fbpx
Wikipedia

Work (physics)

In physics, work is the energy transferred to or from an object via the application of force along a displacement. In its simplest form, for a constant force aligned with the direction of motion, the work equals the product of the force strength and the distance traveled. A force is said to do positive work if when applied it has a component in the direction of the displacement of the point of application. A force does negative work if it has a component opposite to the direction of the displacement at the point of application of the force.[1]

Work
A baseball pitcher does positive work on the ball by applying a force to it over the distance it moves while in his grip.
Common symbols
W
SI unitjoule (J)
Other units
Foot-pound, Erg
In SI base units1 kgm2s−2
Derivations from
other quantities
W = Fs
W = τ θ
DimensionM L2 T−2

For example, when a ball is held above the ground and then dropped, the work done by the gravitational force on the ball as it falls is positive, and is equal to the weight of the ball (a force) multiplied by the distance to the ground (a displacement). If the ball is thrown upwards, the work done by the gravitational force is negative, and is equal to the weight multiplied by the displacement in the upwards direction.

Both force and displacement are vectors. The work done is given by the dot product of the two vectors. When the force F is constant and the angle θ between the force and the displacement s is also constant, then the work done is given by:

Work is a scalar quantity,[2] so it has only magnitude and no direction. Work transfers energy from one place to another, or one form to another. The SI unit of work is the joule (J), the same unit as for energy.

History edit

The ancient Greek understanding of physics was limited to the statics of simple machines (the balance of forces), and did not include dynamics or the concept of work. During the Renaissance the dynamics of the Mechanical Powers, as the simple machines were called, began to be studied from the standpoint of how far they could lift a load, in addition to the force they could apply, leading eventually to the new concept of mechanical work. The complete dynamic theory of simple machines was worked out by Italian scientist Galileo Galilei in 1600 in Le Meccaniche (On Mechanics), in which he showed the underlying mathematical similarity of the machines as force amplifiers.[3][4] He was the first to explain that simple machines do not create energy, only transform it.[3]

Early concepts of work edit

Although work was not formally used until 1826, similar concepts existed before then. Early names for the same concept included moment of activity, quantity of action, latent live force, dynamic effect, efficiency, and even force.[5] In 1637, the French philosopher René Descartes wrote:[6]

Lifting 100 lb one foot twice over is the same as lifting 200 lb one foot, or 100 lb two feet.

— René Descartes, Letter to Huygens

In 1686, the German philosopher Gottfried Leibniz wrote:[7]

The same force ["work" in modern terms] is necessary to raise body A of 1 pound (libra) to a height of 4 yards (ulnae), as is necessary to raise body B of 4 pounds to a height of 1 yard.

— Gottfried Leibniz, Brevis demonstratio

In 1759, John Smeaton described a quantity that he called "power" "to signify the exertion of strength, gravitation, impulse, or pressure, as to produce motion." Smeaton continues that this quantity can be calculated if "the weight raised is multiplied by the height to which it can be raised in a given time," making this definition remarkably similar to Coriolis's.[8]

Etymology edit

According to the 1957 physics textbook by Max Jammer,[9] the term work was introduced in 1826 by the French mathematician Gaspard-Gustave Coriolis[10] as "weight lifted through a height", which is based on the use of early steam engines to lift buckets of water out of flooded ore mines. According to Rene Dugas, French engineer and historian, it is to Solomon of Caux "that we owe the term work in the sense that it is used in mechanics now".[11]

Units edit

The SI unit of work is the joule (J), named after the 19th-century English physicist James Prescott Joule, which is defined as the work required to exert a force of one newton through a displacement of one metre.

The dimensionally equivalent newton-metre (N⋅m) is sometimes used as the measuring unit for work, but this can be confused with the measurement unit of torque. Usage of N⋅m is discouraged by the SI authority, since it can lead to confusion as to whether the quantity expressed in newton-metres is a torque measurement, or a measurement of work.[12]

Non-SI units of work include the newton-metre, erg, the foot-pound, the foot-poundal, the kilowatt hour, the litre-atmosphere, and the horsepower-hour. Due to work having the same physical dimension as heat, occasionally measurement units typically reserved for heat or energy content, such as therm, BTU and calorie, are used as a measuring unit.

Work and energy edit

The work W done by a constant force of magnitude F on a point that moves a displacement s in a straight line in the direction of the force is the product

 

For example, if a force of 10 newtons (F = 10 N) acts along a point that travels 2 metres (s = 2 m), then W = Fs = (10 N) (2 m) = 20 J. This is approximately the work done lifting a 1 kg object from ground level to over a person's head against the force of gravity.

The work is doubled either by lifting twice the weight the same distance or by lifting the same weight twice the distance.

Work is closely related to energy. The work–energy principle states that an increase in the kinetic energy of a rigid body is caused by an equal amount of positive work done on the body by the resultant force acting on that body. Conversely, a decrease in kinetic energy is caused by an equal amount of negative work done by the resultant force. Thus, if the net work is positive, then the particle's kinetic energy increases by the amount of the work. If the net work done is negative, then the particle's kinetic energy decreases by the amount of work.[13]

From Newton's second law, it can be shown that work on a free (no fields), rigid (no internal degrees of freedom) body, is equal to the change in kinetic energy Ek corresponding to the linear velocity and angular velocity of that body,

 
The work of forces generated by a potential function is known as potential energy and the forces are said to be conservative. Therefore, work on an object that is merely displaced in a conservative force field, without change in velocity or rotation, is equal to minus the change of potential energy Ep of the object,
 
These formulas show that work is the energy associated with the action of a force, so work subsequently possesses the physical dimensions, and units, of energy. The work/energy principles discussed here are identical to electric work/energy principles.

Constraint forces edit

Constraint forces determine the object's displacement in the system, limiting it within a range. For example, in the case of a slope plus gravity, the object is stuck to the slope and, when attached to a taut string, it cannot move in an outwards direction to make the string any 'tauter'. It eliminates all displacements in that direction, that is, the velocity in the direction of the constraint is limited to 0, so that the constraint forces do not perform work on the system.

For a mechanical system,[14] constraint forces eliminate movement in directions that characterize the constraint. Thus the virtual work done by the forces of constraint is zero, a result which is only true if friction forces are excluded.[15]

Fixed, frictionless constraint forces do not perform work on the system,[16] as the angle between the motion and the constraint forces is always 90°.[16] Examples of workless constraints are: rigid interconnections between particles, sliding motion on a frictionless surface, and rolling contact without slipping.[17]

For example, in a pulley system like the Atwood machine, the internal forces on the rope and at the supporting pulley do no work on the system. Therefore, work need only be computed for the gravitational forces acting on the bodies. Another example is the centripetal force exerted inwards by a string on a ball in uniform circular motion sideways constrains the ball to circular motion restricting its movement away from the centre of the circle. This force does zero work because it is perpendicular to the velocity of the ball.

The magnetic force on a charged particle is F = qv × B, where q is the charge, v is the velocity of the particle, and B is the magnetic field. The result of a cross product is always perpendicular to both of the original vectors, so Fv. The dot product of two perpendicular vectors is always zero, so the work W = Fv = 0, and the magnetic force does not do work. It can change the direction of motion but never change the speed.

Mathematical calculation edit

For moving objects, the quantity of work/time (power) is integrated along the trajectory of the point of application of the force. Thus, at any instant, the rate of the work done by a force (measured in joules/second, or watts) is the scalar product of the force (a vector), and the velocity vector of the point of application. This scalar product of force and velocity is known as instantaneous power. Just as velocities may be integrated over time to obtain a total distance, by the fundamental theorem of calculus, the total work along a path is similarly the time-integral of instantaneous power applied along the trajectory of the point of application.[18]


Work is the result of a force on a point that follows a curve X, with a velocity v, at each instant. The small amount of work δW that occurs over an instant of time dt is calculated as

 
where the Fv is the power over the instant dt. The sum of these small amounts of work over the trajectory of the point yields the work,
 
where C is the trajectory from x(t1) to x(t2). This integral is computed along the trajectory of the particle, and is therefore said to be path dependent.

