fbpx
Wikipedia

Methanogen

Methanogens are microorganisms that produce methane as a metabolic byproduct in hypoxic conditions. They are prokaryotic and belong to the domain Archaea. All known methanogens are members of the archaeal phylum Euryarchaeota. Methanogens are common in wetlands, where they are responsible for marsh gas, and in the digestive tracts of animals such as ruminants and many humans, where they are responsible for the methane content of belching in ruminants and flatulence in humans.[1] In marine sediments, the biological production of methane, also termed methanogenesis, is generally confined to where sulfates are depleted, below the top layers.[2] Moreover, methanogenic archaea populations play an indispensable role in anaerobic wastewater treatments.[3] Others are extremophiles, found in environments such as hot springs and submarine hydrothermal vents as well as in the "solid" rock of Earth's crust, kilometers below the surface.

Physical description

Methanogens are coccoid (spherical shaped) or bacilli (rod shaped). There are over 50 described species of methanogens, which do not form a monophyletic group (since haloarchaea emerged from within them), although all known methanogens belong to Euryarchaeota. They are mostly anaerobic organisms that cannot function under aerobic conditions, but recently a species (Candidatus Methanothrix paradoxum) has been identified that can function in anoxic microsites within aerobic environments. They are very sensitive to the presence of oxygen even at trace level. Usually, they cannot sustain oxygen stress for a prolonged time. However, Methanosarcina barkeri is exceptional in possessing a superoxide dismutase (SOD) enzyme, and may survive longer than the others in the presence of O2.[4][5] Some methanogens, called hydrogenotrophic, use carbon dioxide (CO2) as a source of carbon, and hydrogen as a reducing agent.

The reduction of carbon dioxide into methane in the presence of hydrogen can be expressed as follows:

CO2 + 4 H2 → CH4 + 2H2O

Some of the CO2 reacts with the hydrogen to produce methane, which creates an electrochemical gradient across the cell membrane, used to generate ATP through chemiosmosis. In contrast, plants and algae use water as their reducing agent.

Methanogens lack peptidoglycan, a polymer that is found in the cell walls of Bacteria but not in those of Archaea. Some methanogens have a cell wall that is composed of pseudopeptidoglycan. Other methanogens do not, but have at least one paracrystalline array (S-layer) made up of proteins that fit together like a jigsaw puzzle.[6]

Extreme living areas

Methanogens play a vital ecological role in anaerobic environments of removing excess hydrogen and fermentation products that have been produced by other forms of anaerobic respiration. Methanogens typically thrive in environments in which all electron acceptors other than CO2 (such as oxygen, nitrate, ferric iron (Fe(III)), and sulfate) have been depleted. In deep basaltic rocks near the mid-ocean ridges, they can obtain their hydrogen from the serpentinization reaction of olivine as observed in the hydrothermal field of Lost City.

The thermal breakdown of water and water radiolysis are other possible sources of hydrogen.

Methanogens are key agents of remineralization of organic carbon in continental margin sediments and other aquatic sediments with high rates of sedimentation and high sediment organic matter. Under the correct conditions of pressure and temperature, biogenic methane can accumulate in massive deposits of methane clathrates,[7] which account for a significant fraction of organic carbon in continental margin sediments and represent a key reservoir of a potent greenhouse gas.[8]

Methanogens have been found in several extreme environments on Earth – buried under kilometres of ice in Greenland and living in hot, dry desert soil. They are known to be the most common archaebacteria in deep subterranean habitats. Live microbes making methane were found in a glacial ice core sample retrieved from about three kilometres under Greenland by researchers from the University of California, Berkeley. They also found a constant metabolism able to repair macromolecular damage, at temperatures of 145 to –40 °C.[9]

Another study[10] has also discovered methanogens in a harsh environment on Earth. Researchers studied dozens of soil and vapour samples from five different desert environments in Utah, Idaho and California in the United States, and in Canada and Chile. Of these, five soil samples and three vapour samples from the vicinity of the Mars Desert Research Station in Utah were found to have signs of viable methanogens.[11]

Some scientists have proposed that the presence of methane in the Martian atmosphere may be indicative of native methanogens on that planet.[12] In June 2019, NASA's Curiosity rover detected methane, commonly generated by underground microbes such as methanogens, which signals possibility of life on Mars.[13]

Closely related to the methanogens are the anaerobic methane oxidizers, which utilize methane as a substrate in conjunction with the reduction of sulfate and nitrate.[14] Most methanogens are autotrophic producers, but those that oxidize CH3COO are classed as chemotroph instead.

Comparative genomics and molecular signatures

Comparative proteomic analysis has led to the identification of 31 signature proteins which are specific for methanogens (also known as Methanoarchaeota). Most of these proteins are related to methanogenesis, and they could serve as potential molecular markers for methanogens. Additionally, 10 proteins found in all methanogens which are shared by Archaeoglobus, suggest that these two groups are related. In phylogenetic trees, methanogens are not monophyletic and they are generally split into three clades. Hence, the unique shared presence of large numbers of proteins by all methanogens could be due to lateral gene transfers.[15] Additionally, more recent novel proteins associated with sulfide trafficking have been linked to methanogen archaea.[16] More proteomic analysis is needed to further differentiate specific genera within the methanogen class and reveal novel pathways for methanogenic metabolism.

