fbpx
Wikipedia

Jet fuel

Jet fuel or aviation turbine fuel (ATF, also abbreviated avtur) is a type of aviation fuel designed for use in aircraft powered by gas-turbine engines. It is colorless to straw-colored in appearance. The most commonly used fuels for commercial aviation are Jet A and Jet A-1, which are produced to a standardized international specification. The only other jet fuel commonly used in civilian turbine-engine powered aviation is Jet B, which is used for its enhanced cold-weather performance.

Jet fuel

Identifiers
  • 8008-20-6 (kerosene, also called fuel oil no. 1) Y
  • 64742-47-8 (Aviation Kerosene) Y
ChemSpider
  • None
UNII
  • 1C89KKC04E Y
  • DTXSID80109005
Properties
Appearance Straw-colored liquid
Density 775-840 g/L
Melting point −47 °C (−53 °F; 226 K)
Boiling point 176 °C (349 °F; 449 K)
Hazards
NFPA 704 (fire diamond)
2
2
0
Flash point 38 °C (100 °F; 311 K)
210 °C (410 °F; 483 K)
Safety data sheet (SDS) [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Y verify (what is YN ?)

Jet fuel is a mixture of a variety of hydrocarbons. Because the exact composition of jet fuel varies widely based on petroleum source, it is impossible to define jet fuel as a ratio of specific hydrocarbons. Jet fuel is therefore defined as a performance specification rather than a chemical compound.[1] Furthermore, the range of molecular mass between hydrocarbons (or different carbon numbers) is defined by the requirements for the product, such as the freezing point or smoke point. Kerosene-type jet fuel (including Jet A and Jet A-1, JP-5, and JP-8) has a carbon number distribution between about 8 and 16 (carbon atoms per molecule); wide-cut or naphtha-type jet fuel (including Jet B and JP-4), between about 5 and 15.[2][3]

History

Fuel for piston-engine powered aircraft (usually a high-octane gasoline known as avgas) has a high volatility to improve its carburetion characteristics and high autoignition temperature to prevent preignition in high compression aircraft engines. Turbine engines (like diesel engines) can operate with a wide range of fuels because fuel is injected into the hot combustion chamber. Jet and gas turbine (turboprop, helicopter) aircraft engines typically use lower cost fuels with higher flash points, which are less flammable and therefore safer to transport and handle.

The first axial compressor jet engine in widespread production and combat service, the Junkers Jumo 004 used on the Messerschmitt Me 262A fighter and the Arado Ar 234B jet recon-bomber, burned either a special synthetic "J2" fuel or diesel fuel. Gasoline was a third option but unattractive due to high fuel consumption.[4] Other fuels used were kerosene or kerosene and gasoline mixtures.

Standards

Most jet fuels in use since the end of World War II are kerosene-based. Both British and American standards for jet fuels were first established at the end of World War II. British standards derived from standards for kerosene use for lamps—known as paraffin in the UK—whereas American standards derived from aviation gasoline practices. Over the subsequent years, details of specifications were adjusted, such as minimum freezing point, to balance performance requirements and availability of fuels. Very low temperature freezing points reduce the availability of fuel. Higher flash point products required for use on aircraft carriers are more expensive to produce.[3] In the United States, ASTM International produces standards for civilian fuel types, and the U.S. Department of Defense produces standards for military use. The British Ministry of Defence establishes standards for both civil and military jet fuels.[3] For reasons of inter-operational ability, British and United States military standards are harmonized to a degree. In Russia and the CIS members, grades of jet fuels are covered by the State Standard (GOST) number, or a Technical Condition number, with the principal grade available being TS-1.

Types

Jet A/A-1

 
Shell Jet A-1 refueller truck on the ramp at Vancouver International Airport. Note the signs indicating UN1863 hazardous material and JET A-1.

Jet A specification fuel has been used in the United States since the 1950s and is usually not available outside the United States[5] and a few Canadian airports such as Toronto and Vancouver,[6] whereas Jet A-1 is the standard specification fuel used in the rest of the world other than Russia and the CIS members where TS-1 is the most common standard. Both Jet A and Jet A-1 have a flash point higher than 38 °C (100 °F), with an autoignition temperature of 210 °C (410 °F).[7]

Differences between Jet A and Jet A-1

The primary difference is the lower freezing point of A-1:[5]

  • Jet A's is −40 °C (−40 °F)
  • Jet A-1's is −47 °C (−53 °F)

The other difference is the mandatory addition of an anti-static additive to Jet A-1.

Jet A trucks, storage tanks, and plumbing that carry Jet A are marked with a black sticker with "Jet A" in white printed on it, adjacent to another black stripe.

Typical physical properties for Jet A and Jet A-1

Jet A-1 fuel must meet:

  • DEF STAN 91-91 (Jet A-1),
  • ASTM specification D1655 (Jet A-1), and
  • IATA Guidance Material (Kerosene Type), NATO Code F-35.

Jet A fuel must reach ASTM specification D1655 (Jet A).[8]

Typical physical properties for Jet A / Jet A-1[9]
Jet A-1 Jet A
Flash point 38 °C (100 °F)
Autoignition temperature 210 °C (410 °F)[7]
Freezing point −47 °C (−53 °F) −40 °C (−40 °F)
Max adiabatic burn temperature 2,230 °C (4,050 °F)
open air burn temperature: 1,030 °C (1,890 °F)[10][11][12]
Density at 15 °C (59 °F) 0.804 kg/L (6.71 lb/US gal) 0.820 kg/L (6.84 lb/US gal)
Specific energy 43.15 MJ/kg (11.99 kWh/kg) 43.02 MJ/kg (11.95 kWh/kg)
Energy density 34.7 MJ/L (9.6 kWh/L) [13] 35.3 MJ/L (9.8 kWh/L)

Jet B

Jet B is a naphtha-kerosene fuel that is used for its enhanced cold-weather performance. However, Jet B's lighter composition makes it more dangerous to handle.[8] For this reason, it is rarely used, except in very cold climates. A blend of approximately 30% kerosene and 70% gasoline, it is known as wide-cut fuel. It has a very low freezing point of −60 °C (−76 °F), and a low flash point as well. It is primarily used in some military aircraft. It is also used in northern Canada, Alaska, and sometimes Russia, because of its low freezing point.

TS-1

TS-1 is a jet fuel made to Russian standard GOST 10227 for enhanced cold-weather performance. It has somewhat higher volatility than Jet A-1 (flash point is 28 °C (82 °F) minimum). It has a very low freezing point, below −50 °C (−58 °F).[14]

Additives

The DEF STAN 91-091 (UK) and ASTM D1655 (international) specifications allow for certain additives to be added to jet fuel, including:[15][16]

  • Antioxidants to prevent gumming, usually based on alkylated phenols, e.g., AO-30, AO-31, or AO-37;
  • Antistatic agents, to dissipate static electricity and prevent sparking; Stadis 450, with dinonylnaphthylsulfonic acid (DINNSA) as a component, is an example
  • Corrosion inhibitors, e.g., DCI-4A used for civilian and military fuels, and DCI-6A used for military fuels;
  • Fuel system icing inhibitor (FSII) agents, e.g., 2-(2-Methoxyethoxy)ethanol (Di-EGME); FSII is often mixed at the point-of-sale so that users with heated fuel lines do not have to pay the extra expense.
  • Biocides are to remediate microbial (i.e., bacterial and fungal) growth present in aircraft fuel systems. Two biocides were previously approved for use by most aircraft and turbine engine original equipment manufacturers (OEMs); Kathon FP1.5 Microbiocide and Biobor JF.[17] Biobor JF is currently the only biocide available for aviation use. Kathon was discontinued by the manufacturer due to several airworthiness incidents. Kathon is now banned from use in aviation fuel.[18]
  • Metal deactivator can be added to reduce the negative effects of trace metals on the thermal stability of the fuel. The one allowable additive is the chelating agent salpn (N,N′-bis(salicylidene)-1,2-propanediamine).

As the aviation industry's jet kerosene demands have increased to more than 5% of all refined products derived from crude, it has been necessary for the refiner to optimize the yield of jet kerosene, a high-value product, by varying process techniques.

New processes have allowed flexibility in the choice of crudes, the use of coal tar sands as a source of molecules and the manufacture of synthetic blend stocks. Due to the number and severity of the processes used, it is often necessary and sometimes mandatory to use additives. These additives may, for example, prevent the formation of harmful chemical species or improve a property of a fuel to prevent further engine wear.

Water in jet fuel

It is very important that jet fuel be free from water contamination. During flight, the temperature of the fuel in the tanks decreases, due to the low temperatures in the upper atmosphere. This causes precipitation of the dissolved water from the fuel. The separated water then drops to the bottom of the tank, because it is denser than the fuel. Since the water is no longer in solution, it can form droplets which can supercool to below 0 °C (32 °F). If these supercooled droplets collide with a surface they can freeze and may result in blocked fuel inlet pipes.[19] This was the cause of the British Airways Flight 38 accident. Removing all water from fuel is impractical; therefore, fuel heaters are usually used on commercial aircraft to prevent water in fuel from freezing.

There are several methods for detecting water in jet fuel. A visual check may detect high concentrations of suspended water, as this will cause the fuel to become hazy in appearance. An industry standard chemical test for the detection of free water in jet fuel uses a water-sensitive filter pad that turns green if the fuel exceeds the specification limit of 30 ppm (parts per million) free water.[20] A critical test to rate the ability of jet fuel to release emulsified water when passed through coalescing filters is ASTM standard D3948 Standard Test Method for Determining Water Separation Characteristics of Aviation Turbine Fuels by Portable Separometer.

