fbpx
Wikipedia

Human microbiome

The human microbiome is the aggregate of all microbiota that reside on or within human tissues and biofluids along with the corresponding anatomical sites in which they reside,[1] including the skin, mammary glands, seminal fluid, uterus, ovarian follicles, lung, saliva, oral mucosa, conjunctiva, biliary tract, and gastrointestinal tract. Types of human microbiota include bacteria, archaea, fungi, protists and viruses. Though micro-animals can also live on the human body, they are typically excluded from this definition. In the context of genomics, the term human microbiome is sometimes used to refer to the collective genomes of resident microorganisms;[2] however, the term human metagenome has the same meaning.[1]

Graphic depicting the human skin microbiota, with relative prevalences of various classes of bacteria

Humans are colonized by many microorganisms, with approximately the same order of magnitude of non-human cells as human cells.[3] Some microorganisms that colonize humans are commensal, meaning they co-exist without harming humans; others have a mutualistic relationship with their human hosts.[2]: 700 [4] Conversely, some non-pathogenic microorganisms can harm human hosts via the metabolites they produce, like trimethylamine, which the human body converts to trimethylamine N-oxide via FMO3-mediated oxidation.[5][6] Certain microorganisms perform tasks that are known to be useful to the human host, but the role of most of them is not well understood. Those that are expected to be present, and that under normal circumstances do not cause disease, are sometimes deemed normal flora or normal microbiota.[2]

The Human Microbiome Project (HMP) took on the project of sequencing the genome of the human microbiota, focusing particularly on the microbiota that normally inhabit the skin, mouth, nose, digestive tract, and vagina.[2] It reached a milestone in 2012 when it published its initial results.[7]

Terminology

Though widely known as flora or microflora, this is a misnomer in technical terms, since the word root flora pertains to plants, and biota refers to the total collection of organisms in a particular ecosystem. Recently, the more appropriate term microbiota is applied, though its use has not eclipsed the entrenched use and recognition of flora with regard to bacteria and other microorganisms. Both terms are being used in different literature.[4]

Relative numbers

As of 2014, it was reported in popular media and in the scientific literature that there are about 10 times as many microbial cells in the human body as there are human cells; this figure was based on estimates that the human microbiome includes around 100 trillion bacterial cells and that an adult human typically has around 10 trillion human cells.[8] In 2014, the American Academy of Microbiology published a FAQ that emphasized that the number of microbial cells and the number of human cells are both estimates, and noted that recent research had arrived at a new estimate of the number of human cells – approximately 37.2 trillion, meaning that the ratio of microbial-to-human cells, if the original estimate of 100 trillion bacterial cells is correct, is closer to 3:1.[8][9] In 2016, another group published a new estimate of the ratio being roughly 1:1 (1.3:1, with "an uncertainty of 25% and a variation of 53% over the population of standard 70-kg [150 lb] males").[10][3]

A more recent estimate is a ratio of 1.3:1 bacterial cells for every human cell, whereas the number of phages and viruses outnumber bacterial cells by at least an order of magnitude more. The number of bacterial genes (assuming 1000 bacterial species in the gut with 2000 genes per species) is estimated to be 2,000,000 genes, 100 times the number of approximately 20,000 human genes.[11]

Study

 
Flowchart illustrating how the human microbiome is studied on the DNA level.

The problem of elucidating the human microbiome is essentially identifying the members of a microbial community, which includes bacteria, eukaryotes, and viruses.[12] This is done primarily using deoxyribonucleic acid (DNA)-based studies, though ribonucleic acid (RNA), protein and metabolite based studies are also performed.[12][13] DNA-based microbiome studies typically can be categorized as either targeted amplicon studies or, more recently, shotgun metagenomic studies. The former focuses on specific known marker genes and is primarily informative taxonomically, while the latter is an entire metagenomic approach which can also be used to study the functional potential of the community.[12] One of the challenges that is present in human microbiome studies, but not in other metagenomic studies, is to avoid including the host DNA in the study.[14]

Aside from simply elucidating the composition of the human microbiome, one of the major questions involving the human microbiome is whether there is a "core", that is, whether there is a subset of the community that is shared among most humans.[15][16] If there is a core, then it would be possible to associate certain community compositions with disease states, which is one of the goals of the HMP. It is known that the human microbiome (such as the gut microbiota) is highly variable both within a single subject and among different individuals, a phenomenon which is also observed in mice.[4]

On 13 June 2012, a major milestone of the HMP was announced by the National Institutes of Health (NIH) director Francis Collins.[7] The announcement was accompanied with a series of coordinated articles published in Nature[17][18] and several journals in the Public Library of Science (PLoS) on the same day. By mapping the normal microbial make-up of healthy humans using genome sequencing techniques, the researchers of the HMP have created a reference database and the boundaries of normal microbial variation in humans. From 242 healthy U.S. volunteers, more than 5,000 samples were collected from tissues from 15 (men) to 18 (women) body sites such as mouth, nose, skin, lower intestine (stool), and vagina. All the DNA, human and microbial, were analyzed with DNA sequencing machines. The microbial genome data were extracted by identifying the bacterial specific ribosomal RNA, 16S rRNA. The researchers calculated that more than 10,000 microbial species occupy the human ecosystem, and they have identified 81–99% of the genera.[citation needed]

Analysis after the processing

The statistical analysis is essential to validate the obtained results (ANOVA can be used to size the differences between the groups); if it is paired with graphical tools, the outcome is easily visualized and understood.[19]

Once a metagenome is assembled, it is possible to infer the functional potential of the microbiome. The computational challenges for this type of analysis are greater than for single genomes, because usually metagenomes assemblers have poorer quality, and many recovered genes are non-complete or fragmented. After the gene identification step, the data can be used to carry out a functional annotation by means of multiple alignment of the target genes against orthologs databases.[20]

Marker gene analysis

It is a technique that exploits primers to target a specific genetic region and enables to determine the microbial phylogenies. The genetic region is characterized by a highly variable region which can confer detailed identification; it is delimited by conserved regions, which function as binding sites for primers used in PCR. The main gene used to characterize bacteria and archaea is 16S rRNA gene, while fungi identification is based on Internal Transcribed Spacer (ITS). The technique is fast and not so expensive and enables to obtain a low-resolution classification of a microbial sample; it is optimal for samples that may be contaminated by host DNA. Primer affinity varies among all DNA sequences, which may result in biases during the amplification reaction; indeed, low-abundance samples are susceptible to overamplification errors, since the other contaminating microorganisms result to be over-represented in case of increasing the PCR cycles. Therefore, the optimization of primer selection can help to decrease such errors, although it requires complete knowledge of the microorganisms present in the sample, and their relative abundances.[21]

Marker gene analysis can be influenced by the primer choice; in this kind of analysis it's desirable to use a well-validated protocol (such as the one used in the Earth Microbiome Project). The first thing to do in a marker gene amplicon analysis is to remove sequencing errors; a lot of sequencing platforms are very reliable, but most of the apparent sequence diversity is still due to errors during the sequencing process. To reduce this phenomenon a first approach is to cluster sequences into Operational taxonomic unit (OTUs): this process consolidates similar sequences (a 97% similarity threshold is usually adopted) into a single feature that can be used in further analysis steps; this method however would discard SNPs because they would get clustered into a single OTU. Another approach is Oligotyping, which includes position-specific information from 16s rRNA sequencing to detect small nucleotide variations and from discriminating between closely related distinct taxa. These methods give as an output a table of DNA sequences and counts of the different sequences per sample rather than OTU.[21]

Another important step in the analysis is to assign a taxonomic name to microbial sequences in the data. This can be done using machine learning approaches that can reach an accuracy at genus-level of about 80%. Other popular analysis packages provide support for taxonomic classification using exact matches to reference databases and should provide greater specificity, but poor sensitivity. Unclassified microorganism should be further checked for organelle sequences.[21]

Phylogenetic analysis

Many methods that exploit phylogenetic inference use the 16SRNA gene for Archea and Bacteria and the 18SRNA gene for Eukaryotes. Phylogenetic comparative methods (PCS) are based on the comparison of multiple traits among microorganisms; the principle is: the closely they are related, the higher number of traits they share. Usually PCS are coupled with phylogenetic generalized least square (PGLS) or other statistical analysis to get more significant results. Ancestral state reconstruction is used in microbiome studies to impute trait values for taxa whose traits are unknown. This is commonly performed with PICRUSt, which relies on available databases. Phylogenetic variables are chosen by researchers according to the type of study: through the selection of some variables with significant biological informations, it is possible to reduce the dimension of the data to analyse.[22]

Phylogenetic aware distance is usually performed with UniFrac or similar tools, such as Soresen's index or Rao's D, to quantify the differences between the different communities. All this methods are negatively affected by horizontal gene transmission (HGT), since it can generate errors and lead to the correlation of distant species. There are different ways to reduce the negative impact of HGT: the use of multiple genes or computational tools to assess the probability of putative HGT events.[22]

Ecological Network analysis

Microbial communities develop in a very complex dynamics which can be viewed and analyzed as an ecosystem. The ecological interactions between microbes govern its change, equilibrium and stability, and can be represented by a population dynamic model.[23] The ongoing study of ecological features of the microbiome is growing rapidly and allows to understand the fundamental properties of the microbiome. Understanding the underlying rules of microbial community could help with treating diseases related to unstable microbial communities]. A very basic question is if different human, which share different microbial communities, have the same underlying microbial dynamics.[24] Increasing evidence and indications have found that the dynamics is indeed universal.[25] This question is a basic step that will allow scientists to develop treatment strategies, based on the complex dynamics of human microbial communities. There are more important properties on which considerations should be taken into account for developing interventions strategies for controlling the human microbial dynamics.[26] Controlling the microbial communities could result in solving very bad and harmful diseases.

Types

Bacteria

 
Commensals vs pathogens mechanism. Mechanisms underlying the inflammation in COPD. Airway epithelium has complex structure: consists of at least seven diverse cell types interacting with each other by means of tight junctions. Moreover, epithelial calls can deliver the signals into the underlying tissues taking part in the mechanisms of innate and adaptive immune defence. The key transmitters of the signals are dendritic cells. Once pathogenic bacterium (e.g., S. pneumoniae, P. aeruginosa) has activated particular pattern recognition receptors on/in epithelial cells, the proinflammatory signaling pathways are activated. This results mainly in IL-1, IL-6 and IL-8 production. These cytokines induce the chemotaxis to the site of infection in its target cells (e.g., neutrophils, dendritic cells and macrophages). On the other hand, representatives of standard microbiota cause only weak signaling preventing the inflammation. The mechanism of distinguishing between harmless and harmful bacteria on the molecular as well as on physiological levels is not completely understood.

Populations of microbes (such as bacteria and yeasts) inhabit the skin and mucosal surfaces in various parts of the body. Their role forms part of normal, healthy human physiology, however if microbe numbers grow beyond their typical ranges (often due to a compromised immune system) or if microbes populate (such as through poor hygiene or injury) areas of the body normally not colonized or sterile (such as the blood, or the lower respiratory tract, or the abdominal cavity), disease can result (causing, respectively, bacteremia/sepsis, pneumonia, and peritonitis).[medical citation needed]

The Human Microbiome Project found that individuals host thousands of bacterial types, different body sites having their own distinctive communities. Skin and vaginal sites showed smaller diversity than the mouth and gut, these showing the greatest richness. The bacterial makeup for a given site on a body varies from person to person, not only in type, but also in abundance. Bacteria of the same species found throughout the mouth are of multiple subtypes, preferring to inhabit distinctly different locations in the mouth. Even the enterotypes in the human gut, previously thought to be well understood, are from a broad spectrum of communities with blurred taxon boundaries.[27][28]

It is estimated that 500 to 1,000 species of bacteria live in the human gut but belong to just a few phyla: Bacillota and Bacteroidota dominate but there are also Pseudomonadota, Verrucomicrobiota, Actinobacteriota, Fusobacteriota, and "Cyanobacteria".[29]

A number of types of bacteria, such as Actinomyces viscosus and A. naeslundii, live in the mouth, where they are part of a sticky substance called plaque. If this is not removed by brushing, it hardens into calculus (also called tartar). The same bacteria also secrete acids that dissolve tooth enamel, causing tooth decay.[citation needed]

The vaginal microflora consist mostly of various lactobacillus species. It was long thought that the most common of these species was Lactobacillus acidophilus, but it has later been shown that L. iners is in fact most common, followed by L. crispatus. Other lactobacilli found in the vagina are L. jensenii, L. delbruekii and L. gasseri. Disturbance of the vaginal flora can lead to infections such as bacterial vaginosis and candiadiasis..[citation needed]

Archaea

Archaea are present in the human gut, but, in contrast to the enormous variety of bacteria in this organ, the numbers of archaeal species are much more limited.[30] The dominant group are the methanogens, particularly Methanobrevibacter smithii and Methanosphaera stadtmanae.[31] However, colonization by methanogens is variable, and only about 50% of humans have easily detectable populations of these organisms.[32]

As of 2007, no clear examples of archaeal pathogens were known,[33][34] although a relationship has been proposed between the presence of some methanogens and human periodontal disease.[35]

Fungi

Fungi, in particular yeasts, are present in the human gut.[36][37][38][39] The best-studied of these are Candida species due to their ability to become pathogenic in immunocompromised and even in healthy hosts.[37][38][39] Yeasts are also present on the skin,[36] such as Malassezia species, where they consume oils secreted from the sebaceous glands.[40][41]

Viruses

Viruses, especially bacterial viruses (bacteriophages), colonize various body sites. These colonized sites include the skin,[42] gut,[43] lungs,[44] and oral cavity.[45] Virus communities have been associated with some diseases, and do not simply reflect the bacterial communities.[46][47][48]

Anatomical areas

Skin

A study of 20 skin sites on each of ten healthy humans found 205 identified genera in 19 bacterial phyla, with most sequences assigned to four phyla: Actinomycetota (51.8%), Bacillota (24.4%), Pseudomonadota (16.5%), and Bacteroidota (6.3%).[49] A large number of fungal genera are present on healthy human skin, with some variability by region of the body; however, during pathological conditions, certain genera tend to dominate in the affected region.[36] For example, Malassezia is dominant in atopic dermatitis and Acremonium is dominant on dandruff-affected scalps.[36]

The skin acts as a barrier to deter the invasion of pathogenic microbes. The human skin contains microbes that reside either in or on the skin and can be residential or transient. Resident microorganism types vary in relation to skin type on the human body. A majority of microbes reside on superficial cells on the skin or prefer to associate with glands. These glands such as oil or sweat glands provide the microbes with water, amino acids, and fatty acids. In addition, resident bacteria that associated with oil glands are often Gram-positive and can be pathogenic.[2]

Conjunctiva

A small number of bacteria and fungi are normally present in the conjunctiva.[36][50] Classes of bacteria include Gram-positive cocci (e.g., Staphylococcus and Streptococcus) and Gram-negative rods and cocci (e.g., Haemophilus and Neisseria) are present.[50] Fungal genera include Candida, Aspergillus, and Penicillium.[36] The lachrymal glands continuously secrete, keeping the conjunctiva moist, while intermittent blinking lubricates the conjunctiva and washes away foreign material. Tears contain bactericides such as lysozyme, so that microorganisms have difficulty in surviving the lysozyme and settling on the epithelial surfaces.