Modern DNA or RNA sequencing approaches has elucidated several genomic markers specific to several groups of methanogens. One such finding isolated nine methanogens from genus Methanoculleus and found that there were at least 2 trehalose synthases genes that were found in all nine genomes.[17] Thus far, the gene has been observed only in this genus, therefore it can be used as a marker to identify the archaea Methanoculleus. As sequencing techniques progress and databases become populated with an abundance of genomic data, a greater number of strains and traits can be identified, but many genera have remained understudied. For example, halophilic methanogens are potentially important microbes for carbon cycling in coastal wetland ecosystems but seem to be greatly understudied. One recent publication isolated a novel strain from genus Methanohalophilus which resides in sulfide-rich seawater. Interestingly, they have isolated several portions of this strain's genome that are different from other isolated strains of this genus (Methanohalophilus mahii, Methanohalophilus halophilus, Methanohalophilus portucalensis, Methanohalophilus euhalbius). Some differences include a highly conserved genome, sulfur and glycogen metabolisms and viral resistance.[18] Genomic markers consistent with the microbes environment have been observed in many other cases. One such study found that methane producing archaea found in hydraulic fracturing zones had genomes which varied with vertical depth. Subsurface and surface genomes varied along with the constraints found in individual depth zones, though fine-scale diversity was also found in this study.[19] It is important to recognize that genomic markers pointing at environmentally relevant factors are often non-exclusive. A survey of Methanogenic Thermoplasmata has found these organisms in human and animal intestinal tracts. This novel species was also found in other methanogenic environments such as wetland soils, though the group isolated in the wetlands did tend to have a larger number of genes encoding for anti-oxidation enzymes that were not present in the same group isolated in the human and animal intestinal tract.[20] A common issue with identifying and discovering novel species of methanogens is that sometimes the genomic differences can be quite small, yet the research group decides they are different enough to separate into individual species. One study took a group of Methanocellales and ran a comparative genomic study. The three strains were originally considered identical, but a detailed approach to genomic isolation showed differences among their previously considered identical genomes. Differences were seen in gene copy number and there was also metabolic diversity associated with the genomic information.[21]

Genomic signatures not only allow one to mark unique methanogens and genes relevant to environmental conditions; it has also led to a better understanding of the evolution of these archaea. Some methanogens must actively mitigate against oxic environments. Functional genes involved with the production of antioxidants have been found in methanogens, and some specific groups tend to have an enrichment of this genomic feature. Methanogens containing a genome with enriched antioxidant properties may provide evidence that this genomic addition may have occurred during the Great Oxygenation Event.[22] In another study, three strains from the lineage Thermoplasmatales isolated from animal gastro-intestinal tracts revealed evolutionary differences. The eukaryotic-like histone gene which is present in most methanogen genomes was not present, eluding to evidence that an ancestral branch was lost within Thermoplasmatales and related lineages.[23] Furthermore, the group Methanomassiliicoccus has a genome which appears to have lost many common genes coding for the first several steps of methanogenesis. These genes appear to have been replaced by genes coding for a novel methylated methogenic pathway. This pathway has been reported in several types of environments, pointing to non-environment specific evolution, and may point to an ancestral deviation.[24]

Metabolism

Methane production

Methanogens are known to produce methane from substrates such as H2/CO2, acetate, formate, methanol and methylamines in a process called methanogenesis.[25] Different methanogenic reactions are catalyzed by unique sets of enzymes and coenzymes. While reaction mechanism and energetics vary between one reaction and another, all of these reactions contribute to net positive energy production by creating ion concentration gradients that are used to drive ATP synthesis.[26] The overall reaction for H2/CO2 methanogenesis is:

  (∆G˚’ = -134 kJ/mol CH4)

Well-studied organisms that produce methane via H2/CO2 methanogenesis include Methanosarcina barkeri, Methanobacterium thermoautotrophicum, and Methanobacterium wolfei.[27][28][29] These organisms are typically found in anaerobic environments.[25]

In the earliest stage of H2/CO2 methanogenesis, CO2 binds to methanofuran (MF) and is reduced to formyl-MF. This endergonic reductive process (∆G˚’= +16 kJ/mol) is dependent on the availability of H2 and is catalyzed by the enzyme formyl-MF dehydrogenase.[25]

 

The formyl constituent of formyl-MF is then transferred to the coenzyme tetrahydromethanopterin (H4MPT) and is catalyzed by a soluble enzyme known as formyl transferase. This results in the formation of formyl-H4MPT.[25]

 

Formyl-H4MPT is subsequently reduced to methenyl-H4MPT. Methenyl-H4MPT then undergoes a one-step hydrolysis followed by a two-step reduction to methyl-H4MPT. The two-step reversible reduction is assisted by coenzyme F420 whose hydride acceptor spontaneously oxidizes.[25] Once oxidized, F420’s electron supply is replenished by accepting electrons from H2. This step is catalyzed by methylene H4MPT dehydrogenase.[30]

  (Formyl-H4MPT reduction)
 (Methenyl-H4MPT hydrolysis)
 (H4MPT reduction)

Next, the methyl group of methyl-M4MPT is transferred to coenzyme M via a methyltransferase-catalyzed reaction.[31][32]

 

