These represent external irreversibilities that reduce the overall temperature difference.

The cold water flow rate per unit turbine mass flow rate,

 

Turbine mass flow rate,  

Warm water mass flow rate,  

Cold water mass flow rate  

Closed Anderson cycle

As developed starting in the 1960s by J. Hilbert Anderson of Sea Solar Power, Inc., in this cycle, QH is the heat transferred in the evaporator from the warm sea water to the working fluid. The working fluid exits the evaporator as a gas near its dew point.

The high-pressure, high-temperature gas then is expanded in the turbine to yield turbine work, WT. The working fluid is slightly superheated at the turbine exit and the turbine typically has an efficiency of 90% based on reversible, adiabatic expansion.

From the turbine exit, the working fluid enters the condenser where it rejects heat, -QC, to the cold sea water. The condensate is then compressed to the highest pressure in the cycle, requiring condensate pump work, WC. Thus, the Anderson closed cycle is a Rankine-type cycle similar to the conventional power plant steam cycle except that in the Anderson cycle the working fluid is never superheated more than a few degrees Fahrenheit. Owing to viscosity effects, working fluid pressure drops in both the evaporator and the condenser. This pressure drop, which depends on the types of heat exchangers used, must be considered in final design calculations but is ignored here to simplify the analysis. Thus, the parasitic condensate pump work, WC, computed here will be lower than if the heat exchanger pressure drop was included. The major additional parasitic energy requirements in the OTEC plant are the cold water pump work, WCT, and the warm water pump work, WHT. Denoting all other parasitic energy requirements by WA, the net work from the OTEC plant, WNP is

 

The thermodynamic cycle undergone by the working fluid can be analyzed without detailed consideration of the parasitic energy requirements. From the first law of thermodynamics, the energy balance for the working fluid as the system is

 

where WN = WT + WC is the net work for the thermodynamic cycle. For the idealized case in which there is no working fluid pressure drop in the heat exchangers,

 

and

 

so that the net thermodynamic cycle work becomes

 

Subcooled liquid enters the evaporator. Due to the heat exchange with warm sea water, evaporation takes place and usually superheated vapor leaves the evaporator. This vapor drives the turbine and the 2-phase mixture enters the condenser. Usually, the subcooled liquid leaves the condenser and finally, this liquid is pumped to the evaporator completing a cycle.

Environmental impact

Carbon dioxide dissolved in deep cold and high pressure layers is brought up to the surface and released as the water warms.[citation needed]

Mixing of deep ocean water with shallower water brings up nutrients and makes them available to shallow water life. This may be an advantage for aquaculture of commercially important species, but may also unbalance the ecological system around the power plant.[citation needed]

OTEC plants use very large flows of warm surface seawater and cold deep seawater to generate constant renewable power. The deep seawater is oxygen deficient and generally 20-40 times more nutrient rich (in nitrate and nitrite) than shallow seawater. When these plumes are mixed, they are slightly denser than the ambient seawater.[97] Though no large scale physical environmental testing of OTEC has been done, computer models have been developed to simulate the effect of OTEC plants.

Hydrodynamic modeling

In 2010, a computer model was developed to simulate the physical oceanographic effects of one or several 100 megawatt OTEC plant(s). The model suggests that OTEC plants can be configured such that the plant can conduct continuous operations, with resulting temperature and nutrient variations that are within naturally occurring levels. Studies to date suggest that by discharging the OTEC flows downwards at a depth below 70 meters, the dilution is adequate and nutrient enrichment is small enough so that 100-megawatt OTEC plants could be operated in a sustainable manner on a continuous basis.[98]

Biological modeling

The nutrients from an OTEC discharge could potentially cause increased biological activity if they accumulate in large quantities in the photic zone.[98] In 2011 a biological component was added to the hydrodynamic computer model to simulate the biological response to plumes from 100 megawatt OTEC plants. In all cases modeled (discharge at 70 meters depth or more), no unnatural variations occurs in the upper 40 meters of the ocean's surface.[97] The picoplankton response in the 110 - 70 meter depth layer is approximately a 10-25% increase, which is well within naturally occurring variability. The nanoplankton response is negligible. The enhanced productivity of diatoms (microplankton) is small. The subtle phytoplankton increase of the baseline OTEC plant suggests that higher-order biochemical effects will be very small.[97]

Studies

A previous Final Environmental Impact Statement (EIS) for the United States' NOAA from 1981 is available,[99] but needs to be brought up to current oceanographic and engineering standards. Studies have been done to propose the best environmental baseline monitoring practices, focusing on a set of ten chemical oceanographic parameters relevant to OTEC.[100] Most recently, NOAA held an OTEC Workshop in 2010 and 2012 seeking to assess the physical, chemical, and biological impacts and risks, and identify information gaps or needs.[101][102]

The Tethys database provides access to scientific literature and general information on the potential environmental effects of OTEC.[103]

Technical difficulties

Dissolved gases

The performance of direct contact heat exchangers operating at typical OTEC boundary conditions is important to the Claude cycle. Many early Claude cycle designs used a surface condenser since their performance was well understood. However, direct contact condensers offer significant disadvantages. As cold water rises in the intake pipe, the pressure decreases to the point where gas begins to evolve. If a significant amount of gas comes out of solution, placing a gas trap before the direct contact heat exchangers may be justified. Experiments simulating conditions in the warm water intake pipe indicated about 30% of the dissolved gas evolves in the top 8.5 meters (28 ft) of the tube. The trade-off between pre-dearation[104] of the seawater and expulsion of non-condensable gases from the condenser is dependent on the gas evolution dynamics, deaerator efficiency, head loss, vent compressor efficiency and parasitic power. Experimental results indicate vertical spout condensers perform some 30% better than falling jet types.

Microbial fouling

Because raw seawater must pass through the heat exchanger, care must be taken to maintain good thermal conductivity. Biofouling layers as thin as 25 to 50 micrometres (0.00098 to 0.00197 in) can degrade heat exchanger performance by as much as 50%.[40] A 1977 study in which mock heat exchangers were exposed to seawater for ten weeks concluded that although the level of microbial fouling was low, the thermal conductivity of the system was significantly impaired.[105] The apparent discrepancy between the level of fouling and the heat transfer impairment is the result of a thin layer of water trapped by the microbial growth on the surface of the heat exchanger.[105]

Another study concluded that fouling degrades performance over time, and determined that although regular brushing was able to remove most of the microbial layer, over time a tougher layer formed that could not be removed through simple brushing.[40] The study passed sponge rubber balls through the system. It concluded that although the ball treatment decreased the fouling rate it was not enough to completely halt growth and brushing was occasionally necessary to restore capacity. The microbes regrew more quickly later in the experiment (i.e. brushing became necessary more often) replicating the results of a previous study.[106] The increased growth rate after subsequent cleanings appears to result from selection pressure on the microbial colony.[106]

Continuous use of 1 hour per day and intermittent periods of free fouling and then chlorination periods (again 1 hour per day) were studied. Chlorination slowed but did not stop microbial growth; however chlorination levels of .1 mg per liter for 1 hour per day may prove effective for long term operation of a plant.[40] The study concluded that although microbial fouling was an issue for the warm surface water heat exchanger, the cold water heat exchanger suffered little or no biofouling and only minimal inorganic fouling.[40]

Besides water temperature, microbial fouling also depends on nutrient levels, with growth occurring faster in nutrient rich water.[107] The fouling rate also depends on the material used to construct the heat exchanger. Aluminium tubing slows the growth of microbial life, although the oxide layer which forms on the inside of the pipes complicates cleaning and leads to larger efficiency losses.[106] In contrast, titanium tubing allows biofouling to occur faster but cleaning is more effective than with aluminium.[106]

Sealing

The evaporator, turbine, and condenser operate in partial vacuum ranging from 3% to 1% of atmospheric pressure. The system must be carefully sealed to prevent in-leakage of atmospheric air that can degrade or shut down operation. In closed-cycle OTEC, the specific volume of low-pressure steam is very large compared to that of the pressurized working fluid. Components must have large flow areas to ensure steam velocities do not attain excessively high values.

Parasitic power consumption by exhaust compressor

An approach for reducing the exhaust compressor parasitic power loss is as follows. After most of the steam has been condensed by spout condensers, the non-condensible gas steam mixture is passed through a counter current region which increases the gas-steam reaction by a factor of five. The result is an 80% reduction in the exhaust pumping power requirements.

Cold air/warm water conversion

In winter in coastal Arctic locations, the temperature difference between the seawater and ambient air can be as high as 40 °C (72 °F). Closed-cycle systems could exploit the air-water temperature difference. Eliminating seawater extraction pipes might make a system based on this concept less expensive than OTEC. This technology is due to H. Barjot, who suggested butane as cryogen, because of its boiling point of −0.5 °C (31.1 °F) and its non-solubility in water.[108] Assuming a realistic level of efficiency of 4%, calculations show that the amount of energy generated with one cubic meter water at a temperature of 2 °C (36 °F) in a place with an air temperature of −22 °C (−8 °F) equals the amount of energy generated by letting this cubic meter water run through a hydroelectric plant of 4000 feet (1,200 m) height.[109]

Barjot Polar Power Plants could be located on islands in the polar region or designed as swimming barges or platforms attached to the ice cap. The weather station Myggbuka at Greenlands east coast for example, which is only 2,100 km away from Glasgow, detects monthly mean temperatures below −15 °C (5 °F) during 6 winter months in the year.[110] This technology can also be used to create artificial ice caps or glaciers on Antarctica valleys located near the sea coast. Thus sea level rise due to carbon emissions can be mitigated and also the generated electricity including from wind power plants is used for cripto currency mining and the heat liberated in the process is utilized for space heating requirements.

Application of the thermoelectric effect

In 1979 SERI proposed using the Seebeck effect to produce power with a total conversion efficiency of 2%.[111]

In 2014 Liping Liu, Associate Professor at Rutgers University, envisioned an OTEC system that utilises the solid state thermoelectric effect rather than the fluid cycles traditionally used.[112][113]