If the force is always directed along this line, and the magnitude of the force is F, then this integral simplifies to

 
where s is displacement along the line. If F is constant, in addition to being directed along the line, then the integral simplifies further to
 
where s is the displacement of the point along the line.

This calculation can be generalized for a constant force that is not directed along the line, followed by the particle. In this case the dot product Fds = F cos θ ds, where θ is the angle between the force vector and the direction of movement,[18] that is

 

When a force component is perpendicular to the displacement of the object (such as when a body moves in a circular path under a central force), no work is done, since the cosine of 90° is zero.[13] Thus, no work can be performed by gravity on a planet with a circular orbit (this is ideal, as all orbits are slightly elliptical). Also, no work is done on a body moving circularly at a constant speed while constrained by mechanical force, such as moving at constant speed in a frictionless ideal centrifuge.

Work done by a variable force edit

Calculating the work as "force times straight path segment" would only apply in the most simple of circumstances, as noted above. If force is changing, or if the body is moving along a curved path, possibly rotating and not necessarily rigid, then only the path of the application point of the force is relevant for the work done, and only the component of the force parallel to the application point velocity is doing work (positive work when in the same direction, and negative when in the opposite direction of the velocity). This component of force can be described by the scalar quantity called scalar tangential component (F cos(θ), where θ is the angle between the force and the velocity). And then the most general definition of work can be formulated as follows:

 
Area under the curve gives work done by F(x).
Work done by a variable force is the line integral of its scalar tangential component along the path of its application point.

If the force varies (e.g. compressing a spring) we need to use calculus to find the work done. If the force as a variable of x is given by F(x), then the work done by the force along the x-axis from x1 to x2 is:

 

Thus, the work done for a variable force can be expressed as a definite integral of force over displacement.[19]

If the displacement as a variable of time is given by x(t), then work done by the variable force from t1 to t2 is:

 

Thus, the work done for a variable force can be expressed as a definite integral of power over time.

Torque and rotation edit

A force couple results from equal and opposite forces, acting on two different points of a rigid body. The sum (resultant) of these forces may cancel, but their effect on the body is the couple or torque T. The work of the torque is calculated as

 
where the Tω is the power over the instant dt. The sum of these small amounts of work over the trajectory of the rigid body yields the work,
 
This integral is computed along the trajectory of the rigid body with an angular velocity ω that varies with time, and is therefore said to be path dependent.

If the angular velocity vector maintains a constant direction, then it takes the form,

 
where   is the angle of rotation about the constant unit vector S. In this case, the work of the torque becomes,
 
where C is the trajectory from   to  . This integral depends on the rotational trajectory  , and is therefore path-dependent.

If the torque   is aligned with the angular velocity vector so that,

 
and both the torque and angular velocity are constant, then the work takes the form,[2]
 
 
A force of constant magnitude and perpendicular to the lever arm

This result can be understood more simply by considering the torque as arising from a force of constant magnitude F, being applied perpendicularly to a lever arm at a distance  , as shown in the figure. This force will act through the distance along the circular arc  , so the work done is

 
Introduce the torque τ = Fr, to obtain
 
as presented above.

Notice that only the component of torque in the direction of the angular velocity vector contributes to the work.

Work and potential energy edit

The scalar product of a force F and the velocity v of its point of application defines the power input to a system at an instant of time. Integration of this power over the trajectory of the point of application, C = x(t), defines the work input to the system by the force.

Path dependence edit

Therefore, the work done by a force F on an object that travels along a curve C is given by the line integral:

 
where dx(t) defines the trajectory C and v is the velocity along this trajectory. In general this integral requires that the path along which the velocity is defined, so the evaluation of work is said to be path dependent.

The time derivative of the integral for work yields the instantaneous power,

 

Path independence edit

If the work for an applied force is independent of the path, then the work done by the force, by the gradient theorem, defines a potential function which is evaluated at the start and end of the trajectory of the point of application. This means that there is a potential function U(x), that can be evaluated at the two points x(t1) and x(t2) to obtain the work over any trajectory between these two points. It is tradition to define this function with a negative sign so that positive work is a reduction in the potential, that is

 

The function U(x) is called the potential energy associated with the applied force. The force derived from such a potential function is said to be conservative. Examples of forces that have potential energies are gravity and spring forces.

In this case, the gradient of work yields

 
and the force F is said to be "derivable from a potential."[20]

Because the potential U defines a force F at every point x in space, the set of forces is called a force field. The power applied to a body by a force field is obtained from the gradient of the work, or potential, in the direction of the velocity V of the body, that is

 

Work by gravity edit

 
Gravity F = mg does work W = mgh along any descending path

In the absence of other forces, gravity results in a constant downward acceleration of every freely moving object. Near Earth's surface the acceleration due to gravity is g = 9.8 m⋅s−2 and the gravitational force on an object of mass m is Fg = mg. It is convenient to imagine this gravitational force concentrated at the center of mass of the object.

If an object with weight mg is displaced upwards or downwards a vertical distance y2y1, the work W done on the object is:

 
where Fg is weight (pounds in imperial units, and newtons in SI units), and Δy is the change in height y. Notice that the work done by gravity depends only on the vertical movement of the object. The presence of friction does not affect the work done on the object by its weight.

Work by gravity in space edit

The force of gravity exerted by a mass M on another mass m is given by

 
where r is the position vector from M to m and is the unit vector in the direction of r.

Let the mass m move at the velocity v; then the work of gravity on this mass as it moves from position r(t1) to r(t2) is given by

 
Notice that the position and velocity of the mass m are given by
 
where er and et are the radial and tangential unit vectors directed relative to the vector from M to m, and we use the fact that   Use this to simplify the formula for work of gravity to,
 
This calculation uses the fact that
 
The function
 
is the gravitational potential function, also known as gravitational potential energy. The negative sign follows the convention that work is gained from a loss of potential energy.

Work by a spring edit

 
Forces in springs assembled in parallel

Consider a spring that exerts a horizontal force F = (−kx, 0, 0) that is proportional to its deflection in the x direction independent of how a body moves. The work of this spring on a body moving along the space with the curve X(t) = (x(t), y(t), z(t)), is calculated using its velocity, v = (vx, vy, vz), to obtain

 
For convenience, consider contact with the spring occurs at t = 0, then the integral of the product of the distance x and the x-velocity, xvxdt, over time t is 1/2x2. The work is the product of the distance times the spring force, which is also dependent on distance; hence the x2 result.

Work by a gas edit

The work   done by a body of gas on its surroundings is:

 
where P is pressure, V is volume, and a and b are initial and final volumes.

Work–energy principle edit

The principle of work and kinetic energy (also known as the work–energy principle) states that the work done by all forces acting on a particle (the work of the resultant force) equals the change in the kinetic energy of the particle.[21] That is, the work W done by the resultant force on a particle equals the change in the particle's kinetic energy  ,[2]

 
where   and   are the speeds of the particle before and after the work is done, and m is its mass.

The derivation of the work–energy principle begins with Newton's second law of motion and the resultant force on a particle. Computation of the scalar product of the force with the velocity of the particle evaluates the instantaneous power added to the system.[22] (Constraints define the direction of movement of the particle by ensuring there is no component of velocity in the direction of the constraint force. This also means the constraint forces do not add to the instantaneous power.) The time integral of this scalar equation yields work from the instantaneous power, and kinetic energy from the scalar product of acceleration with velocity. The fact that the work–energy principle eliminates the constraint forces underlies Lagrangian mechanics.[23]

This section focuses on the work–energy principle as it applies to particle dynamics. In more general systems work can change the potential energy of a mechanical device, the thermal energy in a thermal system, or the electrical energy in an electrical device. Work transfers energy from one place to another or one form to another.