The final step of H2/CO2 methanogenic involves methyl-coenzyme M reductase and two coenzymes: N-7 mercaptoheptanoylthreonine phosphate (HS-HTP) and coenzyme F430. HS-HTP donates electrons to methyl-coenzyme M allowing the formation of methane and mixed disulfide of HS-CoM.[33] F430, on the other hand, serves as a prosthetic group to the reductase. H2 donates electrons to the mixed disulfide of HS-CoM and regenerates coenzyme M.[34]

  (Formation of methane)
  (Regeneration of coenzyme M)

Wastewater treatment

Methanogens are widely used in anaerobic digestors to treat wastewater as well as aqueous organic pollutants. Industries have selected methanogens for their ability to perform biomethanation during wastewater decomposition thereby rendering the process sustainable and cost-effective.[35]

Bio-decomposition in the anaerobic digester involves a four-staged cooperative action performed by different microorganisms.[36] The first stage is the hydrolysis of insoluble polymerized organic matter by anaerobes such as Streptococcus and Enterobacterium.[37] In the second stage, acidogens break down dissolved organic pollutants in wastewater to fatty acids. In the third stage, acetogens convert fatty acids to acetates. In the final stage, methanogens metabolize acetates to gaseous methane. The byproduct methane leaves the aqueous layer and serves as an energy source to power wastewater-processing within the digestor, thus generating a self-sustaining mechanism.[38]

Methanogens also effectively decrease the concentration of organic matter in wastewater run-off.[39] For instance, agricultural wastewater, highly rich in organic material, has been a major cause of aquatic ecosystem degradation. The chemical imbalances can lead to severe ramifications such as eutrophication. Through anaerobic digestion, the purification of wastewater can prevent unexpected blooms in water systems as well as trap methanogenesis within digesters. This allocates biomethane for energy production and prevents a potent greenhouse gas, methane, from being released into the atmosphere.

The organic components of wastewater vary vastly. Chemical structures of the organic matter select for specific methanogens to perform anaerobic digestion. An example is the members of Methanosaeta genus dominate the digestion of palm oil mill effluent (POME) and brewery waste.[39] Modernizing wastewater treatment systems to incorporate higher diversity of microorganisms to decrease organic content in treatment is under active research in the field of microbiological and chemical engineering.[40] Current new generations of Staged Multi-Phase Anaerobic reactors and Upflow Sludge Bed reactor systems are designed to have innovated features to counter high loading wastewater input, extreme temperature conditions, and possible inhibitory compounds.[41]