Gastrointestinal tract

Tryptophan metabolism by human gastrointestinal microbiota ()
 
This diagram shows the biosynthesis of bioactive compounds (indole and certain other derivatives) from tryptophan by bacteria in the gut.[51] Indole is produced from tryptophan by bacteria that express tryptophanase.[51] Clostridium sporogenes metabolizes tryptophan into indole and subsequently 3-indolepropionic acid (IPA),[52] a highly potent neuroprotective antioxidant that scavenges hydroxyl radicals.[51][53][54] IPA binds to the pregnane X receptor (PXR) in intestinal cells, thereby facilitating mucosal homeostasis and barrier function.[51] Following absorption from the intestine and distribution to the brain, IPA confers a neuroprotective effect against cerebral ischemia and Alzheimer's disease.[51] Lactobacillus species metabolize tryptophan into indole-3-aldehyde (I3A) which acts on the aryl hydrocarbon receptor (AhR) in intestinal immune cells, in turn increasing interleukin-22 (IL-22) production.[51] Indole itself triggers the secretion of glucagon-like peptide-1 (GLP-1) in intestinal L cells and acts as a ligand for AhR.[51] Indole can also be metabolized by the liver into indoxyl sulfate, a compound that is toxic in high concentrations and associated with vascular disease and renal dysfunction.[51] AST-120 (activated charcoal), an intestinal sorbent that is taken by mouth, adsorbs indole, in turn decreasing the concentration of indoxyl sulfate in blood plasma.[51]

In humans, the composition of the gastrointestinal microbiome is established during birth.[55] Birth by Cesarean section or vaginal delivery also influences the gut's microbial composition. Babies born through the vaginal canal have non-pathogenic, beneficial gut microbiota similar to those found in the mother.[56] However, the gut microbiota of babies delivered by C-section harbors more pathogenic bacteria such as Escherichia coli and Staphylococcus and it takes longer to develop non-pathogenic, beneficial gut microbiota.[57]

The relationship between some gut microbiota and humans is not merely commensal (a non-harmful coexistence), but rather a mutualistic relationship.[2] Some human gut microorganisms benefit the host by fermenting dietary fiber into short-chain fatty acids (SCFAs), such as acetic acid and butyric acid, which are then absorbed by the host.[4][58] Intestinal bacteria also play a role in synthesizing vitamin B and vitamin K as well as metabolizing bile acids, sterols, and xenobiotics.[2][58] The systemic importance of the SCFAs and other compounds they produce are like hormones and the gut flora itself appears to function like an endocrine organ,[58] and dysregulation of the gut flora has been correlated with a host of inflammatory and autoimmune conditions.[4][59]

The composition of human gut microbiota changes over time, when the diet changes, and as overall health changes.[4][59] A systematic review of 15 human randomized controlled trials from July 2016 found that certain commercially available strains of probiotic bacteria from the Bifidobacterium and Lactobacillus genera (B. longum, B. breve, B. infantis, L. helveticus, L. rhamnosus, L. plantarum, and L. casei), when taken by mouth in daily doses of 109–1010 colony forming units (CFU) for 1–2 months, possess treatment efficacy (i.e., improves behavioral outcomes) in certain central nervous system disorders – including anxiety, depression, autism spectrum disorder, and obsessive–compulsive disorder – and improves certain aspects of memory.[60]

Urethra and bladder

The genitourinary system appears to have a microbiota,[61][62] which is an unexpected finding in light of the long-standing use of standard clinical microbiological culture methods to detect bacteria in urine when people show signs of a urinary tract infection; it is common for these tests to show no bacteria present.[63] It appears that common culture methods do not detect many kinds of bacteria and other microorganisms that are normally present.[63] As of 2017, sequencing methods were used to identify these microorganisms to determine if there are differences in microbiota between people with urinary tract problems and those who are healthy.[61][62][64] To properly assess the microbiome of the bladder as opposed to the genitourinary system, the urine specimen should be collected directly from the bladder, which is often done with a catheter.[65]

Vagina

Vaginal microbiota refers to those species and genera that colonize the vagina. These organisms play an important role in protecting against infections and maintaining vaginal health.[66] The most abundant vaginal microorganisms found in premenopausal women are from the genus Lactobacillus, which suppress pathogens by producing hydrogen peroxide and lactic acid.[38][66][67] Bacterial species composition and ratios vary depending on the stage of the menstrual cycle.[68][69][needs update] Ethnicity also influences vaginal flora. The occurrence of hydrogen peroxide-producing lactobacilli is lower in African American women and vaginal pH is higher.[70] Other influential factors such as sexual intercourse and antibiotics have been linked to the loss of lactobacilli.[67] Moreover, studies have found that sexual intercourse with a condom does appear to change lactobacilli levels, and does increase the level of Escherichia coli within the vaginal flora.[67] Changes in the normal, healthy vaginal microbiota is an indication of infections,[71] such as candidiasis or bacterial vaginosis.[67] Candida albicans inhibits the growth of Lactobacillus species, while Lactobacillus species which produce hydrogen peroxide inhibit the growth and virulence of Candida albicans in both the vagina and the gut.[36][38][39]

Fungal genera that have been detected in the vagina include Candida, Pichia, Eurotium, Alternaria, Rhodotorula, and Cladosporium, among others.[36]

Placenta

Until recently the placenta was considered to be a sterile organ but commensal, nonpathogenic bacterial species and genera have been identified that reside in the placental tissue.[72][73][74] However, the existence of a microbiome in the placenta is controversial as criticized in several researches. So called "placental microbiome" is likely derived from contamination of regents because low-biomass samples are easily contaminated.[75][76][77]

Uterus

Until recently, the upper reproductive tract of women was considered to be a sterile environment. A variety of microorganisms inhabit the uterus of healthy, asymptomatic women of reproductive age. The microbiome of the uterus differs significantly from that of the vagina and gastrointestinal tract.[78]

Oral cavity

The environment present in the human mouth allows the growth of characteristic microorganisms found there. It provides a source of water and nutrients, as well as a moderate temperature.[2] Resident microbes of the mouth adhere to the teeth and gums to resist mechanical flushing from the mouth to stomach where acid-sensitive microbes are destroyed by hydrochloric acid.[2][38]

Anaerobic bacteria in the oral cavity include: Actinomyces, Arachnia, Bacteroides, Bifidobacterium, Eubacterium, Fusobacterium, Lactobacillus, Leptotrichia, Peptococcus, Peptostreptococcus, Propionibacterium, Selenomonas, Treponema, and Veillonella.[79][needs update] Genera of fungi that are frequently found in the mouth include Candida, Cladosporium, Aspergillus, Fusarium, Glomus, Alternaria, Penicillium, and Cryptococcus, among others.[36]

Bacteria accumulate on both the hard and soft oral tissues in biofilm allowing them to adhere and strive in the oral environment while protected from the environmental factors and antimicrobial agents.[80] Saliva plays a key biofilm homeostatic role allowing recolonization of bacteria for formation and controlling growth by detaching biofilm buildup.[81] It also provides a means of nutrients and temperature regulation. The location of the biofilm determines the type of exposed nutrients it receives.[82]

Oral bacteria have evolved mechanisms to sense their environment and evade or modify the host. However, a highly efficient innate host defense system constantly monitors the bacterial colonization and prevents bacterial invasion of local tissues. A dynamic equilibrium exists between dental plaque bacteria and the innate host defense system.[83]

This dynamic between host oral cavity and oral microbes plays a key role in health and disease as it provides entry into the body.[84] A healthy equilibrium presents a symbiotic relationship where oral microbes limit growth and adherence of pathogens while the host provides an environment for them to flourish.[84][80] Ecological changes such as change of immune status, shift of resident microbes and nutrient availability shift from a mutual to parasitic relationship resulting in the host being prone to oral and systemic disease.[80] Systemic diseases such as diabetes and cardiovascular diseases has been correlated to poor oral health.[84] Of particular interest is the role of oral microorganisms in the two major dental diseases: dental caries and periodontal disease.[83] Pathogen colonization at the periodontium cause an excessive immune response resulting in a periodontal pocket- a deepened space between the tooth and gingiva.[80] This acts as a protected blood-rich reservoir with nutrients for anaerobic pathogens.[80] Systemic disease at various sites of the body can result from oral microbes entering the blood bypassing periodontal pockets and oral membranes.[84]

Persistent proper oral hygiene is the primary method for preventing oral and systemic disease.[84] It reduces the density of biofilm and overgrowth of potential pathogenic bacteria resulting in disease.[82] However, proper oral hygiene may not be enough as the oral microbiome, genetics, and changes to immune response play a factor in developing chronic infections.[82] Use of antibiotics could treat already spreading infection but ineffective against bacteria within biofilms.[82]

Nasal cavity

The healthy nasal microbiome is dominated by Corynebacterium, and Staphylococcus. The mucosal microbiome plays a critical role in modulating viral infection.[85]

Lung

Much like the oral cavity, the upper and lower respiratory system possess mechanical deterrents to remove microbes. Goblet cells produce mucous which traps microbes and moves them out of the respiratory system via continuously moving ciliated epithelial cells.[2] In addition, a bactericidal effect is generated by nasal mucus which contains the enzyme lysozyme.[2] The upper and lower respiratory tract appears to have its own set of microbiota.[86] Pulmonary bacterial microbiota belong to 9 major bacterial genera: Prevotella, Sphingomonas, Pseudomonas, Acinetobacter, Fusobacterium, Megasphaera, Veillonella, Staphylococcus, and Streptococcus. Some of the bacteria considered "normal biota" in the respiratory tract can cause serious disease especially in immunocompromised individuals; these include Streptococcus pyogenes, Haemophilus influenzae, Streptococcus pneumoniae, Neisseria meningitidis, and Staphylococcus aureus.[citation needed] Fungal genera that compose the pulmonary mycobiome include Candida, Malassezia, Neosartorya, Saccharomyces, and Aspergillus, among others.[36]

Unusual distributions of bacterial and fungal genera in the respiratory tract is observed in people with cystic fibrosis.[36][87] Their bacterial flora often contains antibiotic-resistant and slow-growing bacteria, and the frequency of these pathogens changes in relation to age.[87]

Biliary tract

Traditionally the biliary tract has been considered to be normally sterile, and the presence of microorganisms in bile is a marker of pathological process. This assumption was confirmed by failure in allocation of bacterial strains from the normal bile duct. Papers began emerging in 2013 showing that the normal biliary microbiota is a separate functional layer which protects a biliary tract from colonization by exogenous microorganisms.[88]

Disease and death

Human bodies rely on the innumerable bacterial genes as the source of essential nutrients.[89] Both metagenomic and epidemiological studies indicate vital roles for the human microbiome in preventing a wide range of diseases, from type 2 diabetes and obesity to inflammatory bowel disease, Parkinson's disease, and even mental health conditions like depression.[90] A symbiotic relationship between the gut microbiota and different bacteria may influence an individual's immune response.[91] Metabolites generated by gut microbes appear to be causative factors in type 2 diabetes.[92] Although in its infancy, microbiome-based treatment is also showing promise, most notably for treating drug-resistant C. difficile[dead link] infection[93] and in diabetes treatment.[94]

Clostridioides difficile infection

An overwhelming presence of the bacteria, C. difficile, leads to an infection of the gastrointestinal tract, normally associated to dysbiosis with the microbiota believed to have been caused by the administration of antibiotics. Use of antibiotics eradicates the beneficial gut flora within the gastrointestinal tract, which normally prevents pathogenic bacteria from establishing dominance.[95] Traditional treatment for C. difficile infections includes an additional regime of antibiotics, however, efficacy rates average between 20 and 30%.[96] Recognizing the importance of healthy gut bacteria, researchers turned to a procedure known as fecal microbiota transplant, where patients experiencing gastrointestinal diseases, such as C. difficile infection, receive fecal content from a healthy individual in hopes of restoring a normal functioning intestinal microbiota.[97] Fecal microbiota transplant is approximately 85–90% effective in people with CDI for whom antibiotics have not worked or in whom the disease recurs following antibiotics.[98][99] Most people with CDI recover with one FMT treatment.[100][95][101]

Cancer

Although cancer is generally a disease of host genetics and environmental factors, microorganisms are implicated in some 20% of human cancers.[102] Particularly for potential factors in colon cancer, bacterial density is one million times higher than in the small intestine, and approximately 12-fold more cancers occur in the colon compared to the small intestine, possibly establishing a pathogenic role for microbiota in colon and rectal cancers.[103] Microbial density may be used as a prognostic tool in assessment of colorectal cancers.[103]

The microbiota may affect carcinogenesis in three broad ways: (i) altering the balance of tumor cell proliferation and death, (ii) regulating immune system function, and (iii) influencing metabolism of host-produced factors, foods and pharmaceuticals.[102] Tumors arising at boundary surfaces, such as the skin, oropharynx and respiratory, digestive and urogenital tracts, harbor a microbiota. Substantial microbe presence at a tumor site does not establish association or causal links. Instead, microbes may find tumor oxygen tension or nutrient profile supportive. Decreased populations of specific microbes or induced oxidative stress may also increase risks.[102][103] Of the around 1030 microbes on earth, ten are designated by the International Agency for Research on Cancer as human carcinogens.[102] Microbes may secrete proteins or other factors directly drive cell proliferation in the host, or may up- or down-regulate the host immune system including driving acute or chronic inflammation in ways that contribute to carcinogenesis.[102]

Concerning the relationship of immune function and development of inflammation, mucosal surface barriers are subject to environmental risks and must rapidly repair to maintain homeostasis. Compromised host or microbiota resiliency also reduce resistance to malignancy, possibly inducing inflammation and cancer. Once barriers are breached, microbes can elicit proinflammatory or immunosuppressive programs through various pathways.[102] For example, cancer-associated microbes appear to activate NF-κΒ signaling within the tumor microenvironment. Other pattern recognition receptors, such as nucleotide-binding oligomerization domain–like receptor (NLR) family members NOD-2, NLRP3, NLRP6 and NLRP12, may play a role in mediating colorectal cancer.[102] Likewise Helicobacter pylori appears to increase the risk of gastric cancer, due to its driving a chronic inflammatory response in the stomach.[102][103]

Inflammatory bowel disease

Inflammatory bowel disease consists of two different diseases: ulcerative colitis and Crohn's disease and both of these diseases present with disruptions in the gut microbiota (also known as dysbiosis). This dysbiosis presents itself in the form of decreased microbial diversity in the gut,[104][105] and is correlated to defects in host genes that changes the innate immune response in individuals.[104]

Human immunodeficiency virus

The HIV disease progression influences the composition and function of the gut microbiota, with notable differences between HIV-negative, HIV-positive, and post-ART HIV-positive populations.[citation needed] HIV decreases the integrity of the gut epithelial barrier function by affecting tight junctions. This breakdown allows for translocation across the gut epithelium, which is thought to contribute to increases in inflammation seen in people with HIV.[106]

Vaginal microbiota plays a role in the infectivity of HIV, with an increased risk of infection and transmission when the woman has bacterial vaginosis, a condition characterized by an abnormal balance of vaginal bacteria.[107] The enhanced infectivity is seen with the increase in pro-inflammatory cytokines and CCR5 + CD4+ cells in the vagina. However, a decrease in infectivity is seen with increased levels of vaginal Lactobacillus, which promotes an anti-inflammatory condition.[106]

Gut microbiome of centenarians

Humans who are 100 years old or older, called centenarians, have a distinct gut microbiome. This microbiome is characteristically enriched in microorganisms that are able to synthesize novel secondary bile acids.[108] These secondary bile acids include various isoforms of lithocholic acid that may contribute to healthy aging.[108]

Death

With death, the microbiome of the living body collapses and a different composition of microorganisms named necrobiome establishes itself as an important active constituent of the complex physical decomposition process. Its predictable changes over time are thought to be useful to help determine the time of death.[109][110]

Environmental health

Studies in 2009 questioned whether the decline in biota (including microfauna) as a result of human intervention might impede human health, hospital safety procedures, food product design, and treatments of disease.[111]

Changes, modulation and transmission

 
Microbiome-based interventions to modulate gut ecology and the immune system[112]

Hygiene, probiotics,[112] prebiotics, microbiota transplants (fecal or skin[113]), medications, antibiotics, diseases, exercise,[114][115] diet, breastfeeding, aging, and other factors[further explanation needed] can change the human microbiome across various anatomical systems or regions such as skin and gut.

Migration

Preliminary research indicates that immediate changes in the microbiota may occur when a person migrates from one country to another, such as when Thai immigrants settled in the United States[116] or when Latin Americans immigrated into the United States.[117] Losses of microbiota diversity were greater in obese individuals and children of immigrants.[116][117]

Transfer

A 2023 metagenomic analysis time provided various comprehensive data and insights into microbial sharing between individuals, finding substantial strain sharing among cohabiting individuals, with median strain-sharing rates for the gut and oral microbiomes being 12% (34% for mothers and their 0–3-years-old offspring) and 32% (38% for partners) in the used data. Time since cohabitation was the largest factor and bacterial strain sharing "recapitulated host population structures better[clarification needed] than species-level profiles did".[118][119]

See also

Bibliography

  • Ed Yong. I Contain Multitudes: The Microbes Within Us and a Grander View of Life. 368 pages, Published 9 August 2016 by Ecco, ISBN 0062368591.