Military jet fuels

 
A sailor inspects a sample of JP-5 jet fuel aboard an amphibious transport dock ship

Military organizations around the world use a different classification system of JP (for "Jet Propellant") numbers. Some are almost identical to their civilian counterparts and differ only by the amounts of a few additives; Jet A-1 is similar to JP-8, Jet B is similar to JP-4.[21] Other military fuels are highly specialized products and are developed for very specific applications.

JP-1
was an early jet fuel[22] specified in 1944 by the United States government (AN-F-32). It was a pure kerosene fuel with high flash point (relative to aviation gasoline) and a freezing point of −60 °C (−76 °F). The low freezing point requirement limited availability of the fuel and it was soon superseded by other "wide cut" jet fuels which were kerosene-naphtha or kerosene-gasoline blends. It was also known as avtur.

JP-2
an obsolete type developed during World War II. JP-2 was intended to be easier to produce than JP-1 since it had a higher freezing point, but was never widely used.[23]

JP-3
was an attempt to improve availability of the fuel compared to JP-1 by widening the cut and loosening tolerances on impurities to ensure ready supply. In his book Ignition! An Informal History of Liquid Rocket Propellants, John D. Clark described the specification as, "remarkably liberal, with a wide cut (range of distillation temperatures) and with such permissive limits on olefins and aromatics that any refinery above the level of a Kentucky moonshiner's pot still could convert at least half of any crude to jet fuel".[24] It was even more volatile than JP-2 and had high evaporation loss in service.[23]

JP-4
was a 50-50 kerosene-gasoline blend. It had lower flash point than JP-1, but was preferred because of its greater availability. It was the primary United States Air Force jet fuel between 1951 and 1995. Its NATO code is F-40. It is also known as avtag.

JP-5
is a yellow kerosene-based jet fuel developed in 1952 for use in aircraft stationed aboard aircraft carriers, where the risk from fire is particularly great. JP-5 is a complex mixture of hydrocarbons, containing alkanes, naphthenes, and aromatic hydrocarbons that weighs 6.8 pounds per U.S. gallon (0.81 kg/L) and has a high flash point (min. 60 °C or 140 °F).[25] Because some US naval air stations, Marine Corps air stations and Coast Guard air stations host both sea and land based naval aircraft, these installations will also typically fuel their shore-based aircraft with JP-5, thus precluding the need to maintain separate fuel facilities for JP-5 and non-JP-5 fuel. Its freezing point is −46 °C (−51 °F). It does not contain antistatic agents. JP-5 is also known as NCI-C54784. JP-5's NATO code is F-44. It is also called AVCAT fuel for Aviation Carrier Turbine fuel.[26]
The JP-4 and JP-5 fuels, covered by the MIL-DTL-5624 and meeting the British Specification DEF STAN 91-86 AVCAT/FSII (formerly DERD 2452),[27] are intended for use in aircraft turbine engines. These fuels require unique additives that are necessary for military aircraft and engine fuel systems.

JP-6
was developed for the General Electric YJ93 afterburning turbojet engines used in the North American XB-70 Valkyrie for sustained flight at Mach 3. It was similar to JP-5 but with a lower freezing point and improved thermal oxidative stability. When the XB-70 program was cancelled, the JP-6 specification, MIL-J-25656, was also cancelled.[28]

JP-7
was developed for the Pratt & Whitney J58 afterburning turbojet engines used in the Lockheed SR-71 Blackbird for sustained flight at Mach 3+. It had a high flash point required to prevent boiloff caused by aerodynamic heating. Its thermal stability was high enough to prevent coke and varnish deposits when used as a heat-sink for aircraft air conditioning and hydraulic systems and engine accessories.[29]

JP-8
is a jet fuel, specified and used widely by the U.S. military. It is specified by MIL-DTL-83133 and British Defence Standard 91-87. JP-8 is a kerosene-based fuel, projected to remain in use at least until 2025. The United States military uses JP-8 as a "universal fuel" in both turbine-powered aircraft and diesel-powered ground vehicles. It was first introduced at NATO bases in 1978. Its NATO code is F-34.

JP-9
is a gas turbine fuel for missiles, specifically the Tomahawk cruise missile, containing the TH-dimer (tetrahydrodimethyldicyclopentadiene) produced by catalytic hydrogenation of methylpentadiene dimer.

JP-10
is a gas turbine fuel for missiles, specifically the AGM-86 ALCM cruise missile.[30] It contains a mixture of (in decreasing order) endo-tetrahydrodicyclopentadiene, exo-tetrahydrodicyclopentadiene (a synthetic fuel), and adamantane. It is produced by catalytic hydrogenation of dicyclopentadiene. It superseded JP-9 fuel, achieving a lower low-temperature service limit of −65 °F (−54 °C).[30] It is also used by the Tomahawk jet-powered subsonic cruise missile.[31]

JPTS
was a combination of LF-1 charcoal lighter fluid and an additive to improve thermal oxidative stability officially known as "Thermally Stable Jet Fuel". It was developed in 1956 for the Pratt & Whitney J57 engine which powered the Lockheed U-2 spy plane.[32]

Zip fuel
designates a series of experimental boron-containing "high energy fuels" intended for long range aircraft. The toxicity and undesirable residues of the fuel made it difficult to use. The development of the ballistic missile removed the principal application of zip fuel.

Syntroleum
has been working with the USAF to develop a synthetic jet fuel blend that will help them reduce their dependence on imported petroleum. The USAF, which is the United States military's largest user of fuel, began exploring alternative fuel sources in 1999. On December 15, 2006, a B-52 took off from Edwards Air Force Base for the first time powered solely by a 50–50 blend of JP-8 and Syntroleum's FT fuel. The seven-hour flight test was considered a success. The goal of the flight test program was to qualify the fuel blend for fleet use on the service's B-52s, and then flight test and qualification on other aircraft.

Piston engine use

Jet fuel is very similar to diesel fuel, and in some cases, may be used in diesel engines. The possibility of environmental legislation banning the use of leaded avgas (fuel in spark-ignited internal combustion engine, which is usually leaded by adding tetraethyllead (TEL) i.e. a toxic substance having lead used to prevent engine knocking), and the lack of a replacement fuel with similar performance, has left aircraft designers and pilot's organizations searching for alternative engines for use in small aircraft.[33] As a result, a few aircraft engine manufacturers, most notably Thielert and Austro Engine, have begun offering aircraft diesel engines which run on jet fuel which may simplify airport logistics by reducing the number of fuel types required. Jet fuel is available in most places in the world, whereas avgas is only widely available in a few countries which have a large number of general aviation aircraft. A diesel engine may be more fuel-efficient than an avgas engine. However, very few diesel aircraft engines have been certified by aviation authorities. Diesel aircraft engines are uncommon today, even though opposed-piston aviation diesel powerplants such as the Junkers Jumo 205 family had been used during the Second World War.

Jet fuel is often used in diesel-powered ground-support vehicles at airports. However, jet fuel tends to have poor lubricating ability in comparison to diesel, which increases wear in fuel injection equipment.[citation needed] An additive may be required to restore its lubricity. Jet fuel is more expensive than diesel fuel but the logistical advantages of using one fuel can offset the extra expense of its use in certain circumstances.

Jet fuel contains more sulfur, up to 1,000 ppm, which therefore means it has better lubricity and does not currently require a lubricity additive as all pipeline diesel fuels require.[citation needed] The introduction of Ultra Low Sulfur Diesel or ULSD brought with it the need for lubricity modifiers. Pipeline diesels before ULSD were able to contain up to 500 ppm of sulfur and were called Low Sulfur Diesel or LSD. In the United States LSD is now only available to the off-road construction, locomotive and marine markets. As more EPA regulations are introduced, more refineries are hydrotreating their jet fuel production, thus limiting the lubricating abilities of jet fuel, as determined by ASTM Standard D445.

Synthetic jet fuel

Fischer–Tropsch (FT) Synthesized Paraffinic Kerosene (SPK) synthetic fuels are certified for use in United States and international aviation fleets at up to 50% in a blend with conventional jet fuel.[34] As of the end of 2017, four other pathways to SPK are certified, with their designations and maximum blend percentage in brackets: Hydroprocessed Esters and Fatty Acids (HEFA SPK, 50%); synthesized iso-paraffins from hydroprocessed fermented sugars (SIP, 10%); synthesized paraffinic kerosene plus aromatics (SPK/A, 50%); alcohol-to-jet SPK (ATJ-SPK, 30%). Both FT and HEFA based SPKs blended with JP-8 are specified in MIL-DTL-83133H.