See also

References

  1. ^ Lewis, Anthony, et al. IPCC: Special Report on Renewable Energy Sources and Climate Change Mitigation, 2011
  2. ^ World Energy Council, 2000
  3. ^ Pelc and Fujita, 2002
  4. ^ a b c DiChristina, Mariette (May 1995). "Sea Power". Popular Science: 70–73. Retrieved 2016-10-09.
  5. ^ "Ocean Thermal Energy Conversion".
  6. ^ Chiles, Jamesin (Winter 2009). "The Other Renewable Energy". Invention and Technology. 23 (4): 24–35.
  7. ^ "Power from the Sea" Popular Mechanics, December 1930, pp 881-882 detail article and photos of Cuban power plant
  8. ^ a b c d Takahashi, Masayuki Mac (2000) [1991]. Deep Ocean Water as Our Next Natural Resource. Translated by Kitazawa, Kazuhiro; Snowden, Paul. Tokyo, Japan: Terra Scientific Publishing Company. ISBN 978-4-88704-125-7.
  9. ^ a b Avery, William H. and Chih Wu. Renewable Energy From the Ocean: A Guide to OTEC. New York: Oxford University Press. 1994.[page needed]
  10. ^ US patent 3312054, J.H. Anderson, "Sea Water Power Plant", issued 1967-04-04 
  11. ^ a b Bruch, Vicki L. (April 1994). An Assessment of Research and Development Leadership in Ocean Energy Technologies (Report). Albuquerque, NM: Sandia National Laboratories: Energy Policy and Planning Department. doi:10.2172/10154003. SAND93-3946.
  12. ^ Mitsui T, Ito F, Seya Y, Nakamoto Y (September 1983). . IEEE Transactions on Power Apparatus and Systems. PAS-102 (9): 3167–3171. Bibcode:1983ITPAS.102.3167M. doi:10.1109/TPAS.1983.318124. S2CID 8924555. Archived from the original on 2008-05-02.
  13. ^ Finney, Karen Anne. "Ocean Thermal Energy Conversion". Guelph Engineering Journal. 2008.
  14. ^ Daly, John (December 5, 2011). "Hawaii About to Crack Ocean Thermal Energy Conversion Roadblocks?". OilPrice.com. Retrieved 28 March 2013.
  15. ^ "Average Retail Price of Electricity to Ultimate Customers by End-Use Sector, by State". Energy Information Administration. September 2007.
  16. ^ a b L. Meyer; D. Cooper; R. Varley. "Are We There Yet? A Developer's Roadmap to OTEC Commercialization" (PDF). Hawaii National Marine Renewable Energy Center. Retrieved 28 March 2013.
  17. ^ Bharathan, D.; Penney, T. (1 May 1984). "Flash Evaporation From Turbulent Water Jets". Journal of Heat Transfer. 106 (2): 407–416. doi:10.1115/1.3246687.
  18. ^ Bharathan, D. (1984). Method and Apparatus for Flash Evaporation of Liquids. U.S. Patent No. 4,474,142.
  19. ^ Bharathan, D.; Parsons, B. K.; Althof, J. A. (1988). Direct-Contact Condensers for Open-Cycle OTEC Applications: Model Validation with Fresh Water Experiments for Structured Packings. 272 pp.; NREL Report No. TR-253-3108.
  20. ^ Bharathan, D.; Kreith, F.; Schlepp, D.; Owens, W. L. (January 1984). "Heat and Mass Transfer in Open-Cycle OTEC Systems". Heat Transfer Engineering. 5 (1–2): 17–30. Bibcode:1984HTrEn...5...17B. doi:10.1080/01457638408962766.
  21. ^ Kreith, F.; Bharathan, D. (1 February 1988). "1986 Max Jakob Memorial Award Lecture: Heat Transfer Research for Ocean Thermal Energy Conversion". Journal of Heat Transfer. 110 (1): 5–22. doi:10.1115/1.3250473.
  22. ^ Bharathan, D.; Green, H. J.; Link, H. F.; Parsons, B. K.; Parsons, J. M.; Zangrando, F. (1990). Conceptual Design of an Open-Cycle Ocean Thermal Energy Conversion Net Power-Producing Experiment (OC-OTEC NPPE). 160 pp.; NREL Report No. TR-253-3616.
  23. ^ Avery, William H. and Chih Wu. Renewable Energy From the Ocean: A Guide to OTEC. New York: Oxford University Press. 1994.[page needed]
  24. ^ "Deep Pipelines for Ocean Thermal Energy Conversion". Retrieved 8 January 2020.
  25. ^ Spaine (19 December 2011). "Baha Mar Resort Signs Energy Services Agreement with OTE Corporation".
  26. ^ Carlyle, Erin. "Baha Mar Resorts To Chapter 11 Bankruptcy, Blames China Construction For Delays". Forbes.
  27. ^ a b . Archived from the original on 2016-10-14. Retrieved 2016-10-13.
  28. ^ "Makai Ocean Engineering's Heat Exchanger Test Facility opened". www.otecnews.org. 2011-11-22. Retrieved 28 March 2013.
  29. ^ "Makai Ocean Engineering working with Navy on Big Island OTEC project". Retrieved 28 March 2013.
  30. ^ . International District Energy Association. Archived from the original on 2014-11-10. Retrieved 2013-03-28.
  31. ^ a b "OTE Receives Approval for OTEC System in the USVI". 18 July 2016.
  32. ^ a b Mekeel, Tim. "Ocean Thermal to begin talks for renewable energy plants in St. Croix, St. Thomas". LancasterOnline.
  33. ^ "OTEC Okinawa Project". otecokinawa.com.
  34. ^ "Contact". otecokinawa.com.
  35. ^ "Administered by the Natural Energy Laboratory of Hawaii Authority - Energy Portfolio". nelha.hawaii.gov.
  36. ^ "Akuo Energy and DCNS awarded European NER 300* funding: a crucial step for the marine renewable energy sector". Naval Group.
  37. ^ Owano, Nancy. "Celebrating Hawaii ocean thermal energy conversion power plant". Tech Xplore.
  38. ^ Kempener, Ruud (June 2014). "Wave Energy Technological Brief" (PDF): 3. Retrieved 2020-04-28. {{cite journal}}: Cite journal requires |journal= (help)
  39. ^ "What Is OTEC?". 2016. Retrieved 2020-04-28. {{cite journal}}: Cite journal requires |journal= (help)
  40. ^ a b c d e Berger LR, Berger JA (June 1986). "Countermeasures to Microbiofouling in Simulated Ocean Thermal Energy Conversion Heat Exchangers with Surface and Deep Ocean Waters in Hawaii". Appl. Environ. Microbiol. 51 (6): 1186–1198. Bibcode:1986ApEnM..51.1186B. doi:10.1128/AEM.51.6.1186-1198.1986. PMC 239043. PMID 16347076.
  41. ^ US patent 4311012, Warren T. Finley, "Method and apparatus for transferring cold seawater upward from the lower depths of the ocean to improve the efficiency of ocean thermal energy conversion systems", issued 1982-01-19 
  42. ^ Shah, Yatish T. (2018-01-12). Thermal Energy: Sources, Recovery, and Applications. CRC Press. ISBN 9781315305936.
  43. ^ Trimble LC, Owens WL (1980). "Review of mini-OTEC performance". Energy to the 21st Century; Proceedings of the Fifteenth Intersociety Energy Conversion Engineering Conference. 2: 1331–1338. Bibcode:1980iece.conf.1331T.
  44. ^ Vega, L.A. (1999). . OTEC News. The GreenOcean Project. Archived from the original on 7 December 2008. Retrieved 4 February 2011.
  45. ^ Lee, C.K.B.; Ridgway, Stuart (May 1983). "Vapor/Droplet Coupling and the Mist Flow (OTEC) Cycle" (PDF). Journal of Solar Energy Engineering. 105 (2): 181. Bibcode:1983ATJSE.105..181L. doi:10.1115/1.3266363.
  46. ^ a b "Achievements in OTEC Technology". National Renewable Energy Laboratory.
  47. ^ Vega, L. A. (2002-12-01). "Ocean Thermal Energy Conversion Primer". Marine Technology Society Journal. 36 (4): 25–35. doi:10.4031/002533202787908626.
  48. ^ a b c d "Design and Location". What is Ocean Thermal Energy Conversion?. National Renewable Energy Laboratory. Retrieved 22 January 2012.
  49. ^ Shah, Yatish (2018-01-31). Thermal Energy: Sources, Recovery, and Applications. CRC Press. ISBN 9781138033535.
  50. ^ Vega, Luis A. (May 2010). "Economics of Ocean Thermal Energy Conversion" (PDF). National Marine Renewable Energy Center at the University of Hawaii. p. 11. Retrieved 13 December 2019.
  51. ^ "Levelized cost of energy for ocean energy technologies". Ocean Energy Systems. May 2015. p. 41. Retrieved 13 December 2019.
  52. ^ www.pichtr.org (PDF) . Archived from the original (PDF) on June 26, 2007. {{cite web}}: Missing or empty |title= (help)
  53. ^ "Lazard's Levelized Cost of Energy" (PDF). p. 3. Retrieved November 29, 2019.
  54. ^ (PDF) https://www.irena.org/documentdownloads/publications/ocean_thermal_energy_v4_web.pdf. Retrieved April 28, 2019. {{cite web}}: Missing or empty |title= (help)
  55. ^ . Nrel.gov. Archived from the original on 2005-11-26. Retrieved 2012-06-12.
  56. ^ "NREL: Ocean Thermal Energy Conversion Home Page". Nrel.gov. Retrieved 2012-06-12.
  57. ^ "Projects".
  58. ^ Carlyle, Erin. "Baha Mar Resorts To Chapter 11 Bankruptcy, Blames China Construction For Delays". Forbes.
  59. ^ Guardian, The Nassau (8 August 2012). "News Article".
  60. ^ "OTEC 10k".
  61. ^ "Lockheed Martin awarded another $4.4M for OTEC work in Hawaii". November 22, 2010. Retrieved 6 December 2010.
  62. ^ Coxworth, Ben (November 26, 2010). "More funds for Hawaii's Ocean Thermal Energy Conversion plant". Retrieved 6 December 2010.
  63. ^ Hawaii First to Harness Deep Ocean Temperatures for Power http://www.scientificamerican.com/article/hawaii-first-to-harness-deep-ocean-temperatures-for-power/
  64. ^ Daniel Cusick (May 1, 2013). "CLEAN TECHNOLOGY: U.S.-designed no-emission power plant will debut off China's coast". ClimateWire E&E Publishing. Retrieved May 2, 2013.
  65. ^ David Alexander (April 16, 2013). "Lockheed to build 10-megawatt thermal power plant off southern China". Reuters. Retrieved April 17, 2013.
  66. ^ "Tapping Into the Ocean's Power: Lockheed Martin signs agreement for largest ever OTEC plant". Lockheed Martin. Retrieved April 17, 2013.
  67. ^ . Reignwood Group. Archived from the original on January 15, 2013. Retrieved April 17, 2013.
  68. ^ Martin, Benjamin (4 August 2014). "The Foundation of GO SEA".
  69. ^ "OTEC:Ocean Thermal Energy Conversion - Xenesys Inc". xenesys.com.
  70. ^ "Home". otecorporation.com.
  71. ^ "Senate Signs MOU for Ocean Energy Feasibility Study". 6 March 2014.
  72. ^ "Feasibility Study for World's First US-Based Commercial OTEC Plant and Sea Water Air Conditioning (SWAC) Systems in USVI". Naval Group.
  73. ^ "Energy from the Ocean: The Ocean Thermal Energy Converter". Marine Technology News. 29 January 2016.
  74. ^ "Akuo Energy and DCNS awarded European NER 300* funding: a crucial step for the marine renewable energy sector". Naval Group.
  75. ^ "Home Page". www.akuoenergy.com.
  76. ^ otecfoundation (9 July 2014). "Funding NEMO: Offshore OTEC project awarded in NER 300 program". OTEC news.
  77. ^ a b "OTECresorts: Ocean Energy at East Anglia, United Kingdom". www.angelinvestmentnetwork.co.uk. Angel Investment Network. Retrieved 2018-02-21.
  78. ^ "Applications open for ocean thermal energy purchase in Maldives". Retrieved 8 January 2020.
  79. ^ "UK OTEC developer kicks off crowdfunding campaign". Tidal Energy Today. Retrieved 2018-02-21.
  80. ^ Block and Lalenzuela 1985
  81. ^ US 7726138 
  82. ^ "海洋エネルギー研究センター 2015久米島サテライトオープンラボ (施設見学会)[報告]". Retrieved 2015-06-16.
  83. ^ Martin, Benjamin. . otecokinawa.com. Archived from the original on 2020-06-07. Retrieved 2015-06-16.
  84. ^ U.S. Department of Energy, 1989
  85. ^ . YouTube. Archived from the original on 2011-11-04. Retrieved 2007-05-28.
  86. ^ Green Tech. "Copenhagen’s SeawaterCooling Delivers Energy And Carbon Savings". 24 October 2012. Forbes.
  87. ^ us 7069689 
  88. ^ "Deep Sea Water Research Institute". kumeguide.com. 16 August 2019.
  89. ^ Ponia, Ben. "Aquaculture Updates in the Northern Pacific: Hawaii, Federated States of Mirconesia, Palau and Saipan". SPCFisheries Newsletter. July 2006. Web. 25 June 2013. available at: http://www.spc.int/DigitalLibrary/Doc/FAME/InfoBull/FishNews/118/FishNews11 2015-09-25 at the Wayback Machine 8_58_Ponia.pdf.
  90. ^ Shah, Yatish (2014-05-16). Water for Energy and Fuel Production. CRC Press. ISBN 978-1482216189.
  91. ^ Wu, Chih (1994). Renewable Energy From The Ocean. Oxford University Press. ISBN 9780195071993.
  92. ^ Berger, Matthew. "The Nuclear Option: Technology to Extract Uranium From the Sea Advances". NewsDeeply.
  93. ^ "Enhancing fish stocks with artificial upwelling". CiteSeerX 10.1.1.526.2024. {{cite journal}}: Cite journal requires |journal= (help)
  94. ^ Hartman, Duke (October 2011), "Challenge And Promise Of OTEC", Ocean News, retrieved 11 June 2012
  95. ^ Da Rosa, Aldo Vieira (2009). "Chapter 4:Ocean Thermal Energy Converters". Fundamentals of renewable energy processes. Academic Press. pp. 139 to 152. ISBN 978-0-12-374639-9.
  96. ^ Eldred, M.; Landherr, A.; Chen, I.C. (July 2010), "Comparison Of Aluminum Alloys And Manufacturing Processes Based On Corrosion Performance For Use In OTEC Heat Exchangers", Offshore Technology Conference 2010 (OTC 2010), Curran Associates, Inc., doi:10.4043/20702-MS, ISBN 9781617384264
  97. ^ a b c Grandelli, Pat (2012). "Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters" (PDF). US Department of Energy - Office of Scientific and Technical Information. doi:10.2172/1055480. Retrieved 27 March 2013.
  98. ^ a b Rocheleau, Greg J.; Grandelli, Patrick (2011). "Physical and biological modeling of a 100 megawatt Ocean Thermal Energy Conversion discharge plume". Oceans'11 MTS/IEEE Kona. pp. 1–10. doi:10.23919/OCEANS.2011.6107077. ISBN 978-1-4577-1427-6. S2CID 22549789.
  99. ^ "Final Environmental Impact Statement for Commercial Ocean Thermal Energy Conversion (OTEC) Licensing" (PDF). U.S. Dept of Commerce, National Oceanic and Atmospheric Administration. Retrieved 27 March 2013.
  100. ^ L. Vega; C. Comfort. "Environmental Assessment of Ocean Thermal Energy Conversion in Hawaii" (PDF). Hawaii National Marine Renewable Energy Center. Retrieved 27 March 2013.
  101. ^ "Ocean Thermal Energy Conversion: Assessing Potential Physical, Chemical, and Biological Impacts and Risks" (PDF). National Oceanic and Atmospheric Administration, Office of Ocean and Coastal Resource Management. Retrieved 27 March 2013.
  102. ^ "Ocean Thermal Energy Conversion: Information Needs Assessment" (PDF). National Oceanic and Atmospheric Administration (NOAA) Office of Response and Restoration (ORR) and the Environmental Research Group at the University of New Hampshire (UNH). Retrieved 27 March 2013.
  103. ^ . Archived from the original on 2014-11-10.
  104. ^ "Definition of DEAERATE". www.merriam-webster.com.
  105. ^ a b Aftring RP, Taylor BF (October 1979). "Assessment of Microbial Fouling in an Ocean Thermal Energy Conversion Experiment". Appl. Environ. Microbiol. 38 (4): 734–739. Bibcode:1979ApEnM..38..734A. doi:10.1128/AEM.38.4.734-739.1979. PMC 243568. PMID 16345450.
  106. ^ a b c d Nickels JS, Bobbie RJ, Lott DF, Martz RF, Benson PH, White DC (June 1981). "Effect of Manual Brush Cleaning on Biomass and Community Structure of Microfouling Film Formed on Aluminum and Titanium Surfaces Exposed to Rapidly Flowing Seawater". Appl. Environ. Microbiol. 41 (6): 1442–1453. Bibcode:1981ApEnM..41.1442N. doi:10.1128/AEM.41.6.1442-1453.1981. PMC 243937. PMID 16345798.
  107. ^ Trulear, Michael G.; Characklis, William G. (1982). "Dynamics of Biofilm Processes". Journal of the Water Pollution Control Federation. 54 (9): 1288–1301. JSTOR 25041684.
  108. ^ "Science: Cold Power". Time. 1929-04-22.
  109. ^ "Achmed Khammas - Das Buch der Synergie - Teil C - Temperaturgradient". Buch-der-synergie.de. 2007-10-25. Retrieved 2012-06-12.
  110. ^ "Denmark - Myggbuka". Globalbioclimatics.org. Retrieved 2012-06-12.
  111. ^ (PDF). Archived from the original (PDF) on 2018-10-11. Retrieved 2018-10-10.
  112. ^ Zyga, Lisa. "Thermoelectric power plants could offer economically competitive renewable energy". phys.org.
  113. ^ Liu, Liping (2014). "Feasibility of large-scale power plants based on thermoelectric effects". New Journal of Physics. 16 (12): 123019. Bibcode:2014NJPh...16l3019L. doi:10.1088/1367-2630/16/12/123019.