References

  1. ^ a b Marchesi JR, Ravel J (2015). "The vocabulary of microbiome research: a proposal". Microbiome. 3: 31. doi:10.1186/s40168-015-0094-5. PMC 4520061. PMID 26229597.
    Microbiome
    This term refers to the entire habitat, including the microorganisms (bacteria, archaea, lower and higher eurkaryotes, and viruses), their genomes (i.e., genes), and the surrounding environmental conditions. This definition is based on that of "biome," the biotic and abiotic factors of given environments. Others in the field limit the definition of microbiome to the collection of genes and genomes of members of a microbiota. It is argued that this is the definition of metagenome, which combined with the environment constitutes the microbiome.
  2. ^ a b c d e f g h i j k Sherwood L, Willey J, Woolverton C (2013). Prescott's Microbiology (9th ed.). New York: McGraw Hill. pp. 713–721. ISBN 9780073402406. OCLC 886600661.
  3. ^ a b Sender R, Fuchs S, Milo R (January 2016). "Are We Really Vastly Outnumbered? Revisiting the Ratio of Bacterial to Host Cells in Humans". Cell. 164 (3): 337–40. doi:10.1016/j.cell.2016.01.013. PMID 26824647.
  4. ^ a b c d e f Quigley EM (September 2013). "Gut bacteria in health and disease". Gastroenterology & Hepatology. 9 (9): 560–9. PMC 3983973. PMID 24729765.
  5. ^ Falony G, Vieira-Silva S, Raes J (2015). "Microbiology Meets Big Data: The Case of Gut Microbiota-Derived Trimethylamine". Annual Review of Microbiology. 69: 305–21. doi:10.1146/annurev-micro-091014-104422. PMID 26274026. we review literature on trimethylamine (TMA), a microbiota-generated metabolite linked to atherosclerosis development.
  6. ^ Gaci N, Borrel G, Tottey W, O'Toole PW, Brugère JF (November 2014). "Archaea and the human gut: new beginning of an old story". World Journal of Gastroenterology. 20 (43): 16062–78. doi:10.3748/wjg.v20.i43.16062. PMC 4239492. PMID 25473158. Trimethylamine is exclusively a microbiota-derived product of nutrients (lecithin, choline, TMAO, L-carnitine) from normal diet, from which seems originate two diseases, trimethylaminuria (or Fish-Odor Syndrome) and cardiovascular disease through the proatherogenic property of its oxidized liver-derived form.
  7. ^ a b "NIH Human Microbiome Project defines normal bacterial makeup of the body". NIH News. 13 June 2012.
  8. ^ a b American Academy of Microbiology FAQ: Human Microbiome 31 December 2016 at the Wayback Machine January 2014
  9. ^ Rosner, Judah L. (1 February 2014). "Ten Times More Microbial Cells than Body Cells in Humans?". Microbe Magazine. 9 (2): 47. doi:10.1128/microbe.9.47.2. ISSN 1558-7452.
  10. ^ Abbott, Alison (8 January 2016). "Scientists bust myth that our bodies have more bacteria than human cells". Nature. doi:10.1038/nature.2016.19136. ISSN 1476-4687. S2CID 190879263.
  11. ^ Gilbert JA, Blaser MJ, Caporaso JG, Jansson JK, Lynch SV, Knight R (April 2018). "Current understanding of the human microbiome". Nature Medicine. 24 (4): 392–400. doi:10.1038/nm.4517. PMC 7043356. PMID 29634682.
  12. ^ a b c Peterson J, Garges S, Giovanni M, McInnes P, Wang L, Schloss JA, et al. (December 2009). "The NIH Human Microbiome Project". Genome Research. 19 (12): 2317–23. doi:10.1101/gr.096651.109. PMC 2792171. PMID 19819907.
  13. ^ Kuczynski J, Lauber CL, Walters WA, Parfrey LW, Clemente JC, Gevers D, Knight R (December 2011). "Experimental and analytical tools for studying the human microbiome". Nature Reviews. Genetics. 13 (1): 47–58. doi:10.1038/nrg3129. PMC 5119550. PMID 22179717.
  14. ^ Vestheim H, Jarman SN (July 2008). "Blocking primers to enhance PCR amplification of rare sequences in mixed samples - a case study on prey DNA in Antarctic krill stomachs". Frontiers in Zoology. 5: 12. doi:10.1186/1742-9994-5-12. PMC 2517594. PMID 18638418.
  15. ^ Tap J, Mondot S, Levenez F, Pelletier E, Caron C, Furet JP, et al. (October 2009). "Towards the human intestinal microbiota phylogenetic core". Environmental Microbiology. 11 (10): 2574–84. doi:10.1111/j.1462-2920.2009.01982.x. PMID 19601958.
  16. ^ Hamady M, Knight R (July 2009). "Microbial community profiling for human microbiome projects: Tools, techniques, and challenges". Genome Research. 19 (7): 1141–52. doi:10.1101/gr.085464.108. PMC 3776646. PMID 19383763.
  17. ^ Methé BA, Nelson KE, Pop M, Creasy HH, Giglio MG, Huttenhower C, et al. (Human Microbiome Project Consortium) (June 2012). "A framework for human microbiome research". Nature. 486 (7402): 215–21. Bibcode:2012Natur.486..215T. doi:10.1038/nature11209. PMC 3377744. PMID 22699610.
  18. ^ The Human Microbiome Project Consortium (June 2012). "Structure, function and diversity of the healthy human microbiome". Nature. 486 (7402): 207–14. Bibcode:2012Natur.486..207T. doi:10.1038/nature11234. PMC 3564958. PMID 22699609.
  19. ^ Quince C, Walker AW, Simpson JT, Loman NJ, Segata N (September 2017). "Shotgun metagenomics, from sampling to analysis" (PDF). Nature Biotechnology. 35 (9): 833–844. doi:10.1038/nbt.3935. hdl:2164/10167. PMID 28898207. S2CID 19041044.
  20. ^ Claesson MJ, Clooney AG, O'Toole PW (October 2017). "A clinician's guide to microbiome analysis". Nature Reviews. Gastroenterology & Hepatology. 14 (10): 585–595. doi:10.1038/nrgastro.2017.97. PMID 28790452. S2CID 24644894.
  21. ^ a b c Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C, Debelius J, et al. (July 2018). "Best practices for analysing microbiomes". Nature Reviews. Microbiology. 16 (7): 410–422. doi:10.1038/s41579-018-0029-9. PMID 29795328. S2CID 43936002.
  22. ^ a b Washburne AD, Morton JT, Sanders J, McDonald D, Zhu Q, Oliverio AM, Knight R (June 2018). "Methods for phylogenetic analysis of microbiome data". Nature Microbiology. 3 (6): 652–661. doi:10.1038/s41564-018-0156-0. PMID 29795540. S2CID 43962376.
  23. ^ Berg, Gabriele; et al. (2020). "Microbiome definition re-visited: Old concepts and new challenges". Microbiome. 8 (1): 103. doi:10.1186/s40168-020-00875-0. PMC 7329523. PMID 32605663.
  24. ^ Faust, Karoline; Raes, Jeroen (2016). "Rules of the game for microbiota". Nature. 534 (7606): 182–183. doi:10.1038/534182a. PMID 27279206. S2CID 205089271.
  25. ^ Bashan, Amir; Gibson, Travis E.; Friedman, Jonathan; Carey, Vincent J.; Weiss, Scott T.; Hohmann, Elizabeth L.; Liu, Yang-Yu (2016). "Universality of human microbial dynamics". Nature. 534 (7606): 259–262. doi:10.1038/nature18301. PMC 4902290. PMID 27279224.
  26. ^ Liu, Yang-Yu (15 February 2023). "Controlling the human microbiome" (PDF). Cell Systems. 14 (2): 135–159. doi:10.1016/j.cels.2022.12.010. PMC 9942095. PMID 36796332.
  27. ^ PLoS Human Microbiome Project Collection Manuscript Summaries 4 March 2014 at the Wayback Machine 13 June 2012
  28. ^ "Consortium of Scientists Map the Human Body's Bacterial Ecosystem". ucsf.edu.
  29. ^ Sommer F, Bäckhed F (April 2013). "The gut microbiota--masters of host development and physiology". Nature Reviews. Microbiology. 11 (4): 227–38. doi:10.1038/nrmicro2974. PMID 23435359. S2CID 22798964.
  30. ^ Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, et al. (June 2005). "Diversity of the human intestinal microbial flora". Science. 308 (5728): 1635–8. Bibcode:2005Sci...308.1635E. doi:10.1126/science.1110591. PMC 1395357. PMID 15831718.
  31. ^ Duncan SH, Louis P, Flint HJ (April 2007). "Cultivable bacterial diversity from the human colon". Letters in Applied Microbiology. 44 (4): 343–50. doi:10.1111/j.1472-765X.2007.02129.x. PMID 17397470. S2CID 43706882.
  32. ^ Florin TH, Zhu G, Kirk KM, Martin NG (October 2000). "Shared and unique environmental factors determine the ecology of methanogens in humans and rats". The American Journal of Gastroenterology. 95 (10): 2872–9. CiteSeerX 10.1.1.606.4187. doi:10.1111/j.1572-0241.2000.02319.x. PMID 11051362. S2CID 1087298.
  33. ^ Eckburg PB, Lepp PW, Relman DA (February 2003). "Archaea and their potential role in human disease". Infection and Immunity. 71 (2): 591–6. doi:10.1128/IAI.71.2.591-596.2003. PMC 145348. PMID 12540534.
  34. ^ Cavicchioli R, Curmi PM, Saunders N, Thomas T (November 2003). "Pathogenic archaea: do they exist?". BioEssays. 25 (11): 1119–28. doi:10.1002/bies.10354. PMID 14579252.
  35. ^ Lepp PW, Brinig MM, Ouverney CC, Palm K, Armitage GC, Relman DA (April 2004). "Methanogenic Archaea and human periodontal disease". Proceedings of the National Academy of Sciences of the United States of America. 101 (16): 6176–81. Bibcode:2004PNAS..101.6176L. doi:10.1073/pnas.0308766101. PMC 395942. PMID 15067114.
  36. ^ a b c d e f g h i j k Cui L, Morris A, Ghedin E (July 2013). "The human mycobiome in health and disease". Genome Medicine. 5 (7): 63. doi:10.1186/gm467. PMC 3978422. PMID 23899327. Figure 2: Distribution of fungal genera in different body sites
  37. ^ a b Martins N, Ferreira IC, Barros L, Silva S, Henriques M (June 2014). "Candidiasis: predisposing factors, prevention, diagnosis and alternative treatment" (PDF). Mycopathologia. 177 (5–6): 223–40. doi:10.1007/s11046-014-9749-1. hdl:10198/10147. PMID 24789109. S2CID 795450. Candida species and other microorganisms are involved in this complicated fungal infection, but Candida albicans continues to be the most prevalent. In the past two decades, it has been observed an abnormal overgrowth in the gastrointestinal, urinary and respiratory tracts, not only in immunocompromised patients, but also related to nosocomial infections and even in healthy individuals. There is a widely variety of causal factors that contribute to yeast infection which means that candidiasis is a good example of a multifactorial syndrome.
  38. ^ a b c d e Wang ZK, Yang YS, Stefka AT, Sun G, Peng LH (April 2014). "Review article: fungal microbiota and digestive diseases". Alimentary Pharmacology & Therapeutics. 39 (8): 751–66. doi:10.1111/apt.12665. PMID 24612332. S2CID 22101484. In addition, GI fungal infection is reported even among those patients with normal immune status. Digestive system-related fungal infections may be induced by both commensal opportunistic fungi and exogenous pathogenic fungi. ... Candida sp. is also the most frequently identified species among patients with gastric IFI. ... It was once believed that gastric acid could kill microbes entering the stomach and that the unique ecological environment of the stomach was not suitable for microbial colonisation or infection. However, several studies using culture-independent methods confirmed that large numbers of acid-resistant bacteria belonging to eight phyla and up to 120 species exist in the stomach, such as Streptococcus sp., Neisseria sp. and Lactobacillus sp. etc.26, 27 Furthermore, Candida albicans can grow well in highly acidic environments,28 and some genotypes may increase the severity of gastric mucosal lesions.29
  39. ^ a b c Erdogan A, Rao SS (April 2015). "Small intestinal fungal overgrowth". Current Gastroenterology Reports. 17 (4): 16. doi:10.1007/s11894-015-0436-2. PMID 25786900. S2CID 3098136. Small intestinal fungal overgrowth (SIFO) is characterized by the presence of excessive number of fungal organisms in the small intestine associated with gastrointestinal (GI) symptoms. Candidiasis is known to cause GI symptoms particularly in immunocompromised patients or those receiving steroids or antibiotics. However, only recently, there is emerging literature that an overgrowth of fungus in the small intestine of non-immunocompromised subjects may cause unexplained GI symptoms. Two recent studies showed that 26 % (24/94) and 25.3 % (38/150) of a series of patients with unexplained GI symptoms had SIFO. The most common symptoms observed in these patients were belching, bloating, indigestion, nausea, diarrhea, and gas. ... Fungal-bacterial interaction may act in different ways and may either be synergistic or antagonistic or symbiotic [29]. Some bacteria such as Lactobacillus species can interact and inhibit both the virulence and growth of Candida species in the gut by producing hydrogen peroxide [30]. Any damage to the mucosal barrier or disruption of GI microbiota with chemotherapy or antibiotic use, inflammatory processes, activation of immune molecules and disruption of epithelial repair may all cause fungal overgrowth [27].
  40. ^ Marcon MJ, Powell DA (April 1992). "Human infections due to Malassezia spp". Clinical Microbiology Reviews. 5 (2): 101–19. doi:10.1128/CMR.5.2.101. PMC 358230. PMID 1576583.
  41. ^ Roth RR, James WD (1988). "Microbial ecology of the skin". Annual Review of Microbiology. 42 (1): 441–64. doi:10.1146/annurev.mi.42.100188.002301. PMID 3144238.
  42. ^ Hannigan GD, Meisel JS, Tyldsley AS, Zheng Q, Hodkinson BP, SanMiguel AJ, et al. (October 2015). "The human skin double-stranded DNA virome: topographical and temporal diversity, genetic enrichment, and dynamic associations with the host microbiome". mBio. 6 (5): e01578-15. doi:10.1128/mBio.01578-15. PMC 4620475. PMID 26489866.
  43. ^ Minot S, Sinha R, Chen J, Li H, Keilbaugh SA, Wu GD, et al. (October 2011). "The human gut virome: inter-individual variation and dynamic response to diet". Genome Research. 21 (10): 1616–25. doi:10.1101/gr.122705.111. PMC 3202279. PMID 21880779.
  44. ^ Young JC, Chehoud C, Bittinger K, Bailey A, Diamond JM, Cantu E, et al. (January 2015). "Viral metagenomics reveal blooms of anelloviruses in the respiratory tract of lung transplant recipients". American Journal of Transplantation. 15 (1): 200–9. doi:10.1111/ajt.13031. PMC 4276431. PMID 25403800.
  45. ^ Abeles SR, Robles-Sikisaka R, Ly M, Lum AG, Salzman J, Boehm TK, Pride DT (September 2014). "Human oral viruses are personal, persistent and gender-consistent". The ISME Journal. 8 (9): 1753–67. doi:10.1038/ismej.2014.31. PMC 4139723. PMID 24646696.
  46. ^ Ly M, Abeles SR, Boehm TK, Robles-Sikisaka R, Naidu M, Santiago-Rodriguez T, Pride DT (May 2014). "Altered oral viral ecology in association with periodontal disease". mBio. 5 (3): e01133-14. doi:10.1128/mBio.01133-14. PMC 4030452. PMID 24846382.
  47. ^ Monaco CL, Gootenberg DB, Zhao G, Handley SA, Ghebremichael MS, Lim ES, et al. (March 2016). "Altered Virome and Bacterial Microbiome in Human Immunodeficiency Virus-Associated Acquired Immunodeficiency Syndrome". Cell Host & Microbe. 19 (3): 311–22. doi:10.1016/j.chom.2016.02.011. PMC 4821831. PMID 26962942.
  48. ^ Norman JM, Handley SA, Baldridge MT, Droit L, Liu CY, Keller BC, et al. (January 2015). "Disease-specific alterations in the enteric virome in inflammatory bowel disease". Cell. 160 (3): 447–60. doi:10.1016/j.cell.2015.01.002. PMC 4312520. PMID 25619688.
  49. ^ Grice EA, Kong HH, Conlan S, Deming CB, Davis J, Young AC, et al. (NISC Comparative Sequencing Program) (May 2009). "Topographical and temporal diversity of the human skin microbiome". Science. 324 (5931): 1190–2. Bibcode:2009Sci...324.1190G. doi:10.1126/science.1171700. PMC 2805064. PMID 19478181.
  50. ^ a b "The Normal Bacterial Flora of Humans". textbookofbacteriology.net.
  51. ^ a b c d e f g h i Zhang LS, Davies SS (April 2016). "Microbial metabolism of dietary components to bioactive metabolites: opportunities for new therapeutic interventions". Genome Med. 8 (1): 46. doi:10.1186/s13073-016-0296-x. PMC 4840492. PMID 27102537. Lactobacillus spp. convert tryptophan to indole-3-aldehyde (I3A) through unidentified enzymes [125]. Clostridium sporogenes convert tryptophan to IPA [6], likely via a tryptophan deaminase. ... IPA also potently scavenges hydroxyl radicals
    Table 2: Microbial metabolites: their synthesis, mechanisms of action, and effects on health and disease
    Figure 1: Molecular mechanisms of action of indole and its metabolites on host physiology and disease
  52. ^ Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC, Siuzdak G (March 2009). "Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites". Proc. Natl. Acad. Sci. U.S.A. 106 (10): 3698–3703. Bibcode:2009PNAS..106.3698W. doi:10.1073/pnas.0812874106. PMC 2656143. PMID 19234110. Production of IPA was shown to be completely dependent on the presence of gut microflora and could be established by colonization with the bacterium Clostridium sporogenes.
    IPA metabolism diagram
  53. ^ "3-Indolepropionic acid". Human Metabolome Database. University of Alberta. Retrieved 12 June 2018.
  54. ^ Chyan YJ, Poeggeler B, Omar RA, Chain DG, Frangione B, Ghiso J, Pappolla MA (July 1999). "Potent neuroprotective properties against the Alzheimer beta-amyloid by an endogenous melatonin-related indole structure, indole-3-propionic acid". J. Biol. Chem. 274 (31): 21937–21942. doi:10.1074/jbc.274.31.21937. PMID 10419516. S2CID 6630247. [Indole-3-propionic acid (IPA)] has previously been identified in the plasma and cerebrospinal fluid of humans, but its functions are not known. ... In kinetic competition experiments using free radical-trapping agents, the capacity of IPA to scavenge hydroxyl radicals exceeded that of melatonin, an indoleamine considered to be the most potent naturally occurring scavenger of free radicals. In contrast with other antioxidants, IPA was not converted to reactive intermediates with pro-oxidant activity.