Strains

See also

References

  1. ^ Joseph W. Lengeler (1999). Biology of the Prokaryotes. Stuttgart: Thieme. p. 796. ISBN 978-0-632-05357-5.
  2. ^ J.K. Kristjansson; et al. (1982). "Different Ks values for hydrogen of methanogenic bacteria and sulfate-reducing bacteria: an explanation for the apparent inhibition of methanogenesis by sulfate". Arch. Microbiol. 131 (3): 278–282. doi:10.1007/BF00405893. S2CID 29016356.
  3. ^ Tabatabaei, Meisam; Rahim, Raha Abdul; Abdullah, Norhani; Wright, André-Denis G.; Shirai, Yoshihito; Sakai, Kenji; Sulaiman, Alawi; Hassan, Mohd Ali (2010). "Importance of the methanogenic archaea populations in anaerobic wastewater treatments" (PDF). Process Biochemistry. 45 (8): 1214–1225. doi:10.1016/j.procbio.2010.05.017.
  4. ^ Peters, V.; Conrad, R. (1995). "Methanogenic and other strictly anaerobic bacteria in desert soil and other oxic sois". Applied and Environmental Microbiology. 61 (4): 1673–1676. Bibcode:1995ApEnM..61.1673P. doi:10.1128/AEM.61.4.1673-1676.1995. PMC 1388429. PMID 16535011.
  5. ^ . Archived from the original on 2009-03-27. Retrieved 2009-09-20.{{cite web}}: CS1 maint: archived copy as title (link)
  6. ^ Boone, David R. (2015). "Methanobacterium". Bergey's Manual of Systematics of Archaea and Bacteria. John Wiley & Sons, Ltd. pp. 1–8. doi:10.1002/9781118960608.gbm00495. ISBN 9781118960608.
  7. ^ Kvenvolden, K. (1995). "A review of the geochemistry of methane in natural gas hydrate". Organic Geochemistry. 23 (11–12): 997–1008. Bibcode:1995OrGeo..23..997K. doi:10.1016/0146-6380(96)00002-2.
  8. ^ Milkov, Alexei V (2004). "Global estimates of hydrate-bound gas in marine sediments: how much is really out there?". Earth-Science Reviews. 66 (3–4): 183–197. Bibcode:2004ESRv...66..183M. doi:10.1016/j.earscirev.2003.11.002.
  9. ^ Tung, H. C.; Bramall, N. E.; Price, P. B. (2005). "Microbial origin of excess methane in glacial ice and implications for life on Mars". Proceedings of the National Academy of Sciences. 102 (51): 18292–6. Bibcode:2005PNAS..10218292T. doi:10.1073/pnas.0507601102. PMC 1308353. PMID 16339015.
  10. ^ Icarus (vol. 178, p. 277)cs:Methanogen
  11. ^ Extreme bugs back idea of life on Mars
  12. ^ "Crater Critters: Where Mars Microbes Might Lurk". Space.com. 20 December 2005. Retrieved 16 December 2014.
  13. ^ "NASA Rover on Mars Detects Puff of Gas That Hints at Possibility of Life". The New York Times. 22 June 2019.
  14. ^ Thauer, R. K. & Shima, S. (2006). "Biogeochemistry: Methane and microbes". Nature. 440 (7086): 878–879. Bibcode:2006Natur.440..878T. doi:10.1038/440878a. PMID 16612369. S2CID 4373591.
  15. ^ Gao, Beile; Gupta, Radhey S (2007). "Phylogenomic analysis of proteins that are distinctive of Archaea and its main subgroups and the origin of methanogenesis". BMC Genomics. 8 (1): 86. doi:10.1186/1471-2164-8-86. PMC 1852104. PMID 17394648.
  16. ^ Rauch, Benjamin Julius; Gustafson, Andrew; Perona, John J. (December 2014). "Novel proteins for homocysteine biosynthesis in anaerobic microorganisms". Molecular Microbiology. 94 (6): 1330–1342. doi:10.1111/mmi.12832. ISSN 0950-382X. PMID 25315403.
  17. ^ Chen, Sheng-Chung; Weng, Chieh-Yin; Lai, Mei-Chin; Tamaki, Hideyuki; Narihiro, Takashi (October 2019). "Comparative genomic analyses reveal trehalose synthase genes as the signature in genus Methanoculleus". Marine Genomics. 47: 100673. Bibcode:2019MarGn..4700673C. doi:10.1016/j.margen.2019.03.008. PMID 30935830.
  18. ^ Guan, Yue; Ngugi, David K.; Vinu, Manikandan; Blom, Jochen; Alam, Intikhab; Guillot, Sylvain; Ferry, James G.; Stingl, Ulrich (2019-04-24). "Comparative Genomics of the Genus Methanohalophilus, Including a Newly Isolated Strain From Kebrit Deep in the Red Sea". Frontiers in Microbiology. 10: 839. doi:10.3389/fmicb.2019.00839. ISSN 1664-302X. PMC 6491703. PMID 31068917.
  19. ^ Borton, Mikayla A.; Daly, Rebecca A.; O'Banion, Bridget; Hoyt, David W.; Marcus, Daniel N.; Welch, Susan; Hastings, Sybille S.; Meulia, Tea; Wolfe, Richard A.; Booker, Anne E.; Sharma, Shikha (December 2018). "Comparative genomics and physiology of the genus Methanohalophilus , a prevalent methanogen in hydraulically fractured shale". Environmental Microbiology. 20 (12): 4596–4611. doi:10.1111/1462-2920.14467. ISSN 1462-2912. PMID 30394652.
  20. ^ Söllinger, Andrea; Schwab, Clarissa; Weinmaier, Thomas; Loy, Alexander; Tveit, Alexander T.; Schleper, Christa; Urich, Tim (January 2016). King, Gary (ed.). "Phylogenetic and genomic analysis of Methanomassiliicoccales in wetlands and animal intestinal tracts reveals clade-specific habitat preferences". FEMS Microbiology Ecology. 92 (1): fiv149. doi:10.1093/femsec/fiv149. ISSN 1574-6941. PMID 26613748.
  21. ^ Lyu, Zhe; Lu, Yahai (June 2015). "Comparative genomics of three M ethanocellales strains reveal novel taxonomic and metabolic features: Comparative genomics of three Methanocellales strains". Environmental Microbiology Reports. 7 (3): 526–537. doi:10.1111/1758-2229.12283. PMID 25727385.
  22. ^ Lyu, Zhe; Lu, Yahai (February 2018). "Metabolic shift at the class level sheds light on adaptation of methanogens to oxidative environments". The ISME Journal. 12 (2): 411–423. doi:10.1038/ismej.2017.173. ISSN 1751-7362. PMC 5776455. PMID 29135970.
  23. ^ Borrel, Guillaume; Parisot, Nicolas; Harris, Hugh MB; Peyretaillade, Eric; Gaci, Nadia; Tottey, William; Bardot, Olivier; Raymann, Kasie; Gribaldo, Simonetta; Peyret, Pierre; O’Toole, Paul W (2014). "Comparative genomics highlights the unique biology of Methanomassiliicoccales, a Thermoplasmatales-related seventh order of methanogenic archaea that encodes pyrrolysine". BMC Genomics. 15 (1): 679. doi:10.1186/1471-2164-15-679. ISSN 1471-2164. PMC 4153887. PMID 25124552.