Sources

  • William H. Avery; Chih Wu (1994-03-17). Renewable Energy From the Ocean: A Guide to OTEC. Johns Hopkins University Applied Physics Laboratories Series in Science and Engineering. Oxford, New York: Oxford University Press. ISBN 978-0-19-507199-3.

External links

ocean, thermal, energy, conversion, ocean, thermal, energy, conversion, otec, uses, ocean, thermal, gradient, between, cooler, deep, warmer, shallow, surface, seawaters, heat, engine, produce, useful, work, usually, form, electricity, otec, operate, with, very. Ocean Thermal Energy Conversion OTEC uses the ocean thermal gradient between cooler deep and warmer shallow or surface seawaters to run a heat engine and produce useful work usually in the form of electricity OTEC can operate with a very high capacity factor and so can operate in base load mode Worldmap highlighting oceanic regions with high temperature gradients between surface and 1000m depth OTEC diagram and applications The denser cold water masses formed by ocean surface water interaction with cold atmosphere in quite specific areas of the North Atlantic and the Southern Ocean sink into the deep sea basins and spread in entire deep ocean by the thermohaline circulation Upwelling of cold water from the deep ocean is replenished by the downwelling of cold surface sea water Among ocean energy sources OTEC is one of the continuously available renewable energy resources that could contribute to base load power supply 1 The resource potential for OTEC is considered to be much larger than for other ocean energy forms 2 Up to 88 000 TWh yr of power could be generated from OTEC without affecting the ocean s thermal structure 3 Systems may be either closed cycle or open cycle Closed cycle OTEC uses working fluids that are typically thought of as refrigerants such as ammonia or R 134a These fluids have low boiling points and are therefore suitable for powering the system s generator to generate electricity The most commonly used heat cycle for OTEC to date is the Rankine cycle using a low pressure turbine Open cycle engines use vapor from the seawater itself as the working fluid OTEC can also supply quantities of cold water as a by product This can be used for air conditioning and refrigeration and the nutrient rich deep ocean water can feed biological technologies Another by product is fresh water distilled from the sea 4 OTEC theory was first developed in the 1880s and the first bench size demonstration model was constructed in 1926 Currently operating pilot scale OTEC plants are located in Japan overseen by Saga University and Makai in Hawaii 5 Contents 1 History 2 Currently operating OTEC plants 3 Thermodynamic efficiency 4 Power cycle types 4 1 Closed 4 2 Open 4 3 Hybrid 4 4 Working fluids 5 Land shelf and floating sites 5 1 Land based 5 2 Shelf based 5 3 Floating 6 Political concerns 7 Cost and economics 8 Some proposed projects 8 1 Bahamas 8 2 Hawaii 8 3 Hainan 8 4 Japan 8 5 United States Virgin Islands 8 6 Kiribati 8 7 Martinique 8 8 Maldives 9 Related activities 9 1 Desalination 9 2 Air conditioning 9 3 Chilled soil agriculture 9 4 Aquaculture 9 5 Hydrogen production 9 6 Mineral extraction 9 7 Climate control 10 Thermodynamics 10 1 Variation of ocean temperature with depth 10 2 Open Claude cycle 10 3 Closed Anderson cycle 11 Environmental impact 11 1 Hydrodynamic modeling 11 2 Biological modeling 11 3 Studies 12 Technical difficulties 12 1 Dissolved gases 12 2 Microbial fouling 12 3 Sealing 12 4 Parasitic power consumption by exhaust compressor 13 Cold air warm water conversion 14 Application of the thermoelectric effect 15 See also 16 References 17 Sources 18 External linksHistory EditAttempts to develop and refine OTEC technology started in the 1880s In 1881 Jacques Arsene d Arsonval a French physicist proposed tapping the thermal energy of the ocean D Arsonval s student Georges Claude built the first OTEC plant in Matanzas Cuba in 1930 6 7 The system generated 22 kW of electricity with a low pressure turbine 8 The plant was later destroyed in a storm 9 In 1935 Claude constructed a plant aboard a 10 000 ton cargo vessel moored off the coast of Brazil Weather and waves destroyed it before it could generate net power 8 Net power is the amount of power generated after subtracting power needed to run the system In 1956 French scientists designed a 3 MW plant for Abidjan Ivory Coast The plant was never completed because new finds of large amounts of cheap petroleum made it uneconomical 8 In 1962 J Hilbert Anderson and James H Anderson Jr focused on increasing component efficiency They patented their new closed cycle design in 1967 10 This design improved upon the original closed cycle Rankine system and included this in an outline for a plant that would produce power at lower cost than oil or coal At the time however their research garnered little attention since coal and nuclear were considered the future of energy 9 Japan is a major contributor to the development of OTEC technology 11 Beginning in 1970 the Tokyo Electric Power Company successfully built and deployed a 100 kW closed cycle OTEC plant on the island of Nauru 11 The plant became operational on 14 October 1981 producing about 120 kW of electricity 90 kW was used to power the plant and the remaining electricity was used to power a school and other places 8 This set a world record for power output from an OTEC system where the power was sent to a real as opposed to an experimental power grid 12 1981 also saw a major development in OTEC technology when Russian engineer Dr Alexander Kalina used a mixture of ammonia and water to produce electricity This new ammonia water mixture greatly improved the efficiency of the power cycle In 1994 Saga University designed and constructed a 4 5 kW plant for the purpose of testing a newly invented Uehara cycle also named after its inventor Haruo Uehara This cycle included absorption and extraction processes that allow this system to outperform the Kalina cycle by 1 2 13 Currently the Institute of Ocean Energy Saga University is the leader in OTEC power plant research and also focuses on many of the technology s secondary benefits The 1970s saw an uptick in OTEC research and development during the post 1973 Arab Israeli War which caused oil prices to triple The U S federal government poured 260 million into OTEC research after President Carter signed a law that committed the US to a production goal of 10 000 MW of electricity from OTEC systems by 1999 14 View of a land based OTEC facility at Keahole Point on the Kona coast of Hawaii In 1974 The U S established the Natural Energy Laboratory of Hawaii Authority NELHA at Keahole Point on the Kona coast of Hawaii Hawaii is the best US OTEC location due to its warm surface water access to very deep very cold water and high electricity costs The laboratory has become a leading test facility for OTEC technology 15 In the same year Lockheed received a grant from the U S National Science Foundation to study OTEC This eventually led to an effort by Lockheed the US Navy Makai Ocean Engineering Dillingham Construction and other firms to build the world s first and only net power producing OTEC plant dubbed Mini OTEC 16 For three months in 1979 a small amount of electricity was generated A European initiative EUROCEAN a privately funded joint venture of 9 European companies already active in offshore engineering was active in promoting OTEC from 1979 to 1983 Initially a large scale offshore facility was studied Later a 100 kW land based installation was studied combining land based OTEC with Desalination and Aquaculture nicknamed ODA This was based on the results from a small scale aquaculture facility at the island of St Croix that used a deepwater supply line to feed the aquaculture basins Also a shore based open cycle plant was investigated The location of the case of study was the Dutch Kingdom related island Curacao citation needed Research related to making open cycle OTEC a reality began earnestly in 1979 at the Solar Energy Research Institute SERI with funding from the US Department of Energy Evaporators and suitably configured direct contact condensers were developed and patented by SERI see 17 18 19 An original design for a power producing experiment then called the 165 kW experiment was described by Kreith and Bharathan 20 and 21 as the Max Jakob Memorial Award Lecture The initial design used two parallel axial turbines using last stage rotors taken from large steam turbines Later a team led by Dr Bharathan at the National Renewable Energy Laboratory NREL developed the initial conceptual design for up dated 210 kW open cycle OTEC experiment 22 This design integrated all components of the cycle namely the evaporator condenser and the turbine into one single vacuum vessel with the turbine mounted on top to prevent any potential for water to reach it The vessel was made of concrete as the first process vacuum vessel of its kind Attempts to make all components using low cost plastic material could not be fully achieved as some conservatism was required for the turbine and the vacuum pumps developed as the first of their kind Later Dr Bharathan worked with a team of engineers at the Pacific Institute for High Technology Research PICHTR to further pursue this design through preliminary and final stages It was renamed the Net Power Producing Experiment NPPE and was constructed at the Natural Energy Laboratory of Hawaii NELH by PICHTR by a team led by Chief Engineer Don Evans and the project was managed by Dr Luis Vega India pipes used for OTEC left and floating OTEC plant constructed in 2000 right In 2002 India tested a 1 MW floating OTEC pilot plant near Tamil Nadu The plant was ultimately unsuccessful due to a failure of the deep sea cold water pipe 23 Its government continues to sponsor research 24 In 2006 Makai Ocean Engineering was awarded a contract from the U S Office of Naval Research ONR to investigate the potential for OTEC to produce nationally significant quantities of hydrogen in at sea floating plants located in warm tropical waters Realizing the need for larger partners to actually commercialize OTEC Makai approached Lockheed Martin to renew their previous relationship and determine if the time was ready for OTEC And so in 2007 Lockheed Martin resumed work in OTEC and became a subcontractor to Makai to support their SBIR which was followed by other subsequent collaborations 16 In March 2011 Ocean Thermal Energy Corporation signed an Energy Services Agreement ESA with the Baha Mar resort Nassau Bahamas for the world s first and largest seawater air conditioning SWAC system 25 In June 2015 the project was put on pause while the resort resolved financial and ownership issues 26 In August 2016 it was announced that the issues had been resolved and that the resort would open in March 2017 27 It is expected that the SWAC system s construction will resume at that time In July 2011 Makai Ocean Engineering completed the design and construction of an OTEC Heat Exchanger Test Facility at the Natural Energy Laboratory of Hawaii The purpose of the facility is to arrive at an optimal design for OTEC heat exchangers increasing performance and useful life while reducing cost heat exchangers being the 1 cost driver for an OTEC plant 28 And in March 2013 Makai announced an award to install and operate a 100 kilowatt turbine on the OTEC Heat Exchanger Test Facility and once again connect OTEC power to the grid 29 30 In July 2016 the Virgin Islands Public Services Commission approved Ocean Thermal Energy Corporation s application to become a Qualified Facility The company is thus permitted to begin negotiations with the Virgin Islands Water and Power Authority WAPA for a Power Purchase Agreement PPA pertaining to an Ocean Thermal Energy Conversion OTEC plant on the island of St Croix This would be the world s first commercial OTEC plant 31 32 Currently operating OTEC plants EditIn March 2013 Saga University with various Japanese industries completed the installation of a new OTEC plant Okinawa Prefecture announced the start of the OTEC operation testing at Kume Island on April 15 2013 The main aim is to prove the validity of computer models and demonstrate OTEC to the public The testing and research will be conducted with the support of Saga University until the end of FY 2016 IHI Plant Construction Co Ltd Yokogawa Electric Corporation and Xenesys Inc were entrusted with constructing the 100 kilowatt class plant within the grounds of the Okinawa Prefecture Deep Sea Water