  55. ^ Yang I, Corwin EJ, Brennan PA, Jordan S, Murphy JR, Dunlop A (2016). "The Infant Microbiome: Implications for Infant Health and Neurocognitive Development". Nursing Research. 65 (1): 76–88. doi:10.1097/NNR.0000000000000133. PMC 4681407. PMID 26657483.
  56. ^ Mueller NT, Bakacs E, Combellick J, Grigoryan Z, Dominguez-Bello MG (February 2015). "The infant microbiome development: mom matters". Trends in Molecular Medicine. 21 (2): 109–17. doi:10.1016/j.molmed.2014.12.002. PMC 4464665. PMID 25578246.
  57. ^ Wall R, Ross RP, Ryan CA, Hussey S, Murphy B, Fitzgerald GF, Stanton C (4 March 2009). "Role of gut microbiota in early infant development". Clinical Medicine. Pediatrics. 3: 45–54. doi:10.4137/cmped.s2008. PMC 3676293. PMID 23818794.
  58. ^ a b c Clarke G, Stilling RM, Kennedy PJ, Stanton C, Cryan JF, Dinan TG (August 2014). "Minireview: Gut microbiota: the neglected endocrine organ". Molecular Endocrinology. 28 (8): 1221–38. doi:10.1210/me.2014-1108. PMC 5414803. PMID 24892638.
  59. ^ a b Shen S, Wong CH (April 2016). "Bugging inflammation: role of the gut microbiota". Clinical & Translational Immunology. 5 (4): e72. doi:10.1038/cti.2016.12. PMC 4855262. PMID 27195115.
  60. ^ Wang H, Lee IS, Braun C, Enck P (October 2016). "Effect of Probiotics on Central Nervous System Functions in Animals and Humans: A Systematic Review". Journal of Neurogastroenterology and Motility. 22 (4): 589–605. doi:10.5056/jnm16018. PMC 5056568. PMID 27413138. These probiotics showed efficacy in improving psychiatric disorder-related behaviors including anxiety, depression, autism spectrum disorder (ASD), obsessive-compulsive disorder, and memory abilities, including spatial and non-spatial memory. Because many of the basic science studies showed some efficacy of probiotics on central nervous system function, this background may guide and promote further preclinical and clinical studies. ... According to the qualitative analyses of current studies, we can provisionally draw the conclusion that B. longum, B. breve, B. infantis, L. helveticus, L. rhamnosus, L. plantarum, and L. casei were most effective in improving CNS function, including psychiatric disease-associated functions (anxiety, depression, mood, stress response) and memory abilities
  61. ^ a b Drake MJ, Morris N, Apostolidis A, Rahnama'i MS, Marchesi JR (April 2017). "The urinary microbiome and its contribution to lower urinary tract symptoms; ICI-RS 2015". Neurourology and Urodynamics. 36 (4): 850–853. doi:10.1002/nau.23006. hdl:1983/3b024f95-9f86-406a-9be3-ce35984b8de1. PMID 28444712. S2CID 27636043.
  62. ^ a b Aragón IM, Herrera-Imbroda B, Queipo-Ortuño MI, Castillo E, Del Moral JS, Gómez-Millán J, et al. (January 2018). "The Urinary Tract Microbiome in Health and Disease". European Urology Focus. 4 (1): 128–138. doi:10.1016/j.euf.2016.11.001. PMID 28753805.
  63. ^ a b Schmiemann G, Kniehl E, Gebhardt K, Matejczyk MM, Hummers-Pradier E (May 2010). "The diagnosis of urinary tract infection: a systematic review". Deutsches Ärzteblatt International. 107 (21): 361–7. doi:10.3238/arztebl.2010.0361. PMC 2883276. PMID 20539810.
  64. ^ Al, Kait F.; Denstedt, John D.; Daisley, Brendan A.; Bjazevic, Jennifer; Welk, Blayne K.; Pautler, Stephen E.; Gloor, Gregory B.; Reid, Gregor; Razvi, Hassan; Burton, Jeremy P. (September 2020). "Ureteral Stent Microbiota Is Associated with Patient Comorbidities but Not Antibiotic Exposure". Cell Reports Medicine. 1 (6): 100094. doi:10.1016/j.xcrm.2020.100094. PMC 7659606. PMID 33205072.
  65. ^ Wolfe AJ, Brubaker L (February 2019). "Urobiome updates: advances in urinary microbiome research". Nature Reviews. Urology. 16 (2): 73–74. doi:10.1038/s41585-018-0127-5. PMC 6628711. PMID 30510275.
  66. ^ a b Petrova MI, Lievens E, Malik S, Imholz N, Lebeer S (2015). "Lactobacillus species as biomarkers and agents that can promote various aspects of vaginal health". Frontiers in Physiology. 6: 81. doi:10.3389/fphys.2015.00081. PMC 4373506. PMID 25859220.
  67. ^ a b c d Witkin SS, Linhares IM, Giraldo P (June 2007). "Bacterial flora of the female genital tract: function and immune regulation". Best Practice & Research. Clinical Obstetrics & Gynaecology. 21 (3): 347–54. doi:10.1016/j.bpobgyn.2006.12.004. PMID 17215167.
  68. ^ Todar K (2012). "The Normal Bacterial Flora of Humans". Todar's Online Textbook of Bacteriology. Madison, WI: Kenneth Todar. Retrieved 6 April 2012.
  69. ^ Onderdonk AB, Zamarchi GR, Walsh JA, Mellor RD, Muñoz A, Kass EH (February 1986). "Methods for quantitative and qualitative evaluation of vaginal microflora during menstruation". Applied and Environmental Microbiology. 51 (2): 333–9. Bibcode:1986ApEnM..51..333O. doi:10.1128/AEM.51.2.333-339.1986. PMC 238869. PMID 3954346.
  70. ^ Antonio MA, Hawes SE, Hillier SL (December 1999). "The identification of vaginal Lactobacillus species and the demographic and microbiologic characteristics of women colonized by these species". The Journal of Infectious Diseases. 180 (6): 1950–6. doi:10.1086/315109. PMID 10558952.
  71. ^ Usyk M, Zolnik CP, Castle PE, Porras C, Herrero R, Gradissimo A, et al. (March 2020). "Cervicovaginal microbiome and natural history of HPV in a longitudinal study". PLOS Pathogens. 16 (3): e1008376. doi:10.1371/journal.ppat.1008376. PMC 7098574. PMID 32214382.
  72. ^ Fox C, Eichelberger K (December 2015). "Maternal microbiome and pregnancy outcomes". Fertility and Sterility. 104 (6): 1358–63. doi:10.1016/j.fertnstert.2015.09.037. PMID 26493119.
  73. ^ Wassenaar TM, Panigrahi P (December 2014). "Is a foetus developing in a sterile environment?". Letters in Applied Microbiology. 59 (6): 572–9. doi:10.1111/lam.12334. PMID 25273890. S2CID 206169539.
  74. ^ Schwiertz A (2016). Microbiota of the human body : implications in health and disease. Switzerland: Springer. p. 1. ISBN 978-3-319-31248-4.
  75. ^ Tamburini S, Shen N, Wu HC, Clemente JC (July 2016). "The microbiome in early life: implications for health outcomes". Nature Medicine. 22 (7): 713–22. doi:10.1038/nm.4142. PMID 27387886. S2CID 2462790.
  76. ^ de Goffau MC, Lager S, Sovio U, Gaccioli F, Cook E, Peacock SJ, et al. (August 2019). "Human placenta has no microbiome but can contain potential pathogens". Nature. 572 (7769): 329–334. Bibcode:2019Natur.572..329D. doi:10.1038/s41586-019-1451-5. PMC 6697540. PMID 31367035.
  77. ^ Eisenhofer R, Minich JJ, Marotz C, Cooper A, Knight R, Weyrich LS (February 2019). "Contamination in Low Microbial Biomass Microbiome Studies: Issues and Recommendations". Trends in Microbiology. 27 (2): 105–117. doi:10.1016/j.tim.2018.11.003. hdl:2440/122027. PMID 30497919. S2CID 54166123.
  78. ^ Franasiak JM, Scott RT (December 2015). "Reproductive tract microbiome in assisted reproductive technologies". Fertility and Sterility. 104 (6): 1364–71. doi:10.1016/j.fertnstert.2015.10.012. PMID 26597628.
  79. ^ Sutter VL (1984). "Anaerobes as normal oral flora". Reviews of Infectious Diseases. 6 (Suppl 1): S62-566. doi:10.1093/clinids/6.Supplement_1.S62. PMID 6372039.
  80. ^ a b c d e Kumar PS (December 2013). "Oral microbiota and systemic disease". Anaerobe. 24: 90–3. doi:10.1016/j.anaerobe.2013.09.010. PMID 24128801. S2CID 40735283.
  81. ^ Arweiler NB, Netuschil L (May 2016). "The Oral Microbiota". In Schwiertz A (ed.). Microbiota of the Human Body: Implications in Health and Disease. Advances in Experimental Medicine and Biology. Vol. 902. Springer, Cham. pp. 45–60. doi:10.1007/978-3-319-31248-4_4. ISBN 978-3-319-31248-4. PMID 27161350.
  82. ^ a b c d Avila M, Ojcius DM, Yilmaz O (August 2009). "The oral microbiota: living with a permanent guest". DNA and Cell Biology. 28 (8): 405–11. doi:10.1089/dna.2009.0874. PMC 2768665. PMID 19485767.
  83. ^ a b Rogers AH, ed. (2008). Molecular Oral Microbiology. Caister Academic Press. ISBN 978-1-904455-24-0.
  84. ^ a b c d e Zarco MF, Vess TJ, Ginsburg GS (March 2012). "The oral microbiome in health and disease and the potential impact on personalized dental medicine". Oral Diseases. 18 (2): 109–20. doi:10.1111/j.1601-0825.2011.01851.x. PMID 21902769. S2CID 24411104.
  85. ^ Rhoades NS, Pinski AN, Monsibais AN, Jankeel A, Doratt BM, Cinco IR, et al. (August 2021). "Acute SARS-CoV-2 infection is associated with an increased abundance of bacterial pathogens, including Pseudomonas aeruginosa in the nose". Cell Reports. 36 (9): 109637. doi:10.1016/j.celrep.2021.109637. ISSN 2211-1247. PMC 8361213. PMID 34433082.
  86. ^ Wing Ho Man; Wouter A A de Steenhuijsen Piters; Debby Bogaert (2017). "The microbiota of the respiratory tract: gatekeeper to respiratory health". Nature Reviews Microbiology (published 20 March 2017). 15 (5): 259–270. doi:10.1038/NRMICRO.2017.14. hdl:20.500.11820/f1137874-9c51-401b-bca4-e2a5da3e219b. ISSN 1740-1534. PMC 7097736. PMID 28316330.Wikidata: Q34553608
  87. ^ a b Beringer PM, Appleman MD (November 2000). (PDF). Current Opinion in Pulmonary Medicine. 6 (6): 545–50. doi:10.1097/00063198-200011000-00015. PMID 11100967. S2CID 845977. Archived from the original (PDF) on 16 October 2013.
  88. ^ Verdier J, Luedde T, Sellge G (June 2015). "Biliary Mucosal Barrier and Microbiome". Viszeralmedizin. 31 (3): 156–61. doi:10.1159/000431071. PMC 4569210. PMID 26468308.
  89. ^ Yu B, Yu B, Yu L (June 2020). "Commentary: Reconciling Hygiene and Cleanliness: A New Perspective from Human Microbiome". Indian Journal of Microbiology. 60 (2): 259–261. doi:10.1007/s12088-020-00863-w. PMC 7105528. PMID 32255860.
  90. ^ Copeland CS. The World Within Us: Health and the Human Microbiome. Healthcare Journal of New Orleans, Sept-Oct 2017.
  91. ^ Honda K, Littman DR (July 2016). "The microbiota in adaptive immune homeostasis and disease". Nature. 535 (7610): 75–84. Bibcode:2016Natur.535...75H. doi:10.1038/nature18848. PMID 27383982. S2CID 4461492.
  92. ^ "Serum metabolites reflecting gut microbiome alpha diversity predict type 2 diabetes". Metabolon. Retrieved 3 November 2022.
  93. ^ Liubakka A, Vaughn BP (July 2016). "Clostridium difficile Infection and Fecal Microbiota Transplant". AACN Advanced Critical Care. 27 (3): 324–337. doi:10.4037/aacnacc2016703. PMC 5666691. PMID 27959316.
  94. ^ Burton JH, Johnson M, Johnson J, Hsia DS, Greenway FL, Heiman ML (July 2015). "Addition of a Gastrointestinal Microbiome Modulator to Metformin Improves Metformin Tolerance and Fasting Glucose Levels". Journal of Diabetes Science and Technology. 9 (4): 808–14. doi:10.1177/1932296815577425. PMC 4525649. PMID 25802471.
  95. ^ a b Bakken JS, Borody T, Brandt LJ, Brill JV, Demarco DC, Franzos MA, et al. (December 2011). "Treating Clostridium difficile infection with fecal microbiota transplantation". Clinical Gastroenterology and Hepatology. 9 (12): 1044–9. doi:10.1016/j.cgh.2011.08.014. PMC 3223289. PMID 21871249.
  96. ^ Gough E, Shaikh H, Manges AR (November 2011). "Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection". Clinical Infectious Diseases. 53 (10): 994–1002. doi:10.1093/cid/cir632. PMID 22002980.
  97. ^ Brown WR (August 2014). "Fecal microbiota transplantation in treating Clostridium difficile infection". Journal of Digestive Diseases. 15 (8): 405–8. doi:10.1111/1751-2980.12160. PMID 24825534. S2CID 44651256.
  98. ^ Burke KE, Lamont JT (August 2013). "Fecal transplantation for recurrent Clostridium difficile infection in older adults: a review". Journal of the American Geriatrics Society. 61 (8): 1394–8. doi:10.1111/jgs.12378. PMID 23869970. S2CID 34998497.
  99. ^ Drekonja D, Reich J, Gezahegn S, Greer N, Shaukat A, MacDonald R, et al. (May 2015). "Fecal Microbiota Transplantation for Clostridium difficile Infection: A Systematic Review". Annals of Internal Medicine. 162 (9): 630–8. doi:10.7326/m14-2693. PMID 25938992. S2CID 1307726.
  100. ^ Brandt LJ, Borody TJ, Campbell J (September 2011). "Endoscopic fecal microbiota transplantation: "first-line" treatment for severe clostridium difficile infection?". Journal of Clinical Gastroenterology. 45 (8): 655–7. doi:10.1097/MCG.0b013e3182257d4f. PMID 21716124. S2CID 2508836.
  101. ^ Kelly CR, de Leon L, Jasutkar N (February 2012). "Fecal microbiota transplantation for relapsing Clostridium difficile infection in 26 patients: methodology and results". Journal of Clinical Gastroenterology. 46 (2): 145–9. doi:10.1097/MCG.0b013e318234570b. PMID 22157239. S2CID 30849491.
  102. ^ a b c d e f g h Garrett WS (April 2015). "Cancer and the microbiota". Science. 348 (6230): 80–6. Bibcode:2015Sci...348...80G. doi:10.1126/science.aaa4972. PMC 5535753. PMID 25838377.
  103. ^ a b c d Gagnière J, Raisch J, Veziant J, Barnich N, Bonnet R, Buc E, et al. (January 2016). "Gut microbiota imbalance and colorectal cancer". World Journal of Gastroenterology. 22 (2): 501–18. doi:10.3748/wjg.v22.i2.501. PMC 4716055. PMID 26811603.
  104. ^ a b Sartor RB, Mazmanian SK (July 2012). "Intestinal Microbes in Inflammatory Bowel Diseases". The American Journal of Gastroenterology Supplements. 1 (1): 15–21. doi:10.1038/ajgsup.2012.4.
  105. ^ Hold GL, Smith M, Grange C, Watt ER, El-Omar EM, Mukhopadhya I (February 2014). "Role of the gut microbiota in inflammatory bowel disease pathogenesis: what have we learnt in the past 10 years?". World Journal of Gastroenterology. 20 (5): 1192–210. doi:10.3748/wjg.v20.i5.1192. PMC 3921503. PMID 24574795.
  106. ^ a b Zilberman-Schapira G, Zmora N, Itav S, Bashiardes S, Elinav H, Elinav E (June 2016). "The gut microbiome in human immunodeficiency virus infection". BMC Medicine. 14 (1): 83. doi:10.1186/s12916-016-0625-3. PMC 4891875. PMID 27256449.
  107. ^ Petrova MI, van den Broek M, Balzarini J, Vanderleyden J, Lebeer S (September 2013). "Vaginal microbiota and its role in HIV transmission and infection". FEMS Microbiology Reviews. 37 (5): 762–92. doi:10.1111/1574-6976.12029. PMID 23789590.
  108. ^ a b Sato Y, Atarashi K, Plichta DR, Arai Y, Sasajima S, Kearney SM, Suda W, Takeshita K, Sasaki T, Okamoto S, Skelly AN, Okamura Y, Vlamakis H, Li Y, Tanoue T, Takei H, Nittono H, Narushima S, Irie J, Itoh H, Moriya K, Sugiura Y, Suematsu M, Moritoki N, Shibata S, Littman DR, Fischbach MA, Uwamino Y, Inoue T, Honda A, Hattori M, Murai T, Xavier RJ, Hirose N, Honda K. Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians. Nature. 2021 Nov;599(7885):458-464. doi: 10.1038/s41586-021-03832-5. Epub 2021 Jul 29. PMID 34325466
  109. ^ Intagliata C (22 December 2016). ""Necrobiome" Reveals a Corpse's Time of Death". Scientific American. Retrieved 26 March 2018.
  110. ^ Young E (10 December 2015). "Meet the Necrobiome: The Waves of Microbes That Will Eat Your Corpse". The Atlantic. Retrieved 26 March 2018.
  111. ^ Harmon K (16 December 2009). "Bugs Inside: What Happens When the Microbes That Keep Us Healthy Disappear?". Scientific American. Retrieved 27 December 2008.
  112. ^ a b Hitch, Thomas C. A.; Hall, Lindsay J.; Walsh, Sarah Kate; Leventhal, Gabriel E.; Slack, Emma; de Wouters, Tomas; Walter, Jens; Clavel, Thomas (June 2022). "Microbiome-based interventions to modulate gut ecology and the immune system". Mucosal Immunology. 15 (6): 1095–1113. doi:10.1038/s41385-022-00564-1. ISSN 1935-3456.
  113. ^ Callewaert, Chris; Knödlseder, Nastassia; Karoglan, Ante; Güell, Marc; Paetzold, Bernhard (1 January 2021). "Skin microbiome transplantation and manipulation: Current state of the art". Computational and Structural Biotechnology Journal. 19: 624–631. doi:10.1016/j.csbj.2021.01.001. ISSN 2001-0370.
  114. ^ Monda, Vincenzo; Villano, Ines; Messina, Antonietta; Valenzano, Anna; Esposito, Teresa; Moscatelli, Fiorenzo; Viggiano, Andrea; Cibelli, Giuseppe; Chieffi, Sergio; Monda, Marcellino; Messina, Giovanni (5 March 2017). "Exercise Modifies the Gut Microbiota with Positive Health Effects". Oxidative Medicine and Cellular Longevity. 2017: e3831972. doi:10.1155/2017/3831972. ISSN 1942-0900.
  115. ^ Mailing, Lucy J.; Allen, Jacob M.; Buford, Thomas W.; Fields, Christopher J.; Woods, Jeffrey A. (April 2019). "Exercise and the Gut Microbiome: A Review of the Evidence, Potential Mechanisms, and Implications for Human Health". Exercise and Sport Sciences Reviews. 47 (2): 75. doi:10.1249/JES.0000000000000183. ISSN 0091-6331.
  116. ^ a b Vangay P, Johnson AJ, Ward TL, Al-Ghalith GA, Shields-Cutler RR, Hillmann BM, et al. (November 2018). "US Immigration Westernizes the Human Gut Microbiome". Cell. 175 (4): 962–972.e10. doi:10.1016/j.cell.2018.10.029. PMC 6498444. PMID 30388453.
  117. ^ a b Kaplan RC, Wang Z, Usyk M, Sotres-Alvarez D, Daviglus ML, Schneiderman N, et al. (November 2019). "Gut microbiome composition in the Hispanic Community Health Study/Study of Latinos is shaped by geographic relocation, environmental factors, and obesity". Genome Biology. 20 (1): 219. doi:10.1186/s13059-019-1831-z. PMC 6824043. PMID 31672155.
  118. ^ "Comprehensive profiling of human-to-human oral and intestinal microbial transmission". News-Medical.net. 20 January 2023. from the original on 16 February 2023. Retrieved 16 February 2023.
  119. ^ Valles-Colomer, Mireia; Blanco-Míguez, Aitor; Manghi, Paolo; et al. (February 2023). "The person-to-person transmission landscape of the gut and oral microbiomes". Nature. 614 (7946): 125–135. doi:10.1038/s41586-022-05620-1. ISSN 1476-4687. PMC 9892008. PMID 36653448.