  24. ^ Borrel, Guillaume; O’Toole, Paul W.; Harris, Hugh M.B.; Peyret, Pierre; Brugère, Jean-François; Gribaldo, Simonetta (October 2013). "Phylogenomic Data Support a Seventh Order of Methylotrophic Methanogens and Provide Insights into the Evolution of Methanogenesis". Genome Biology and Evolution. 5 (10): 1769–1780. doi:10.1093/gbe/evt128. ISSN 1759-6653. PMC 3814188. PMID 23985970.
  25. ^ a b c d e Blaut, M. (1994). "Metabolism of methanogens". Antonie van Leeuwenhoek. 66 (1–3): 187–208. doi:10.1007/bf00871639. ISSN 0003-6072. PMID 7747931. S2CID 23706408.
  26. ^ Dybas, M; Konisky, J (1992). "Energy transduction in the methanogen Methanococcus voltae is based on a sodium current". J Bacteriol. 174 (17): 5575–5583. doi:10.1128/jb.174.17.5575-5583.1992. PMC 206501. PMID 1324904.
  27. ^ Karrasch, M.; Börner, G.; Enssle, M.; Thauer, R. K. (1990-12-12). "The molybdoenzyme formylmethanofuran dehydrogenase from Methanosarcina barkeri contains a pterin cofactor". European Journal of Biochemistry. 194 (2): 367–372. doi:10.1111/j.1432-1033.1990.tb15627.x. ISSN 0014-2956. PMID 2125267.
  28. ^ Börner, G.; Karrasch, M.; Thauer, R. K. (1991-09-23). "Molybdopterin adenine dinucleotide and molybdopterin hypoxanthine dinucleotide in formylmethanofuran dehydrogenase from Methanobacterium thermoautotrophicum (Marburg)". FEBS Letters. 290 (1–2): 31–34. doi:10.1016/0014-5793(91)81218-w. ISSN 0014-5793. PMID 1915887. S2CID 24174561.
  29. ^ Schmitz, Ruth A.; Albracht, Simon P. J.; Thauer, Rudolf K. (1992-11-01). "A molybdenum and a tungsten isoenzyme of formylmethanofuran dehydrogenase in the thermophilic archaeon Methanobacterium wolfei". European Journal of Biochemistry. 209 (3): 1013–1018. doi:10.1111/j.1432-1033.1992.tb17376.x. ISSN 1432-1033. PMID 1330558.
  30. ^ Zirngibl, C (February 1990). "N5,N10-Methylenetetrahydromethanopterin dehydrogenase from Methanobacterium thermoautotrophicum has hydrogenase activity". Laboratorium Fir Mikrobiologie. 261 (1): 112–116. doi:10.1016/0014-5793(90)80649-4.
  31. ^ te Brömmelstroet, B. W.; Geerts, W. J.; Keltjens, J. T.; van der Drift, C.; Vogels, G. D. (1991-09-20). "Purification and properties of 5,10-methylenetetrahydromethanopterin dehydrogenase and 5,10-methylenetetrahydromethanopterin reductase, two coenzyme F420-dependent enzymes, from Methanosarcina barkeri". Biochimica et Biophysica Acta (BBA) - Protein Structure and Molecular Enzymology. 1079 (3): 293–302. doi:10.1016/0167-4838(91)90072-8. ISSN 0006-3002. PMID 1911853.
  32. ^ Kengen, Servé W. M.; Mosterd, Judith J.; Nelissen, Rob L. H.; Keltjens, Jan T.; Drift, Chris van der; Vogels, Godfried D. (1988-08-01). "Reductive activation of the methyl-tetrahydromethanopterin: coenzyme M methyltransferase from Methanobacterium thermoautotrophicum strain ΔH". Archives of Microbiology. 150 (4): 405–412. doi:10.1007/BF00408315. ISSN 0302-8933. S2CID 36366503.
  33. ^ Bobik, T. A.; Olson, K. D.; Noll, K. M.; Wolfe, R. S. (1987-12-16). "Evidence that the heterodisulfide of coenzyme M and 7-mercaptoheptanoylthreonine phosphate is a product of the methylreductase reaction in Methanobacterium". Biochemical and Biophysical Research Communications. 149 (2): 455–460. doi:10.1016/0006-291x(87)90389-5. ISSN 0006-291X. PMID 3122735.
  34. ^ Ellermann, J.; Hedderich, R.; Böcher, R.; Thauer, R. K. (1988-03-15). "The final step in methane formation. Investigations with highly purified methyl-CoM reductase (component C) from Methanobacterium thermoautotrophicum (strain Marburg)". European Journal of Biochemistry. 172 (3): 669–677. doi:10.1111/j.1432-1033.1988.tb13941.x. ISSN 0014-2956. PMID 3350018.
  35. ^ Appels, Lise; et al. (2008). "Principles and potential of the anaerobic digestion of waste-activated sludge" Progress in Energy and Combustion Science. 34 (6): 755 -781. doi: 10.1016/j.pecs.2008.06.002
  36. ^ Christensen, Thomas H; et al. (2010). "Anaerobic Digestion: Process" Solid Waste Technology & Management, Volume 1 & 2. doi: 10.1002/9780470666883.ch372
  37. ^ Shah, Fayyaz Ali, et al. (2014). “Microbial Ecology of Anaerobic Digesters: The Key Players of Anaerobiosis” ScientificWorldJournal. 3852369 (1). doi:10.1155/2014/183752
  38. ^ Lettinga, G (1995). "Anaerobic Digestion and Wastewater Treatment Systems". Antonie van Leeuwenhoek. 67 (1): 3–28. doi:10.1007/bf00872193. PMID 7741528. S2CID 9415571.
  39. ^ a b Tabatabaei, Meisa; et al. (2010). "Importance of the methanogenic archaea populations in anaerobic wastewater treatments" (PDF). Process Biochemistry. 45 (8): 1214–1225. doi:10.1016/j.procbio.2010.05.017.
  40. ^ Marihiro, Takashi., Sekiguchi, Yuji. (2007). "Microbial communities in anaerobic digestion processes for waste and wastewater treatment: a microbiological update" Current Opinion in Biotechnology. 18 (3): 273-278. doi: 10.1016/j.copbio.2007.04.003
  41. ^ "Advanced anaerobic wastewater treatment in the near future". Water Science and Technology. 35 (10). 1997. doi:10.1016/S0273-1223(97)00222-9.
  42. ^ Mondav, Rhiannon; Woodcroft, Ben J.; Kim, Eun-Hae; McCalley, Carmody K.; Hodgkins, Suzanne B.; Crill, Patrick M.; Chanton, Jeffrey; Hurst, Gregory B.; Verberkmoes, Nathan C.; Saleska, Scott R.; Hugenholtz, Philip; Rich, Virginia I.; Tyson, Gene W. (2014). "Discovery of a novel methanogen prevalent in thawing permafrost" (PDF). Nature Communications. 5: 3212. Bibcode:2014NatCo...5.3212M. doi:10.1038/ncomms4212. PMID 24526077.