Some synthetic jet fuels show a reduction in pollutants such as SOx, NOx, particulate matter, and sometimes carbon emissions.[35][36][37][38][39] It is envisaged that usage of synthetic jet fuels will increase air quality around airports which will be particularly advantageous at inner city airports.[40]

Chemist Heather Willauer is leading a team of researchers at the U.S. Naval Research Laboratory who are developing a process to make jet fuel from seawater. The technology requires an input of electrical energy to separate Oxygen (O2) and Hydrogen (H2) gas from seawater using an iron-based catalyst, followed by an oligomerization step wherein carbon monoxide (CO) and hydrogen are recombined into long-chain hydrocarbons, using zeolite as the catalyst. The technology is expected to be deployed in the 2020s by U.S. Navy warships, especially nuclear-powered aircraft carriers.[43][44][45][46][47][48]

On February 8, 2021, the world's first scheduled passenger flight flew with some synthetic kerosene from a non-fossil fuel source. 500 liters of synthetic kerosene was mixed with regular jet fuel. Synthetic kerosene was produced by Shell and the flight was operated by KLM.[49]

USAF synthetic fuel trials

On August 8, 2007, Air Force Secretary Michael Wynne certified the B-52H as fully approved to use the FT blend, marking the formal conclusion of the test program. This program is part of the Department of Defense Assured Fuel Initiative, an effort to develop secure domestic sources for the military energy needs. The Pentagon hopes to reduce its use of crude oil from foreign producers and obtain about half of its aviation fuel from alternative sources by 2016. With the B-52 now approved to use the FT blend, the USAF will use the test protocols developed during the program to certify the Boeing C-17 Globemaster III and then the Rockwell B-1B Lancer to use the fuel. To test these two aircraft, the USAF has ordered 281,000 US gal (1,060,000 L) of FT fuel. The USAF intends to test and certify every airframe in its inventory to use the fuel by 2011. They will also supply over 9,000 US gal (34,000 l; 7,500 imp gal) to NASA for testing in various aircraft and engines.[needs update]

The USAF has certified the B-1B, B-52H, C-17, Lockheed Martin C-130J Super Hercules, McDonnell Douglas F-4 Phantom (as QF-4 target drones), McDonnell Douglas F-15 Eagle, Lockheed Martin F-22 Raptor, and Northrop T-38 Talon to use the synthetic fuel blend.[50]

The U.S. Air Force's C-17 Globemaster III, F-16 and F-15 are certified for use of hydrotreated renewable jet fuels.[51][52] The USAF plans to certify over 40 models for fuels derived from waste oils and plants by 2013.[52] The U.S. Army is considered one of the few customers of biofuels large enough to potentially bring biofuels up to the volume production needed to reduce costs.[52] The U.S. Navy has also flown a Boeing F/A-18E/F Super Hornet dubbed the "Green Hornet" at 1.7 times the speed of sound using a biofuel blend.[52] The Defense Advanced Research Projects Agency (DARPA) funded a $6.7 million project with Honeywell UOP to develop technologies to create jet fuels from biofeedstocks for use by the United States and NATO militaries.[53]

In April 2011, four USAF F-15E Strike Eagles flew over the Philadelphia Phillies opening ceremony using a blend of traditional jet fuel and synthetic biofuels. This flyover made history as it was the first flyover to use biofuels in the Department of Defense.[54]

Jet biofuels

The air transport industry is responsible for 2–3 percent of man-made carbon dioxide emitted.[55] Boeing estimates that biofuels could reduce flight-related greenhouse-gas emissions by 60 to 80 percent. One possible solution which has received more media coverage than others would be blending synthetic fuel derived from algae with existing jet fuel:[56]

  • Green Flight International became the first airline to fly jet aircraft on 100% biofuel. The flight from Reno Stead Airport in Stead, Nevada was in an Aero L-29 Delfín piloted by Carol Sugars and Douglas Rodante.[57]
  • Boeing and Air New Zealand are collaborating with Tecbio[58] Aquaflow Bionomic and other jet biofuel developers around the world.
  • Virgin Atlantic successfully tested a biofuel blend consisting of 20 percent babassu nuts and coconut and 80 percent conventional jet fuel, which was fed to a single engine on a 747 flight from London Heathrow to Amsterdam Schiphol.[59]
  • A consortium consisting of Boeing, NASA's Glenn Research Center, MTU Aero Engines (Germany), and the U.S. Air Force Research Laboratory is working on development of jet fuel blends containing a substantial percentage of biofuel.[60]
  • British Airways and Velocys have entered into a partnership in the UK to design a series of plants that convert household waste into jet fuel.[61]
  • 24 commercial and military biofuel flights have taken place using Honeywell “Green Jet Fuel,” including a Navy F/A-18 Hornet.[62]
  • In 2011, United Continental Holdings was the first United States airline to fly passengers on a commercial flight using a blend of sustainable, advanced biofuels and traditional petroleum-derived jet fuel. Solazyme developed the algae oil, which was refined utilizing Honeywell's UOP process technology, into jet fuel to power the commercial flight.[63]

Solazyme produced the world's first 100 percent algae-derived jet fuel, Solajet, for both commercial and military applications.[64]

 
Jet fuel vs oil prices

Oil prices increased about fivefold from 2003 to 2008, raising fears that world petroleum production is becoming unable to keep up with demand. The fact that there are few alternatives to petroleum for aviation fuel adds urgency to the search for alternatives. Twenty-five airlines were bankrupted or stopped operations in the first six months of 2008, largely due to fuel costs.[65]

In 2015 ASTM approved a modification to Specification D1655 Standard Specification for Aviation Turbine Fuels to permit up to 50 ppm (50 mg/kg) of FAME (fatty acid methyl ester) in jet fuel to allow higher cross-contamination from biofuel production.[66]

Worldwide consumption of jet fuel

Worldwide demand of jet fuel has been steadily increasing since 1980. Consumption more than tripled in 30 years from 1,837,000 barrels/day in 1980, to 5,220,000 in 2010.[67] Around 30% of the worldwide consumption of jet fuel is in the US (1,398,130 barrels/day in 2012).

Taxation

Article 24 of the Chicago Convention on International Civil Aviation of 7 December 1944 stipulates that when flying from one contracting state to another, the kerosene that is already on board aircraft may not be taxed by the state where the aircraft lands, nor by a state through whose airspace the aircraft has flown. However, there is no tax regulation in the Chicago Convention to refuel the aircraft before departure. The Chicago Convention does not preclude a kerosene tax on domestic flights and on refueling before international flights.[68]: 16 

Kerosene tax can be levied throughout the European Union on domestic flights and between Member States according to the 2003 Energy Taxation Directive.[69] In the United States, most states tax jet fuel.

Health effects

General health hazards associated with exposure to jet fuel vary according to its components, exposure duration (acute vs. long-term), route of administration (dermal vs. respiratory vs. oral), and exposure phase (vapor vs. aerosol vs. raw fuel).[70][71] Kerosene-based hydrocarbon fuels are complex mixtures which may contain up to 260+ aliphatic and aromatic hydrocarbon compounds including toxicants such as benzene, n-hexane, toluene, xylenes, trimethylpentane, methoxyethanol, naphthalenes.[71] While time-weighted average hydrocarbon fuel exposures can often below recommended exposure limits, peak exposure can occur, and the health impact of occupational exposures is not fully understood. Evidence of the health effects of jet fuels comes from reports on both temporary or persisting biological from acute, subchronic, or chronic exposure of humans or animals to kerosene-based hydrocarbon fuels, or the constituent chemicals of these fuels, or to fuel combustion products. The effects studied include: cancer, skin conditions, respiratory disorders,[72] immune and hematological disorders,[73] neurological effects,[74] visual and hearing disorders,[75][76] renal and hepatic diseases, cardiovascular conditions, gastrointestinal disorders, genotoxic and metabolic effects.[71][77]