External links

  • The Secret World Inside You Exhibit 2015–2016, American Museum of Natural History
  • American Society For Microbiology

human, microbiome, confused, with, microbiome, human, microbiome, aggregate, microbiota, that, reside, within, human, tissues, biofluids, along, with, corresponding, anatomical, sites, which, they, reside, including, skin, mammary, glands, seminal, fluid, uter. Not to be confused with Microbiome The human microbiome is the aggregate of all microbiota that reside on or within human tissues and biofluids along with the corresponding anatomical sites in which they reside 1 including the skin mammary glands seminal fluid uterus ovarian follicles lung saliva oral mucosa conjunctiva biliary tract and gastrointestinal tract Types of human microbiota include bacteria archaea fungi protists and viruses Though micro animals can also live on the human body they are typically excluded from this definition In the context of genomics the term human microbiome is sometimes used to refer to the collective genomes of resident microorganisms 2 however the term human metagenome has the same meaning 1 Graphic depicting the human skin microbiota with relative prevalences of various classes of bacteria Humans are colonized by many microorganisms with approximately the same order of magnitude of non human cells as human cells 3 Some microorganisms that colonize humans are commensal meaning they co exist without harming humans others have a mutualistic relationship with their human hosts 2 700 4 Conversely some non pathogenic microorganisms can harm human hosts via the metabolites they produce like trimethylamine which the human body converts to trimethylamine N oxide via FMO3 mediated oxidation 5 6 Certain microorganisms perform tasks that are known to be useful to the human host but the role of most of them is not well understood Those that are expected to be present and that under normal circumstances do not cause disease are sometimes deemed normal flora or normal microbiota 2 The Human Microbiome Project HMP took on the project of sequencing the genome of the human microbiota focusing particularly on the microbiota that normally inhabit the skin mouth nose digestive tract and vagina 2 It reached a milestone in 2012 when it published its initial results 7 Contents 1 Terminology 2 Relative numbers 3 Study 3 1 Analysis after the processing 3 2 Marker gene analysis 3 3 Phylogenetic analysis 3 4 Ecological Network analysis 4 Types 4 1 Bacteria 4 2 Archaea 4 3 Fungi 4 4 Viruses 5 Anatomical areas 5 1 Skin 5 2 Conjunctiva 5 3 Gastrointestinal tract 5 4 Urethra and bladder 5 5 Vagina 5 6 Placenta 5 7 Uterus 5 8 Oral cavity 5 9 Nasal cavity 5 10 Lung 5 11 Biliary tract 6 Disease and death 6 1 Clostridioides difficile infection 6 2 Cancer 6 3 Inflammatory bowel disease 6 4 Human immunodeficiency virus 6 5 Gut microbiome of centenarians 6 6 Death 7 Environmental health 8 Changes modulation and transmission 8 1 Migration 8 2 Transfer 9 See also 10 Bibliography 11 References 12 External linksTerminology EditThough widely known as flora or microflora this is a misnomer in technical terms since the word root flora pertains to plants and biota refers to the total collection of organisms in a particular ecosystem Recently the more appropriate term microbiota is applied though its use has not eclipsed the entrenched use and recognition of flora with regard to bacteria and other microorganisms Both terms are being used in different literature 4 Relative numbers EditThis section needs more medical references for verification or relies too heavily on primary sources Please review the contents of the section and add the appropriate references if you can Unsourced or poorly sourced material may be challenged and removed Find sources Human microbiome news newspapers books scholar JSTOR February 2020 As of 2014 it was reported in popular media and in the scientific literature that there are about 10 times as many microbial cells in the human body as there are human cells this figure was based on estimates that the human microbiome includes around 100 trillion bacterial cells and that an adult human typically has around 10 trillion human cells 8 In 2014 the American Academy of Microbiology published a FAQ that emphasized that the number of microbial cells and the number of human cells are both estimates and noted that recent research had arrived at a new estimate of the number of human cells approximately 37 2 trillion meaning that the ratio of microbial to human cells if the original estimate of 100 trillion bacterial cells is correct is closer to 3 1 8 9 In 2016 another group published a new estimate of the ratio being roughly 1 1 1 3 1 with an uncertainty of 25 and a variation of 53 over the population of standard 70 kg 150 lb males 10 3 A more recent estimate is a ratio of 1 3 1 bacterial cells for every human cell whereas the number of phages and viruses outnumber bacterial cells by at least an order of magnitude more The number of bacterial genes assuming 1000 bacterial species in the gut with 2000 genes per species is estimated to be 2 000 000 genes 100 times the number of approximately 20 000 human genes 11 Study EditMain article Human Microbiome Project Flowchart illustrating how the human microbiome is studied on the DNA level The problem of elucidating the human microbiome is essentially identifying the members of a microbial community which includes bacteria eukaryotes and viruses 12 This is done primarily using deoxyribonucleic acid DNA based studies though ribonucleic acid RNA protein and metabolite based studies are also performed 12 13 DNA based microbiome studies typically can be categorized as either targeted amplicon studies or more recently shotgun metagenomic studies The former focuses on specific known marker genes and is primarily informative taxonomically while the latter is an entire metagenomic approach which can also be used to study the functional potential of the community 12 One of the challenges that is present in human microbiome studies but not in other metagenomic studies is to avoid including the host DNA in the study 14 Aside from simply elucidating the composition of the human microbiome one of the major questions involving the human microbiome is whether there is a core that is whether there is a subset of the community that is shared among most humans 15 16 If there is a core then it would be possible to associate certain community compositions with disease states which is one of the goals of the HMP It is known that the human microbiome such as the gut microbiota is highly variable both within a single subject and among different individuals a phenomenon which is also observed in mice 4 On 13 June 2012 a major milestone of the HMP was announced by the National Institutes of Health NIH director Francis Collins 7 The announcement was accompanied with a series of coordinated articles published in Nature 17 18 and several journals in the Public Library of Science PLoS on the same day By mapping the normal microbial make up of healthy humans using genome sequencing techniques the researchers of the HMP have created a reference database and the boundaries of normal microbial variation in humans From 242 healthy U S volunteers more than 5 000 samples were collected from tissues from 15 men to 18 women body sites such as mouth nose skin lower intestine stool and vagina All the DNA human and microbial were analyzed with DNA sequencing machines The microbial genome data were extracted by identifying the bacterial specific ribosomal RNA 16S rRNA The researchers calculated that more than 10 000 microbial species occupy the human ecosystem and they have identified 81 99 of the genera citation needed Analysis after the processing Edit The statistical analysis is essential to validate the obtained results ANOVA can be used to size the differences between the groups if it is paired with graphical tools the outcome is easily visualized and understood 19 Once a metagenome is assembled it is possible to infer the functional potential of the microbiome The computational challenges for this type of analysis are greater than for single genomes because usually metagenomes assemblers have poorer quality and many recovered genes are non complete or fragmented After the gene identification step the data can be used to carry out a functional annotation by means of multiple alignment of the target genes against orthologs databases 20 Marker gene analysis Edit It is a technique that exploits primers to target a specific genetic region and enables to determine the microbial phylogenies The genetic region is characterized by a highly variable region which can confer detailed identification it is delimited by conserved regions which function as binding sites for primers used in PCR The main gene used to characterize bacteria and archaea is 16S rRNA gene while fungi identification is based on Internal Transcribed Spacer ITS The technique is fast and not so expensive and enables to obtain a low resolution classification of a microbial sample it is optimal for samples that may be contaminated by host DNA Primer affinity varies among all DNA sequences which may result in biases during the amplification reaction indeed low abundance samples are susceptible to overamplification errors since the other contaminating microorganisms result to be over represented in case of increasing the PCR cycles Therefore the optimization of primer selection can help to decrease such errors although it requires complete knowledge of the microorganisms present in the sample and their relative abundances 21 Marker gene analysis can be influenced by the primer choice in this kind of analysis it s desirable to use a well validated protocol such as the one used in the Earth Microbiome Project The first thing to do in a marker gene amplicon analysis is to remove sequencing errors a lot of sequencing platforms are very reliable but most of the apparent sequence diversity is still due to errors during the sequencing process To reduce this phenomenon a first approach is to cluster sequences into Operational taxonomic unit OTUs this process consolidates similar sequences a 97 similarity threshold is usually adopted into a single feature that can be used in further analysis steps this method however would discard SNPs because they would get clustered into a single OTU Another approach is Oligotyping which includes position specific information from 16s rRNA sequencing to detect small nucleotide variations and from discriminating between closely related distinct taxa These methods give as an output a table of DNA sequences and counts of the different sequences per sample rather than OTU 21 Another important step in the analysis is to assign a taxonomic name to microbial sequences in the data This can be done using machine learning approaches that can reach an accuracy at genus level of about 80 Other popular analysis packages provide support for taxonomic classification using exact matches to reference databases and should provide greater specificity but poor sensitivity Unclassified microorganism should be further checked for organelle sequences 21 Phylogenetic analysis Edit Many methods that exploit phylogenetic inference use the 16SRNA gene for Archea and Bacteria and the 18SRNA gene for Eukaryotes Phylogenetic comparative methods PCS are based on the comparison of multiple traits among microorganisms the principle is the closely they are related the higher number of traits they share Usually PCS are coupled with phylogenetic generalized least square PGLS or other statistical analysis to get more significant results Ancestral state reconstruction is used in microbiome studies to impute trait values for taxa whose traits are unknown This is commonly performed with PICRUSt which relies on available databases Phylogenetic variables are chosen by researchers according to the type of study through the selection of some variables with significant biological informations it is possible to reduce the dimension of the data to analyse 22 Phylogenetic aware distance is usually performed with UniFrac or similar tools such as Soresen s index or Rao s D to quantify the differences between the different communities All this methods are negatively affected by horizontal gene transmission HGT since it can generate errors and lead to the correlation of distant species There are different ways to reduce the negative impact of HGT the use of multiple genes or computational tools to assess the probability of putative HGT events 22 Ecological Network analysis Edit Microbial communities develop in a very complex dynamics which can be viewed and analyzed as an ecosystem The ecological interactions between microbes govern its change equilibrium and stability and can be represented by a population dynamic model 23 The ongoing study of ecological features of the microbiome is growing rapidly and allows to understand the fundamental properties of the microbiome Understanding the underlying rules of microbial community could help with treating diseases related to unstable microbial communities A very basic question is if different human which share different microbial communities have the same underlying microbial dynamics 24 Increasing evidence and indications have found that the dynamics is indeed universal 25 This question is a basic step that will allow scientists to develop treatment strategies based on the complex dynamics of human microbial communities There are more important properties on which considerations should be taken into account for developing interventions strategies for controlling the human microbial dynamics 26 Controlling the microbial communities could result in solving very bad and harmful diseases Types EditBacteria Edit Commensals vs pathogens mechanism Mechanisms underlying the inflammation in COPD Airway epithelium has complex structure consists of at least seven diverse cell types interacting with each other by means of tight junctions Moreover epithelial calls can deliver the signals into the underlying tissues taking part in the mechanisms of innate and adaptive immune defence The key transmitters of the signals are dendritic cells Once pathogenic bacterium e g S pneumoniae P aeruginosa has activated particular pattern recognition receptors on in epithelial cells the proinflammatory signaling pathways are activated This results mainly in IL 1 IL 6 and IL 8 production These cytokines induce the chemotaxis to the site of infection in its target cells e g neutrophils dendritic cells and macrophages On the other hand representatives of standard microbiota cause only weak signaling preventing the inflammation The mechanism of distinguishing between harmless and harmful bacteria on the molecular as well as on physiological levels is not completely understood Populations of microbes such as bacteria and yeasts inhabit the skin and mucosal surfaces in various parts of the body Their role forms part of normal healthy human physiology however if microbe numbers grow beyond their typical ranges often due to a compromised immune system or if microbes populate such as through poor hygiene or injury areas of the body normally not colonized or sterile such as the blood or the lower respiratory tract or the abdominal cavity disease can result causing respectively bacteremia sepsis pneumonia and peritonitis medical citation needed The Human Microbiome Project found that individuals host thousands of bacterial types different body sites having their own distinctive communities Skin and vaginal sites showed smaller diversity than the mouth and gut these showing the greatest richness The bacterial makeup for a given site on a body varies from person to person not only in type but also in abundance Bacteria of the same species found throughout the mouth are of multiple subtypes preferring to inhabit distinctly different locations in the mouth Even the enterotypes in the human gut previously thought to be well understood are from a broad spectrum of communities with blurred taxon boundaries 27 28 It is estimated that 500 to 1 000 species of bacteria live in the human gut but belong to just a few phyla Bacillota and Bacteroidota dominate but there are also Pseudomonadota Verrucomicrobiota Actinobacteriota Fusobacteriota and Cyanobacteria 29 A number of types of bacteria such as Actinomyces viscosus and A naeslundii live in the mouth where they are part of a sticky substance called plaque If this is not removed by brushing it hardens into calculus also called tartar The same bacteria also secrete acids that dissolve tooth enamel causing tooth decay citation needed The vaginal microflora consist mostly of various lactobacillus species It was long thought that the most common of these species was Lactobacillus acidophilus but it has later been shown that L iners is in fact most common followed by L crispatus Other lactobacilli found in the vagina are L jensenii L delbruekii and L gasseri Disturbance of the vaginal flora can lead to infections such as bacterial vaginosis and candiadiasis citation needed Archaea Edit Archaea are present in the human gut but in contrast to the enormous variety of bacteria in this organ the numbers of archaeal species are much more limited 30 The dominant group are the methanogens particularly Methanobrevibacter smithii and Methanosphaera stadtmanae 31 However colonization by methanogens is variable and only about 50 of humans have easily detectable populations of these organisms 32 As of 2007 no clear examples of archaeal pathogens were known 33 34 although a relationship has been proposed between the presence of some methanogens and human periodontal disease 35 Fungi Edit See also Mycobiota human Fungi in particular yeasts are present in the human gut 36 37 38 39 The best studied of these are Candida species due to their ability to become pathogenic in immunocompromised and even in healthy hosts 37 38 39 Yeasts are also present on the skin 36 such as Malassezia species where they consume oils secreted from the sebaceous glands 40 41 Viruses Edit See also Human viromeViruses especially bacterial viruses bacteriophages colonize various body sites These colonized sites include