methanogen, confused, with, methanotroph, microorganisms, that, produce, methane, metabolic, byproduct, hypoxic, conditions, they, prokaryotic, belong, domain, archaea, known, methanogens, members, archaeal, phylum, euryarchaeota, common, wetlands, where, they. Not to be confused with Methanotroph Methanogens are microorganisms that produce methane as a metabolic byproduct in hypoxic conditions They are prokaryotic and belong to the domain Archaea All known methanogens are members of the archaeal phylum Euryarchaeota Methanogens are common in wetlands where they are responsible for marsh gas and in the digestive tracts of animals such as ruminants and many humans where they are responsible for the methane content of belching in ruminants and flatulence in humans 1 In marine sediments the biological production of methane also termed methanogenesis is generally confined to where sulfates are depleted below the top layers 2 Moreover methanogenic archaea populations play an indispensable role in anaerobic wastewater treatments 3 Others are extremophiles found in environments such as hot springs and submarine hydrothermal vents as well as in the solid rock of Earth s crust kilometers below the surface Contents 1 Physical description 2 Extreme living areas 3 Comparative genomics and molecular signatures 4 Metabolism 4 1 Methane production 4 2 Wastewater treatment 5 Strains 6 See also 7 ReferencesPhysical description EditMethanogens are coccoid spherical shaped or bacilli rod shaped There are over 50 described species of methanogens which do not form a monophyletic group since haloarchaea emerged from within them although all known methanogens belong to Euryarchaeota They are mostly anaerobic organisms that cannot function under aerobic conditions but recently a species Candidatus Methanothrix paradoxum has been identified that can function in anoxic microsites within aerobic environments They are very sensitive to the presence of oxygen even at trace level Usually they cannot sustain oxygen stress for a prolonged time However Methanosarcina barkeri is exceptional in possessing a superoxide dismutase SOD enzyme and may survive longer than the others in the presence of O2 4 5 Some methanogens called hydrogenotrophic use carbon dioxide CO2 as a source of carbon and hydrogen as a reducing agent The reduction of carbon dioxide into methane in the presence of hydrogen can be expressed as follows CO2 4 H2 CH4 2H2OSome of the CO2 reacts with the hydrogen to produce methane which creates an electrochemical gradient across the cell membrane used to generate ATP through chemiosmosis In contrast plants and algae use water as their reducing agent Methanogens lack peptidoglycan a polymer that is found in the cell walls of Bacteria but not in those of Archaea Some methanogens have a cell wall that is composed of pseudopeptidoglycan Other methanogens do not but have at least one paracrystalline array S layer made up of proteins that fit together like a jigsaw puzzle 6 Extreme living areas EditMethanogens play a vital ecological role in anaerobic environments of removing excess hydrogen and fermentation products that have been produced by other forms of anaerobic respiration Methanogens typically thrive in environments in which all electron acceptors other than CO2 such as oxygen nitrate ferric iron Fe III and sulfate have been depleted In deep basaltic rocks near the mid ocean ridges they can obtain their hydrogen from the serpentinization reaction of olivine as observed in the hydrothermal field of Lost City The thermal breakdown of water and water radiolysis are other possible sources of hydrogen Methanogens are key agents of remineralization of organic carbon in continental margin sediments and other aquatic sediments with high rates of sedimentation and high sediment organic matter Under the correct conditions of pressure and temperature biogenic methane can accumulate in massive deposits of methane clathrates 7 which account for a significant fraction of organic carbon in continental margin sediments and represent a key reservoir of a potent greenhouse gas 8 Methanogens have been found in several extreme environments on Earth buried under kilometres of ice in Greenland and living in hot dry desert soil They are known to be the most common archaebacteria in deep subterranean habitats Live microbes making methane were found in a glacial ice core sample retrieved from about three kilometres under Greenland by researchers from the University of California Berkeley They also found a constant metabolism able to repair macromolecular damage at temperatures of 145 to 40 C 9 Another study 10 has also discovered methanogens in a harsh environment on Earth Researchers studied dozens of soil and vapour samples from five different desert environments in Utah Idaho and California in the United States and in Canada and Chile Of these five soil samples and three vapour samples from the vicinity of the Mars Desert Research Station in Utah were found to have signs of viable methanogens 11 Some scientists have proposed that the presence of methane in the Martian atmosphere may be indicative of native methanogens on that planet 12 In June 2019 NASA s Curiosity rover detected methane commonly generated by underground microbes such as methanogens which signals possibility of life on Mars 13 Closely related to the methanogens are the anaerobic methane oxidizers which utilize methane as a substrate in conjunction with the reduction of sulfate and nitrate 14 Most methanogens are autotrophic producers but those that oxidize CH3COO are classed as chemotroph instead Comparative