See also

References

  1. ^ Defence Standards. "Ministry of Defence Standard 91-91: Turbine Fuel, Kerosine Type, Jet A-1" (PDF). p. 1.
  2. ^ Chevron Products Corporation. (PDF). Archived from the original (PDF) on 2015-09-07. Retrieved 2014-05-06.
  3. ^ a b c Salvatore J. Rand (ed), Significance of Tests for Petroleum Products (8th Edition) ASTM International, 2010, ISBN 978-1-61583-673-4 page 88
  4. ^ "Summary of Debriefing of German pilot Hans Fey" (PDF). Zenos' Warbird Video Drive-In.
  5. ^ a b "Aviation Lubricants". www.shell.com.au.
  6. ^ Canada Flight Supplement. Effective 0901Z 16 July 2020 to 0901Z 10 September 2020.
  7. ^ a b ExxonMobil Aviation (April 9, 2016). (PDF). Archived from the original (PDF) on 2016-04-09.
  8. ^ a b "Aviation Fuel — Jet Fuel Information". Csgnetwork.com. 2004-01-05. Retrieved 2010-11-28.
  9. ^ (PDF). Air BP. pp. 11–13. Archived from the original (PDF) on 2011-06-08.
  10. ^ "FUEL DATA FOR COMBUSTION WITH AIR" (PDF). Isidoro Martínez Prof. of Thermodynamics, Ciudad Universitaria. 2014. Retrieved 2014-05-09.
  11. ^ Soloiu, Valentin; Covington, April; Lewis, Jeff; Duggan, Marvin; Lobue, James; Jansons, Marcis (January 2012). "Performance of JP-8 Unified Fuel in a Small Bore Indirect Injection Diesel Engine for APU Applications". SAE Technical Paper Series. Vol. 1. SAE International. doi:10.4271/2012-01-1199. Retrieved 2014-05-09.
  12. ^ . Aviation Safety Advisory Group of Arizona, Inc. 2014. Archived from the original on 2014-05-12. Retrieved 2014-05-09.
  13. ^ (PDF), Petroleum Products Division - GN, p. 132, archived from the original (PDF) on 16 January 2017, retrieved 15 January 2017
  14. ^ "Aviation Jet Fuel". World Oil Traders. Retrieved 21 August 2019.
  15. ^ Turbine Fuel, Aviation Kerosine Type, Jet A-1 NATO Code: F-35 Joint Service Designation: AVTUR (PDF) (25 August 2008 ed.), 8 April 2008, Ministry of Defence Standard 91-91, archived from the original (PDF) on 2010-08-14
  16. ^ Standard Specification for Aviation Turbine Fuels, ASTM D1655-09a (2010). ASTM International, West Conshohocken, Pennsylvania, United States.
  17. ^ Lombardo, David A. (July 2005), , Aviation International News, archived from the original on 2011-04-30
  18. ^ Jetstar Airways PTY LTD. (25 June 2020). Aircraft Serious Incident Investigation Report (PDF) (Report). Japan Transport Safety Board.
  19. ^ Murray, B.J.; et al. (2011). "Supercooling of water droplets in jet aviation fuel". Fuel. 90: 433–435. doi:10.1016/j.fuel.2010.08.018.
  20. ^ . Archived from the original on February 19, 2012.
  21. ^ (PDF). shell.com. Shell Oil Company. p. 4. Archived from the original (PDF) on 19 December 2014. Retrieved 27 November 2014.
  22. ^ Aviation Fuel 2012-04-20 at the Wayback Machine - US Centennial of Flight Commission, Retrieved 3 January 2012
  23. ^ a b Larry Reithmaier, Mach 1 and Beyond: The Illustrated Guide to High-Speed Flight, (McGraw-Hill Professional, 1994), ISBN 0070520216, page 104
  24. ^ Clark, John D (1972). Ignition! An Informal History of Liquid Rocket Propellants. New Brunswick, New Jersey: Rutgers University Press. p. 33. ISBN 0-8135-0725-1.
  25. ^ Characteristics of Fuels 2007-01-26 at the Wayback Machine Marine Corps Schools Detachment — Ft. Leonard Wood
  26. ^ UK MOD DEF STAN 23-8 ISSUE 2 2005-05-17 at the Wayback Machine
  27. ^ "Shell Fuels Technical Data Sheet - F-44" (PDF).
  28. ^ The History of Jet Fuel October 18, 2012, at the Wayback Machine Air BP
  29. ^ "SR-71 Online - SR-71 Flight Manual: Section 1, Page 1-4". www.sr-71.org.
  30. ^ a b Aviation Fuel Properties (PDF). Coordinating Research Council. 1983. p. 3. CRC Report Nº 530. (PDF) from the original on July 22, 2012.
  31. ^ Coggeshall, Katharine. "Revolutionizing Tomahawk fuel". Los Alamos National Laboratory. Los Alamos National Laboratory. Retrieved 20 May 2020.
  32. ^ DTIC ADA186752: Military Jet Fuels, 1944-1987, Defense Technical Information Center, p. 5
  33. ^ Planemakers challenged to find unleaded fuel option - The Wichita Eagle June 6, 2009, at the Wayback Machine
  34. ^ "ASTM D7566 - 20a Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons". www.astm.org.
  35. ^ (PDF). Archived from the original (PDF) on May 8, 2009.
  36. ^ Lobo, Prem; Hagen, Donald E.; Whitefield, Philip D. (2011). "Comparison of PM Emissions from a Commercial Jet Engine Burning Conventional, Biomass, and Fischer–Tropsch Fuels". Environmental Science & Technology. 45 (24): 10744–10749. Bibcode:2011EnST...4510744L. doi:10.1021/es201902e. PMID 22043875.
  37. ^ "Argonne GREET Publication: Life Cycle Analysis of Alternative Aviation Fuels in GREET". greet.es.anl.gov.
  38. ^ "Corporan, E et al. (2010). Alternative Fuels Tests on a C-17 Aircraft: Emissions Characteristics, DTIC Document" (PDF). (PDF) from the original on February 24, 2017.
  39. ^ Anderson, B. E.; et al. (February 2011). "Alternative Aviation Fuel Experiment (AAFEX)" (PDF). NASA Langley Research Centre.
  40. ^ "Best Synth Jet Fuel" (PDF).
  41. ^ "Qatar Airways Becomes First to Operate Commercial Flight on GTL Jet Fuel Blend". Green Car Congress. 2009-10-12.
  42. ^ . Sasol. 2010-09-22. Archived from the original on 2011-05-15.
  43. ^ Parry, Daniel (September 24, 2012). "Fueling the Fleet, Navy Looks to the Seas". Naval Research Laboratory News.
  44. ^ Palmer, Roxanne (December 17, 2013). "How The Navy Might Spin Seawater Into Jet Fuel". International Business Times.
  45. ^ Tozer, Jessica L. (April 11, 2014). "Energy Independence: Creating Fuel from Seawater". Armed with Science. U.S. Department of Defense.
  46. ^ Koren, Marina (December 13, 2013). "Guess What Could Fuel the Battleships of the Future?". National Journal.
  47. ^ Tucker, Patrick (April 10, 2014). "The Navy Just Turned Seawater Into Jet Fuel". Defense One.
  48. ^ Ernst, Douglas (April 10, 2014). "U.S. Navy to turn seawater into jet fuel". The Washington Times.
  49. ^ "World First – Synthetic Kerosene Takes to the Air". Retrieved 2022-03-31.
  50. ^ Sirak, Michael (2010-01-27). "B-2 Goes Synthetic". Air Force Magazine. Retrieved 7 July 2012.
  51. ^ Dowdell, Richelle (February 10, 2011). "Officials certify first aircraft for biofuel usage". The Official Website of the U.S. Air Force. Archived from the original on December 12, 2012. Retrieved March 7, 2012.
  52. ^ a b c d Morales, Alex; Louise Downing (October 18, 2011). . BusinessWeek. Archived from the original on February 26, 2012. Retrieved March 7, 2012.
  53. ^ "UOP To Develop Technology to Produce Bio JP-8 for Military Jets". Green Car Congress. June 28, 2007. Retrieved March 7, 2012.
  54. ^ "Air Force jets perform first flyover using alternative fuel". Air Force. Retrieved 2022-03-27.
  55. ^ "Beginner's Guide to Aviation Biofuels" (PDF). Air Transport Action Group. May 2009. Retrieved 2009-09-20.[permanent dead link]
  56. ^ "A Promising Oil Alternative: Algae Energy". The Washington Post. 2008-01-06. Retrieved 2010-05-06.
  57. ^ . Greenflightinternational.com. Archived from the original on 2011-01-25. Retrieved 2010-11-28.
  58. ^ . Tecbio. Archived from the original on 2011-01-23. Retrieved 2010-11-28.
  59. ^ "Crop this: Virgin takes off with nut-fuel - 26 Feb 2008 - NZ Herald: New Zealand Business, Markets, Currency and Personal Finance News". NZ Herald. 2008-02-26. Retrieved 2010-11-28.
  60. ^ "2008 Environment Report". Boeing. Retrieved 2010-11-28.
  61. ^ . September 18, 2017. Archived from the original on January 5, 2018. Retrieved January 5, 2018.
  62. ^ Koch, Wendy (November 7, 2011). "United flies first US passengers using fuel from algae". USA Today. Retrieved December 16, 2011.
  63. ^ "United Airlines Flies First U.S. Commercial Advanced Biofuel Flight". United Continental Holdings, Inc. Archived from the original on April 12, 2013. Retrieved November 7, 2011.
  64. ^ Price, Toby (November 10, 2011). "Solazyme completes first commercial flight on biofuel". Renewable Energy Magazine. Retrieved 13 February 2013.
  65. ^ "More airlines fold as fuel prices soar: IATA". News.asiaone.com. from the original on 2011-07-03. Retrieved 2010-11-28.
  66. ^ "Revised ASTM Standard Expands Limit on Biofuel Contamination in Jet Fuels | www.astm.org". www.astm.org.
  67. ^ "Jet fuel consumption on Index Mundi". Retrieved 19 November 2014.
  68. ^ Jasper Faber and Aoife O’Leary (November 2018). "Taxing aviation fuels in the EU" (PDF). CE Delft. Transport and Environment. Retrieved 20 June 2020.
  69. ^ "Council Directive 2003/96/EC of 27 October 2003, restructuring the Community framework for the taxation of energy products and electricity". Official Journal of the European Union. Eur-Lex. 27 October 2002. Retrieved 20 June 2020.
  70. ^ Mattie, David R.; Sterner, Teresa R. (2011-07-15). "Past, present and emerging toxicity issues for jet fuel". Toxicology and Applied Pharmacology. 254 (2): 127–132. doi:10.1016/j.taap.2010.04.022. ISSN 1096-0333. PMID 21296101.
  71. ^ a b c Ritchie, Glenn; Still, Kenneth; Rossi III, John; Bekkedal, Marni; Bobb, Andrew; Arfsten, Darryl (2003-01-01). "Biological And Health Effects Of Exposure To Kerosene-Based Jet Fuels And Performance Additives". Journal of Toxicology and Environmental Health, Part B. 6 (4): 357–451. doi:10.1080/10937400306473. ISSN 1093-7404. PMID 12775519. S2CID 30595016.
  72. ^ Robledo, R. F.; Barber, D. S.; Witten, M. L. (1999). "Modulation of bronchial epithelial cell barrier function by in vitro jet propulsion fuel 8 exposure". Toxicological Sciences. 51 (1): 119–125. doi:10.1093/toxsci/51.1.119. ISSN 1096-6080. PMID 10496683.
  73. ^ Harris, D. T.; Sakiestewa, D.; Titone, D.; Robledo, R. F.; Young, R. S.; Witten, M. (2000). "Jet fuel-induced immunotoxicity". Toxicology and Industrial Health. 16 (7–8): 261–265. doi:10.1177/074823370001600702. ISSN 0748-2337. PMID 11693943. S2CID 42673565.
  74. ^ Knave, B.; Persson, H. E.; Goldberg, J. M.; Westerholm, P. (1976). "Long-term exposure to jet fuel: an investigation on occupationally exposed workers with special reference to the nervous system". Scandinavian Journal of Work, Environment & Health. 2 (3): 152–164. doi:10.5271/sjweh.2809. ISSN 0355-3140. PMID 973128.
  75. ^ Morata, Thais C.; Hungerford, Michelle; Konrad-Martin, Dawn (2021-08-18). "Potential Risks to Hearing Functions of Service Members From Exposure to Jet Fuels". American Journal of Audiology. 30 (3S): 922–927. doi:10.1044/2021_AJA-20-00226. ISSN 1059-0889. PMID 34407375.
  76. ^ Kaufman, Laura R.; LeMasters, Grace K.; Olsen, Donna M.; Succop, Paul (2005). "Effects of concurrent noise and jet fuel exposure on hearing loss". Journal of Occupational and Environmental Medicine. 47 (3): 212–218. doi:10.1097/01.jom.0000155710.28289.0e. ISSN 1076-2752. PMID 15761316. S2CID 1195860.
  77. ^ Bendtsen, Katja M.; Bengtsen, Elizabeth; Saber, Anne T.; Vogel, Ulla (2021-02-06). "A review of health effects associated with exposure to jet engine emissions in and around airports". Environmental Health: A Global Access Science Source. 20 (1): 10. doi:10.1186/s12940-020-00690-y. ISSN 1476-069X. PMC 7866671. PMID 33549096.