the skin 42 gut 43 lungs 44 and oral cavity 45 Virus communities have been associated with some diseases and do not simply reflect the bacterial communities 46 47 48 Anatomical areas EditMain article List of human microbiota Skin Edit Main article Skin flora A study of 20 skin sites on each of ten healthy humans found 205 identified genera in 19 bacterial phyla with most sequences assigned to four phyla Actinomycetota 51 8 Bacillota 24 4 Pseudomonadota 16 5 and Bacteroidota 6 3 49 A large number of fungal genera are present on healthy human skin with some variability by region of the body however during pathological conditions certain genera tend to dominate in the affected region 36 For example Malassezia is dominant in atopic dermatitis and Acremonium is dominant on dandruff affected scalps 36 The skin acts as a barrier to deter the invasion of pathogenic microbes The human skin contains microbes that reside either in or on the skin and can be residential or transient Resident microorganism types vary in relation to skin type on the human body A majority of microbes reside on superficial cells on the skin or prefer to associate with glands These glands such as oil or sweat glands provide the microbes with water amino acids and fatty acids In addition resident bacteria that associated with oil glands are often Gram positive and can be pathogenic 2 Conjunctiva Edit A small number of bacteria and fungi are normally present in the conjunctiva 36 50 Classes of bacteria include Gram positive cocci e g Staphylococcus and Streptococcus and Gram negative rods and cocci e g Haemophilus and Neisseria are present 50 Fungal genera include Candida Aspergillus and Penicillium 36 The lachrymal glands continuously secrete keeping the conjunctiva moist while intermittent blinking lubricates the conjunctiva and washes away foreign material Tears contain bactericides such as lysozyme so that microorganisms have difficulty in surviving the lysozyme and settling on the epithelial surfaces Gastrointestinal tract Edit Tryptophan metabolism by human gastrointestinal microbiota vte Tryptophan Clostridiumsporogenes Lacto bacilli Tryptophanase expressingbacteria IPA I3A Indole Liver Brain IPA I3A Indole Indoxylsulfate AST 120 AhR Intestinalimmunecells Intestinalepithelium PXR Mucosal homeostasis TNF a Junction protein coding mRNAs L cell GLP 1 T J Neuroprotectant Activation of glial cells and astrocytes 4 Hydroxy 2 nonenal levels DNA damage Antioxidant Inhibits b amyloid fibril formation Maintains mucosal reactivity IL 22 production Associated with vascular disease Oxidative stress Smooth muscle cell proliferation Aortic wall thickness and calcification Associated with chronic kidney disease Renal dysfunction Uremic toxin Kidneys This diagram shows the biosynthesis of bioactive compounds indole and certain other derivatives from tryptophan by bacteria in the gut 51 Indole is produced from tryptophan by bacteria that express tryptophanase 51 Clostridium sporogenes metabolizes tryptophan into indole and subsequently 3 indolepropionic acid IPA 52 a highly potent neuroprotective antioxidant that scavenges hydroxyl radicals 51 53 54 IPA binds to the pregnane X receptor PXR in intestinal cells thereby facilitating mucosal homeostasis and barrier function 51 Following absorption from the intestine and distribution to the brain IPA confers a neuroprotective effect against cerebral ischemia and Alzheimer s disease 51 Lactobacillus species metabolize tryptophan into indole 3 aldehyde I3A which acts on the aryl hydrocarbon receptor AhR in intestinal immune cells in turn increasing interleukin 22 IL 22 production 51 Indole itself triggers the secretion of glucagon like peptide 1 GLP 1 in intestinal L cells and acts as a ligand for AhR 51 Indole can also be metabolized by the liver into indoxyl sulfate a compound that is toxic in high concentrations and associated with vascular disease and renal dysfunction 51 AST 120 activated charcoal an intestinal sorbent that is taken by mouth adsorbs indole in turn decreasing the concentration of indoxyl sulfate in blood plasma 51 Main article Gut microbiota See also Gut brain axis In humans the composition of the gastrointestinal microbiome is established during birth 55 Birth by Cesarean section or vaginal delivery also influences the gut s microbial composition Babies born through the vaginal canal have non pathogenic beneficial gut microbiota similar to those found in the mother 56 However the gut microbiota of babies delivered by C section harbors more pathogenic bacteria such as Escherichia coli and Staphylococcus and it takes longer to develop non pathogenic beneficial gut microbiota 57 The relationship between some gut microbiota and humans is not merely commensal a non harmful coexistence but rather a mutualistic relationship 2 Some human gut microorganisms benefit the host by fermenting dietary fiber into short chain fatty acids SCFAs such as acetic acid and butyric acid which are then absorbed by the host 4 58 Intestinal bacteria also play a role in synthesizing vitamin B and vitamin K as well as metabolizing bile acids sterols and xenobiotics 2 58 The systemic importance of the SCFAs and other compounds they produce are like hormones and the gut flora itself appears to function like an endocrine organ 58 and dysregulation of the gut flora has been correlated with a host of inflammatory and autoimmune conditions 4 59 The composition of human gut microbiota changes over time when the diet changes and as overall health changes 4 59 A systematic review of 15 human randomized controlled trials from July 2016 found that certain commercially available strains of probiotic bacteria from the Bifidobacterium and Lactobacillus genera B longum B breve B infantis L helveticus L rhamnosus L plantarum and L casei when taken by mouth in daily doses of 109 1010 colony forming units CFU for 1 2 months possess treatment efficacy i e improves behavioral outcomes in certain central nervous system disorders including anxiety depression autism spectrum disorder and obsessive compulsive disorder and improves certain aspects of memory 60 Urethra and bladder Edit The genitourinary system appears to have a microbiota 61 62 which is an unexpected finding in light of the long standing use of standard clinical microbiological culture methods to detect bacteria in urine when people show signs of a urinary tract infection it is common for these tests to show no bacteria present 63 It appears that common culture methods do not detect many kinds of bacteria and other microorganisms that are normally present 63 As of 2017 sequencing methods were used to identify these microorganisms to determine if there are differences in microbiota between people with urinary tract problems and those who are healthy 61 62 64 To properly assess the microbiome of the bladder as opposed to the genitourinary system the urine specimen should be collected directly from the bladder which is often done with a catheter 65 Vagina Edit Main article Vaginal flora See also List of microbiota species of the lower reproductive tract of women List of bacterial vaginosis microbiota and Vaginal microbiota in pregnancy Vaginal microbiota refers to those species and genera that colonize the vagina These organisms play an important role in protecting against infections and maintaining vaginal health 66 The most abundant vaginal microorganisms found in premenopausal women are from the genus Lactobacillus which suppress pathogens by producing hydrogen peroxide and lactic acid 38 66 67 Bacterial species composition and ratios vary depending on the stage of the menstrual cycle 68 69 needs update Ethnicity also influences vaginal flora The occurrence of hydrogen peroxide producing lactobacilli is lower in African American women and vaginal pH is higher 70 Other influential factors such as sexual intercourse and antibiotics have been linked to the loss of lactobacilli 67 Moreover studies have found that sexual intercourse with a condom does appear to change lactobacilli levels and does increase the level of Escherichia coli within the vaginal flora 67 Changes in the normal healthy vaginal microbiota is an indication of infections 71 such as candidiasis or bacterial vaginosis 67 Candida albicans inhibits the growth of Lactobacillus species while Lactobacillus species which produce hydrogen peroxide inhibit the growth and virulence of Candida albicans in both the vagina and the gut 36 38 39 Fungal genera that have been detected in the vagina include Candida Pichia Eurotium Alternaria Rhodotorula and Cladosporium among others 36 Placenta Edit Main article Placental microbiome Until recently the placenta was considered to be a sterile organ but commensal nonpathogenic bacterial species and genera have been identified that reside in the placental tissue 72 73 74 However the existence of a microbiome in the placenta is controversial as criticized in several researches So called placental microbiome is likely derived from contamination of regents because low biomass samples are easily contaminated 75 76 77 Uterus Edit Main article Uterine microbiome Until recently the upper reproductive tract of women was considered to be a sterile environment A variety of microorganisms inhabit the uterus of healthy asymptomatic women of reproductive age The microbiome of the uterus differs significantly from that of the vagina and gastrointestinal tract 78 Oral cavity Edit Main article Oral microbiology The environment present in the human mouth allows the growth of characteristic microorganisms found there It provides a source of water and nutrients as well as a moderate temperature 2 Resident microbes of the mouth adhere to the teeth and gums to resist mechanical flushing from the mouth to stomach where acid sensitive microbes are destroyed by hydrochloric acid 2 38 Anaerobic bacteria in the oral cavity include Actinomyces Arachnia Bacteroides Bifidobacterium Eubacterium Fusobacterium Lactobacillus Leptotrichia Peptococcus Peptostreptococcus Propionibacterium Selenomonas Treponema and Veillonella 79 needs update Genera of fungi that are frequently found in the mouth include Candida Cladosporium Aspergillus Fusarium Glomus Alternaria Penicillium and Cryptococcus among others 36 Bacteria accumulate on both the hard and soft oral tissues in biofilm allowing them to adhere and strive in the oral environment while protected from the environmental factors and antimicrobial agents 80 Saliva plays a key biofilm homeostatic role allowing recolonization of bacteria for formation and controlling growth by detaching biofilm buildup 81 It also provides a means of nutrients and temperature regulation The location of the biofilm determines the type of exposed nutrients it receives 82 Oral bacteria have evolved mechanisms to sense their environment and evade or modify the host However a highly efficient innate host defense system constantly monitors the bacterial colonization and prevents bacterial invasion of local tissues A dynamic equilibrium exists between dental plaque bacteria and the innate host defense system 83 This dynamic between host oral cavity and oral microbes plays a key role in health and disease as it provides entry into the body 84 A healthy equilibrium presents a symbiotic relationship where oral microbes limit growth and adherence of pathogens while the host provides an environment for them to flourish 84 80 Ecological changes such as change of immune status shift of resident microbes and nutrient availability shift from a mutual to parasitic relationship resulting in the host being prone to oral and systemic disease 80 Systemic diseases such as diabetes and cardiovascular diseases has been correlated to poor oral health 84 Of particular interest is the role of oral microorganisms in the two major dental diseases dental caries and periodontal disease 83 Pathogen colonization at the periodontium cause an excessive immune response resulting in a periodontal pocket a deepened space between the tooth and gingiva 80 This acts as a protected blood rich reservoir with nutrients for anaerobic pathogens 80 Systemic disease at various sites of the body can result from oral microbes entering the blood bypassing periodontal pockets and oral membranes 84 Persistent proper oral hygiene is the primary method for preventing oral and systemic disease 84 It reduces the density of biofilm and overgrowth of potential pathogenic bacteria resulting in disease 82 However proper oral hygiene may not be enough as the oral microbiome genetics and changes to immune response play a factor in developing chronic infections 82 Use of antibiotics could treat already spreading infection but ineffective against bacteria within biofilms 82 Nasal cavity Edit The healthy nasal microbiome is dominated by Corynebacterium and Staphylococcus The mucosal microbiome plays a critical role in modulating viral infection 85 Lung Edit Main article Lung microbiota Much like the oral cavity the upper and lower respiratory system possess mechanical deterrents to remove microbes Goblet cells produce mucous which traps microbes and moves them out of the respiratory system via continuously moving ciliated epithelial cells 2 In addition a bactericidal effect is generated by nasal mucus which contains the enzyme lysozyme 2 The upper and lower respiratory tract appears to have its own set of microbiota 86 Pulmonary bacterial microbiota belong to 9 major bacterial genera Prevotella Sphingomonas Pseudomonas Acinetobacter Fusobacterium Megasphaera Veillonella Staphylococcus and Streptococcus Some of the bacteria considered normal biota in the respiratory tract can cause serious disease especially in immunocompromised individuals these include Streptococcus pyogenes Haemophilus influenzae Streptococcus pneumoniae Neisseria meningitidis and Staphylococcus aureus citation needed Fungal genera that compose the pulmonary mycobiome include Candida Malassezia Neosartorya Saccharomyces and Aspergillus among others 36 Unusual distributions of bacterial and fungal genera in the respiratory tract is observed in people with cystic fibrosis 36 87 Their bacterial flora often contains antibiotic resistant and slow growing bacteria and the frequency of these pathogens changes in relation to age 87 Biliary tract Edit Traditionally the biliary tract has been considered to be normally sterile and the presence of microorganisms in bile is a marker of pathological process This assumption was confirmed by failure in allocation of bacterial strains from the normal bile duct Papers began emerging in 2013 showing that the normal biliary microbiota is a separate functional layer which protects a biliary tract from colonization by exogenous microorganisms 88 Disease and death EditHuman bodies rely on the innumerable bacterial genes as the source of essential nutrients 89 Both metagenomic and epidemiological studies indicate vital roles for the human microbiome in preventing a wide range of diseases from type 2 diabetes and obesity to inflammatory bowel disease Parkinson s disease and even mental health conditions like depression 90 A symbiotic relationship between the gut microbiota and different bacteria may influence an individual s immune response 91 Metabolites generated by gut microbes appear to be causative factors in type 2 diabetes 92 Although in its infancy microbiome based treatment is also showing promise most notably for treating drug resistant C difficile dead link infection 93 and in diabetes treatment 94 Clostridioides difficile infection Edit An overwhelming presence of the bacteria C difficile leads to an infection of the gastrointestinal tract normally associated to dysbiosis with the microbiota believed to have been caused by the administration of antibiotics Use of antibiotics eradicates the beneficial gut flora within the gastrointestinal tract which normally prevents pathogenic bacteria from establishing dominance 95 Traditional treatment for C difficile infections includes an additional regime of antibiotics however efficacy rates average between 20 and 30 96 Recognizing the importance of healthy gut bacteria researchers turned to a procedure known as fecal microbiota transplant where patients experiencing gastrointestinal diseases such as C difficile infection receive fecal content from a healthy individual in hopes of restoring a normal functioning intestinal microbiota 97 Fecal microbiota transplant is approximately 85 90 effective in people with CDI for whom antibiotics have not worked or in whom the disease recurs following antibiotics 98 99 Most people with CDI recover with one FMT treatment 100 95 101 Cancer Edit Although cancer is generally a disease of host genetics and environmental factors microorganisms are implicated in some 20 of human cancers 102 Particularly for potential factors in colon cancer bacterial density is one million times higher than in the small intestine and approximately 12 fold more cancers occur in the colon compared to the small intestine possibly establishing a pathogenic role for microbiota in colon and rectal cancers 103 Microbial density may be used as a prognostic tool in assessment of colorectal cancers 103 The microbiota may affect carcinogenesis in three broad ways i altering the balance of tumor cell proliferation and death ii regulating immune system function and iii influencing metabolism of host produced factors foods and pharmaceuticals 102 Tumors arising at boundary surfaces such as the skin oropharynx and respiratory digestive and urogenital tracts harbor a microbiota Substantial microbe presence at a tumor site does not establish association or causal links Instead microbes may find tumor oxygen tension or nutrient profile supportive Decreased populations of specific microbes or induced oxidative stress may also increase risks 102 103 Of the around 1030 microbes on earth ten are designated by the International Agency for Research on Cancer as human carcinogens 102 Microbes may secrete proteins or other factors directly drive cell proliferation in the host or may up or down regulate the host immune system including driving acute or chronic inflammation in ways that contribute to carcinogenesis 102 Concerning the relationship of immune function