genomics and molecular signatures EditComparative proteomic analysis has led to the identification of 31 signature proteins which are specific for methanogens also known as Methanoarchaeota Most of these proteins are related to methanogenesis and they could serve as potential molecular markers for methanogens Additionally 10 proteins found in all methanogens which are shared by Archaeoglobus suggest that these two groups are related In phylogenetic trees methanogens are not monophyletic and they are generally split into three clades Hence the unique shared presence of large numbers of proteins by all methanogens could be due to lateral gene transfers 15 Additionally more recent novel proteins associated with sulfide trafficking have been linked to methanogen archaea 16 More proteomic analysis is needed to further differentiate specific genera within the methanogen class and reveal novel pathways for methanogenic metabolism Modern DNA or RNA sequencing approaches has elucidated several genomic markers specific to several groups of methanogens One such finding isolated nine methanogens from genus Methanoculleus and found that there were at least 2 trehalose synthases genes that were found in all nine genomes 17 Thus far the gene has been observed only in this genus therefore it can be used as a marker to identify the archaea Methanoculleus As sequencing techniques progress and databases become populated with an abundance of genomic data a greater number of strains and traits can be identified but many genera have remained understudied For example halophilic methanogens are potentially important microbes for carbon cycling in coastal wetland ecosystems but seem to be greatly understudied One recent publication isolated a novel strain from genus Methanohalophilus which resides in sulfide rich seawater Interestingly they have isolated several portions of this strain s genome that are different from other isolated strains of this genus Methanohalophilus mahii Methanohalophilus halophilus Methanohalophilus portucalensis Methanohalophilus euhalbius Some differences include a highly conserved genome sulfur and glycogen metabolisms and viral resistance 18 Genomic markers consistent with the microbes environment have been observed in many other cases One such study found that methane producing archaea found in hydraulic fracturing zones had genomes which varied with vertical depth Subsurface and surface genomes varied along with the constraints found in individual depth zones though fine scale diversity was also found in this study 19 It is important to recognize that genomic markers pointing at environmentally relevant factors are often non exclusive A survey of Methanogenic Thermoplasmata has found these organisms in human and animal intestinal tracts This novel species was also found in other methanogenic environments such as wetland soils though the group isolated in the wetlands did tend to have a larger number of genes encoding for anti oxidation enzymes that were not present in the same group isolated in the human and animal intestinal tract 20 A common issue with identifying and discovering novel species of methanogens is that sometimes the genomic differences can be quite small yet the research group decides they are different enough to separate into individual species One study took a group of Methanocellales and ran a comparative genomic study The three strains were originally considered identical but a detailed approach to genomic isolation showed differences among their previously considered identical genomes Differences were seen in gene copy number and there was also metabolic diversity associated with the genomic information 21 Genomic signatures not only allow one to mark unique methanogens and genes relevant to environmental conditions it has also led to a better understanding of the evolution of these archaea Some methanogens must actively mitigate against oxic environments Functional genes involved with the production of antioxidants have been found in methanogens and some specific groups tend to have an enrichment of this genomic feature Methanogens containing a genome with enriched antioxidant properties may provide evidence that this genomic addition may have occurred during the Great Oxygenation Event 22 In another study three strains from the lineage Thermoplasmatales isolated from animal gastro intestinal tracts revealed evolutionary differences The eukaryotic like histone gene which is present in most methanogen genomes was not present eluding to evidence that an ancestral branch was lost within Thermoplasmatales and related lineages 23 Furthermore the group Methanomassiliicoccus has a genome which appears to have lost many common genes coding for the first several steps of methanogenesis These genes appear to have been replaced by genes coding for a novel methylated methogenic pathway This pathway has been reported in several types of environments pointing to non environment specific evolution and may point to an ancestral deviation 24 Metabolism EditMethane production Edit Methanogens are known to produce methane from substrates such as H2 CO2 acetate formate methanol and methylamines in a process called methanogenesis 25 Different methanogenic reactions are catalyzed by unique sets of enzymes and coenzymes While reaction mechanism and energetics vary between one reaction and another all of these reactions contribute to net positive energy production by creating ion concentration gradients that are used to drive ATP synthesis 26 The overall reaction for H2 CO2 methanogenesis is CO 2 4 H 2 CH 4 2 H 2 O displaystyle ce CO2 