Research Center The location was specifically chosen in order to utilize existing deep seawater and surface seawater intake pipes installed for the research center in 2000 The pipe is used for the intake of deep sea water for research fishery and agricultural use 19 The plant consists of two 50 kW units in double Rankine configuration 33 The OTEC facility and deep seawater research center are open to free public tours by appointment in English and Japanese 34 Currently this is one of only two fully operational OTEC plants in the world This plant operates continuously when specific tests are not underway In 2011 Makai Ocean Engineering completed a heat exchanger test facility at NELHA Used to test a variety of heat exchange technologies for use in OTEC Makai has received funding to install a 105 kW turbine 35 Installation will make this facility the largest operational OTEC facility though the record for largest power will remain with the Open Cycle plant also developed in Hawaii In July 2014 DCNS group partnered with Akuo Energy announced NER 300 funding for their NEMO project If successful the 16MW gross 10MW net offshore plant will be the largest OTEC facility to date DCNS plans to have NEMO operational by 2020 36 failed verification An ocean thermal energy conversion power plant built by Makai Ocean Engineering went operational in Hawaii in August 2015 The governor of Hawaii David Ige flipped the switch to activate the plant This is the first true closed cycle ocean Thermal Energy Conversion OTEC plant to be connected to a U S electrical grid It is a demo plant capable of generating 105 kilowatts enough to power about 120 homes 37 Thermodynamic efficiency EditA heat engine gives greater efficiency when run with a large temperature difference In the oceans the temperature difference between surface and deep water is greatest in the tropics although still a modest 20 to 25 C It is therefore in the tropics that OTEC offers the greatest possibilities 4 OTEC has the potential to offer global amounts of energy that are 10 to 100 times greater than other ocean energy options such as wave power 38 39 OTEC plants can operate continuously providing a base load supply for an electrical power generation system 4 The main technical challenge of OTEC is to generate significant amounts of power efficiently from small temperature differences It is still considered an emerging technology Early OTEC systems were 1 to 3 percent thermally efficient well below the theoretical maximum 6 and 7 percent for this temperature difference 40 Modern designs allow performance approaching the theoretical maximum Carnot efficiency Power cycle types EditCold seawater is an integral part of each of the three types of OTEC systems closed cycle open cycle and hybrid To operate the cold seawater must be brought to the surface The primary approaches are active pumping and desalination Desalinating seawater near the sea floor lowers its density which causes it to rise to the surface 41 The alternative to costly pipes to bring condensing cold water to the surface is to pump vaporized low boiling point fluid into the depths to be condensed thus reducing pumping volumes and reducing technical and environmental problems and lowering costs 42 Closed Edit Diagram of a closed cycle OTEC plant Closed cycle systems use fluid with a low boiling point such as ammonia having a boiling point around 33 C at atmospheric pressure to power a turbine to generate electricity Warm surface seawater is pumped through a heat exchanger to vaporize the fluid The expanding vapor turns the turbo generator Cold water pumped through a second heat exchanger condenses the vapor into a liquid which is then recycled through the system In 1979 the Natural Energy Laboratory and several private sector partners developed the mini OTEC experiment which achieved the first successful at sea production of net electrical power from closed cycle OTEC 43 The mini OTEC vessel was moored 1 5 miles 2 4 km off the Hawaiian coast and produced enough net electricity to illuminate the ship s light bulbs and run its computers and television Open Edit Diagram of an open cycle OTEC plant Open cycle OTEC uses warm surface water directly to make electricity The warm seawater is first pumped into a low pressure container which causes it to boil In some schemes the expanding vapor drives a low pressure turbine attached to an electrical generator The vapor which has left its salt and other contaminants in the low pressure container is pure fresh water It is condensed into a liquid by exposure to cold temperatures from deep ocean water This method produces desalinized fresh water suitable for drinking water irrigation or aquaculture 44 In other schemes the rising vapor is used in a gas lift technique of lifting water to significant heights Depending on the embodiment such vapor lift pump techniques generate power from a hydroelectric turbine either before or after the pump is used 45 In 1984 the Solar Energy Research Institute now known as the National Renewable Energy Laboratory developed a vertical spout evaporator to convert warm seawater into low pressure steam for open cycle plants Conversion efficiencies were as high as 97 for seawater to steam conversion overall steam production would only be a few percent of the incoming water In May 1993 an open cycle OTEC plant at Keahole Point Hawaii produced close to 80 kW of electricity during a net power producing experiment 46 This broke the record of 40 kW set by a Japanese system in 1982 46 Hybrid Edit A hybrid cycle combines the features of the closed and open cycle systems In a hybrid warm seawater enters a vacuum chamber and is flash evaporated similar to the open cycle evaporation process The steam vaporizes the ammonia working fluid of a closed cycle loop on the other side of an ammonia vaporizer The vaporized fluid then drives a turbine to produce electricity The steam condenses within the heat exchanger and provides desalinated water see heat pipe 47 Working fluids Edit A popular choice of working fluid is ammonia which has superior transport properties easy availability and low cost Ammonia however is toxic and flammable Fluorinated carbons such as CFCs and HCFCs are not toxic or flammable but they contribute to ozone layer depletion Hydrocarbons too are good candidates but they are highly flammable in addition this would create competition for use of them directly as fuels The power plant size is dependent upon the vapor pressure of the working fluid With increasing vapor pressure the size of the turbine and heat exchangers decreases while the wall thickness of the pipe and heat exchangers increase to endure high pressure especially on the evaporator side Land shelf and floating sites EditOTEC has the potential to produce gigawatts of electrical power and in conjunction with electrolysis could produce enough hydrogen to completely replace all projected global fossil fuel consumption citation needed Reducing costs remains an unsolved challenge however OTEC plants require a long large diameter intake pipe which is submerged a kilometer or more into the ocean s depths to bring cold water to the surface Land based Edit Land based and near shore facilities offer three main advantages over those located in deep water Plants constructed on or near land do not require sophisticated mooring lengthy power cables or the more extensive maintenance associated with open ocean environments They can be installed in sheltered areas so that they are relatively safe from storms and heavy seas Electricity desalinated water and cold nutrient rich seawater could be transmitted from near shore facilities via trestle bridges or causeways In addition land based or near shore sites allow plants to operate with related industries such as mariculture or those that require desalinated water Favored locations include those with narrow shelves volcanic islands steep 15 20 degrees offshore slopes and relatively smooth sea floors These sites minimize the length of the intake pipe A land based plant could be built well inland from the shore offering more protection from storms or on the beach where the pipes would be shorter In either case easy access for construction and operation helps lower costs Land based or near shore sites can also support mariculture or chilled water agriculture Tanks or lagoons built on shore allow workers to monitor and control miniature marine environments Mariculture products can be delivered to market via standard transport One disadvantage of land based facilities arises from the turbulent wave action in the surf zone OTEC discharge pipes should be placed in protective trenches to prevent subjecting them to extreme stress during storms and prolonged periods of heavy seas Also the mixed discharge of cold and warm seawater may need to be carried several hundred meters offshore to reach the proper depth before it is released requiring additional expense in construction and maintenance One way that OTEC systems can avoid some of the problems and expenses of operating in a surf zone is by building them just offshore in waters ranging from 10 to 30 meters deep Ocean Thermal Corporation 1984 This type of plant would use shorter and therefore less costly intake and discharge pipes which would avoid the dangers of turbulent surf The plant itself however would require protection from the marine environment such as breakwaters and erosion resistant foundations and the plant output would need to be transmitted to shore 48 Shelf based Edit To avoid the turbulent surf zone as well as to move closer to the cold water resource OTEC plants can be mounted to the continental shelf at depths up to 100 meters 330 ft A shelf mounted plant could be towed to the site and affixed to the sea bottom This type of construction is already used for offshore oil rigs The complexities of operating an OTEC plant in deeper water may make them more expensive than land based approaches Problems include the stress of open ocean conditions and more difficult product delivery Addressing strong ocean currents and large waves adds engineering and construction expense Platforms require extensive pilings to maintain a stable base Power delivery can require long underwater cables to reach land For these reasons shelf mounted plants are less attractive 48 citation needed Floating Edit Floating OTEC facilities operate off shore Although potentially optimal for large systems floating facilities present several difficulties The difficulty of mooring plants in very deep water complicates power delivery Cables attached to floating platforms are more susceptible to damage especially during storms Cables at depths greater than 1000 meters are difficult to maintain and repair Riser cables which connect the sea bed and the plant need to be constructed to resist entanglement 48 As with shelf mounted plants floating plants need a stable base for continuous operation Major storms and heavy seas can break the vertically suspended cold water pipe and interrupt warm water intake as well To help prevent these problems pipes can be made of flexible polyethylene attached to the bottom of the platform and gimballed with joints or collars Pipes may need to be uncoupled from the plant to prevent storm damage As an alternative to a warm water pipe surface water can be drawn directly into the platform however it is necessary to prevent the intake flow from being damaged or interrupted during violent motions caused by heavy seas 48 Connecting a floating plant to power delivery cables requires the plant to remain relatively stationary Mooring is an acceptable method but current mooring technology is limited to depths of about 2 000 meters 6 600 ft Even at shallower depths the cost of mooring may be prohibitive 49 Political concerns EditBecause OTEC facilities are more or less stationary surface platforms their exact location and legal status may be affected by the United Nations Convention on the Law of the Sea treaty UNCLOS This treaty grants coastal nations 12 and 200 nautical mile 22 and 370 km zones of varying legal authority from land creating potential conflicts and regulatory barriers OTEC plants and similar structures would be considered artificial islands under the treaty giving them no independent legal status OTEC plants could be perceived as either a threat or potential partner to fisheries or to seabed mining operations controlled by the International Seabed Authority Cost and economics EditBecause OTEC systems have not yet