External links

fuel, aviation, turbine, fuel, also, abbreviated, avtur, type, aviation, fuel, designed, aircraft, powered, turbine, engines, colorless, straw, colored, appearance, most, commonly, used, fuels, commercial, aviation, which, produced, standardized, international. Jet fuel or aviation turbine fuel ATF also abbreviated avtur is a type of aviation fuel designed for use in aircraft powered by gas turbine engines It is colorless to straw colored in appearance The most commonly used fuels for commercial aviation are Jet A and Jet A 1 which are produced to a standardized international specification The only other jet fuel commonly used in civilian turbine engine powered aviation is Jet B which is used for its enhanced cold weather performance Jet fuel A Boeing 737 800 of Nok Air being fueled at Don Mueang International AirportIdentifiersCAS Number 8008 20 6 kerosene also called fuel oil no 1 Y64742 47 8 Aviation Kerosene YChemSpider NoneUNII 1C89KKC04E YCompTox Dashboard EPA DTXSID80109005PropertiesAppearance Straw colored liquidDensity 775 840 g LMelting point 47 C 53 F 226 K Boiling point 176 C 349 F 449 K HazardsNFPA 704 fire diamond 220Flash point 38 C 100 F 311 K Autoignitiontemperature 210 C 410 F 483 K Safety data sheet SDS 1 2 Except where otherwise noted data are given for materials in their standard state at 25 C 77 F 100 kPa Y verify what is Y N Infobox references Jet fuel is a mixture of a variety of hydrocarbons Because the exact composition of jet fuel varies widely based on petroleum source it is impossible to define jet fuel as a ratio of specific hydrocarbons Jet fuel is therefore defined as a performance specification rather than a chemical compound 1 Furthermore the range of molecular mass between hydrocarbons or different carbon numbers is defined by the requirements for the product such as the freezing point or smoke point Kerosene type jet fuel including Jet A and Jet A 1 JP 5 and JP 8 has a carbon number distribution between about 8 and 16 carbon atoms per molecule wide cut or naphtha type jet fuel including Jet B and JP 4 between about 5 and 15 2 3 Contents 1 History 2 Standards 3 Types 3 1 Jet A A 1 3 2 Differences between Jet A and Jet A 1 3 3 Typical physical properties for Jet A and Jet A 1 3 4 Jet B 3 5 TS 1 4 Additives 5 Water in jet fuel 6 Military jet fuels 7 Piston engine use 8 Synthetic jet fuel 9 USAF synthetic fuel trials 10 Jet biofuels 11 Worldwide consumption of jet fuel 12 Taxation 13 Health effects 14 See also 15 References 16 External linksHistory EditFuel for piston engine powered aircraft usually a high octane gasoline known as avgas has a high volatility to improve its carburetion characteristics and high autoignition temperature to prevent preignition in high compression aircraft engines Turbine engines like diesel engines can operate with a wide range of fuels because fuel is injected into the hot combustion chamber Jet and gas turbine turboprop helicopter aircraft engines typically use lower cost fuels with higher flash points which are less flammable and therefore safer to transport and handle The first axial compressor jet engine in widespread production and combat service the Junkers Jumo 004 used on the Messerschmitt Me 262A fighter and the Arado Ar 234B jet recon bomber burned either a special synthetic J2 fuel or diesel fuel Gasoline was a third option but unattractive due to high fuel consumption 4 Other fuels used were kerosene or kerosene and gasoline mixtures Standards EditMost jet fuels in use since the end of World War II are kerosene based Both British and American standards for jet fuels were first established at the end of World War II British standards derived from standards for kerosene use for lamps known as paraffin in the UK whereas American standards derived from aviation gasoline practices Over the subsequent years details of specifications were adjusted such as minimum freezing point to balance performance requirements and availability of fuels Very low temperature freezing points reduce the availability of fuel Higher flash point products required for use on aircraft carriers are more expensive to produce 3 In the United States ASTM International produces standards for civilian fuel types and the U S Department of Defense produces standards for military use The British Ministry of Defence establishes standards for both civil and military jet fuels 3 For reasons of inter operational ability British and United States military standards are harmonized to a degree In Russia and the CIS members grades of jet fuels are covered by the State Standard GOST number or a Technical Condition number with the principal grade available being TS 1 Types EditJet A A 1 Edit Shell Jet A 1 refueller truck on the ramp at Vancouver International Airport Note the signs indicating UN1863 hazardous material and JET A 1 A US Airways Boeing 757 being fueled at Fort Lauderdale Hollywood International Airport An Iberia Airbus A340 being fueled at La Aurora International Airport Jet A specification fuel has been used in the United States since the 1950s and is usually not available outside the United States 5 and a few Canadian airports such as Toronto and Vancouver 6 whereas Jet A 1 is the standard specification fuel used in the rest of the world other than Russia and the CIS members where TS 1 is the most common standard Both Jet A and Jet A 1 have a flash point higher than 38 C 100 F with an autoignition temperature of 210 C 410 F 7 Differences between Jet A and Jet A 1 Edit The primary difference is the lower freezing point of A 1 5 Jet A s is 40 C 40 F Jet A 1 s is 47 C 53 F The other difference is the mandatory addition of an anti static additive to Jet A 1 Jet A trucks storage tanks and plumbing that carry Jet A are marked with a black sticker with Jet A in white printed on it adjacent to another black stripe Typical physical properties for Jet A and Jet A 1 Edit Jet A 1 fuel must meet DEF STAN 91 91 Jet A 1 ASTM specification D1655 Jet A 1 and IATA Guidance Material Kerosene Type NATO Code F 35 Jet A fuel must reach ASTM specification D1655 Jet A 8 Typical physical properties for Jet A Jet A 1 9 Jet A 1 Jet AFlash point 38 C 100 F Autoignition temperature 210 C 410 F 7 Freezing point 47 C 53 F 40 C 40 F Max adiabatic burn temperature 2 230 C 4 050 F open air burn temperature 1 030 C 1 890 F 10 11 12 Density at 15 C 59 F 0 804 kg L 6 71 lb US gal 0 820 kg L 6 84 lb US gal Specific energy 43 15 MJ kg 11 99 kWh kg 43 02 MJ kg 11 95 kWh kg Energy density 34 7 MJ L 9 6 kWh L 13 35 3 MJ L 9 8 kWh L Jet B Edit Jet B is a naphtha kerosene fuel that is used for its enhanced cold weather performance However Jet B s lighter composition makes it more dangerous to handle 8 For this reason it is rarely used except in very cold climates A blend of approximately 30 kerosene and 70 gasoline it is known as wide cut fuel It has a very low freezing point of 60 C 76 F and a low flash point as well It is primarily used in some military aircraft It is also used in northern Canada Alaska and sometimes Russia because of its low freezing point TS 1 Edit TS 1 is a jet fuel made to Russian standard GOST 10227 for enhanced cold weather performance It has somewhat higher volatility than Jet A 1 flash point is 28 C 82 F minimum It has a very low freezing point below 50 C 58 F 14 Additives EditThe DEF STAN 91 091 UK and ASTM D1655 international specifications allow for certain additives to be added to jet fuel including 15 16 Antioxidants to prevent gumming usually based on alkylated phenols e g AO 30 AO 31 or AO 37 Antistatic agents to dissipate static electricity and prevent sparking Stadis 450 with dinonylnaphthylsulfonic acid DINNSA as a component is an example Corrosion inhibitors e g DCI 4A used for civilian and military fuels and DCI 6A used for military fuels Fuel system icing inhibitor FSII agents e g 2 2 Methoxyethoxy ethanol Di EGME FSII is often mixed at the point of sale so that users with heated fuel lines do not have to pay the extra expense Biocides are to remediate microbial i e bacterial and fungal growth present in aircraft fuel systems Two biocides were previously approved for use by most aircraft and turbine engine original equipment manufacturers OEMs Kathon FP1 5 Microbiocide and Biobor JF 17 Biobor JF is currently the only biocide available for aviation use Kathon was discontinued by the manufacturer due to several airworthiness incidents Kathon is now banned from use in aviation fuel 18 Metal deactivator can be added to reduce the negative effects of trace metals on the thermal stability of the fuel The one allowable additive is the chelating agent salpn N N bis salicylidene 1 2 propanediamine As the aviation industry s jet kerosene demands have increased to more than 5 of all refined products derived from crude it has been necessary for the refiner to optimize the yield of jet kerosene a high value product by varying process techniques New processes have allowed flexibility in the choice of crudes the use of coal tar sands as a source of molecules and the manufacture of synthetic blend stocks Due to the number and severity of the processes used it is often necessary and sometimes mandatory to use additives These additives may for example prevent the formation of harmful chemical species or improve a property of a fuel to prevent further engine wear Water in jet fuel EditIt is very important that jet fuel be free from water contamination During flight the temperature of the fuel in the tanks decreases due to the low temperatures in the upper atmosphere This causes precipitation of the dissolved water from the fuel The separated water then drops to the bottom of the tank because it is denser than the fuel Since the water is no longer in solution it can form droplets which can supercool to below 0 C 32 F If these supercooled droplets collide with a surface they can freeze and may result in blocked fuel inlet pipes 19 This was