Derivation for a particle moving along a straight line edit

In the case the resultant force F is constant in both magnitude and direction, and parallel to the velocity of the particle, the particle is moving with constant acceleration a along a straight line.[24] The relation between the net force and the acceleration is given by the equation F = ma (Newton's second law), and the particle displacement s can be expressed by the equation

 
which follows from   (see Equations of motion).

The work of the net force is calculated as the product of its magnitude and the particle displacement. Substituting the above equations, one obtains:

 

Other derivation:

 

In the general case of rectilinear motion, when the net force F is not constant in magnitude, but is constant in direction, and parallel to the velocity of the particle, the work must be integrated along the path of the particle:

 

General derivation of the work–energy principle for a particle edit

For any net force acting on a particle moving along any curvilinear path, it can be demonstrated that its work equals the change in the kinetic energy of the particle by a simple derivation analogous to the equation above. It is known as the work–energy principle:

 

The identity   requires some algebra. From the identity   and definition   it follows

 

The remaining part of the above derivation is just simple calculus, same as in the preceding rectilinear case.

Derivation for a particle in constrained movement edit

In particle dynamics, a formula equating work applied to a system to its change in kinetic energy is obtained as a first integral of Newton's second law of motion. It is useful to notice that the resultant force used in Newton's laws can be separated into forces that are applied to the particle and forces imposed by constraints on the movement of the particle. Remarkably, the work of a constraint force is zero, therefore only the work of the applied forces need be considered in the work–energy principle.

To see this, consider a particle P that follows the trajectory X(t) with a force F acting on it. Isolate the particle from its environment to expose constraint forces R, then Newton's Law takes the form

 
where m is the mass of the particle.

Vector formulation edit

Note that n dots above a vector indicates its nth time derivative. The scalar product of each side of Newton's law with the velocity vector yields

 
because the constraint forces are perpendicular to the particle velocity. Integrate this equation along its trajectory from the point X(t1) to the point X(t2) to obtain
 

The left side of this equation is the work of the applied force as it acts on the particle along the trajectory from time t1 to time t2. This can also be written as

 
This integral is computed along the trajectory X(t) of the particle and is therefore path dependent.

The right side of the first integral of Newton's equations can be simplified using the following identity

 
(see product rule for derivation). Now it is integrated explicitly to obtain the change in kinetic energy,
 
where the kinetic energy of the particle is defined by the scalar quantity,
 

Tangential and normal components edit

It is useful to resolve the velocity and acceleration vectors into tangential and normal components along the trajectory X(t), such that

 
where
 
Then, the scalar product of velocity with acceleration in Newton's second law takes the form
 
where the kinetic energy of the particle is defined by the scalar quantity,
 

The result is the work–energy principle for particle dynamics,

 
This derivation can be generalized to arbitrary rigid body systems.

Moving in a straight line (skid to a stop) edit

Consider the case of a vehicle moving along a straight horizontal trajectory under the action of a driving force and gravity that sum to F. The constraint forces between the vehicle and the road define R, and we have

 
For convenience let the trajectory be along the X-axis, so X = (d, 0) and the velocity is V = (v, 0), then RV = 0, and FV = Fxv, where Fx is the component of F along the X-axis, so
 
Integration of both sides yields
 
If Fx is constant along the trajectory, then the integral of velocity is distance, so
 

As an example consider a car skidding to a stop, where k is the coefficient of friction and W is the weight of the car. Then the force along the trajectory is Fx = −kW. The velocity v of the car can be determined from the length s of the skid using the work–energy principle,

 
Notice that this formula uses the fact that the mass of the vehicle is m = W/g.
 
Lotus type 119B gravity racer at Lotus 60th celebration
 
Gravity racing championship in Campos Novos, Santa Catarina, Brazil, 8 September 2010

Coasting down an inclined surface (gravity racing) edit

Consider the case of a vehicle that starts at rest and coasts down an inclined surface (such as mountain road), the work–energy principle helps compute the minimum distance that the vehicle travels to reach a velocity V, of say 60 mph (88 fps). Rolling resistance and air drag will slow the vehicle down so the actual distance will be greater than if these forces are neglected.

Let the trajectory of the vehicle following the road be X(t) which is a curve in three-dimensional space. The force acting on the vehicle that pushes it down the road is the constant force of gravity F = (0, 0, W), while the force of the road on the vehicle is the constraint force R. Newton's second law yields,

 
The scalar product of this equation with the velocity, V = (vx, vy, vz), yields
 
where V is the magnitude of V. The constraint forces between the vehicle and the road cancel from this equation because RV = 0, which means they do no work. Integrate both sides to obtain
 
The weight force W is constant along the trajectory and the integral of the vertical velocity is the vertical distance, therefore,
 
Recall that V(t1)=0. Notice that this result does not depend on the shape of the road followed by the vehicle.

In order to determine the distance along the road assume the downgrade is 6%, which is a steep road. This means the altitude decreases 6 feet for every 100 feet traveled—for angles this small the sin and tan functions are approximately equal. Therefore, the distance s in feet down a 6% grade to reach the velocity V is at least

 
This formula uses the fact that the weight of the vehicle is W = mg.

Work of forces acting on a rigid body edit

The work of forces acting at various points on a single rigid body can be calculated from the work of a resultant force and torque. To see this, let the forces F1, F2, ..., Fn act on the points X1, X2, ..., Xn in a rigid body.

The trajectories of Xi, i = 1, ..., n are defined by the movement of the rigid body. This movement is given by the set of rotations [A(t)] and the trajectory d(t) of a reference point in the body. Let the coordinates xi i = 1, ..., n define these points in the moving rigid body's reference frame M, so that the trajectories traced in the fixed frame F are given by

 

The velocity of the points Xi along their trajectories are

 
where ω is the angular velocity vector obtained from the skew symmetric matrix
 
known as the angular velocity matrix.

The small amount of work by the forces over the small displacements δri can be determined by approximating the displacement by δr = vδt so

 
or
 

This formula can be rewritten to obtain

 
where F and T are the resultant force and torque applied at the reference point d of the moving frame M in the rigid body.