been widely deployed cost estimates are uncertain A 2010 study by University of Hawaii estimated the cost of electricity for OTEC at 94 0 cents per kilowatt hour kWh for a 1 4 MW plant 44 0 cents per kWh for a 10 MW plant and 18 0 cents per kWh for a 100 MW plant 50 A 2015 report by the organization Ocean Energy Systems under the International Energy Agency gave an estimate of about 20 0 cents per kWh for 100 MW plants 51 Another study estimated power generation costs as low as 7 0 cents per kWh 52 Comparing to other energy sources a 2019 study by Lazard estimated the unsubsidized cost of electricity to 3 2 to 4 2 cents per kWh for Solar PV at utility scale and 2 8 to 5 4 cents per kWh for wind power 53 A report published by IRENA in 2014 claimed that commercial use of OTEC technology can be scaled in a variety of ways small scale OTEC plants can be made to accommodate the electricity production of small communities 5 000 50 000 residents but would require the production of valuable by products like fresh water or cooling to be economically viable Larger scaled OTEC plants would have a much higher overhead and installation costs 54 Beneficial factors that should be taken into account include OTEC s lack of waste products and fuel consumption the area in which it is available citation needed often within 20 of the equator 55 the geopolitical effects of petroleum dependence compatibility with alternate forms of ocean power such as wave energy tidal energy and methane hydrates and supplemental uses for the seawater 56 Some proposed projects EditOTEC projects under consideration include a small plant for the U S Navy base on the British overseas territory island of Diego Garcia in the Indian Ocean Ocean Thermal Energy Corporation formerly OCEES International Inc is working with the U S Navy on a design for a proposed 13 MW OTEC plant to replace the current diesel generators The OTEC plant would also provide 1 25 million gallons clarification needed per day of potable water This project is currently when waiting for changes in US military contract policies OTE has proposed building a 10 MW OTEC plant on Guam Bahamas Edit Ocean Thermal Energy Corporation OTE currently when has plans to install two 10 MW OTEC plants in the US Virgin Islands and a 5 10 MW OTEC facility in The Bahamas OTE has also designed the world s largest Seawater Air Conditioning SWAC plant for a resort in The Bahamas which will use cold deep seawater as a method of air conditioning 57 In mid 2015 the 95 complete project was temporarily put on hold while the resort resolved financial and ownership issues 58 On August 22 2016 the government of the Bahamas announced that a new agreement had been signed under which the Baha Mar resort will be completed 27 On September 27 2016 Bahamian Prime Minister Perry Christie announced that construction had resumed on Baha Mar and that the resort was slated to open in March 2017 59 This is on hold and may never resume 60 Hawaii Edit Lockheed Martin s Alternative Energy Development team has partnered with Makai Ocean Engineering 61 to complete the final design phase of a 10 MW closed cycle OTEC pilot system which planned to become operational in Hawaii in the 2012 2013 time frame This system was designed to expand to 100 MW commercial systems in the near future In November 2010 the U S Naval Facilities Engineering Command NAVFAC awarded Lockheed Martin a US 4 4 million contract modification to develop critical system components and designs for the plant adding to the 2009 8 1 million contract and two Department of Energy grants totaling over 1 million in 2008 and March 2010 62 A small but operational ocean thermal energy conversion OTEC plant was inaugurated in Hawaii in August 2015 The opening of the research and development 100 kilowatt facility marked the first time a closed cycle OTEC plant was connected to the U S grid 63 Hainan Edit On April 13 2013 Lockheed contracted with the Reignwood Group to build a 10 megawatt plant off the coast of southern China to provide power for a planned resort on Hainan island 64 A plant of that size would power several thousand homes 65 66 The Reignwood Group acquired Opus Offshore in 2011 which forms its Reignwood Ocean Engineering division which also is engaged in development of deepwater drilling 67 Japan Edit Currently the only continuously operating OTEC system is located in Okinawa Prefecture Japan The Governmental support local community support and advanced research carried out by Saga University were key for the contractors IHI Plant Construction Co Ltd Yokogawa Electric Corporation and Xenesys Inc to succeed with this project Work is being conducted to develop a 1MW facility on Kume Island requiring new pipelines In July 2014 more than 50 members formed the Global Ocean reSource and Energy Association GOSEA an international organization formed to promote the development of the Kumejima Model and work towards the installation of larger deep seawater pipelines and a 1MW OTEC Facility 68 The companies involved in the current OTEC projects along with other interested parties have developed plans for offshore OTEC systems as well 69 For more details see Currently Operating OTEC Plants above United States Virgin Islands Edit On March 5 2014 Ocean Thermal Energy Corporation OTEC 70 and the 30th Legislature of the United States Virgin Islands USVI signed a Memorandum of Understanding to move forward with a study to evaluate the feasibility and potential benefits to the USVI of installing on shore Ocean Thermal Energy Conversion OTEC renewable energy power plants and Seawater Air Conditioning SWAC facilities 71 The benefits to be assessed in the USVI study include both the baseload 24 7 clean electricity generated by OTEC as well as the various related products associated with OTEC and SWAC including abundant fresh drinking water energy saving air conditioning sustainable aquaculture and mariculture and agricultural enhancement projects for the Islands of St Thomas and St Croix 72 On July 18 2016 OTE s application to be a Qualifying Facility was approved by the Virgin Islands Public Services Commission 31 OTE also received permission to begin negotiating contracts associated with this project 32 Kiribati Edit South Korea s Research Institute of Ships and Ocean Engineering KRISO received Approval in Principal from Bureau Veritas for their 1MW offshore OTEC design No timeline was given for the project which will be located 6 km offshore of the Republic of Kiribati 73 Martinique Edit Akuo Energy and DCNS were awarded NER300 funding on July 8 2014 74 for their NEMO New Energy for Martinique and Overseas project which is expected to be a 10 7MW net offshore facility completed in 2020 75 The award to help with development totaled 72 million Euro 76 Maldives Edit On February 16 2018 Global OTEC Resources announced plans 77 to build a 150 kW plant in the Maldives designed bespoke for hotels and resorts 78 All these resorts draw their power from diesel generators Moreover some individual resorts consume 7 000 litres of diesel a day to meet demands which equates to over 6 000 tonnes of CO2 annually said Director Dan Grech 79 The EU awarded a grant and Global OTEC resources launched a crowdfunding campaign for the rest 77 Related activities EditOTEC has uses other than power production Desalination Edit Desalinated water can be produced in open or hybrid cycle plants using surface condensers to turn evaporated seawater into potable water System analysis indicates that a 2 megawatt plant could produce about 4 300 cubic metres 150 000 cu ft of desalinated water each day 80 Another system patented by Richard Bailey creates condensate water by regulating deep ocean water flow through surface condensers correlating with fluctuating dew point temperatures 81 This condensation system uses no incremental energy and has no moving parts On March 22 2015 Saga University opened a Flash type desalination demonstration facility on Kumejima 82 This satellite of their Institute of Ocean Energy uses post OTEC deep seawater from the Okinawa OTEC Demonstration Facility and raw surface seawater to produce desalinated water Air is extracted from the closed system with a vacuum pump When raw sea water is pumped into the flash chamber it boils allowing pure steam to rise and the salt and remaining seawater to be removed The steam is returned to liquid in a heat exchanger with cold post OTEC deep seawater 83 The desalinated water can be used in hydrogen production or drinking water if minerals are added The NELHA plant established in 1993 produced an average of 7 000 gallons of freshwater per day KOYO USA was established in 2002 to capitalize on this new economic opportunity KOYO bottles the water produced by the NELHA plant in Hawaii With the capacity to produce one million bottles of water every day KOYO is now Hawaii s biggest exporter with 140 million in sales 81 Air conditioning Edit This section may contain material unrelated or insufficiently related to the topic of the article Please help improve this section or discuss this issue on the talk page January 2022 Learn how and when to remove this template message The 41 F 5 C cold seawater made available by an OTEC system creates an opportunity to provide large amounts of cooling to industries and homes near the plant The water can be used in chilled water coils to provide air conditioning for buildings It is estimated that a pipe 1 foot 0 30 m in diameter can deliver 4 700 gallons of water per minute Water at 43 F 6 C could provide more than enough air conditioning for a large building Operating 8 000 hours per year in lieu of electrical conditioning selling for 5 10 per kilowatt hour it would save 200 000 400 000 in energy bills annually 84 The InterContinental Resort and Thalasso Spa on the island of Bora Bora uses an SWAC system to air condition its buildings 85 The system passes seawater through a heat exchanger where it cools freshwater in a closed loop system This freshwater is then pumped to buildings and directly cools the air In 2010 Copenhagen Energy opened a district cooling plant in Copenhagen Denmark The plant delivers cold seawater to commercial and industrial buildings and has reduced electricity consumption by 80 percent 86 Ocean Thermal Energy Corporation OTE has designed a 9800 ton SDC system for a vacation resort in The Bahamas Chilled soil agriculture Edit OTEC technology supports chilled soil agriculture When cold seawater flows through underground pipes it chills the surrounding soil The temperature difference between roots in the cool soil and leaves in the warm air allows plants that evolved in temperate climates to be grown in the subtropics Dr John P Craven Dr Jack Davidson and Richard Bailey patented this process and demonstrated it at a research facility at the Natural Energy Laboratory of Hawaii Authority NELHA 87 The research facility demonstrated that more than 100 different crops can be grown using this system Many normally could not survive in Hawaii or at Keahole Point citation needed Japan has also been researching agricultural uses of Deep Sea Water since 2000 at the Okinawa Deep Sea Water Research Institute on Kume Island The Kume Island facilities use regular water cooled by Deep Sea Water in a heat exchanger run through pipes in the ground to cool soil Their techniques have developed an important resource for the island community as they now produce spinach a winter vegetable commercially year round An expansion of the deep seawater agriculture facility was completed by Kumejima Town next to the OTEC Demonstration Facility in 2014 The new facility is for researching the economic practicality of chilled soil agriculture on a larger scale 88 Aquaculture Edit Aquaculture is the best known byproduct because it reduces the financial and energy costs of pumping large volumes of water from the deep ocean Deep ocean water contains high concentrations of essential nutrients that are depleted in surface waters due to biological consumption This artificial upwelling mimics the natural upwellings that are responsible for fertilizing and supporting the world s largest marine ecosystems and the largest densities of life on the planet Cold water sea animals such as salmon and lobster thrive in this nutrient rich deep seawater Microalgae such as Spirulina a health food supplement also can be cultivated Deep ocean water can be combined with surface water to deliver water at an optimal temperature Non native species such as salmon lobster abalone trout