and development of inflammation mucosal surface barriers are subject to environmental risks and must rapidly repair to maintain homeostasis Compromised host or microbiota resiliency also reduce resistance to malignancy possibly inducing inflammation and cancer Once barriers are breached microbes can elicit proinflammatory or immunosuppressive programs through various pathways 102 For example cancer associated microbes appear to activate NF kB signaling within the tumor microenvironment Other pattern recognition receptors such as nucleotide binding oligomerization domain like receptor NLR family members NOD 2 NLRP3 NLRP6 and NLRP12 may play a role in mediating colorectal cancer 102 Likewise Helicobacter pylori appears to increase the risk of gastric cancer due to its driving a chronic inflammatory response in the stomach 102 103 Inflammatory bowel disease Edit Inflammatory bowel disease consists of two different diseases ulcerative colitis and Crohn s disease and both of these diseases present with disruptions in the gut microbiota also known as dysbiosis This dysbiosis presents itself in the form of decreased microbial diversity in the gut 104 105 and is correlated to defects in host genes that changes the innate immune response in individuals 104 Human immunodeficiency virus Edit The HIV disease progression influences the composition and function of the gut microbiota with notable differences between HIV negative HIV positive and post ART HIV positive populations citation needed HIV decreases the integrity of the gut epithelial barrier function by affecting tight junctions This breakdown allows for translocation across the gut epithelium which is thought to contribute to increases in inflammation seen in people with HIV 106 Vaginal microbiota plays a role in the infectivity of HIV with an increased risk of infection and transmission when the woman has bacterial vaginosis a condition characterized by an abnormal balance of vaginal bacteria 107 The enhanced infectivity is seen with the increase in pro inflammatory cytokines and CCR5 CD4 cells in the vagina However a decrease in infectivity is seen with increased levels of vaginal Lactobacillus which promotes an anti inflammatory condition 106 Gut microbiome of centenarians Edit Humans who are 100 years old or older called centenarians have a distinct gut microbiome This microbiome is characteristically enriched in microorganisms that are able to synthesize novel secondary bile acids 108 These secondary bile acids include various isoforms of lithocholic acid that may contribute to healthy aging 108 Death Edit Main article Necrobiome With death the microbiome of the living body collapses and a different composition of microorganisms named necrobiome establishes itself as an important active constituent of the complex physical decomposition process Its predictable changes over time are thought to be useful to help determine the time of death 109 110 Environmental health EditStudies in 2009 questioned whether the decline in biota including microfauna as a result of human intervention might impede human health hospital safety procedures food product design and treatments of disease 111 Changes modulation and transmission Edit Microbiome based interventions to modulate gut ecology and the immune system 112 Hygiene probiotics 112 prebiotics microbiota transplants fecal or skin 113 medications antibiotics diseases exercise 114 115 diet breastfeeding aging and other factors further explanation needed can change the human microbiome across various anatomical systems or regions such as skin and gut Migration Edit Preliminary research indicates that immediate changes in the microbiota may occur when a person migrates from one country to another such as when Thai immigrants settled in the United States 116 or when Latin Americans immigrated into the United States 117 Losses of microbiota diversity were greater in obese individuals and children of immigrants 116 117 Transfer Edit A 2023 metagenomic analysis time provided various comprehensive data and insights into microbial sharing between individuals finding substantial strain sharing among cohabiting individuals with median strain sharing rates for the gut and oral microbiomes being 12 34 for mothers and their 0 3 years old offspring and 32 38 for partners in the used data Time since cohabitation was the largest factor and bacterial strain sharing recapitulated host population structures better clarification needed than species level profiles did 118 119 See also EditCarbon monoxide releasing molecules Drug resistance Human Microbiome Project Human milk microbiome Human virome Initial acquisition of microbiota List of bacterial vaginosis microbiota Microbiome Microbiome Immunity Project Microorganism uBiomeBibliography EditEd Yong I Contain Multitudes The Microbes Within Us and a Grander View of Life 368 pages Published 9 August 2016 by Ecco ISBN 0062368591 References Edit a b Marchesi JR Ravel J 2015 The vocabulary of microbiome research a proposal Microbiome 3 31 doi 10 1186 s40168 015 0094 5 PMC 4520061 PMID 26229597 MicrobiomeThis term refers to the entire habitat including the microorganisms bacteria archaea lower and higher eurkaryotes and viruses their genomes i e genes and the surrounding environmental conditions This definition is based on that of biome the biotic and abiotic factors of given environments Others in the field limit the definition of microbiome to the collection of genes and genomes of members of a microbiota It is argued that this is the definition of metagenome which combined with the environment constitutes the microbiome a b c d e f g h i j k Sherwood L Willey J Woolverton C 2013 Prescott s Microbiology 9th ed New York McGraw Hill pp 713 721 ISBN 9780073402406 OCLC 886600661 a b Sender R Fuchs S Milo R January 2016 Are We Really Vastly Outnumbered Revisiting the Ratio of Bacterial to Host Cells in Humans Cell 164 3 337 40 doi 10 1016 j cell 2016 01 013 PMID 26824647 a b c d e f Quigley EM September 2013 Gut bacteria in health and disease Gastroenterology amp Hepatology 9 9 560 9 PMC 3983973 PMID 24729765 Falony G Vieira Silva S Raes J 2015 Microbiology Meets Big Data The Case of Gut Microbiota Derived Trimethylamine Annual Review of Microbiology 69 305 21 doi 10 1146 annurev micro 091014 104422 PMID 26274026 we review literature on trimethylamine TMA a microbiota generated metabolite linked to atherosclerosis development Gaci N Borrel G Tottey W O Toole PW Brugere JF November 2014 Archaea and the human gut new beginning of an old story World Journal of Gastroenterology 20 43 16062 78 doi 10 3748 wjg v20 i43 16062 PMC 4239492 PMID 25473158 Trimethylamine is exclusively a microbiota derived product of nutrients lecithin choline TMAO L carnitine from normal diet from which seems originate two diseases trimethylaminuria or Fish Odor Syndrome and cardiovascular disease through the proatherogenic property of its oxidized liver derived form a b NIH Human Microbiome Project defines normal bacterial makeup of the body NIH News 13 June 2012 a b American Academy of Microbiology FAQ Human Microbiome Archived 31 December 2016 at the Wayback Machine January 2014 Rosner Judah L 1 February 2014 Ten Times More Microbial Cells than Body Cells in Humans Microbe Magazine 9 2 47 doi 10 1128 microbe 9 47 2 ISSN 1558 7452 Abbott Alison 8 January 2016 Scientists bust myth that our bodies have more bacteria than human cells Nature doi 10 1038 nature 2016 19136 ISSN 1476 4687 S2CID 190879263 Gilbert JA Blaser MJ Caporaso JG Jansson JK Lynch SV Knight R April 2018 Current understanding of the human microbiome Nature Medicine 24 4 392 400 doi 10 1038 nm 4517 PMC 7043356 PMID 29634682 a b c Peterson J Garges S Giovanni M McInnes P Wang L Schloss JA et al December 2009 The NIH Human Microbiome Project Genome Research 19 12 2317 23 doi 10 1101 gr 096651 109 PMC 2792171 PMID 19819907 Kuczynski J Lauber CL Walters WA Parfrey LW Clemente JC Gevers D Knight R December 2011 Experimental and analytical tools for studying the human microbiome Nature Reviews Genetics 13 1 47 58 doi 10 1038 nrg3129 PMC 5119550 PMID 22179717 Vestheim H Jarman SN July 2008 Blocking primers to enhance PCR amplification of rare sequences in mixed samples a case study on prey DNA in Antarctic krill stomachs Frontiers in Zoology 5 12 doi 10 1186 1742 9994 5 12 PMC 2517594 PMID 18638418 Tap J Mondot S Levenez F Pelletier E Caron C Furet JP et al October 2009 Towards the human intestinal microbiota phylogenetic core Environmental Microbiology 11 10 2574 84 doi 10 1111 j 1462 2920 2009 01982 x PMID 19601958 Hamady M Knight R July 2009 Microbial community profiling for human microbiome projects Tools techniques and challenges Genome Research 19 7 1141 52 doi 10 1101 gr 085464 108 PMC 3776646 PMID 19383763 Methe BA Nelson KE Pop M Creasy HH Giglio MG Huttenhower C et al Human Microbiome Project Consortium June 2012 A framework for human microbiome research Nature 486 7402 215 21 Bibcode 2012Natur 486 215T doi 10 1038 nature11209 PMC 3377744 PMID 22699610 The Human Microbiome Project Consortium June 2012 Structure function and diversity of the healthy human microbiome Nature 486 7402 207 14 Bibcode 2012Natur 486 207T doi 10 1038 nature11234 PMC 3564958 PMID 22699609 Quince C Walker AW Simpson JT Loman NJ Segata N September 2017 Shotgun metagenomics from sampling to analysis PDF Nature Biotechnology 35 9 833 844 doi 10 1038 nbt 3935 hdl 2164 10167 PMID 28898207 S2CID 19041044 Claesson MJ Clooney AG O Toole PW October 2017 A clinician s guide to microbiome analysis Nature Reviews Gastroenterology amp Hepatology 14 10 585 595 doi 10 1038 nrgastro 2017 97 PMID 28790452 S2CID 24644894 a b c Knight R Vrbanac A Taylor BC Aksenov A Callewaert C Debelius J et al July 2018 Best practices for analysing microbiomes Nature Reviews Microbiology 16 7 410 422 doi 10 1038 s41579 018 0029 9 PMID 29795328 S2CID 43936002 a b Washburne AD Morton JT Sanders J McDonald D Zhu Q Oliverio AM Knight R June 2018 Methods for phylogenetic analysis of microbiome data Nature Microbiology 3 6 652 661 doi 10 1038 s41564 018 0156 0 PMID 29795540 S2CID 43962376 Berg Gabriele et al 2020 Microbiome definition re visited Old concepts and new challenges Microbiome 8 1 103 doi 10 1186 s40168 020 00875 0 PMC 7329523 PMID 32605663 Faust Karoline Raes Jeroen 2016 Rules of the game for microbiota Nature 534 7606 182 183 doi 10 1038 534182a PMID 27279206 S2CID 205089271 Bashan Amir Gibson Travis E Friedman Jonathan Carey Vincent J Weiss Scott T Hohmann Elizabeth L Liu Yang Yu 2016 Universality of human microbial dynamics Nature 534 7606 259 262 doi 10 1038 nature18301 PMC 4902290 PMID 27279224 Liu Yang Yu 15 February 2023 Controlling the human microbiome PDF Cell Systems 14 2 135 159 doi 10 1016 j cels 2022 12 010 PMC 9942095 PMID 36796332 PLoS Human Microbiome Project Collection Manuscript Summaries Archived 4 March 2014 at the Wayback Machine 13 June 2012 Consortium of Scientists Map the Human Body s Bacterial Ecosystem ucsf edu Sommer F Backhed F April 2013 The gut microbiota masters of host development and physiology Nature Reviews Microbiology 11 4 227 38 doi 10 1038 nrmicro2974 PMID 23435359 S2CID 22798964 Eckburg PB Bik EM Bernstein CN Purdom E Dethlefsen L Sargent M et al June 2005 Diversity of the human intestinal microbial flora Science 308 5728 1635 8 Bibcode 2005Sci 308 1635E doi 10 1126 science 1110591 PMC 1395357 PMID 15831718 Duncan SH Louis P Flint HJ April 2007 Cultivable bacterial diversity from the human colon Letters in Applied Microbiology 44 4 343 50 doi 10 1111 j 1472 765X 2007 02129 x PMID 17397470 S2CID 43706882 Florin TH Zhu G Kirk KM Martin NG October 2000 Shared and unique environmental factors determine the ecology of methanogens in humans and rats The American Journal of Gastroenterology 95 10 2872 9 CiteSeerX 10 1 1 606 4187 doi 10 1111 j 1572 0241 2000 02319 x PMID 11051362 S2CID 1087298 Eckburg PB Lepp PW Relman DA February 2003 Archaea and their potential role in human disease Infection and Immunity 71 2 591 6 doi 10 1128 IAI 71 2 591 596 2003 PMC 145348 PMID 12540534 Cavicchioli R Curmi PM Saunders N Thomas T November 2003 Pathogenic archaea do they exist BioEssays 25 11 1119 28 doi 10 1002 bies 10354 PMID 14579252 Lepp PW Brinig MM Ouverney CC Palm K Armitage GC Relman DA April 2004 Methanogenic Archaea and human periodontal disease Proceedings of the National Academy of Sciences of the United States of America 101 16 6176 81 Bibcode 2004PNAS 101 6176L doi 10 1073 pnas 0308766101 PMC 395942 PMID 15067114 a b c d e f g h i j k Cui L Morris A Ghedin E July 2013 The human mycobiome in health and disease Genome Medicine 5 7 63 doi 10 1186 gm467 PMC 3978422 PMID 23899327 Figure 2 Distribution of fungal genera in different body sites a b Martins N Ferreira IC Barros L Silva S Henriques M June 2014 Candidiasis predisposing factors prevention diagnosis and alternative treatment PDF Mycopathologia 177 5 6 223 40 doi 10 1007 s11046 014 9749 1 hdl 10198 10147 PMID 24789109 S2CID 795450 Candida species and other microorganisms are involved in this complicated fungal infection but Candida albicans continues to be the most prevalent In the past two decades it has been observed an abnormal overgrowth in the gastrointestinal urinary and respiratory tracts not only in immunocompromised patients but also related to nosocomial infections and even in healthy individuals There is a widely variety of causal factors that contribute to yeast infection which means that candidiasis is a good example of a multifactorial syndrome a b c d e Wang ZK Yang YS Stefka AT Sun G Peng LH April 2014 Review article fungal microbiota and digestive diseases Alimentary Pharmacology amp Therapeutics 39 8 751 66 doi 10 1111 apt 12665 PMID 24612332 S2CID 22101484 In addition GI fungal infection is reported even among those patients with normal immune status Digestive system related fungal infections may be induced by both commensal opportunistic fungi and exogenous pathogenic fungi Candida sp is also the most frequently identified species among patients with gastric IFI It was once believed that gastric acid could kill microbes entering the stomach and that the unique ecological environment of the stomach was not suitable for microbial colonisation or infection However several studies using culture independent methods confirmed that large numbers of acid resistant bacteria belonging to eight phyla and up to 120 species exist in the stomach such as Streptococcus sp Neisseria sp and Lactobacillus sp etc 26 27 Furthermore Candida albicans can grow well in highly acidic environments 28 and some genotypes may increase the severity of gastric mucosal lesions 29 a b c Erdogan A Rao SS April 2015 Small intestinal fungal overgrowth Current Gastroenterology Reports 17 4 16 doi 10 1007 s11894 015 0436 2 PMID 25786900 S2CID 3098136 Small intestinal fungal overgrowth SIFO is characterized by the presence of excessive number of fungal organisms in the small intestine associated with gastrointestinal GI symptoms Candidiasis is known to cause GI symptoms particularly in immunocompromised patients or those receiving steroids or antibiotics However only recently there is emerging literature that an overgrowth of fungus in the small intestine of non immunocompromised subjects may cause unexplained GI symptoms Two recent studies showed that 26 24 94 and 25 3 38 150 of a series of patients with unexplained GI symptoms had SIFO The most common symptoms observed in these patients were belching bloating indigestion nausea diarrhea and gas Fungal bacterial interaction may act in different ways and may either be synergistic or antagonistic or symbiotic 29 Some bacteria such as Lactobacillus species can interact and inhibit both the virulence and growth of Candida species in the gut by producing hydrogen peroxide 30 Any damage to the mucosal barrier or disruption of GI microbiota with chemotherapy or antibiotic use inflammatory processes activation of immune molecules and disruption of epithelial repair may all cause fungal overgrowth 27 Marcon MJ Powell DA April 1992 Human infections due to Malassezia spp Clinical Microbiology Reviews 5 2 101 19 doi 10 1128 CMR 5 2 101 PMC 358230 PMID 1576583 Roth RR James WD 1988 Microbial ecology of the skin Annual Review of Microbiology 42 1 441 64 doi 10 1146 annurev mi 42 100188 002301 PMID 3144238 Hannigan GD Meisel JS Tyldsley AS Zheng Q Hodkinson BP SanMiguel AJ et al October 2015 The human skin double stranded DNA virome topographical and temporal diversity genetic enrichment and dynamic associations with the host microbiome mBio 6 5 e01578 15 doi 10 1128 mBio 01578 15 PMC 4620475 PMID 26489866 Minot S Sinha R Chen J Li H Keilbaugh SA Wu GD et al October 2011 The human gut virome inter individual variation and dynamic response to diet Genome Research 21 10 1616 25 doi 10 1101 gr 122705 111 PMC 3202279 PMID 21880779 Young JC Chehoud C Bittinger K Bailey A Diamond JM Cantu E et al January 2015 Viral metagenomics reveal blooms of anelloviruses in the respiratory tract of lung transplant recipients American Journal of Transplantation 15 1 200 9 doi 10 1111 ajt 13031 PMC 4276431 PMID 25403800 Abeles SR Robles Sikisaka R Ly M Lum AG Salzman J Boehm TK Pride DT September 2014 Human oral viruses are personal persistent and gender consistent The ISME Journal 8 9 1753 67 doi 10 1038 ismej 2014 31 PMC 4139723 PMID 24646696 Ly M Abeles SR Boehm TK Robles Sikisaka R Naidu M Santiago Rodriguez T Pride DT May 2014 Altered oral viral ecology in association with periodontal disease mBio 5 3 e01133 14 doi 10 1128 mBio 01133 14 PMC 4030452 PMID 24846382 Monaco CL Gootenberg DB Zhao G Handley SA Ghebremichael MS Lim ES et al March 2016 Altered Virome and Bacterial Microbiome in Human Immunodeficiency Virus Associated Acquired Immunodeficiency Syndrome Cell Host amp Microbe 19 3 311 22 doi 10 1016 j chom 2016 02 011 PMC 4821831 PMID 26962942 Norman JM Handley SA Baldridge MT Droit L Liu CY Keller BC et al January 2015 Disease specific alterations in the enteric virome in inflammatory bowel disease Cell 160 3 447 60 doi 10 1016 j cell 2015 01 002 PMC 4312520 PMID 25619688 Grice EA Kong HH Conlan S Deming CB Davis J Young AC et al NISC Comparative Sequencing