References edit

  1. ^ NCERT (2020). "Physics Book" (PDF). ncert.nic.in. Retrieved 24 November 2021.
  2. ^ a b c Hugh D. Young & Roger A. Freedman (2008). University Physics (12th ed.). Addison-Wesley. p. 329. ISBN 978-0-321-50130-1.
  3. ^ a b Krebs, Robert E. (2004). Groundbreaking Experiments, Inventions, and Discoveries of the Middle Ages. Greenwood Publishing Group. p. 163. ISBN 978-0-313-32433-8. Retrieved 2008-05-21.
  4. ^ Stephen, Donald; Lowell Cardwell (2001). Wheels, clocks, and rockets: a history of technology. US: W.W. Norton & Company. pp. 85–87. ISBN 978-0-393-32175-3.
  5. ^ Mendelson, Kenneth S. (2003-02-13). "Physical and colloquial meanings of the term "work"". American Journal of Physics. 71 (3): 279. doi:10.1119/1.1522707. ISSN 0002-9505.
  6. ^ Descartes, R. (2013) [Letter to Huygens, Oct 5, 1637]. Bennett, J. (ed.). Selected correspondence of Descartes (PDF). p. 50.
  7. ^ Iltis, C. (1971). "Leibniz and the vis viva controversy" (PDF). Isis. 62 (1): 21–35 (specifically p. 24).
  8. ^ Smeaton, John (1759). "Experimental Enquiry Concerning the Natural Powers of Water and Wind to Turn Mills and Other Machines Depending on a Circular Motion". Philosophical Transactions of the Royal Society. 51: 105. doi:10.1098/rstl.1759.0019. S2CID 186213498.
  9. ^ Jammer, Max (1957). Concepts of Force. Dover Publications, Inc. p. 167; footnote 14. ISBN 0-486-40689-X.
  10. ^ Coriolis, Gustave (1829). Calculation of the Effect of Machines, or Considerations on the Use of Engines and their Evaluation. Carilian-Goeury, Libraire (Paris).
  11. ^ Dugas, R. (1955). A History of Mechanics. Switzerland: Éditions du Griffon. p. 128.
  12. ^ . The International System of Units (SI) (8th ed.). International Bureau of Weights and Measures. 2006. Archived from the original on 2013-04-20. Retrieved 2012-10-27.
  13. ^ a b Walker, Jearl; Halliday, David; Resnick, Robert (2011). Fundamentals of physics (9th ed.). Hoboken, NJ: Wiley. p. 154. ISBN 9780470469118.
  14. ^ Goldstein, Herbert (2002). Classical mechanics (3rd ed.). San Francisco: Addison Wesley. ISBN 978-0-201-65702-9. OCLC 47056311.
  15. ^ Rogalski, Mircea S. (2018). Advanced University Physics (2nd ed.). Boca Raton: Chapman and Hall/CRC. ISBN 9781351991988.
  16. ^ a b "The Feynman Lectures on Physics Vol. I Ch. 14: Work and Potential Energy (conclusion)". feynmanlectures.caltech.edu.
  17. ^ Greenwood, Donald T. (1997). Classical dynamics. Mineola, N.Y.: Dover Publications. ISBN 9780486138794.
  18. ^ a b Resnick, Robert, Halliday, David (1966), Physics, Section 1–3 (Vol I and II, Combined edition), Wiley International Edition, Library of Congress Catalog Card No. 66-11527
  19. ^ "MindTap - Cengage Learning". ng.cengage.com. Retrieved 2023-10-16.
  20. ^ Taylor, John R. (2005). Classical Mechanics. University Science Books. ISBN 978-1-891389-22-1.
  21. ^ Andrew Pytel; Jaan Kiusalaas (2010). Engineering Mechanics: Dynamics – SI Version, Volume 2 (3rd ed.). Cengage Learning. p. 654. ISBN 9780495295631.
  22. ^ Paul, Burton (1979). Kinematics and Dynamics of Planar Machinery. Prentice-Hall. ISBN 978-0-13-516062-6.
  23. ^ Whittaker, E. T. (1904). A treatise on the analytical dynamics of particles and rigid bodies. Cambridge University Press.
  24. ^ . www.wwu.edu. Archived from the original on 2012-05-30. Retrieved 2012-08-06.

Bibliography edit

  • Serway, Raymond A.; Jewett, John W. (2004). Physics for Scientists and Engineers (6th ed.). Brooks/Cole. ISBN 0-534-40842-7.
  • Tipler, Paul (1991). Physics for Scientists and Engineers: Mechanics (3rd ed., extended version ed.). W. H. Freeman. ISBN 0-87901-432-6.