oysters and clams can be raised in pools supplied by OTEC pumped water This extends the variety of fresh seafood products available for nearby markets Such low cost refrigeration can be used to maintain the quality of harvested fish which deteriorate quickly in warm tropical regions In Kona Hawaii aquaculture companies working with NELHA generate about 40 million annually a significant portion of Hawaii s GDP 89 Hydrogen production Edit Hydrogen can be produced via electrolysis using OTEC electricity Generated steam with electrolyte compounds added to improve efficiency is a relatively pure medium for hydrogen production OTEC can be scaled to generate large quantities of hydrogen The main challenge is cost relative to other energy sources and fuels 90 Mineral extraction Edit The ocean contains 57 trace elements in salts and other forms and dissolved in solution In the past most economic analyses concluded that mining the ocean for trace elements would be unprofitable in part because of the energy required to pump the water Mining generally targets minerals that occur in high concentrations and can be extracted easily such as magnesium With OTEC plants supplying water the only cost is for extraction 91 The Japanese investigated the possibility of extracting uranium and found developments in other technologies especially materials sciences were improving the prospects 92 Climate control Edit This section needs additional citations for verification Please help improve this article by adding citations to reliable sources Unsourced material may be challenged and removed January 2022 Learn how and when to remove this template message Ocean thermal gradient can be used to enhance rainfall and moderate the high ambient summer temperatures in tropics to benefit enormously the mankind and the flora and fauna citation needed When sea surface temperatures are relatively high on an area lower atmospheric pressure area is formed compared to atmospheric pressure prevailing on the nearby land mass inducing winds from the landmass towards the ocean Oceanward winds are dry and warm which would not contribute to good rainfall on the landmass compared to landward moist winds For adequate rainfall and comfortable summer ambient temperatures below 35 C on the landmass it is preferred to have landward moist winds from the ocean Creating high pressure zones by artificial upwelling on sea area selectively can also be used to deflect guide the normal monsoon global winds towards the landmass Artificial upwelling of nutrient rich deep ocean water to the surface also enhances fisheries growth in areas with tropical and temperate weather 93 It would also lead to enhanced carbon sequestration by the oceans from improved algae growth and mass gain by glaciers from the extra snow fall mitigating sea level rise or global warming process citation needed Tropical cyclones also do not pass through the high pressure zones as they intensify by gaining energy from the warm surface waters of the sea The cold deep sea water lt 10 C is pumped to the sea surface area to suppress the sea surface temperature gt 26 C by artificial means using electricity produced by mega scale floating wind turbine plants on the deep sea The lower sea water surface temperature would enhance the local ambient pressure so that atmospheric landward winds are created For upwelling the cold sea water a stationary hydraulically driven propeller 50 m diameter is located on the deep sea floor at 500 to 1000 m depth with a flexible draft tube extending up to the sea surface The draft tube is anchored to the sea bed at its bottom side and top side to floating pontoons at the sea surface The flexible draft tube would not collapse as its inside pressure is more compared to outside pressure when the colder water is pumped to the sea surface Middle east north east Africa Indian subcontinent and Australia can get relief from hot and dry weather in summer season also prone to erratic rainfall by pumping deep sea water to the sea surface from the Persian gulf Red sea Indian Ocean and Pacific Ocean respectively citation needed Thermodynamics EditA rigorous treatment of OTEC reveals that a 20 C temperature difference will provide as much energy as a hydroelectric plant with 34 m head for the same volume of water flow citation needed The low temperature difference means that water volumes must be very large to extract useful amounts of heat A 100MW power plant would be expected to pump on the order of 12 million gallons 44 400 tonnes per minute 94 For comparison pumps must move a mass of water greater than the weight of the battleship Bismarck which weighed 41 700 tonnes every minute This makes pumping a substantial parasitic drain on energy production in OTEC systems with one Lockheed design consuming 19 55 MW in pumping costs for every 49 8 MW net electricity generated For OTEC schemes using heat exchangers to handle this volume of water the exchangers need to be enormous compared to those used in conventional thermal power generation plants 95 making them one of the most critical components due to their impact on overall efficiency A 100 MW OTEC power plant would require 200 exchangers each larger than a 20 foot shipping container making them the single most expensive component 96 Variation of ocean temperature with depth Edit Graph of different thermoclines depth vs temperature based on seasons and latitude The total insolation received by the oceans covering 70 of the earth s surface with clearness index of 0 5 and average energy retention of 15 is 5 45 1018 MJ yr 0 7 0 5 0 15 2 87 1017 MJ yrWe can use Beer Lambert Bouguer s law to quantify the solar energy absorption by water d I y d y m I displaystyle frac dI y dy mu I where y is the depth of water I is intensity and m is the absorption coefficient Solving the above differential equation I y I 0 exp m y displaystyle I y I 0 exp mu y The absorption coefficient m may range from 0 05 m 1 for very clear fresh water to 0 5 m 1 for very salty water Since the intensity falls exponentially with depth y heat absorption is concentrated at the top layers Typically in the tropics surface temperature values are in excess of 25 C 77 F while at 1 kilometer 0 62 mi the temperature is about 5 10 C 41 50 F The warmer and hence lighter waters at the surface means there are no thermal convection currents Due to the small temperature gradients heat transfer by conduction is too low to equalize the temperatures The ocean is thus both a practically infinite heat source and a practically infinite heat sink clarification needed This temperature difference varies with latitude and season with the maximum in tropical subtropical and equatorial waters Hence the tropics are generally the best OTEC locations Open Claude cycle Edit In this scheme warm surface water at around 27 C 81 F enters an evaporator at pressure slightly below the saturation pressures causing it to vaporize H 1 H f displaystyle H 1 H f Where Hf is enthalpy of liquid water at the inlet temperature T1 This temporarily superheated water undergoes volume boiling as opposed to pool boiling in conventional boilers where the heating surface is in contact Thus the water partially flashes to steam with two phase equilibrium prevailing Suppose that the pressure inside the evaporator is maintained at the saturation pressure T2 H 2 H 1 H f x 2 H f g displaystyle H 2 H 1 H f x 2 H fg Here x2 is the fraction of water by mass that vaporizes The warm water mass flow rate per unit turbine mass flow rate is 1 x2 The low pressure in the evaporator is maintained by a vacuum pump that also removes the dissolved non condensable gases from the evaporator The evaporator now contains a mixture of water and steam of very low vapor quality steam content The steam is separated from the water as saturated vapor The remaining water is saturated and is discharged to the ocean in the open cycle The steam is a low pressure high specific volume working fluid It expands in a special low pressure turbine H 3 H g displaystyle H 3 H g Here Hg corresponds to T2 For an ideal isentropic reversible adiabatic turbine s 5 s s 3 s f x 5 s s f g displaystyle s 5 s s 3 s f x 5 s s fg The above equation corresponds to the temperature at the exhaust of the turbine T5 x5 s is the mass fraction of vapor at state 5 The enthalpy at T5 is H 5 s H f x 5 s H f g displaystyle H 5 s H f x 5 s H fg This enthalpy is lower The adiabatic reversible turbine work H3 H5 s Actual turbine work WT H3 H5 s x polytropic efficiency H 5 H 3 a c t u a l w o r k displaystyle H 5 H 3 mathrm actual mathrm work The condenser temperature and pressure are lower Since the turbine exhaust is to be discharged back into the ocean a direct contact condenser is used to mix the exhaust with cold water which results in a near saturated water That water is now discharged back to the ocean H6 Hf at T5 T7 is the temperature of the exhaust mixed with cold sea water as the vapor content now is negligible H 7 H f a t T 7 displaystyle H 7 approx H f at T 7 The temperature differences between stages include that between warm surface water and working steam that between exhaust steam and cooling water and that between cooling water reaching the condenser and deep water These represent external irreversibilities that reduce the overall temperature difference The cold water flow rate per unit turbine mass flow rate m c H 5 H 6 H 6 H 7 displaystyle dot m c frac H 5 H 6 H 6 H 7 Turbine mass flow rate M T t u r b i n e w o r k r e q u i r e d W T displaystyle dot M T frac mathrm turbine mathrm work mathrm required W T Warm water mass flow rate M w M T m w displaystyle dot M w dot M T dot m w Cold water mass flow rate M c M T m C displaystyle dot dot M c dot M T m C Closed Anderson cycle Edit As developed starting in the 1960s by J Hilbert Anderson of Sea Solar Power Inc in this cycle QH is the heat transferred in the evaporator from the warm sea water to the working fluid The working fluid exits the evaporator as a gas near its dew point The high pressure high temperature gas then is expanded in the turbine to yield turbine work WT The working fluid is slightly superheated at the turbine exit and the turbine typically has an efficiency of 90 based on reversible adiabatic expansion From the turbine exit the working fluid enters the condenser where it rejects heat QC to the cold sea water The condensate is then compressed to the highest pressure in the cycle requiring condensate pump work WC Thus the Anderson closed cycle is a Rankine type cycle similar to the conventional power plant steam cycle except that in the Anderson cycle the working fluid is never superheated more than a few degrees Fahrenheit Owing to viscosity effects working fluid pressure drops in both the evaporator and the condenser This pressure drop which depends on the types of heat exchangers used must be considered in final design calculations but is ignored here to simplify the analysis Thus the parasitic condensate pump work WC computed here will be lower than if the heat exchanger pressure drop was included The major additional parasitic energy requirements in the OTEC plant are the cold water pump work WCT and the warm water pump work WHT Denoting all other parasitic energy requirements by WA the net work from the OTEC plant WNP is W N P W T W C W C T W H T W A displaystyle W NP W T W C W CT W HT W A The thermodynamic cycle undergone by the working fluid can be analyzed without detailed consideration of the parasitic energy requirements From the first law of thermodynamics the energy balance for the working fluid as the system is W N Q H Q C displaystyle W N Q H Q C where WN WT WC is the net work for the thermodynamic cycle For the idealized case in which there is no working fluid pressure drop in the heat exchangers Q H H T H d s displaystyle Q H int H T H ds and Q C C T C d s displaystyle Q C int C T C ds so that the net thermodynamic cycle work becomes W N H T H d s C T C d s displaystyle W N int H T H ds int C T C ds Subcooled liquid enters the evaporator Due to the heat exchange with warm sea water evaporation takes place and usually superheated vapor leaves the evaporator This vapor drives the turbine and the 2 phase mixture enters the condenser Usually the subcooled liquid leaves the condenser and finally this liquid is pumped to the evaporator completing a cycle Environmental impact EditCarbon dioxide dissolved in deep cold and high pressure layers is brought up to the surface and released as the water warms citation needed Mixing of