the cause of the British Airways Flight 38 accident Removing all water from fuel is impractical therefore fuel heaters are usually used on commercial aircraft to prevent water in fuel from freezing There are several methods for detecting water in jet fuel A visual check may detect high concentrations of suspended water as this will cause the fuel to become hazy in appearance An industry standard chemical test for the detection of free water in jet fuel uses a water sensitive filter pad that turns green if the fuel exceeds the specification limit of 30 ppm parts per million free water 20 A critical test to rate the ability of jet fuel to release emulsified water when passed through coalescing filters is ASTM standard D3948 Standard Test Method for Determining Water Separation Characteristics of Aviation Turbine Fuels by Portable Separometer Military jet fuels Edit JP 1 JP 2 and JP 3 redirect here For other uses see JP1 disambiguation and JP2 disambiguation For the movie see Jurassic Park III A sailor inspects a sample of JP 5 jet fuel aboard an amphibious transport dock ship Military organizations around the world use a different classification system of JP for Jet Propellant numbers Some are almost identical to their civilian counterparts and differ only by the amounts of a few additives Jet A 1 is similar to JP 8 Jet B is similar to JP 4 21 Other military fuels are highly specialized products and are developed for very specific applications JP 1 was an early jet fuel 22 specified in 1944 by the United States government AN F 32 It was a pure kerosene fuel with high flash point relative to aviation gasoline and a freezing point of 60 C 76 F The low freezing point requirement limited availability of the fuel and it was soon superseded by other wide cut jet fuels which were kerosene naphtha or kerosene gasoline blends It was also known as avtur JP 2 an obsolete type developed during World War II JP 2 was intended to be easier to produce than JP 1 since it had a higher freezing point but was never widely used 23 JP 3 was an attempt to improve availability of the fuel compared to JP 1 by widening the cut and loosening tolerances on impurities to ensure ready supply In his book Ignition An Informal History of Liquid Rocket Propellants John D Clark described the specification as remarkably liberal with a wide cut range of distillation temperatures and with such permissive limits on olefins and aromatics that any refinery above the level of a Kentucky moonshiner s pot still could convert at least half of any crude to jet fuel 24 It was even more volatile than JP 2 and had high evaporation loss in service 23 JP 4 was a 50 50 kerosene gasoline blend It had lower flash point than JP 1 but was preferred because of its greater availability It was the primary United States Air Force jet fuel between 1951 and 1995 Its NATO code is F 40 It is also known as avtag JP 5 is a yellow kerosene based jet fuel developed in 1952 for use in aircraft stationed aboard aircraft carriers where the risk from fire is particularly great JP 5 is a complex mixture of hydrocarbons containing alkanes naphthenes and aromatic hydrocarbons that weighs 6 8 pounds per U S gallon 0 81 kg L and has a high flash point min 60 C or 140 F 25 Because some US naval air stations Marine Corps air stations and Coast Guard air stations host both sea and land based naval aircraft these installations will also typically fuel their shore based aircraft with JP 5 thus precluding the need to maintain separate fuel facilities for JP 5 and non JP 5 fuel Its freezing point is 46 C 51 F It does not contain antistatic agents JP 5 is also known as NCI C54784 JP 5 s NATO code is F 44 It is also called AVCAT fuel for Aviation Carrier Turbine fuel 26 The JP 4 and JP 5 fuels covered by the MIL DTL 5624 and meeting the British Specification DEF STAN 91 86 AVCAT FSII formerly DERD 2452 27 are intended for use in aircraft turbine engines These fuels require unique additives that are necessary for military aircraft and engine fuel systems JP 6 was developed for the General Electric YJ93 afterburning turbojet engines used in the North American XB 70 Valkyrie for sustained flight at Mach 3 It was similar to JP 5 but with a lower freezing point and improved thermal oxidative stability When the XB 70 program was cancelled the JP 6 specification MIL J 25656 was also cancelled 28 JP 7 was developed for the Pratt amp Whitney J58 afterburning turbojet engines used in the Lockheed SR 71 Blackbird for sustained flight at Mach 3 It had a high flash point required to prevent boiloff caused by aerodynamic heating Its thermal stability was high enough to prevent coke and varnish deposits when used as a heat sink for aircraft air conditioning and hydraulic systems and engine accessories 29 JP 8 is a jet fuel specified and used widely by the U S military It is specified by MIL DTL 83133 and British Defence Standard 91 87 JP 8 is a kerosene based fuel projected to remain in use at least until 2025 The United States military uses JP 8 as a universal fuel in both turbine powered aircraft and diesel powered ground vehicles It was first introduced at NATO bases in 1978 Its NATO code is F 34 JP 9 is a gas turbine fuel for missiles specifically the Tomahawk cruise missile containing the TH dimer tetrahydrodimethyldicyclopentadiene produced by catalytic hydrogenation of methylpentadiene dimer JP 10 is a gas turbine fuel for missiles specifically the AGM 86 ALCM cruise missile 30 It contains a mixture of in decreasing order endo tetrahydrodicyclopentadiene exo tetrahydrodicyclopentadiene a synthetic fuel and adamantane It is produced by catalytic hydrogenation of dicyclopentadiene It superseded JP 9 fuel achieving a lower low temperature service limit of 65 F 54 C 30 It is also used by the Tomahawk jet powered subsonic cruise missile 31 JPTS was a combination of LF 1 charcoal lighter fluid and an additive to improve thermal oxidative stability officially known as Thermally Stable Jet Fuel It was developed in 1956 for the Pratt amp Whitney J57 engine which powered the Lockheed U 2 spy plane 32 Zip fuel designates a series of experimental boron containing high energy fuels intended for long range aircraft The toxicity and undesirable residues of the fuel made it difficult to use The development of the ballistic missile removed the principal application of zip fuel Syntroleum has been working with the USAF to develop a synthetic jet fuel blend that will help them reduce their dependence on imported petroleum The USAF which is the United States military s largest user of fuel began exploring alternative fuel sources in 1999 On December 15 2006 a B 52 took off from Edwards Air Force Base for the first time powered solely by a 50 50 blend of JP 8 and Syntroleum s FT fuel The seven hour flight test was considered a success The goal of the flight test program was to qualify the fuel blend for fleet use on the service s B 52s and then flight test and qualification on other aircraft Piston engine use EditThis section may be confusing or unclear to readers Please help clarify the section There might be a discussion about this on the talk page July 2014 Learn how and when to remove this template message Jet fuel is very similar to diesel fuel and in some cases may be used in diesel engines The possibility of environmental legislation banning the use of leaded avgas fuel in spark ignited internal combustion engine which is usually leaded by adding tetraethyllead TEL i e a toxic substance having lead used to prevent engine knocking and the lack of a replacement fuel with similar performance has left aircraft designers and pilot s organizations searching for alternative engines for use in small aircraft 33 As a result a few aircraft engine manufacturers most notably Thielert and Austro Engine have begun offering aircraft diesel engines which run on jet fuel which may simplify airport logistics by reducing the number of fuel types required Jet fuel is available in most places in the world whereas avgas is only widely available in a few countries which have a large number of general aviation aircraft A diesel engine may be more fuel efficient than an avgas engine However very few diesel aircraft engines have been certified by aviation authorities Diesel aircraft engines are uncommon today even though opposed piston aviation diesel powerplants such as the Junkers Jumo 205 family had been used during the Second World War Jet fuel is often used in diesel powered ground support vehicles at airports However jet fuel tends to have poor lubricating ability in comparison to diesel which increases wear in fuel injection equipment citation needed An additive may be required to restore its lubricity Jet fuel is more expensive than diesel fuel but the logistical advantages of using one fuel can offset the extra expense of its use in certain circumstances Jet fuel contains more sulfur up to 1 000 ppm which therefore means it has better lubricity and does not currently require a lubricity additive as all pipeline diesel fuels require citation needed The introduction of Ultra Low Sulfur Diesel or ULSD brought with it the need for lubricity modifiers Pipeline diesels before ULSD were able to contain up to 500 ppm of sulfur and were called Low Sulfur Diesel or LSD In the United States LSD is now only available to the off road construction locomotive and marine markets As more EPA regulations are introduced more refineries are hydrotreating their jet fuel production thus limiting the lubricating abilities of jet fuel as determined by ASTM Standard D445 Synthetic jet fuel EditMain article Synthetic fuel Fischer Tropsch FT Synthesized Paraffinic Kerosene SPK synthetic fuels are certified for use in United States and international aviation fleets at up to 50 in a blend with conventional jet fuel 34 As of the end of 2017 four other pathways to SPK are certified with their designations and maximum blend