External links edit

    work, physics, other, uses, work, physics, work, electrical, work, thermodynamics, physics, work, energy, transferred, from, object, application, force, along, displacement, simplest, form, constant, force, aligned, with, direction, motion, work, equals, produ. For other uses of Work in physics see Work electrical and Work thermodynamics In physics work is the energy transferred to or from an object via the application of force along a displacement In its simplest form for a constant force aligned with the direction of motion the work equals the product of the force strength and the distance traveled A force is said to do positive work if when applied it has a component in the direction of the displacement of the point of application A force does negative work if it has a component opposite to the direction of the displacement at the point of application of the force 1 WorkA baseball pitcher does positive work on the ball by applying a force to it over the distance it moves while in his grip Common symbolsWSI unitjoule J Other unitsFoot pound ErgIn SI base units1 kg m2 s 2Derivations fromother quantitiesW F s W t 8DimensionM L2 T 2For example when a ball is held above the ground and then dropped the work done by the gravitational force on the ball as it falls is positive and is equal to the weight of the ball a force multiplied by the distance to the ground a displacement If the ball is thrown upwards the work done by the gravitational force is negative and is equal to the weight multiplied by the displacement in the upwards direction Both force and displacement are vectors The work done is given by the dot product of the two vectors When the force F is constant and the angle 8 between the force and the displacement s is also constant then the work done is given by W F s cos 8 displaystyle W Fs cos theta Work is a scalar quantity 2 so it has only magnitude and no direction Work transfers energy from one place to another or one form to another The SI unit of work is the joule J the same unit as for energy Contents 1 History 1 1 Early concepts of work 1 2 Etymology 2 Units 3 Work and energy 4 Constraint forces 5 Mathematical calculation 5 1 Work done by a variable force 5 2 Torque and rotation 6 Work and potential energy 6 1 Path dependence 6 2 Path independence 6 3 Work by gravity 6 3 1 Work by gravity in space 6 4 Work by a spring 6 5 Work by a gas 7 Work energy principle 7 1 Derivation for a particle moving along a straight line 7 2 General derivation of the work energy principle for a particle 7 3 Derivation for a particle in constrained movement 7 3 1 Vector formulation 7 3 2 Tangential and normal components 7 4 Moving in a straight line skid to a stop 7 5 Coasting down an inclined surface gravity racing 8 Work of forces acting on a rigid body 9 References 10 Bibliography 11 External linksHistory editThe ancient Greek understanding of physics was limited to the statics of simple machines the balance of forces and did not include dynamics or the concept of work During the Renaissance the dynamics of the Mechanical Powers as the simple machines were called began to be studied from the standpoint of how far they could lift a load in addition to the force they could apply leading eventually to the new concept of mechanical work The complete dynamic theory of simple machines was worked out by Italian scientist Galileo Galilei in 1600 in Le Meccaniche On Mechanics in which he showed the underlying mathematical similarity of the machines as force amplifiers 3 4 He was the first to explain that simple machines do not create energy only transform it 3 Early concepts of work edit Although work was not formally used until 1826 similar concepts existed before then Early names for the same concept included moment of activity quantity of action latent live force dynamic effect efficiency and even force 5 In 1637 the French philosopher Rene Descartes wrote 6 Lifting 100 lb one foot twice over is the same as lifting 200 lb one foot or 100 lb two feet Rene Descartes Letter to Huygens In 1686 the German philosopher Gottfried Leibniz wrote 7 The same force work in modern terms is necessary to raise body A of 1 pound libra to a height of 4 yards ulnae as is necessary to raise body B of 4 pounds to a height of 1 yard Gottfried Leibniz Brevis demonstratio In 1759 John Smeaton described a quantity that he called power to signify the exertion of strength gravitation impulse or pressure as to produce motion Smeaton continues that this quantity can be calculated if the weight raised is multiplied by the height to which it can be raised in a given time making this definition remarkably similar to Coriolis s 8 Etymology edit According to the 1957 physics textbook by Max Jammer 9 the term work was introduced in 1826 by the French mathematician Gaspard Gustave Coriolis 10 as weight lifted through a height which is based on the use of early steam engines to lift buckets of water out of flooded ore mines According to Rene Dugas French engineer and historian it is to Solomon of Caux that we owe the term work in the sense that it is used in mechanics now 11 Units editThe SI unit of work is the joule J named after the 19th century English physicist James Prescott Joule which is defined as the work required to exert a force of one newton through a displacement of one metre The dimensionally equivalent newton metre N m is sometimes used as the measuring unit for work but this can be confused with the measurement unit of torque Usage of N m is discouraged by the SI authority since it can lead to confusion as to whether the quantity expressed in newton metres is a torque measurement or a measurement of work 12 Non SI units of work include the newton metre erg the foot pound the foot poundal the kilowatt hour the litre atmosphere and the horsepower hour Due to work having the same physical dimension as heat occasionally measurement units typically reserved for heat or energy content such as therm BTU and calorie are used as a measuring unit Work and energy editThe work W done by a constant force of magnitude F on a point that moves a displacement s in a straight line in the direction of the force is the productW F s displaystyle W Fs nbsp For example if a force of 10 newtons F 10 N acts along a point that travels 2 metres s 2 m then W Fs 10 N 2 m 20 J This is approximately the work done lifting a 1 kg object from ground level to over a person s head against the force of gravity The work is doubled either by lifting twice the weight the same distance or by lifting the same weight twice the distance Work is closely related to energy The work energy principle states that an increase in the kinetic energy of a rigid body is caused by an equal amount of positive work done on the body by the resultant force acting on that body Conversely a decrease in kinetic energy is caused by an equal amount of negative work done by the resultant force Thus if the net work is positive then the particle s kinetic energy increases by the amount of the work If the net work done is negative then the particle s kinetic energy decreases by the amount of work 13 From Newton s second law it can be shown that work on a free no fields rigid no internal degrees of freedom body is equal to the change in kinetic energy Ek corresponding to the linear velocity and angular velocity of that body W D E k displaystyle W Delta E text k nbsp The work of forces generated by a potential function is known as potential energy and the forces are said to be conservative Therefore work on an object that is merely displaced in a conservative force field without change in velocity or rotation is equal to minus the change of potential energy Ep of the object W D E p displaystyle W Delta E text p nbsp These formulas show that work is the energy associated with the action of a force so work subsequently possesses the physical dimensions and units of energy The work energy principles discussed here are identical to electric work energy principles Constraint forces editConstraint forces determine the object s displacement in the system limiting it within a range For example in the case of a slope plus gravity the object is stuck to the slope and when attached to a taut string it cannot move in an outwards direction to make the string any tauter It eliminates all displacements in that direction that is the velocity in the direction of the constraint is limited to 0 so that the constraint forces do not perform work on the system For a mechanical system 14 constraint forces eliminate movement in directions that characterize the constraint Thus the virtual work done by the forces of constraint is zero a result which is only true if friction forces are excluded 15 Fixed frictionless constraint forces do not perform work on the system 16 as the angle between the motion and the constraint forces is always 90 16 Examples of workless constraints are rigid interconnections between particles sliding motion on a frictionless surface and rolling contact without slipping 17 For example in a pulley system like the Atwood machine the internal forces on the rope and at the supporting pulley do no work on the system Therefore work need only be computed for the gravitational forces acting on the bodies Another example is the centripetal force exerted inwards by a string on a ball in uniform circular motion sideways constrains the ball to circular motion restricting its movement away from the centre of the circle This force does zero work because it is perpendicular to the velocity of the ball The magnetic force on a charged particle is F qv B where q is the charge v is the velocity of the particle and B is the magnetic field The result of a cross product is always perpendicular to both of the original vectors so F v The dot product of two perpendicular vectors is always zero so the work W F v 0 and the magnetic force does not do work It can change the direction of motion but never change the speed