deep ocean water with shallower water brings up nutrients and makes them available to shallow water life This may be an advantage for aquaculture of commercially important species but may also unbalance the ecological system around the power plant citation needed OTEC plants use very large flows of warm surface seawater and cold deep seawater to generate constant renewable power The deep seawater is oxygen deficient and generally 20 40 times more nutrient rich in nitrate and nitrite than shallow seawater When these plumes are mixed they are slightly denser than the ambient seawater 97 Though no large scale physical environmental testing of OTEC has been done computer models have been developed to simulate the effect of OTEC plants Hydrodynamic modeling Edit In 2010 a computer model was developed to simulate the physical oceanographic effects of one or several 100 megawatt OTEC plant s The model suggests that OTEC plants can be configured such that the plant can conduct continuous operations with resulting temperature and nutrient variations that are within naturally occurring levels Studies to date suggest that by discharging the OTEC flows downwards at a depth below 70 meters the dilution is adequate and nutrient enrichment is small enough so that 100 megawatt OTEC plants could be operated in a sustainable manner on a continuous basis 98 Biological modeling Edit The nutrients from an OTEC discharge could potentially cause increased biological activity if they accumulate in large quantities in the photic zone 98 In 2011 a biological component was added to the hydrodynamic computer model to simulate the biological response to plumes from 100 megawatt OTEC plants In all cases modeled discharge at 70 meters depth or more no unnatural variations occurs in the upper 40 meters of the ocean s surface 97 The picoplankton response in the 110 70 meter depth layer is approximately a 10 25 increase which is well within naturally occurring variability The nanoplankton response is negligible The enhanced productivity of diatoms microplankton is small The subtle phytoplankton increase of the baseline OTEC plant suggests that higher order biochemical effects will be very small 97 Studies Edit A previous Final Environmental Impact Statement EIS for the United States NOAA from 1981 is available 99 but needs to be brought up to current oceanographic and engineering standards Studies have been done to propose the best environmental baseline monitoring practices focusing on a set of ten chemical oceanographic parameters relevant to OTEC 100 Most recently NOAA held an OTEC Workshop in 2010 and 2012 seeking to assess the physical chemical and biological impacts and risks and identify information gaps or needs 101 102 The Tethys database provides access to scientific literature and general information on the potential environmental effects of OTEC 103 Technical difficulties EditDissolved gases Edit The performance of direct contact heat exchangers operating at typical OTEC boundary conditions is important to the Claude cycle Many early Claude cycle designs used a surface condenser since their performance was well understood However direct contact condensers offer significant disadvantages As cold water rises in the intake pipe the pressure decreases to the point where gas begins to evolve If a significant amount of gas comes out of solution placing a gas trap before the direct contact heat exchangers may be justified Experiments simulating conditions in the warm water intake pipe indicated about 30 of the dissolved gas evolves in the top 8 5 meters 28 ft of the tube The trade off between pre dearation 104 of the seawater and expulsion of non condensable gases from the condenser is dependent on the gas evolution dynamics deaerator efficiency head loss vent compressor efficiency and parasitic power Experimental results indicate vertical spout condensers perform some 30 better than falling jet types Microbial fouling Edit Because raw seawater must pass through the heat exchanger care must be taken to maintain good thermal conductivity Biofouling layers as thin as 25 to 50 micrometres 0 00098 to 0 00197 in can degrade heat exchanger performance by as much as 50 40 A 1977 study in which mock heat exchangers were exposed to seawater for ten weeks concluded that although the level of microbial fouling was low the thermal conductivity of the system was significantly impaired 105 The apparent discrepancy between the level of fouling and the heat transfer impairment is the result of a thin layer of water trapped by the microbial growth on the surface of the heat exchanger 105 Another study concluded that fouling degrades performance over time and determined that although regular brushing was able to remove most of the microbial layer over time a tougher layer formed that could not be removed through simple brushing 40 The study passed sponge rubber balls through the system It concluded that although the ball treatment decreased the fouling rate it was not enough to completely halt growth and brushing was occasionally necessary to restore capacity The microbes regrew more quickly later in the experiment i e brushing became necessary more often replicating the results of a previous study 106 The increased growth rate after subsequent cleanings appears to result from selection pressure on the microbial colony 106 Continuous use of 1 hour per day and intermittent periods of free fouling and then chlorination periods again 1 hour per day were studied Chlorination slowed but did not stop microbial growth however chlorination levels of 1 mg per liter for 1 hour per day may prove effective for long term operation of a plant 40 The study concluded that although microbial fouling was an issue for the warm surface water heat exchanger the cold water heat exchanger suffered little or no biofouling and only minimal inorganic fouling 40 Besides water temperature microbial fouling also depends on nutrient levels with growth occurring faster in nutrient rich water 107 The fouling rate also depends on the material used to construct the heat exchanger Aluminium tubing slows the growth of microbial life although the oxide layer which forms on the inside of the pipes complicates cleaning and leads to larger efficiency losses 106 In contrast titanium tubing allows biofouling to occur faster but cleaning is more effective than with aluminium 106 Sealing Edit The evaporator turbine and condenser operate in partial vacuum ranging from 3 to 1 of atmospheric pressure The system must be carefully sealed to prevent in leakage of atmospheric air that can degrade or shut down operation In closed cycle OTEC the specific volume of low pressure steam is very large compared to that of the pressurized working fluid Components must have large flow areas to ensure steam velocities do not attain excessively high values Parasitic power consumption by exhaust compressor Edit An approach for reducing the exhaust compressor parasitic power loss is as follows After most of the steam has been condensed by spout condensers the non condensible gas steam mixture is passed through a counter current region which increases the gas steam reaction by a factor of five The result is an 80 reduction in the exhaust pumping power requirements Cold air warm water conversion EditFurther information Lake Vanda In winter in coastal Arctic locations the temperature difference between the seawater and ambient air can be as high as 40 C 72 F Closed cycle systems could exploit the air water temperature difference Eliminating seawater extraction pipes might make a system based on this concept less expensive than OTEC This technology is due to H Barjot who suggested butane as cryogen because of its boiling point of 0 5 C 31 1 F and its non solubility in water 108 Assuming a realistic level of efficiency of 4 calculations show that the amount of energy generated with one cubic meter water at a temperature of 2 C 36 F in a place with an air temperature of 22 C 8 F equals the amount of energy generated by letting this cubic meter water run through a hydroelectric plant of 4000 feet 1 200 m height 109 Barjot Polar Power Plants could be located on islands in the polar region or designed as swimming barges or platforms attached to the ice cap The weather station Myggbuka at Greenlands east coast for example which is only 2 100 km away from Glasgow detects monthly mean temperatures below 15 C 5 F during 6 winter months in the year 110 This technology can also be used to create artificial ice caps or glaciers on Antarctica valleys located near the sea coast Thus sea level rise due to carbon emissions can be mitigated and also the generated electricity including from wind power plants is used for cripto currency mining and the heat liberated in the process is utilized for space heating requirements Application of the thermoelectric effect EditIn 1979 SERI proposed using the Seebeck effect to produce power with a total conversion efficiency of 2 111 In 2014 Liping Liu Associate Professor at Rutgers University envisioned an OTEC system that utilises the solid state thermoelectric effect rather than the fluid cycles traditionally used 112 113 See also Edit Energy portalDeep water source cooling Heat engine Floating wind turbine Ocean engineering Osmotic power Seawater air conditioning Thermogalvanic cellReferences Edit Lewis Anthony et al IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation 2011 World Energy Council 2000 Pelc and Fujita 2002 a b c DiChristina Mariette May 1995 Sea Power Popular Science 70 73 Retrieved 2016 10 09 Ocean Thermal Energy Conversion Chiles Jamesin Winter 2009 The Other Renewable Energy Invention and Technology 23 4 24 35 Power from the Sea Popular Mechanics December 1930 pp 881 882 detail article and photos of Cuban power plant a b c d Takahashi Masayuki Mac 2000 1991 Deep Ocean Water as Our Next Natural Resource Translated by Kitazawa Kazuhiro Snowden Paul Tokyo Japan Terra Scientific Publishing Company ISBN 978 4 88704 125 7 a b Avery William H and Chih Wu Renewable Energy From the Ocean A Guide to OTEC New York Oxford University Press 1994 page needed US patent 3312054 J H Anderson Sea Water Power Plant issued 1967 04 04 a b Bruch Vicki L April 1994 An Assessment of Research and Development Leadership in Ocean Energy Technologies Report Albuquerque NM Sandia National Laboratories Energy Policy and Planning Department doi 10 2172 10154003 SAND93 3946 Mitsui T Ito F Seya Y Nakamoto Y September 1983 Outline of the 100 kW OTEC Pilot Plant in the Republic of Nauru IEEE Transactions on Power Apparatus and Systems PAS 102 9 3167 3171 Bibcode 1983ITPAS 102 3167M doi 10 1109 TPAS 1983 318124 S2CID 8924555 Archived from the original on 2008 05 02 Finney Karen Anne Ocean Thermal Energy Conversion Guelph Engineering Journal 2008 Daly John December 5 2011 Hawaii About to Crack Ocean Thermal Energy Conversion Roadblocks OilPrice com Retrieved 28 March 2013 Average Retail Price of Electricity to Ultimate Customers by End Use Sector by State Energy Information Administration September 2007 a b L Meyer D Cooper R Varley Are We There Yet A Developer s Roadmap to OTEC Commercialization PDF Hawaii National Marine Renewable Energy Center Retrieved 28 March 2013 Bharathan D Penney T 1 May 1984 Flash Evaporation From Turbulent Water Jets Journal of Heat Transfer 106 2 407 416 doi 10 1115 1 3246687 Bharathan D 1984 Method and Apparatus for Flash Evaporation of Liquids U S Patent No 4 474 142 Bharathan D Parsons B K Althof J A 1988 Direct Contact Condensers for Open Cycle OTEC Applications Model Validation with Fresh Water Experiments for Structured Packings 272 pp NREL Report No TR 253 3108 Bharathan D Kreith F Schlepp D Owens W L January 1984 Heat and Mass Transfer in Open Cycle OTEC Systems Heat Transfer Engineering 5 1 2 17 30 Bibcode 1984HTrEn 5 17B doi 10 1080 01457638408962766 Kreith F Bharathan D 1 February 1988 1986 Max Jakob Memorial Award Lecture Heat Transfer Research for Ocean Thermal Energy Conversion Journal of Heat Transfer 110 1 5 22 doi 10 1115 1 3250473 Bharathan D Green H J Link H F Parsons B K Parsons J M Zangrando F 1990 Conceptual Design of an Open Cycle Ocean Thermal Energy Conversion Net Power Producing Experiment OC OTEC NPPE 160 pp NREL Report No TR 253 3616 Avery William H and Chih Wu Renewable Energy From the Ocean A Guide to OTEC New York Oxford University Press 1994 page needed Deep Pipelines for Ocean Thermal Energy Conversion Retrieved 8 January 2020 Spaine 19 December 2011 Baha Mar Resort Signs