percentage in brackets Hydroprocessed Esters and Fatty Acids HEFA SPK 50 synthesized iso paraffins from hydroprocessed fermented sugars SIP 10 synthesized paraffinic kerosene plus aromatics SPK A 50 alcohol to jet SPK ATJ SPK 30 Both FT and HEFA based SPKs blended with JP 8 are specified in MIL DTL 83133H Some synthetic jet fuels show a reduction in pollutants such as SOx NOx particulate matter and sometimes carbon emissions 35 36 37 38 39 It is envisaged that usage of synthetic jet fuels will increase air quality around airports which will be particularly advantageous at inner city airports 40 Qatar Airways became the first airline to operate a commercial flight on a 50 50 blend of synthetic Gas to Liquid GTL jet fuel and conventional jet fuel The natural gas derived synthetic kerosene for the six hour flight from London to Doha came from Shell s GTL plant in Bintulu Malaysia 41 The world s first passenger aircraft flight to use only synthetic jet fuel was from Lanseria International Airport to Cape Town International Airport on September 22 2010 The fuel was developed by Sasol 42 Chemist Heather Willauer is leading a team of researchers at the U S Naval Research Laboratory who are developing a process to make jet fuel from seawater The technology requires an input of electrical energy to separate Oxygen O2 and Hydrogen H2 gas from seawater using an iron based catalyst followed by an oligomerization step wherein carbon monoxide CO and hydrogen are recombined into long chain hydrocarbons using zeolite as the catalyst The technology is expected to be deployed in the 2020s by U S Navy warships especially nuclear powered aircraft carriers 43 44 45 46 47 48 On February 8 2021 the world s first scheduled passenger flight flew with some synthetic kerosene from a non fossil fuel source 500 liters of synthetic kerosene was mixed with regular jet fuel Synthetic kerosene was produced by Shell and the flight was operated by KLM 49 USAF synthetic fuel trials EditOn August 8 2007 Air Force Secretary Michael Wynne certified the B 52H as fully approved to use the FT blend marking the formal conclusion of the test program This program is part of the Department of Defense Assured Fuel Initiative an effort to develop secure domestic sources for the military energy needs The Pentagon hopes to reduce its use of crude oil from foreign producers and obtain about half of its aviation fuel from alternative sources by 2016 With the B 52 now approved to use the FT blend the USAF will use the test protocols developed during the program to certify the Boeing C 17 Globemaster III and then the Rockwell B 1B Lancer to use the fuel To test these two aircraft the USAF has ordered 281 000 US gal 1 060 000 L of FT fuel The USAF intends to test and certify every airframe in its inventory to use the fuel by 2011 They will also supply over 9 000 US gal 34 000 l 7 500 imp gal to NASA for testing in various aircraft and engines needs update The USAF has certified the B 1B B 52H C 17 Lockheed Martin C 130J Super Hercules McDonnell Douglas F 4 Phantom as QF 4 target drones McDonnell Douglas F 15 Eagle Lockheed Martin F 22 Raptor and Northrop T 38 Talon to use the synthetic fuel blend 50 The U S Air Force s C 17 Globemaster III F 16 and F 15 are certified for use of hydrotreated renewable jet fuels 51 52 The USAF plans to certify over 40 models for fuels derived from waste oils and plants by 2013 52 The U S Army is considered one of the few customers of biofuels large enough to potentially bring biofuels up to the volume production needed to reduce costs 52 The U S Navy has also flown a Boeing F A 18E F Super Hornet dubbed the Green Hornet at 1 7 times the speed of sound using a biofuel blend 52 The Defense Advanced Research Projects Agency DARPA funded a 6 7 million project with Honeywell UOP to develop technologies to create jet fuels from biofeedstocks for use by the United States and NATO militaries 53 In April 2011 four USAF F 15E Strike Eagles flew over the Philadelphia Phillies opening ceremony using a blend of traditional jet fuel and synthetic biofuels This flyover made history as it was the first flyover to use biofuels in the Department of Defense 54 Jet biofuels EditMain articles Aviation biofuel and Sustainable Aviation Fuel The air transport industry is responsible for 2 3 percent of man made carbon dioxide emitted 55 Boeing estimates that biofuels could reduce flight related greenhouse gas emissions by 60 to 80 percent One possible solution which has received more media coverage than others would be blending synthetic fuel derived from algae with existing jet fuel 56 Green Flight International became the first airline to fly jet aircraft on 100 biofuel The flight from Reno Stead Airport in Stead Nevada was in an Aero L 29 Delfin piloted by Carol Sugars and Douglas Rodante 57 Boeing and Air New Zealand are collaborating with Tecbio 58 Aquaflow Bionomic and other jet biofuel developers around the world Virgin Atlantic successfully tested a biofuel blend consisting of 20 percent babassu nuts and coconut and 80 percent conventional jet fuel which was fed to a single engine on a 747 flight from London Heathrow to Amsterdam Schiphol 59 A consortium consisting of Boeing NASA s Glenn Research Center MTU Aero Engines Germany and the U S Air Force Research Laboratory is working on development of jet fuel blends containing a substantial percentage of biofuel 60 British Airways and Velocys have entered into a partnership in the UK to design a series of plants that convert household waste into jet fuel 61 24 commercial and military biofuel flights have taken place using Honeywell Green Jet Fuel including a Navy F A 18 Hornet 62 In 2011 United Continental Holdings was the first United States airline to fly passengers on a commercial flight using a blend of sustainable advanced biofuels and traditional petroleum derived jet fuel Solazyme developed the algae oil which was refined utilizing Honeywell s UOP process technology into jet fuel to power the commercial flight 63 Solazyme produced the world s first 100 percent algae derived jet fuel Solajet for both commercial and military applications 64 Jet fuel vs oil prices Oil prices increased about fivefold from 2003 to 2008 raising fears that world petroleum production is becoming unable to keep up with demand The fact that there are few alternatives to petroleum for aviation fuel adds urgency to the search for alternatives Twenty five airlines were bankrupted or stopped operations in the first six months of 2008 largely due to fuel costs 65 In 2015 ASTM approved a modification to Specification D1655 Standard Specification for Aviation Turbine Fuels to permit up to 50 ppm 50 mg kg of FAME fatty acid methyl ester in jet fuel to allow higher cross contamination from biofuel production 66 Worldwide consumption of jet fuel EditWorldwide demand of jet fuel has been steadily increasing since 1980 Consumption more than tripled in 30 years from 1 837 000 barrels day in 1980 to 5 220 000 in 2010 67 Around 30 of the worldwide consumption of jet fuel is in the US 1 398 130 barrels day in 2012 Taxation EditArticle 24 of the Chicago Convention on International Civil Aviation of 7 December 1944 stipulates that when flying from one contracting state to another the kerosene that is already on board aircraft may not be taxed by the state where the aircraft lands nor by a state through whose airspace the aircraft has flown However there is no tax regulation in the Chicago Convention to refuel the aircraft before departure The Chicago Convention does not preclude a kerosene tax on domestic flights and on refueling before international flights 68 16 Kerosene tax can be levied throughout the European Union on domestic flights and between Member States according to the 2003 Energy Taxation Directive 69 In the United States most states tax jet fuel Health effects EditGeneral health hazards associated with exposure to jet fuel vary according to its components exposure duration acute vs long term route of administration dermal vs respiratory vs oral and exposure phase vapor vs aerosol vs raw fuel 70 71 Kerosene based hydrocarbon fuels are complex mixtures which may contain up to 260 aliphatic and aromatic hydrocarbon compounds including toxicants such as benzene n hexane toluene xylenes trimethylpentane methoxyethanol naphthalenes 71 While time weighted average hydrocarbon fuel exposures can often below recommended exposure limits peak exposure can occur and the health impact of occupational exposures is not fully understood Evidence of the health effects of jet fuels comes from reports on both temporary or persisting biological from acute subchronic or chronic exposure of humans or animals to kerosene based hydrocarbon fuels or the constituent chemicals of these fuels or to fuel combustion products The effects studied include cancer skin conditions respiratory disorders 72 immune and hematological disorders 73 neurological effects 74 visual and hearing disorders 75 76 renal and hepatic diseases cardiovascular conditions gastrointestinal disorders genotoxic and metabolic effects 71 77 See also EditPortal AviationReferences Edit Defence Standards Ministry of Defence Standard 91 91 Turbine Fuel Kerosine Type Jet A 1 PDF p 1 Chevron Products Corporation Aviation Fuels Technical Review PDF Archived from the original PDF on 2015 09 07 Retrieved 2014 05 06 a b c Salvatore J Rand ed Significance of Tests for Petroleum Products 8th Edition ASTM International 2010 ISBN 978 1 61583 673 4 page 88 Summary of Debriefing of German pilot Hans Fey PDF Zenos Warbird Video Drive In a b Aviation Lubricants www shell com au Canada Flight Supplement Effective 0901Z 16 July 2020 to 0901Z 10 September 2020 a b ExxonMobil Aviation April 9 2016 World Jet Fuel Specifications with Avgas Supplement 2005 Edition PDF Archived from the original PDF on 2016 04 09 a b Aviation Fuel Jet Fuel Information Csgnetwork com 2004 01 05 