Mathematical calculation editFor moving objects the quantity of work time power is integrated along the trajectory of the point of application of the force Thus at any instant the rate of the work done by a force measured in joules second or watts is the scalar product of the force a vector and the velocity vector of the point of application This scalar product of force and velocity is known as instantaneous power Just as velocities may be integrated over time to obtain a total distance by the fundamental theorem of calculus the total work along a path is similarly the time integral of instantaneous power applied along the trajectory of the point of application 18 Work is the result of a force on a point that follows a curve X with a velocity v at each instant The small amount of work dW that occurs over an instant of time dt is calculated asd W F d s F v d t displaystyle delta W mathbf F cdot d mathbf s mathbf F cdot mathbf v dt nbsp where the F v is the power over the instant dt The sum of these small amounts of work over the trajectory of the point yields the work W t 1 t 2 F v d t t 1 t 2 F d s d t d t C F d s displaystyle W int t 1 t 2 mathbf F cdot mathbf v dt int t 1 t 2 mathbf F cdot tfrac d mathbf s dt dt int C mathbf F cdot d mathbf s nbsp where C is the trajectory from x t1 to x t2 This integral is computed along the trajectory of the particle and is therefore said to be path dependent If the force is always directed along this line and the magnitude of the force is F then this integral simplifies toW C F d s displaystyle W int C F ds nbsp where s is displacement along the line If F is constant in addition to being directed along the line then the integral simplifies further to W C F d s F C d s F s displaystyle W int C F ds F int C ds Fs nbsp where s is the displacement of the point along the line This calculation can be generalized for a constant force that is not directed along the line followed by the particle In this case the dot product F ds F cos 8 ds where 8 is the angle between the force vector and the direction of movement 18 that isW C F d s F s cos 8 displaystyle W int C mathbf F cdot d mathbf s Fs cos theta nbsp When a force component is perpendicular to the displacement of the object such as when a body moves in a circular path under a central force no work is done since the cosine of 90 is zero 13 Thus no work can be performed by gravity on a planet with a circular orbit this is ideal as all orbits are slightly elliptical Also no work is done on a body moving circularly at a constant speed while constrained by mechanical force such as moving at constant speed in a frictionless ideal centrifuge Work done by a variable force edit Calculating the work as force times straight path segment would only apply in the most simple of circumstances as noted above If force is changing or if the body is moving along a curved path possibly rotating and not necessarily rigid then only the path of the application point of the force is relevant for the work done and only the component of the force parallel to the application point velocity is doing work positive work when in the same direction and negative when in the opposite direction of the velocity This component of force can be described by the scalar quantity called scalar tangential component F cos 8 where 8 is the angle between the force and the velocity And then the most general definition of work can be formulated as follows nbsp Area under the curve gives work done by F x Work done by a variable force is the line integral of its scalar tangential component along the path of its application point If the force varies e g compressing a spring we need to use calculus to find the work done If the force as a variable of x is given by F x then the work done by the force along the x axis from x1 to x2 is W lim D x 0 x 1 x 2 F x D x x 1 x 2 F x d x displaystyle W lim Delta mathbf x to 0 sum x 1 x 2 mathbf F x Delta mathbf x int x 1 x 2 mathbf F x d mathbf x nbsp Thus the work done for a variable force can be expressed as a definite integral of force over displacement 19 If the displacement as a variable of time is given by x t then work done by the variable force from t1 to t2 is W t 1 t 2 F t v t d t t 1 t 2 P t d t displaystyle W int t 1 t 2 mathbf F t cdot mathbf v t dt int t 1 t 2 P t dt nbsp Thus the work done for a variable force can be expressed as a definite integral of power over time Torque and rotation edit A force couple results from equal and opposite forces acting on two different points of a rigid body The sum resultant of these forces may cancel but their effect on the body is the couple or torque T The work of the torque is calculated asd W T w d t displaystyle delta W mathbf T cdot boldsymbol omega dt nbsp where the T w is the power over the instant dt The sum of these small amounts of work over the trajectory of the rigid body yields the work W t 1 t 2 T w d t displaystyle W int t 1 t 2 mathbf T cdot boldsymbol omega dt nbsp This integral is computed along the trajectory of the rigid body with an angular velocity w that varies with time and is therefore said to be path dependent If the angular velocity vector maintains a constant direction then it takes the form w ϕ S displaystyle boldsymbol omega dot phi mathbf S nbsp where ϕ displaystyle phi nbsp is the angle of rotation about the constant unit vector S In this case the work of the torque becomes W t 1 t 2 T w d t t 1 t 2 T S d ϕ d t d t C T S d ϕ displaystyle W int t 1 t 2 mathbf T cdot boldsymbol omega dt int t 1 t 2 mathbf T cdot mathbf S frac d phi dt dt int C mathbf T cdot mathbf S d phi nbsp where C is the trajectory from ϕ t 1 displaystyle phi t 1 nbsp to ϕ t 2 displaystyle phi t 2 nbsp This integral depends on the rotational trajectory ϕ t displaystyle phi t nbsp and is therefore path dependent If the torque t displaystyle tau nbsp is aligned with the angular velocity vector so that T t S displaystyle mathbf T tau mathbf S nbsp and both the torque and angular velocity are constant then the work takes the form 2 W t 1 t 2 t ϕ d t t ϕ 2 ϕ 1 displaystyle W int t 1 t 2 tau dot phi dt tau phi 2 phi 1 nbsp nbsp A force of constant magnitude and perpendicular to the lever armThis result can be understood more simply by considering the torque as arising from a force of constant magnitude F being applied perpendicularly to a lever arm at a distance r displaystyle r nbsp as shown in the figure This force will act through the distance along the circular arc l s r ϕ displaystyle l s r phi nbsp so the work done isW F s F r ϕ displaystyle W Fs Fr phi nbsp Introduce the torque t Fr to obtain W F r ϕ t ϕ displaystyle W Fr phi tau phi nbsp as presented above Notice that only the component of torque in the direction of the angular velocity vector contributes to the work Work and potential energy editThe scalar product of a force F and the velocity v of its point of application defines the power input to a system at an instant of time Integration of this power over the trajectory of the point of application C x t defines the work input to the system by the force Path dependence edit Therefore the work done by a force F on an object that travels along a curve C is given by the line integral W C F d x t 1 t 2 F v d t displaystyle W int C mathbf F cdot d mathbf x int t 1 t 2 mathbf F cdot mathbf v dt nbsp where dx t defines the trajectory C and v is the velocity along this trajectory In general this integral requires that the path along which the velocity is defined so the evaluation of work is said to be path dependent The time derivative of the integral for work yields the instantaneous power d W d t P t F v displaystyle frac dW dt P t mathbf F cdot mathbf v nbsp Path independence edit If the work for an applied force is independent of the path then the work done by the force by the gradient theorem defines a potential function which is evaluated at the start and end of the trajectory of the point of application This means that there is a potential function U x that can be evaluated at the two points x t1 and x t2 to obtain the work over any trajectory between these two points It is tradition to define this function with a negative sign so that positive work is a reduction in the potential that isW C F d x x t 1 x t 2 F d x U x t 1 U x t 2 displaystyle W int C mathbf F cdot d mathbf x int mathbf x t 1 mathbf x t 2 mathbf F cdot d mathbf x U mathbf x t 1 U mathbf x t 2 nbsp The function U x is called the potential energy associated with the applied force The force derived from such a potential function is said to be conservative Examples of forces that have potential energies are gravity and spring forces In this case the gradient of work yields W U U x U y U z F displaystyle nabla W nabla U left frac partial U partial x frac partial U partial y frac partial U partial z right mathbf F nbsp and the force F is said to be derivable from a potential 20 Because the potential U defines a force F at every point x in space the set of forces is called a force field The power applied to a body by a force field is obtained from the gradient of the work or potential in the direction of the velocity V of the body that isP t U v F v displaystyle P t nabla U cdot mathbf v mathbf F cdot mathbf v nbsp Work by gravity edit nbsp Gravity F mg does work W mgh along any descending pathIn the absence of other forces gravity results in a constant downward acceleration of every freely moving object Near Earth s surface the acceleration due to gravity is g 9 8 m s 2 and the gravitational force on an object of mass m is Fg mg It is convenient to imagine this gravitational force concentrated at the center of mass of the object If an object with weight mg is displaced upwards or downwards a vertical distance y2 y1 the work W done on the object is W F g y 2 y 1 F g D y m g D y displaystyle W F g y 2 y 1 F g Delta y mg Delta y nbsp where Fg is weight pounds in imperial units and newtons in SI units and Dy is the change in height y Notice