Energy Services Agreement with OTE Corporation Carlyle Erin Baha Mar Resorts To Chapter 11 Bankruptcy Blames China Construction For Delays Forbes a b Ocean Thermal Energy Corporation Reports Announcement by Bahamian Government of the Remobilization Completion and Opening of the Baha Mar Beach Resort OTE Corporation Archived from the original on 2016 10 14 Retrieved 2016 10 13 Makai Ocean Engineering s Heat Exchanger Test Facility opened www otecnews org 2011 11 22 Retrieved 28 March 2013 Makai Ocean Engineering working with Navy on Big Island OTEC project Retrieved 28 March 2013 Makai Ocean Engineering to add 100kW turbine generator to Kona Hawaii OTEC test facility International District Energy Association Archived from the original on 2014 11 10 Retrieved 2013 03 28 a b OTE Receives Approval for OTEC System in the USVI 18 July 2016 a b Mekeel Tim Ocean Thermal to begin talks for renewable energy plants in St Croix St Thomas LancasterOnline OTEC Okinawa Project otecokinawa com Contact otecokinawa com Administered by the Natural Energy Laboratory of Hawaii Authority Energy Portfolio nelha hawaii gov Akuo Energy and DCNS awarded European NER 300 funding a crucial step for the marine renewable energy sector Naval Group Owano Nancy Celebrating Hawaii ocean thermal energy conversion power plant Tech Xplore Kempener Ruud June 2014 Wave Energy Technological Brief PDF 3 Retrieved 2020 04 28 a href Template Cite journal html title Template Cite journal cite journal a Cite journal requires journal help What Is OTEC 2016 Retrieved 2020 04 28 a href Template Cite journal html title Template Cite journal cite journal a Cite journal requires journal help a b c d e Berger LR Berger JA June 1986 Countermeasures to Microbiofouling in Simulated Ocean Thermal Energy Conversion Heat Exchangers with Surface and Deep Ocean Waters in Hawaii Appl Environ Microbiol 51 6 1186 1198 Bibcode 1986ApEnM 51 1186B doi 10 1128 AEM 51 6 1186 1198 1986 PMC 239043 PMID 16347076 US patent 4311012 Warren T Finley Method and apparatus for transferring cold seawater upward from the lower depths of the ocean to improve the efficiency of ocean thermal energy conversion systems issued 1982 01 19 Shah Yatish T 2018 01 12 Thermal Energy Sources Recovery and Applications CRC Press ISBN 9781315305936 Trimble LC Owens WL 1980 Review of mini OTEC performance Energy to the 21st Century Proceedings of the Fifteenth Intersociety Energy Conversion Engineering Conference 2 1331 1338 Bibcode 1980iece conf 1331T Vega L A 1999 Open Cycle OTEC OTEC News The GreenOcean Project Archived from the original on 7 December 2008 Retrieved 4 February 2011 Lee C K B Ridgway Stuart May 1983 Vapor Droplet Coupling and the Mist Flow OTEC Cycle PDF Journal of Solar Energy Engineering 105 2 181 Bibcode 1983ATJSE 105 181L doi 10 1115 1 3266363 a b Achievements in OTEC Technology National Renewable Energy Laboratory Vega L A 2002 12 01 Ocean Thermal Energy Conversion Primer Marine Technology Society Journal 36 4 25 35 doi 10 4031 002533202787908626 a b c d Design and Location What is Ocean Thermal Energy Conversion National Renewable Energy Laboratory Retrieved 22 January 2012 Shah Yatish 2018 01 31 Thermal Energy Sources Recovery and Applications CRC Press ISBN 9781138033535 Vega Luis A May 2010 Economics of Ocean Thermal Energy Conversion PDF National Marine Renewable Energy Center at the University of Hawaii p 11 Retrieved 13 December 2019 Levelized cost of energy for ocean energy technologies Ocean Energy Systems May 2015 p 41 Retrieved 13 December 2019 www pichtr org PDF https web archive org web 20070626183941 http www pichtr org luis vega otec summary pdf Archived from the original PDF on June 26 2007 a href Template Cite web html title Template Cite web cite web a Missing or empty title help Lazard s Levelized Cost of Energy PDF p 3 Retrieved November 29 2019 PDF https www irena org documentdownloads publications ocean thermal energy v4 web pdf Retrieved April 28 2019 a href Template Cite web html title Template Cite web cite web a Missing or empty title help NREL Ocean Thermal Energy Conversion Markets for OTEC Nrel gov Archived from the original on 2005 11 26 Retrieved 2012 06 12 NREL Ocean Thermal Energy Conversion Home Page Nrel gov Retrieved 2012 06 12 Projects Carlyle Erin Baha Mar Resorts To Chapter 11 Bankruptcy Blames China Construction For Delays Forbes Guardian The Nassau 8 August 2012 News Article OTEC 10k Lockheed Martin awarded another 4 4M for OTEC work in Hawaii November 22 2010 Retrieved 6 December 2010 Coxworth Ben November 26 2010 More funds for Hawaii s Ocean Thermal Energy Conversion plant Retrieved 6 December 2010 Hawaii First to Harness Deep Ocean Temperatures for Power http www scientificamerican com article hawaii first to harness deep ocean temperatures for power Daniel Cusick May 1 2013 CLEAN TECHNOLOGY U S designed no emission power plant will debut off China s coast ClimateWire E amp E Publishing Retrieved May 2 2013 David Alexander April 16 2013 Lockheed to build 10 megawatt thermal power plant off southern China Reuters Retrieved April 17 2013 Tapping Into the Ocean s Power Lockheed Martin signs agreement for largest ever OTEC plant Lockheed Martin Retrieved April 17 2013 Reignwood Ocean Engineering Reignwood Group Archived from the original on January 15 2013 Retrieved April 17 2013 Martin Benjamin 4 August 2014 The Foundation of GO SEA OTEC Ocean Thermal Energy Conversion Xenesys Inc xenesys com Home otecorporation com Senate Signs MOU for Ocean Energy Feasibility Study 6 March 2014 Feasibility Study for World s First US Based Commercial OTEC Plant and Sea Water Air Conditioning SWAC Systems in USVI Naval Group Energy from the Ocean The Ocean Thermal Energy Converter Marine Technology News 29 January 2016 Akuo Energy and DCNS awarded European NER 300 funding a crucial step for the marine renewable energy sector Naval Group Home Page www akuoenergy com otecfoundation 9 July 2014 Funding NEMO Offshore OTEC project awarded in NER 300 program OTEC news a b OTECresorts Ocean Energy at East Anglia United Kingdom www angelinvestmentnetwork co uk Angel Investment Network Retrieved 2018 02 21 Applications open for ocean thermal energy purchase in Maldives Retrieved 8 January 2020 UK OTEC developer kicks off crowdfunding campaign Tidal Energy Today Retrieved 2018 02 21 Block and Lalenzuela 1985 US 7726138 海洋エネルギー研究センター 2015久米島サテライトオープンラボ 施設見学会 報告 Retrieved 2015 06 16 Martin Benjamin IOES Kumejima Satellite otecokinawa com Archived from the original on 2020 06 07 Retrieved 2015 06 16 U S Department of Energy 1989 YouTube video on the OTEC air conditioning system used at the InterContinental Resort and Thalasso Spa on the island of Bora Bora YouTube Archived from the original on 2011 11 04 Retrieved 2007 05 28 Green Tech Copenhagen s SeawaterCooling Delivers Energy And Carbon Savings 24 October 2012 Forbes us 7069689 Deep Sea Water Research Institute kumeguide com 16 August 2019 Ponia Ben Aquaculture Updates in the Northern Pacific Hawaii Federated States of Mirconesia Palau and Saipan SPCFisheries Newsletter July 2006 Web 25 June 2013 available at http www spc int DigitalLibrary Doc FAME InfoBull FishNews 118 FishNews11 Archived 2015 09 25 at the Wayback Machine 8 58 Ponia pdf Shah Yatish 2014 05 16 Water for Energy and Fuel Production CRC Press ISBN 978 1482216189 Wu Chih 1994 Renewable Energy From The Ocean Oxford University Press ISBN 9780195071993 Berger Matthew The Nuclear Option Technology to Extract Uranium From the Sea Advances NewsDeeply Enhancing fish stocks with artificial upwelling CiteSeerX 10 1 1 526 2024 a href Template Cite journal html title Template Cite journal cite journal a Cite journal requires journal help Hartman Duke October 2011 Challenge And Promise Of OTEC Ocean News retrieved 11 June 2012 Da Rosa Aldo Vieira 2009 Chapter 4 Ocean Thermal Energy Converters Fundamentals of renewable energy processes Academic Press pp 139 to 152 ISBN 978 0 12 374639 9 Eldred M Landherr A Chen I C July 2010 Comparison Of Aluminum Alloys And Manufacturing Processes Based On Corrosion Performance For Use In OTEC Heat Exchangers Offshore Technology Conference 2010 OTC 2010 Curran Associates Inc doi 10 4043 20702 MS ISBN 9781617384264 a b c Grandelli Pat 2012 Modeling the Physical and Biochemical Influence of Ocean Thermal Energy Conversion Plant Discharges into their Adjacent Waters PDF US Department of Energy Office of Scientific and Technical Information doi 10 2172 1055480 Retrieved 27 March 2013 a b Rocheleau Greg J Grandelli Patrick 2011 Physical and biological modeling of a 100 megawatt Ocean Thermal Energy Conversion discharge plume Oceans 11 MTS IEEE Kona pp 1 10 doi 10 23919 OCEANS 2011 6107077 ISBN 978 1 4577 1427 6 S2CID 22549789 Final Environmental Impact Statement for Commercial Ocean Thermal Energy Conversion OTEC Licensing PDF U S Dept of Commerce National Oceanic and Atmospheric Administration Retrieved 27 March 2013 L Vega C Comfort Environmental Assessment of Ocean Thermal Energy Conversion in Hawaii PDF Hawaii National Marine Renewable Energy Center Retrieved 27 March 2013 Ocean Thermal Energy Conversion Assessing Potential Physical Chemical and Biological Impacts and Risks PDF National Oceanic and Atmospheric Administration Office of Ocean and Coastal Resource Management Retrieved 27 March 2013 Ocean Thermal Energy Conversion Information Needs Assessment PDF National Oceanic and Atmospheric Administration NOAA Office of Response and Restoration ORR and the Environmental Research Group at the University of New Hampshire UNH Retrieved 27 March 2013 Tethys Archived from the original on 2014 11 10 Definition of DEAERATE www merriam webster com a b Aftring RP Taylor BF October 1979 Assessment of Microbial Fouling in an Ocean Thermal Energy Conversion Experiment Appl Environ Microbiol 38 4 734 739 Bibcode 1979ApEnM 38 734A doi 10 1128 AEM 38 4 734 739 1979 PMC 243568 PMID 16345450 a b c d Nickels JS Bobbie RJ Lott DF Martz RF Benson PH White DC June 1981 Effect of Manual Brush Cleaning on Biomass and Community Structure of Microfouling Film Formed on Aluminum and Titanium Surfaces Exposed to Rapidly Flowing Seawater Appl Environ Microbiol 41 6 1442 1453 Bibcode 1981ApEnM 41 1442N doi 10 1128 AEM 41 6 1442 1453 1981 PMC 243937 PMID 16345798 Trulear Michael G Characklis William G 1982 Dynamics of Biofilm Processes Journal of the Water Pollution Control Federation 54 9 1288 1301 JSTOR 25041684 Science Cold Power Time 1929 04 22 Achmed Khammas Das Buch der Synergie Teil C Temperaturgradient Buch der synergie de 2007 10 25 Retrieved 2012 06 12 Denmark Myggbuka Globalbioclimatics org Retrieved 2012 06 12 Thermoelectric Ocean Thermal Energy Conversion PDF Archived from the original PDF on 2018 10 11 Retrieved 2018 10 10 Zyga Lisa Thermoelectric power plants could offer economically competitive renewable energy phys org Liu Liping 2014 Feasibility of large scale power plants based on thermoelectric effects New Journal of Physics 16 12 123019 Bibcode 2014NJPh 16l3019L doi 10 1088 1367 2630 16 12 123019 Sources EditWilliam H Avery Chih Wu 1994 03 17 Renewable Energy From the Ocean A Guide to OTEC Johns Hopkins University Applied Physics Laboratories Series in Science and Engineering Oxford New York Oxford University Press ISBN 978 0 19 507199 3 External links Edithttp www otecorporation com http www bluerise nl 1 OTEC News OTEC News website Educational material about OTEC by the NOAA Ocean Exploration program Ocean Energy Council How does OTEC work nrel gov what is OTEC US Department of Energy Information Resources Wired Magazine s interview with John Pina Craven on the future of OTEC 2007 edition of the Survey of Energy Resources produced by the World Energy Council The Green Ocean Project OTEC Library Plumbing the oceans could bring limitless clean energy Maximum water flow capacity of steel pipes dimensions ranging 2 24 inches Hainan Ocean Thermal Energy Conversion OTEC Power Plant China 20 000 megawatts under the sea Oceanic steam engines New Scientist March 1 2014 Preview only http otecfoundation org http otecnews com https web archive org web 20140321052029 http www ioes saga u ac jp en about lab html Saga University OTEC Research Facility http www OTEC ws http www lockheedmartin com us products otec html http www makai com e otec htm http www ocees com http www otecokinawa com Okinawa OTEC Project Retrieved from https en wikipedia org w index php title Ocean thermal energy conversion amp oldid 1118535347, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.