Retrieved 2010 11 28 Handbook of Products PDF Air BP pp 11 13 Archived from the original PDF on 2011 06 08 FUEL DATA FOR COMBUSTION WITH AIR PDF Isidoro Martinez Prof of Thermodynamics Ciudad Universitaria 2014 Retrieved 2014 05 09 Soloiu Valentin Covington April Lewis Jeff Duggan Marvin Lobue James Jansons Marcis January 2012 Performance of JP 8 Unified Fuel in a Small Bore Indirect Injection Diesel Engine for APU Applications SAE Technical Paper Series Vol 1 SAE International doi 10 4271 2012 01 1199 Retrieved 2014 05 09 Resource Guide To Aircraft Fire Fighting amp Rescue Aviation Safety Advisory Group of Arizona Inc 2014 Archived from the original on 2014 05 12 Retrieved 2014 05 09 Characteristics of Petroleum Products Stored and Dispensed PDF Petroleum Products Division GN p 132 archived from the original PDF on 16 January 2017 retrieved 15 January 2017 Aviation Jet Fuel World Oil Traders Retrieved 21 August 2019 Turbine Fuel Aviation Kerosine Type Jet A 1 NATO Code F 35 Joint Service Designation AVTUR PDF 25 August 2008 ed 8 April 2008 Ministry of Defence Standard 91 91 archived from the original PDF on 2010 08 14 Standard Specification for Aviation Turbine Fuels ASTM D1655 09a 2010 ASTM International West Conshohocken Pennsylvania United States Lombardo David A July 2005 Fuel quality evaluation requires pilot vigilance Aviation International News archived from the original on 2011 04 30 Jetstar Airways PTY LTD 25 June 2020 Aircraft Serious Incident Investigation Report PDF Report Japan Transport Safety Board Murray B J et al 2011 Supercooling of water droplets in jet aviation fuel Fuel 90 433 435 doi 10 1016 j fuel 2010 08 018 The Shell Water Detector Archived from the original on February 19 2012 Shell Aviation Fuels PDF shell com Shell Oil Company p 4 Archived from the original PDF on 19 December 2014 Retrieved 27 November 2014 Aviation Fuel Archived 2012 04 20 at the Wayback Machine US Centennial of Flight Commission Retrieved 3 January 2012 a b Larry Reithmaier Mach 1 and Beyond The Illustrated Guide to High Speed Flight McGraw Hill Professional 1994 ISBN 0070520216 page 104 Clark John D 1972 Ignition An Informal History of Liquid Rocket Propellants New Brunswick New Jersey Rutgers University Press p 33 ISBN 0 8135 0725 1 Characteristics of Fuels Archived 2007 01 26 at the Wayback Machine Marine Corps Schools Detachment Ft Leonard Wood UK MOD DEF STAN 23 8 ISSUE 2 Archived 2005 05 17 at the Wayback Machine Shell Fuels Technical Data Sheet F 44 PDF The History of Jet Fuel Archived October 18 2012 at the Wayback Machine Air BP SR 71 Online SR 71 Flight Manual Section 1 Page 1 4 www sr 71 org a b Aviation Fuel Properties PDF Coordinating Research Council 1983 p 3 CRC Report Nº 530 Archived PDF from the original on July 22 2012 Coggeshall Katharine Revolutionizing Tomahawk fuel Los Alamos National Laboratory Los Alamos National Laboratory Retrieved 20 May 2020 DTIC ADA186752 Military Jet Fuels 1944 1987 Defense Technical Information Center p 5 Planemakers challenged to find unleaded fuel option The Wichita Eagle Archived June 6 2009 at the Wayback Machine ASTM D7566 20a Standard Specification for Aviation Turbine Fuel Containing Synthesized Hydrocarbons www astm org Fuel Property Emission Test and Operability Results from a Fleet of Class 6 Vehicles Operating on Gas To Liquid Fuel and Catalyzed Diesel Particle Filters PDF Archived from the original PDF on May 8 2009 Lobo Prem Hagen Donald E Whitefield Philip D 2011 Comparison of PM Emissions from a Commercial Jet Engine Burning Conventional Biomass and Fischer Tropsch Fuels Environmental Science amp Technology 45 24 10744 10749 Bibcode 2011EnST 4510744L doi 10 1021 es201902e PMID 22043875 Argonne GREET Publication Life Cycle Analysis of Alternative Aviation Fuels in GREET greet es anl gov Corporan E et al 2010 Alternative Fuels Tests on a C 17 Aircraft Emissions Characteristics DTIC Document PDF Archived PDF from the original on February 24 2017 Anderson B E et al February 2011 Alternative Aviation Fuel Experiment AAFEX PDF NASA Langley Research Centre Best Synth Jet Fuel PDF Qatar Airways Becomes First to Operate Commercial Flight on GTL Jet Fuel Blend Green Car Congress 2009 10 12 Sasol takes to the skies with the world s first fully synthetic jet fuel Sasol 2010 09 22 Archived from the original on 2011 05 15 Parry Daniel September 24 2012 Fueling the Fleet Navy Looks to the Seas Naval Research Laboratory News Palmer Roxanne December 17 2013 How The Navy Might Spin Seawater Into Jet Fuel International Business Times Tozer Jessica L April 11 2014 Energy Independence Creating Fuel from Seawater Armed with Science U S Department of Defense Koren Marina December 13 2013 Guess What Could Fuel the Battleships of the Future National Journal Tucker Patrick April 10 2014 The Navy Just Turned Seawater Into Jet Fuel Defense One Ernst Douglas April 10 2014 U S Navy to turn seawater into jet fuel The Washington Times World First Synthetic Kerosene Takes to the Air Retrieved 2022 03 31 Sirak Michael 2010 01 27 B 2 Goes Synthetic Air Force Magazine Retrieved 7 July 2012 Dowdell Richelle February 10 2011 Officials certify first aircraft for biofuel usage The Official Website of the U S Air Force Archived from the original on December 12 2012 Retrieved March 7 2012 a b c d Morales Alex Louise Downing October 18 2011 Fat Replaces Oil for F 16s as Biofuels Head to War Commodities BusinessWeek Archived from the original on February 26 2012 Retrieved March 7 2012 UOP To Develop Technology to Produce Bio JP 8 for Military Jets Green Car Congress June 28 2007 Retrieved March 7 2012 Air Force jets perform first flyover using alternative fuel Air Force Retrieved 2022 03 27 Beginner s Guide to Aviation Biofuels PDF Air Transport Action Group May 2009 Retrieved 2009 09 20 permanent dead link A Promising Oil Alternative Algae Energy The Washington Post 2008 01 06 Retrieved 2010 05 06 Gfi Home Greenflightinternational com Archived from the original on 2011 01 25 Retrieved 2010 11 28 Tecbio Tecbio Archived from the original on 2011 01 23 Retrieved 2010 11 28 Crop this Virgin takes off with nut fuel 26 Feb 2008 NZ Herald New Zealand Business Markets Currency and Personal Finance News NZ Herald 2008 02 26 Retrieved 2010 11 28 2008 Environment Report Boeing Retrieved 2010 11 28 Velocys press release Partnership formed aimed at waste to jet fuel plants in UK September 18 2017 Archived from the original on January 5 2018 Retrieved January 5 2018 Koch Wendy November 7 2011 United flies first US passengers using fuel from algae USA Today Retrieved December 16 2011 United Airlines Flies First U S Commercial Advanced Biofuel Flight United Continental Holdings Inc Archived from the original on April 12 2013 Retrieved November 7 2011 Price Toby November 10 2011 Solazyme completes first commercial flight on biofuel Renewable Energy Magazine Retrieved 13 February 2013 More airlines fold as fuel prices soar IATA News asiaone com Archived from the original on 2011 07 03 Retrieved 2010 11 28 Revised ASTM Standard Expands Limit on Biofuel Contamination in Jet Fuels www astm org www astm org Jet fuel consumption on Index Mundi Retrieved 19 November 2014 Jasper Faber and Aoife O Leary November 2018 Taxing aviation fuels in the EU PDF CE Delft Transport and Environment Retrieved 20 June 2020 Council Directive 2003 96 EC of 27 October 2003 restructuring the Community framework for the taxation of energy products and electricity Official Journal of the European Union Eur Lex 27 October 2002 Retrieved 20 June 2020 Mattie David R Sterner Teresa R 2011 07 15 Past present and emerging toxicity issues for jet fuel Toxicology and Applied Pharmacology 254 2 127 132 doi 10 1016 j taap 2010 04 022 ISSN 1096 0333 PMID 21296101 a b c Ritchie Glenn Still Kenneth Rossi III John Bekkedal Marni Bobb Andrew Arfsten Darryl 2003 01 01 Biological And Health Effects Of Exposure To Kerosene Based Jet Fuels And Performance Additives Journal of Toxicology and Environmental Health Part B 6 4 357 451 doi 10 1080 10937400306473 ISSN 1093 7404 PMID 12775519 S2CID 30595016 Robledo R F Barber D S Witten M L 1999 Modulation of bronchial epithelial cell barrier function by in vitro jet propulsion fuel 8 exposure Toxicological Sciences 51 1 119 125 doi 10 1093 toxsci 51 1 119 ISSN 1096 6080 PMID 10496683 Harris D T Sakiestewa D Titone D Robledo R F Young R S Witten M 2000 Jet fuel induced immunotoxicity Toxicology and Industrial Health 16 7 8 261 265 doi 10 1177 074823370001600702 ISSN 0748 2337 PMID 11693943 S2CID 42673565 Knave B Persson H E Goldberg J M Westerholm P 1976 Long term exposure to jet fuel an investigation on occupationally exposed workers with special reference to the nervous system Scandinavian Journal of Work Environment amp Health 2 3 152 164 doi 10 5271 sjweh 2809 ISSN 0355 3140 PMID 973128 Morata Thais C Hungerford Michelle Konrad Martin Dawn 2021 08 18 Potential Risks to Hearing Functions of Service Members From Exposure to Jet Fuels American Journal of Audiology 30 3S 922 927 doi 10 1044 2021 AJA 20 00226 ISSN 1059 0889 PMID 34407375 Kaufman Laura R LeMasters Grace K Olsen Donna M Succop Paul 2005 Effects of concurrent noise and jet fuel exposure on hearing loss Journal of Occupational and Environmental Medicine 47 3 212 218 doi 10 1097 01 jom 0000155710 28289 0e ISSN 1076 2752 PMID 15761316 S2CID 1195860 Bendtsen Katja M Bengtsen Elizabeth Saber Anne T Vogel Ulla 2021 02 06 A review of health effects associated with exposure to jet engine emissions in and around airports Environmental Health A Global Access Science Source 20 1 10 doi 10 1186 s12940 020 00690 y ISSN 1476 069X PMC 7866671 PMID 33549096 External links EditHistory of Jet Fuel MIL DTL 5624U MIL DTL 83133H Aviation Fuel Properties 1983 Archived 2012 07 22 at the Wayback Machine Retrieved from https en wikipedia org w index php title Jet fuel amp oldid 1132550654, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.