Program May 2009 Topographical and temporal diversity of the human skin microbiome Science 324 5931 1190 2 Bibcode 2009Sci 324 1190G doi 10 1126 science 1171700 PMC 2805064 PMID 19478181 a b The Normal Bacterial Flora of Humans textbookofbacteriology net a b c d e f g h i Zhang LS Davies SS April 2016 Microbial metabolism of dietary components to bioactive metabolites opportunities for new therapeutic interventions Genome Med 8 1 46 doi 10 1186 s13073 016 0296 x PMC 4840492 PMID 27102537 Lactobacillus spp convert tryptophan to indole 3 aldehyde I3A through unidentified enzymes 125 Clostridium sporogenes convert tryptophan to IPA 6 likely via a tryptophan deaminase IPA also potently scavenges hydroxyl radicals Table 2 Microbial metabolites their synthesis mechanisms of action and effects on health and diseaseFigure 1 Molecular mechanisms of action of indole and its metabolites on host physiology and disease Wikoff WR Anfora AT Liu J Schultz PG Lesley SA Peters EC Siuzdak G March 2009 Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites Proc Natl Acad Sci U S A 106 10 3698 3703 Bibcode 2009PNAS 106 3698W doi 10 1073 pnas 0812874106 PMC 2656143 PMID 19234110 Production of IPA was shown to be completely dependent on the presence of gut microflora and could be established by colonization with the bacterium Clostridium sporogenes IPA metabolism diagram 3 Indolepropionic acid Human Metabolome Database University of Alberta Retrieved 12 June 2018 Chyan YJ Poeggeler B Omar RA Chain DG Frangione B Ghiso J Pappolla MA July 1999 Potent neuroprotective properties against the Alzheimer beta amyloid by an endogenous melatonin related indole structure indole 3 propionic acid J Biol Chem 274 31 21937 21942 doi 10 1074 jbc 274 31 21937 PMID 10419516 S2CID 6630247 Indole 3 propionic acid IPA has previously been identified in the plasma and cerebrospinal fluid of humans but its functions are not known In kinetic competition experiments using free radical trapping agents the capacity of IPA to scavenge hydroxyl radicals exceeded that of melatonin an indoleamine considered to be the most potent naturally occurring scavenger of free radicals In contrast with other antioxidants IPA was not converted to reactive intermediates with pro oxidant activity Yang I Corwin EJ Brennan PA Jordan S Murphy JR Dunlop A 2016 The Infant Microbiome Implications for Infant Health and Neurocognitive Development Nursing Research 65 1 76 88 doi 10 1097 NNR 0000000000000133 PMC 4681407 PMID 26657483 Mueller NT Bakacs E Combellick J Grigoryan Z Dominguez Bello MG February 2015 The infant microbiome development mom matters Trends in Molecular Medicine 21 2 109 17 doi 10 1016 j molmed 2014 12 002 PMC 4464665 PMID 25578246 Wall R Ross RP Ryan CA Hussey S Murphy B Fitzgerald GF Stanton C 4 March 2009 Role of gut microbiota in early infant development Clinical Medicine Pediatrics 3 45 54 doi 10 4137 cmped s2008 PMC 3676293 PMID 23818794 a b c Clarke G Stilling RM Kennedy PJ Stanton C Cryan JF Dinan TG August 2014 Minireview Gut microbiota the neglected endocrine organ Molecular Endocrinology 28 8 1221 38 doi 10 1210 me 2014 1108 PMC 5414803 PMID 24892638 a b Shen S Wong CH April 2016 Bugging inflammation role of the gut microbiota Clinical amp Translational Immunology 5 4 e72 doi 10 1038 cti 2016 12 PMC 4855262 PMID 27195115 Wang H Lee IS Braun C Enck P October 2016 Effect of Probiotics on Central Nervous System Functions in Animals and Humans A Systematic Review Journal of Neurogastroenterology and Motility 22 4 589 605 doi 10 5056 jnm16018 PMC 5056568 PMID 27413138 These probiotics showed efficacy in improving psychiatric disorder related behaviors including anxiety depression autism spectrum disorder ASD obsessive compulsive disorder and memory abilities including spatial and non spatial memory Because many of the basic science studies showed some efficacy of probiotics on central nervous system function this background may guide and promote further preclinical and clinical studies According to the qualitative analyses of current studies we can provisionally draw the conclusion that B longum B breve B infantis L helveticus L rhamnosus L plantarum and L casei were most effective in improving CNS function including psychiatric disease associated functions anxiety depression mood stress response and memory abilities a b Drake MJ Morris N Apostolidis A Rahnama i MS Marchesi JR April 2017 The urinary microbiome and its contribution to lower urinary tract symptoms ICI RS 2015 Neurourology and Urodynamics 36 4 850 853 doi 10 1002 nau 23006 hdl 1983 3b024f95 9f86 406a 9be3 ce35984b8de1 PMID 28444712 S2CID 27636043 a b Aragon IM Herrera Imbroda B Queipo Ortuno MI Castillo E Del Moral JS Gomez Millan J et al January 2018 The Urinary Tract Microbiome in Health and Disease European Urology Focus 4 1 128 138 doi 10 1016 j euf 2016 11 001 PMID 28753805 a b Schmiemann G Kniehl E Gebhardt K Matejczyk MM Hummers Pradier E May 2010 The diagnosis of urinary tract infection a systematic review Deutsches Arzteblatt International 107 21 361 7 doi 10 3238 arztebl 2010 0361 PMC 2883276 PMID 20539810 Al Kait F Denstedt John D Daisley Brendan A Bjazevic Jennifer Welk Blayne K Pautler Stephen E Gloor Gregory B Reid Gregor Razvi Hassan Burton Jeremy P September 2020 Ureteral Stent Microbiota Is Associated with Patient Comorbidities but Not Antibiotic Exposure Cell Reports Medicine 1 6 100094 doi 10 1016 j xcrm 2020 100094 PMC 7659606 PMID 33205072 Wolfe AJ Brubaker L February 2019 Urobiome updates advances in urinary microbiome research Nature Reviews Urology 16 2 73 74 doi 10 1038 s41585 018 0127 5 PMC 6628711 PMID 30510275 a b Petrova MI Lievens E Malik S Imholz N Lebeer S 2015 Lactobacillus species as biomarkers and agents that can promote various aspects of vaginal health Frontiers in Physiology 6 81 doi 10 3389 fphys 2015 00081 PMC 4373506 PMID 25859220 a b c d Witkin SS Linhares IM Giraldo P June 2007 Bacterial flora of the female genital tract function and immune regulation Best Practice amp Research Clinical Obstetrics amp Gynaecology 21 3 347 54 doi 10 1016 j bpobgyn 2006 12 004 PMID 17215167 Todar K 2012 The Normal Bacterial Flora of Humans Todar s Online Textbook of Bacteriology Madison WI Kenneth Todar Retrieved 6 April 2012 Onderdonk AB Zamarchi GR Walsh JA Mellor RD Munoz A Kass EH February 1986 Methods for quantitative and qualitative evaluation of vaginal microflora during menstruation Applied and Environmental Microbiology 51 2 333 9 Bibcode 1986ApEnM 51 333O doi 10 1128 AEM 51 2 333 339 1986 PMC 238869 PMID 3954346 Antonio MA Hawes SE Hillier SL December 1999 The identification of vaginal Lactobacillus species and the demographic and microbiologic characteristics of women colonized by these species The Journal of Infectious Diseases 180 6 1950 6 doi 10 1086 315109 PMID 10558952 Usyk M Zolnik CP Castle PE Porras C Herrero R Gradissimo A et al March 2020 Cervicovaginal microbiome and natural history of HPV in a longitudinal study PLOS Pathogens 16 3 e1008376 doi 10 1371 journal ppat 1008376 PMC 7098574 PMID 32214382 Fox C Eichelberger K December 2015 Maternal microbiome and pregnancy outcomes Fertility and Sterility 104 6 1358 63 doi 10 1016 j fertnstert 2015 09 037 PMID 26493119 Wassenaar TM Panigrahi P December 2014 Is a foetus developing in a sterile environment Letters in Applied Microbiology 59 6 572 9 doi 10 1111 lam 12334 PMID 25273890 S2CID 206169539 Schwiertz A 2016 Microbiota of the human body implications in health and disease Switzerland Springer p 1 ISBN 978 3 319 31248 4 Tamburini S Shen N Wu HC Clemente JC July 2016 The microbiome in early life implications for health outcomes Nature Medicine 22 7 713 22 doi 10 1038 nm 4142 PMID 27387886 S2CID 2462790 de Goffau MC Lager S Sovio U Gaccioli F Cook E Peacock SJ et al August 2019 Human placenta has no microbiome but can contain potential pathogens Nature 572 7769 329 334 Bibcode 2019Natur 572 329D doi 10 1038 s41586 019 1451 5 PMC 6697540 PMID 31367035 Eisenhofer R Minich JJ Marotz C Cooper A Knight R Weyrich LS February 2019 Contamination in Low Microbial Biomass Microbiome Studies Issues and Recommendations Trends in Microbiology 27 2 105 117 doi 10 1016 j tim 2018 11 003 hdl 2440 122027 PMID 30497919 S2CID 54166123 Franasiak JM Scott RT December 2015 Reproductive tract microbiome in assisted reproductive technologies Fertility and Sterility 104 6 1364 71 doi 10 1016 j fertnstert 2015 10 012 PMID 26597628 Sutter VL 1984 Anaerobes as normal oral flora Reviews of Infectious Diseases 6 Suppl 1 S62 566 doi 10 1093 clinids 6 Supplement 1 S62 PMID 6372039 a b c d e Kumar PS December 2013 Oral microbiota and systemic disease Anaerobe 24 90 3 doi 10 1016 j anaerobe 2013 09 010 PMID 24128801 S2CID 40735283 Arweiler NB Netuschil L May 2016 The Oral Microbiota In Schwiertz A ed Microbiota of the Human Body Implications in Health and Disease Advances in Experimental Medicine and Biology Vol 902 Springer Cham pp 45 60 doi 10 1007 978 3 319 31248 4 4 ISBN 978 3 319 31248 4 PMID 27161350 a b c d Avila M Ojcius DM Yilmaz O August 2009 The oral microbiota living with a permanent guest DNA and Cell Biology 28 8 405 11 doi 10 1089 dna 2009 0874 PMC 2768665 PMID 19485767 a b Rogers AH ed 2008 Molecular Oral Microbiology Caister Academic Press ISBN 978 1 904455 24 0 a b c d e Zarco MF Vess TJ Ginsburg GS March 2012 The oral microbiome in health and disease and the potential impact on personalized dental medicine Oral Diseases 18 2 109 20 doi 10 1111 j 1601 0825 2011 01851 x PMID 21902769 S2CID 24411104 Rhoades NS Pinski AN Monsibais AN Jankeel A Doratt BM Cinco IR et al August 2021 Acute SARS CoV 2 infection is associated with an increased abundance of bacterial pathogens including Pseudomonas aeruginosa in the nose Cell Reports 36 9 109637 doi 10 1016 j celrep 2021 109637 ISSN 2211 1247 PMC 8361213 PMID 34433082 Wing Ho Man Wouter A A de Steenhuijsen Piters Debby Bogaert 2017 The microbiota of the respiratory tract gatekeeper to respiratory health Nature Reviews Microbiology published 20 March 2017 15 5 259 270 doi 10 1038 NRMICRO 2017 14 hdl 20 500 11820 f1137874 9c51 401b bca4 e2a5da3e219b ISSN 1740 1534 PMC 7097736 PMID 28316330 Wikidata Q34553608 a b Beringer PM Appleman MD November 2000 Unusual respiratory bacterial flora in cystic fibrosis microbiologic and clinical features PDF Current Opinion in Pulmonary Medicine 6 6 545 50 doi 10 1097 00063198 200011000 00015 PMID 11100967 S2CID 845977 Archived from the original PDF on 16 October 2013 Verdier J Luedde T Sellge G June 2015 Biliary Mucosal Barrier and Microbiome Viszeralmedizin 31 3 156 61 doi 10 1159 000431071 PMC 4569210 PMID 26468308 Yu B Yu B Yu L June 2020 Commentary Reconciling Hygiene and Cleanliness A New Perspective from Human Microbiome Indian Journal of Microbiology 60 2 259 261 doi 10 1007 s12088 020 00863 w PMC 7105528 PMID 32255860 Copeland CS The World Within Us Health and the Human Microbiome Healthcare Journal of New Orleans Sept Oct 2017 Honda K Littman DR July 2016 The microbiota in adaptive immune homeostasis and disease Nature 535 7610 75 84 Bibcode 2016Natur 535 75H doi 10 1038 nature18848 PMID 27383982 S2CID 4461492 Serum metabolites reflecting gut microbiome alpha diversity predict type 2 diabetes Metabolon Retrieved 3 November 2022 Liubakka A Vaughn BP July 2016 Clostridium difficile Infection and Fecal Microbiota Transplant AACN Advanced Critical Care 27 3 324 337 doi 10 4037 aacnacc2016703 PMC 5666691 PMID 27959316 Burton JH Johnson M Johnson J Hsia DS Greenway FL Heiman ML July 2015 Addition of a Gastrointestinal Microbiome Modulator to Metformin Improves Metformin Tolerance and Fasting Glucose Levels Journal of Diabetes Science and Technology 9 4 808 14 doi 10 1177 1932296815577425 PMC 4525649 PMID 25802471 a b Bakken JS Borody T Brandt LJ Brill JV Demarco DC Franzos MA et al December 2011 Treating Clostridium difficile infection with fecal microbiota transplantation Clinical Gastroenterology and Hepatology 9 12 1044 9 doi 10 1016 j cgh 2011 08 014 PMC 3223289 PMID 21871249 Gough E Shaikh H Manges AR November 2011 Systematic review of intestinal microbiota transplantation fecal bacteriotherapy for recurrent Clostridium difficile infection Clinical Infectious Diseases 53 10 994 1002 doi 10 1093 cid cir632 PMID 22002980 Brown WR August 2014 Fecal microbiota transplantation in treating Clostridium difficile infection Journal of Digestive Diseases 15 8 405 8 doi 10 1111 1751 2980 12160 PMID 24825534 S2CID 44651256 Burke KE Lamont JT August 2013 Fecal transplantation for recurrent Clostridium difficile infection in older adults a review Journal of the American Geriatrics Society 61 8 1394 8 doi 10 1111 jgs 12378 PMID 23869970 S2CID 34998497 Drekonja D Reich J Gezahegn S Greer N Shaukat A MacDonald R et al May 2015 Fecal Microbiota Transplantation for Clostridium difficile Infection A Systematic Review Annals of Internal Medicine 162 9 630 8 doi 10 7326 m14 2693 PMID 25938992 S2CID 1307726 Brandt LJ Borody TJ Campbell J September 2011 Endoscopic fecal microbiota transplantation first line treatment for severe clostridium difficile infection Journal of Clinical Gastroenterology 45 8 655 7 doi 10 1097 MCG 0b013e3182257d4f PMID 21716124 S2CID 2508836 Kelly CR de Leon L Jasutkar N February 2012 Fecal microbiota transplantation for relapsing Clostridium difficile infection in 26 patients methodology and results Journal of Clinical Gastroenterology 46 2 145 9 doi 10 1097 MCG 0b013e318234570b PMID 22157239 S2CID 30849491 a b c d e f g h Garrett WS April 2015 Cancer and the microbiota Science 348 6230 80 6 Bibcode 2015Sci 348 80G doi 10 1126 science aaa4972 PMC 5535753 PMID 25838377 a b c d Gagniere J Raisch J Veziant J Barnich N Bonnet R Buc E et al January 2016 Gut microbiota imbalance and colorectal cancer World Journal of Gastroenterology 22 2 501 18 doi 10 3748 wjg v22 i2 501 PMC 4716055 PMID 26811603 a b Sartor RB Mazmanian SK July 2012 Intestinal Microbes in Inflammatory Bowel Diseases The American Journal of Gastroenterology Supplements 1 1 15 21 doi 10 1038 ajgsup 2012 4 Hold GL Smith M Grange C Watt ER El Omar EM Mukhopadhya I February 2014 Role of the gut microbiota in inflammatory bowel disease pathogenesis what have we learnt in the past 10 years World Journal of Gastroenterology 20 5 1192 210 doi 10 3748 wjg v20 i5 1192 PMC 3921503 PMID 24574795 a b Zilberman Schapira G Zmora N Itav S Bashiardes S Elinav H Elinav E June 2016 The gut microbiome in human immunodeficiency virus infection BMC Medicine 14 1 83 doi 10 1186 s12916 016 0625 3 PMC 4891875 PMID 27256449 Petrova MI van den Broek M Balzarini J Vanderleyden J Lebeer S September 2013 Vaginal microbiota and its role in HIV transmission and infection FEMS Microbiology Reviews 37 5 762 92 doi 10 1111 1574 6976 12029 PMID 23789590 a b Sato Y Atarashi K Plichta DR Arai Y Sasajima S Kearney SM Suda W Takeshita K Sasaki T Okamoto S Skelly AN Okamura Y Vlamakis H Li Y Tanoue T Takei H Nittono H Narushima S Irie J Itoh H Moriya K Sugiura Y Suematsu M Moritoki N Shibata S Littman DR Fischbach MA Uwamino Y Inoue T Honda A Hattori M Murai T Xavier RJ Hirose N Honda K Novel bile acid biosynthetic pathways are enriched in the microbiome of centenarians Nature 2021 Nov 599 7885 458 464 doi 10 1038 s41586 021 03832 5 Epub 2021 Jul 29 PMID 34325466 Intagliata C 22 December 2016 Necrobiome Reveals a Corpse s Time of Death Scientific American Retrieved 26 March 2018 Young E 10 December 2015 Meet the Necrobiome The Waves of Microbes That Will Eat Your Corpse The Atlantic Retrieved 26 March 2018 Harmon K 16 December 2009 Bugs Inside What Happens When the Microbes That Keep Us Healthy Disappear Scientific American Retrieved 27 December 2008 a b Hitch Thomas C A Hall Lindsay J Walsh Sarah Kate Leventhal Gabriel E Slack Emma de Wouters Tomas Walter Jens Clavel Thomas June 2022 Microbiome based interventions to modulate gut ecology and the immune system Mucosal Immunology 15 6 1095 1113 doi 10 1038 s41385 022 00564 1 ISSN 1935 3456 Callewaert Chris Knodlseder Nastassia Karoglan Ante Guell Marc Paetzold Bernhard 1 January 2021 Skin microbiome transplantation and manipulation Current state of the art Computational and Structural Biotechnology Journal 19 624 631 doi 10 1016 j csbj 2021 01 001 ISSN 2001 0370 Monda Vincenzo Villano Ines Messina Antonietta Valenzano Anna Esposito Teresa Moscatelli Fiorenzo Viggiano Andrea Cibelli Giuseppe Chieffi Sergio Monda Marcellino Messina Giovanni 5 March 2017 Exercise Modifies the Gut Microbiota with Positive Health Effects Oxidative Medicine and Cellular Longevity 2017 e3831972 doi 10 1155 2017 3831972 ISSN 1942 0900 Mailing Lucy J Allen Jacob M Buford Thomas W Fields Christopher J Woods Jeffrey A April 2019 Exercise and the Gut Microbiome A Review of the Evidence Potential Mechanisms and Implications for Human Health Exercise and Sport Sciences Reviews 47 2 75 doi 10 1249 JES 0000000000000183 ISSN 0091 6331 a b Vangay P Johnson AJ Ward TL Al Ghalith GA Shields Cutler RR Hillmann BM et al November 2018 US Immigration Westernizes the Human Gut Microbiome Cell 175 4 962 972 e10 doi 10 1016 j cell 2018 10 029 PMC 6498444 PMID 30388453 a b Kaplan RC Wang Z Usyk M Sotres Alvarez D Daviglus ML Schneiderman N et al November 2019 Gut microbiome composition in the Hispanic Community Health Study Study of Latinos is shaped by geographic relocation environmental factors and obesity Genome Biology 20 1 219 doi 10 1186 s13059 019 1831 z PMC 6824043 PMID 31672155 Comprehensive profiling of human to human oral and intestinal microbial transmission News Medical net 20 January 2023 Archived from the original on 16 February 2023 Retrieved 16 February 2023 Valles Colomer Mireia Blanco Miguez Aitor Manghi Paolo et al February 2023 The person to person transmission landscape of the gut and oral microbiomes Nature 614 7946 125 135 doi 10 1038 s41586 022 05620 1 ISSN 1476 4687 PMC 9892008 PMID 36653448 External links EditThe Secret World Inside You Exhibit 2015 2016 American Museum of Natural History FAQ Human Microbiome January 2014 American Society For Microbiology Portals Biology Medicine Retrieved from https en wikipedia org w index php title Human microbiome amp oldid 1150170442, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.