that the work done by gravity depends only on the vertical movement of the object The presence of friction does not affect the work done on the object by its weight Work by gravity in space edit The force of gravity exerted by a mass M on another mass m is given byF G M m r 2 r G M m r 3 r displaystyle mathbf F frac GMm r 2 hat mathbf r frac GMm r 3 mathbf r nbsp where r is the position vector from M to m and r is the unit vector in the direction of r Let the mass m move at the velocity v then the work of gravity on this mass as it moves from position r t1 to r t2 is given byW r t 1 r t 2 G M m r 3 r d r t 1 t 2 G M m r 3 r v d t displaystyle W int mathbf r t 1 mathbf r t 2 frac GMm r 3 mathbf r cdot d mathbf r int t 1 t 2 frac GMm r 3 mathbf r cdot mathbf v dt nbsp Notice that the position and velocity of the mass m are given by r r e r v d r d t r e r r 8 e t displaystyle mathbf r r mathbf e r qquad mathbf v frac d mathbf r dt dot r mathbf e r r dot theta mathbf e t nbsp where er and et are the radial and tangential unit vectors directed relative to the vector from M to m and we use the fact that d e r d t 8 e t displaystyle d mathbf e r dt dot theta mathbf e t nbsp Use this to simplify the formula for work of gravity to W t 1 t 2 G m M r 3 r e r r e r r 8 e t d t t 1 t 2 G m M r 3 r r d t G M m r t 2 G M m r t 1 displaystyle W int t 1 t 2 frac GmM r 3 r mathbf e r cdot left dot r mathbf e r r dot theta mathbf e t right dt int t 1 t 2 frac GmM r 3 r dot r dt frac GMm r t 2 frac GMm r t 1 nbsp This calculation uses the fact that d d t r 1 r 2 r r r 2 displaystyle frac d dt r 1 r 2 dot r frac dot r r 2 nbsp The function U G M m r displaystyle U frac GMm r nbsp is the gravitational potential function also known as gravitational potential energy The negative sign follows the convention that work is gained from a loss of potential energy Work by a spring edit nbsp Forces in springs assembled in parallelConsider a spring that exerts a horizontal force F kx 0 0 that is proportional to its deflection in the x direction independent of how a body moves The work of this spring on a body moving along the space with the curve X t x t y t z t is calculated using its velocity v vx vy vz to obtainW 0 t F v d t 0 t k x v x d t 1 2 k x 2 displaystyle W int 0 t mathbf F cdot mathbf v dt int 0 t kxv x dt frac 1 2 kx 2 nbsp For convenience consider contact with the spring occurs at t 0 then the integral of the product of the distance x and the x velocity xvxdt over time t is 1 2 x2 The work is the product of the distance times the spring force which is also dependent on distance hence the x2 result Work by a gas edit The work W displaystyle W nbsp done by a body of gas on its surroundings is W a b P d V displaystyle W int a b P dV nbsp where P is pressure V is volume and a and b are initial and final volumes Work energy principle editThe principle of work and kinetic energy also known as the work energy principle states that the work done by all forces acting on a particle the work of the resultant force equals the change in the kinetic energy of the particle 21 That is the work W done by the resultant force on a particle equals the change in the particle s kinetic energy E k displaystyle E text k nbsp 2 W D E k 1 2 m v 2 2 1 2 m v 1 2 displaystyle W Delta E text k frac 1 2 mv 2 2 frac 1 2 mv 1 2 nbsp where v 1 displaystyle v 1 nbsp and v 2 displaystyle v 2 nbsp are the speeds of the particle before and after the work is done and m is its mass The derivation of the work energy principle begins with Newton s second law of motion and the resultant force on a particle Computation of the scalar product of the force with the velocity of the particle evaluates the instantaneous power added to the system 22 Constraints define the direction of movement of the particle by ensuring there is no component of velocity in the direction of the constraint force This also means the constraint forces do not add to the instantaneous power The time integral of this scalar equation yields work from the instantaneous power and kinetic energy from the scalar product of acceleration with velocity The fact that the work energy principle eliminates the constraint forces underlies Lagrangian mechanics 23 This section focuses on the work energy principle as it applies to particle dynamics In more general systems work can change the potential energy of a mechanical device the thermal energy in a thermal system or the electrical energy in an electrical device Work transfers energy from one place to another or one form to another Derivation for a particle moving along a straight line edit In the case the resultant force F is constant in both magnitude and direction and parallel to the velocity of the particle the particle is moving with constant acceleration a along a straight line 24 The relation between the net force and the acceleration is given by the equation F ma Newton s second law and the particle displacement s can be expressed by the equations v 2 2 v 1 2 2 a displaystyle s frac v 2 2 v 1 2 2a nbsp which follows from v 2 2 v 1 2 2 a s displaystyle v 2 2 v 1 2 2as nbsp see Equations of motion The work of the net force is calculated as the product of its magnitude and the particle displacement Substituting the above equations one obtains W F s m a s m a v 2 2 v 1 2 2 a m v 2 2 2 m v 1 2 2 D E k displaystyle W Fs mas ma frac v 2 2 v 1 2 2a frac mv 2 2 2 frac mv 1 2 2 Delta E text k nbsp Other derivation W F s m a s m v 2 2 v 1 2 2 s s 1 2 m v 2 2 1 2 m v 1 2 D E k displaystyle W Fs mas m frac v 2 2 v 1 2 2s s frac 1 2 mv 2 2 frac 1 2 mv 1 2 Delta E text k nbsp In the general case of rectilinear motion when the net force F is not constant in magnitude but is constant in direction and parallel to the velocity of the particle the work must be integrated along the path of the particle W t 1 t 2 F v d t t 1 t 2 F v d t t 1 t 2 m a v d t m t 1 t 2 v d v d t d t m v 1 v 2 v d v 1 2 m v 2 2 v 1 2 displaystyle W int t 1 t 2 mathbf F cdot mathbf v dt int t 1 t 2 F v dt int t 1 t 2 ma v dt m int t 1 t 2 v frac dv dt dt m int v 1 v 2 v dv tfrac 1 2 m left v 2 2 v 1 2 right nbsp General derivation of the work energy principle for a particle edit For any net force acting on a particle moving along any curvilinear path it can be demonstrated that its work equals the change in the kinetic energy of the particle by a simple derivation analogous to the equation above It is known as the work energy principle W t 1 t 2 F v d t m t 1 t 2 a v d t m 2 t 1 t 2 d v 2 d t d t m 2 v 1 2 v 2 2 d v 2 m v 2 2 2 m v 1 2 2 D E k displaystyle W int t 1 t 2 mathbf F cdot mathbf v dt m int t 1 t 2 mathbf a cdot mathbf v dt frac m 2 int t 1 t 2 frac dv 2 dt dt frac m 2 int v 1 2 v 2 2 dv 2 frac mv 2 2 2 frac mv 1 2 2 Delta E text k nbsp The identity a v 1 2 d v 2 d t textstyle mathbf a cdot mathbf v frac 1 2 frac dv 2 dt nbsp requires some algebra From the identity v 2 v v textstyle v 2 mathbf v cdot mathbf v nbsp and definition a d v d t textstyle mathbf a frac d mathbf v dt nbsp it followsd v 2 d t d v v d t d v d t v v d v d t 2 d v d t v 2 a v displaystyle frac dv 2 dt frac d mathbf v cdot mathbf v dt frac d mathbf v dt cdot mathbf v mathbf v cdot frac d mathbf v dt 2 frac d mathbf v dt cdot mathbf v 2 mathbf a cdot mathbf v nbsp The remaining part of the above derivation is just simple calculus same as in the preceding rectilinear case Derivation for a particle in constrained movement edit In particle dynamics a formula equating work applied to a system to its change in kinetic energy is obtained as a first integral of Newton s second law of motion It is useful to notice that the resultant force used in Newton s laws can be separated into forces that are applied to the particle and forces imposed by constraints on the movement of the particle Remarkably the work of a constraint force is zero therefore only the work of the applied forces need be considered in the work energy principle To see this consider a particle P that follows the trajectory X t with a force F acting on it Isolate the particle from its environment to expose constraint forces R then Newton s Law takes the formF R m X displaystyle mathbf F mathbf R m ddot mathbf X nbsp where m is the mass of the particle Vector formulation edit Note that n dots above a vector indicates its nth time derivative The scalar product of each side of Newton s law with the velocity vector yieldsF X m X X displaystyle mathbf F cdot dot mathbf X m ddot mathbf X cdot dot mathbf X nbsp because the constraint forces are perpendicular to the particle velocity Integrate this equation along its trajectory from the point X t1 to the point X t2 to obtain t 1 t 2 F X d t m t 1 t 2 X X d t displaystyle int t 1 t 2 mathbf F cdot dot mathbf X dt m int t 1 t 2 ddot mathbf X cdot dot mathbf X dt nbsp The left side of this equation is the work of the applied force as it acts on the particle along the trajectory from time t1 to time t2 This can also be written asW t 1 t 2 F X d t X t 1 X t 2 F d X displaystyle W int t 1 t 2 mathbf F cdot dot mathbf X dt int mathbf X t 1 mathbf X t 2 mathbf F cdot d mathbf X nbsp This integral is computed along the trajectory X t of the particle and is therefore path dependent The right side of the first integral of Newton s equations can be simplified using the following identity1 2 d d t X X X X displaystyle frac 1 2 frac d dt dot mathbf X cdot dot mathbf X ddot mathbf X cdot dot mathbf X nbsp see product rule for derivation Now it is integrated explicitly to obtain the change in kinetic energy D K m t 1 t 2 X X d t m 2 t 1 t 2 d d t X X d t m 2 X X t 2 m 2 X X t 1 1 2 m D v 2 displaystyle Delta K m int t 1 t 2 ddot mathbf X cdot dot mathbf X dt frac m 2 int t 1 t 2 frac d dt dot mathbf X cdot dot mathbf X dt frac m 2 dot mathbf X cdot dot mathbf X t 2 frac m 2 dot mathbf X cdot dot mathbf X t 1 frac 1 2 m Delta mathbf v 2 nbsp where the kinetic energy of the particle is defined by the scalar quantity K m 2 X X 1 2 m v 2 displaystyle K frac m 2 dot mathbf X cdot dot mathbf X frac 1 2 m mathbf v 2 nbsp Tangential and normal components edit It is useful to resolve the velocity and acceleration vectors into tangential and normal components along the trajectory X t such thatX v T and X v T v 2 k N displaystyle dot mathbf X v mathbf T quad text and quad ddot mathbf X dot v mathbf T v 2 kappa mathbf N nbsp where v X X X displaystyle v dot mathbf X sqrt dot mathbf X cdot dot mathbf X nbsp Then the scalar product of velocity with acceleration in Newton s second law takes the form D K m t 1 t 2 v v d t m 2 t 1 t 2 d d t v 2 d t m 2 v 2 t 2 m 2 v 2 t 1 displaystyle Delta K m int t 1 t 2 dot v v dt frac m 2 int t 1 t 2 frac d dt v 2 dt frac m 2 v 2 t 2 frac m 2 v 2 t 1 nbsp where the kinetic energy of the particle is defined by the scalar quantity K m 2 v 2 m 2 X X displaystyle K frac m 2 v 2 frac m 2 dot mathbf X cdot dot mathbf X nbsp The result is the work energy principle for particle dynamics W D K displaystyle W Delta K nbsp This derivation can be generalized to arbitrary rigid body systems Moving in a straight line skid to a stop edit Consider the case of a vehicle moving along a straight horizontal trajectory under the action of a driving force and gravity that sum to F The constraint forces between the vehicle and the road define R and we haveF R m X displaystyle mathbf F mathbf R m ddot mathbf X nbsp For convenience let the trajectory be along the X axis so X d 0 and the velocity is V v 0 then R V 0 and F V Fxv where Fx is the component of F along the X axis so F x v m v v displaystyle F x v m dot v v nbsp Integration of both sides yields t 1 t 2 F x v d t m 2 v 2 t 2 m 2 v 2 t 1 displaystyle int t 1 t 2 F x vdt frac m 2 v 2 t 2 frac m 2 v 2 t 1 nbsp If Fx is constant along the trajectory then the integral of velocity is distance so F x d t 2 d t 1 m 2 v 2 t 2 m 2 v 2 t 1 displaystyle F x d t 2 d t 1 frac m 2 v 2 t 2 frac m 2 v 2 t 1 nbsp As an example consider a car skidding to a stop where k is the coefficient of friction and W is the weight of the car Then the force along the trajectory is Fx kW The velocity v of the car can be determined from the length s of the skid using the work energy principle k W s W 2 g v 2 or v 2 k s g displaystyle kWs frac W 2g v 2 quad text or quad v sqrt 2ksg nbsp Notice that this formula uses the fact that the mass of the vehicle is m W g nbsp Lotus type 119B gravity racer at Lotus 60th celebration nbsp Gravity racing championship in Campos Novos Santa Catarina Brazil 8 September 2010Coasting down an inclined surface gravity racing edit Consider the case of a vehicle that starts at rest and coasts down an inclined surface such as mountain road the work energy principle helps compute the minimum distance that the vehicle travels to reach a velocity V of say 60 mph 88 fps Rolling resistance and air drag will slow the vehicle down so the actual distance will be greater than if these forces are neglected Let the trajectory of the vehicle following the road be X t which is a curve in three dimensional space The force acting on the vehicle that pushes it down the road is the constant force of gravity F 0 0 W while the force of the road on the vehicle is the constraint force R Newton s second law yields F R m X displaystyle mathbf F mathbf R m ddot mathbf X nbsp The scalar product of this equation with the velocity V vx vy vz yields W v z m V V displaystyle Wv z m dot V V nbsp where V is the magnitude of V The constraint forces between the vehicle and the road cancel from this equation because R V 0 which means they do no work Integrate both sides to obtain t 1 t 2 W v z d t m 2 V 2 t 2 m 2 V 2 t 1 displaystyle int t 1 t 2 Wv z dt frac m 2 V 2 t 2 frac m 2 V 2 t 1 nbsp The weight force W is constant along the trajectory and the integral of the vertical velocity is the vertical distance therefore W D z m 2 V 2 displaystyle W Delta z frac m 2 V 2 nbsp Recall that V t1 0 Notice that this result does not depend on the shape of the road followed by the vehicle In order to determine the distance along the road assume the downgrade is 6 which is a steep road This means the altitude decreases 6 feet for every 100 feet traveled for angles this small the sin and tan functions are approximately equal Therefore the distance s in feet down a 6 grade to reach the velocity V is at leasts D z 0 06 8 3 V 2 g or s 8 3 88 2 32 2 2000 f t displaystyle s frac Delta z 0 06 8 3 frac V 2 g quad text or quad s 8 3 frac 88 2 32 2 approx 2000 mathrm ft nbsp This formula uses the fact that the weight of the vehicle is W mg Work of forces acting on a rigid body editThe work of forces acting at various points on a single rigid body can be calculated from the work of a resultant force and torque To see this let the forces F1 F2 Fn act on the points X1 X2 Xn in a rigid body The trajectories of Xi i 1 n are defined by the movement of the rigid body This movement is given by the set of rotations A t and the trajectory d t of a reference point in the body Let the coordinates xi i 1 n define these points in the moving rigid body s reference frame M so that the trajectories traced in the fixed frame F are given byX i t A t x i d t i 1 n displaystyle mathbf X i t A t mathbf x i mathbf d t quad i 1 ldots n nbsp The velocity of the points Xi along their trajectories areV i w X i d d displaystyle mathbf V i boldsymbol omega times mathbf X i mathbf d dot mathbf d nbsp where w is the angular velocity vector obtained from the skew symmetric matrix W A A T displaystyle Omega dot A A mathsf T nbsp known as the angular velocity matrix The small amount of work by the forces over the small displacements dri can be determined by approximating the displacement by dr vdt sod W F 1 V 1 d t F 2 V 2 d t F n V n d t displaystyle delta W mathbf F 1 cdot mathbf V 1 delta t mathbf F 2 cdot mathbf V 2 delta t ldots mathbf F n cdot mathbf V n delta t nbsp or d W i 1 n F i w X i d d d t displaystyle delta W sum i 1 n mathbf F i cdot boldsymbol omega times mathbf X i mathbf d dot mathbf d delta t nbsp This formula can be rewritten to obtaind W i 1 n F i d d t i 1 n X i d F i w d t F d T w d t displaystyle delta W left sum i 1 n mathbf F i right cdot dot mathbf d delta t left sum i 1 n left mathbf X i mathbf d right times mathbf F i right cdot boldsymbol omega delta t left mathbf F cdot dot mathbf d mathbf T cdot boldsymbol omega right delta t nbsp where F and T are the resultant force and torque applied at the reference point d of the moving frame M in the rigid body References edit NCERT 2020 Physics Book PDF ncert nic in Retrieved 24 November 2021 a b c Hugh D Young amp Roger A Freedman 2008 University Physics 12th ed Addison Wesley p 329 ISBN 978 0 321 50130 1 a b Krebs Robert E 2004 Groundbreaking Experiments Inventions and Discoveries of the Middle Ages Greenwood Publishing Group p 163 ISBN 978 0 313 32433 8 Retrieved 2008 05 21 Stephen Donald Lowell Cardwell 2001 Wheels clocks and rockets a history of technology US W W Norton amp Company pp 85 87 ISBN 978 0 393 32175 3 Mendelson Kenneth S 2003 02 13 Physical and colloquial meanings of the term work American Journal of Physics 71 3 279 doi 10 1119 1 1522707 ISSN 0002 9505 Descartes R 2013 Letter to Huygens Oct 5 1637 Bennett J ed Selected correspondence of Descartes PDF p 50 Iltis C 1971 Leibniz and the vis viva controversy PDF Isis 62 1 21 35 specifically p 24 Smeaton John 1759 Experimental Enquiry Concerning the Natural Powers of Water and Wind to Turn Mills and Other Machines Depending on a Circular Motion Philosophical Transactions of the Royal Society 51 105 doi 10 1098 rstl 1759 0019 S2CID 186213498 Jammer Max 1957 Concepts of Force Dover Publications Inc p 167 footnote 14 ISBN 0 486 40689 X Coriolis Gustave 1829 Calculation of the Effect of Machines or Considerations on the Use of Engines and their Evaluation Carilian Goeury Libraire Paris Dugas R 1955 A History of Mechanics Switzerland Editions du Griffon p 128 Units with special names and symbols units that incorporate special names and symbols The International System of Units SI 8th ed International Bureau of Weights and Measures 2006 Archived from the original on 2013 04 20 Retrieved 2012 10 27 a b Walker Jearl Halliday David Resnick Robert 2011 Fundamentals of physics 9th ed Hoboken NJ Wiley p 154 ISBN 9780470469118 Goldstein Herbert 2002 Classical mechanics 3rd ed San Francisco Addison Wesley ISBN 978 0 201 65702 9 OCLC 47056311 Rogalski Mircea S 2018 Advanced University Physics 2nd ed Boca Raton Chapman and Hall CRC ISBN 9781351991988 a b The Feynman Lectures on Physics Vol I Ch 14 Work and Potential Energy conclusion feynmanlectures caltech edu Greenwood Donald T 1997 Classical dynamics Mineola N Y Dover Publications ISBN 9780486138794 a b Resnick Robert Halliday David 1966 Physics Section 1 3 Vol I and II Combined edition Wiley International Edition Library of Congress Catalog Card No 66 11527 MindTap Cengage Learning ng cengage com Retrieved 2023 10 16 Taylor John R 2005 Classical Mechanics University Science Books ISBN 978 1 891389 22 1 Andrew Pytel Jaan Kiusalaas 2010 Engineering Mechanics Dynamics SI Version Volume 2 3rd ed Cengage Learning p 654 ISBN 9780495295631 Paul Burton 1979 Kinematics and Dynamics of Planar Machinery Prentice Hall ISBN 978 0 13 516062 6 Whittaker E T 1904 A treatise on the analytical dynamics of particles and rigid bodies Cambridge University Press Work energy principle www wwu edu Archived from the original on 2012 05 30 Retrieved 2012 08 06 Bibliography editSerway Raymond A Jewett John W 2004 Physics for Scientists and Engineers 6th ed Brooks Cole ISBN 0 534 40842 7 Tipler Paul 1991 Physics for Scientists and Engineers Mechanics 3rd ed extended version ed W H Freeman ISBN 0 87901 432 6 External links editWork energy principle Retrieved from https en wikipedia org w index php title Work physics amp oldid 1185764708, wikipedia, wiki, book, books, library,

    article

    , read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.