4 H2 gt CH4 2 H2O G 134 kJ mol CH4 Well studied organisms that produce methane via H2 CO2 methanogenesis include Methanosarcina barkeri Methanobacterium thermoautotrophicum and Methanobacterium wolfei 27 28 29 These organisms are typically found in anaerobic environments 25 In the earliest stage of H2 CO2 methanogenesis CO2 binds to methanofuran MF and is reduced to formyl MF This endergonic reductive process G 16 kJ mol is dependent on the availability of H2 and is catalyzed by the enzyme formyl MF dehydrogenase 25 CO 2 H 2 MF HCO MF H 2 O displaystyle ce CO2 H2 MF gt HCO MF H2O The formyl constituent of formyl MF is then transferred to the coenzyme tetrahydromethanopterin H4MPT and is catalyzed by a soluble enzyme known as formyl transferase This results in the formation of formyl H4MPT 25 HCO MF H 4 MPT HCO H 4 MPT MF displaystyle ce HCO MF H4MPT gt HCO H4MPT MF Formyl H4MPT is subsequently reduced to methenyl H4MPT Methenyl H4MPT then undergoes a one step hydrolysis followed by a two step reduction to methyl H4MPT The two step reversible reduction is assisted by coenzyme F420 whose hydride acceptor spontaneously oxidizes 25 Once oxidized F420 s electron supply is replenished by accepting electrons from H2 This step is catalyzed by methylene H4MPT dehydrogenase 30 HCO H 4 MPT H CH H 4 MPT H 2 O displaystyle ce HCO H4MPT H gt CH H4MPT H2O Formyl H4MPT reduction CH H 4 MPT F 420 H 2 CH 2 H 4 MPT F 420 H displaystyle ce CH H4MPT F420H2 gt CH2 H4MPT F420 H Methenyl H4MPT hydrolysis CH 2 H 4 MPT H 2 CH 3 H 4 MPT H displaystyle ce CH2 H4MPT H2 gt CH3 H4MPT H H4MPT reduction Next the methyl group of methyl M4MPT is transferred to coenzyme M via a methyltransferase catalyzed reaction 31 32 CH 3 H 4 MPT HS CoM CH 3 S CoM H 4 MPT displaystyle ce CH3 H4MPT HS CoM gt CH3 S CoM H4MPT The final step of H2 CO2 methanogenic involves methyl coenzyme M reductase and two coenzymes N 7 mercaptoheptanoylthreonine phosphate HS HTP and coenzyme F430 HS HTP donates electrons to methyl coenzyme M allowing the formation of methane and mixed disulfide of HS CoM 33 F430 on the other hand serves as a prosthetic group to the reductase H2 donates electrons to the mixed disulfide of HS CoM and regenerates coenzyme M 34 CH 3 S CoM HS HTP CH 4 CoM S S HTP displaystyle ce CH3 S CoM HS HTP gt CH4 CoM S S HTP Formation of methane CoM S S HTP H 2 HS CoM HS HTP displaystyle ce CoM S S HTP H2 gt HS CoM HS HTP Regeneration of coenzyme M Wastewater treatment Edit Methanogens are widely used in anaerobic digestors to treat wastewater as well as aqueous organic pollutants Industries have selected methanogens for their ability to perform biomethanation during wastewater decomposition thereby rendering the process sustainable and cost effective 35 Bio decomposition in the anaerobic digester involves a four staged cooperative action performed by different microorganisms 36 The first stage is the hydrolysis of insoluble polymerized organic matter by anaerobes such as Streptococcus and Enterobacterium 37 In the second stage acidogens break down dissolved organic pollutants in wastewater to fatty acids In the third stage acetogens convert fatty acids to acetates In the final stage methanogens metabolize acetates to gaseous methane The byproduct methane leaves the aqueous layer and serves as an energy source to power wastewater processing within the digestor thus generating a self sustaining mechanism 38 Methanogens also effectively decrease the concentration of organic matter in wastewater run off 39 For instance agricultural wastewater highly rich in organic material has been a major cause of aquatic ecosystem degradation The chemical imbalances can lead to severe ramifications such as eutrophication Through anaerobic digestion the purification of wastewater can prevent unexpected blooms in water systems as well as trap methanogenesis within digesters This allocates biomethane for energy production and prevents a potent greenhouse gas methane from being released into the atmosphere The organic components of wastewater vary vastly Chemical structures of the organic matter select for specific methanogens to perform anaerobic digestion An example is the members of Methanosaeta genus dominate the digestion of palm oil mill effluent POME and brewery waste 39 Modernizing wastewater treatment systems to incorporate higher diversity of microorganisms to decrease organic content in treatment is under active research in the field of microbiological and chemical engineering 40 Current new generations of Staged Multi Phase Anaerobic reactors and Upflow Sludge Bed reactor systems are designed to have innovated features to counter high loading wastewater input extreme temperature conditions and possible inhibitory compounds 41 Strains EditMethanobacterium bryantii Methanobacterium formicum Methanobrevibacter arboriphilicus Methanobrevibacter gottschalkii Methanobrevibacter ruminantium Methanobrevibacter smithii Methanococcus chunghsingensis Methanococcus burtonii Methanococcus aeolicus Methanococcus deltae Methanococcus jannaschii Methanococcus maripaludis Methanococcus vannielii Methanocorpusculum labreanum Methanoculleus bourgensis Methanogenium olentangyi and Methanogenium bourgense Methanoculleus marisnigri Methanoflorens stordalenmirensis 42 Methanofollis liminatans Methanogenium cariaci Methanogenium frigidum Methanogenium organophilum Methanogenium wolfei Methanomicrobium mobile Methanopyrus kandleri Methanoregula boonei Methanosaeta concilii Methanosaeta thermophila Methanosarcina acetivorans Methanosarcina barkeri Methanosarcina mazei Methanosphaera stadtmanae Methanospirillium hungatei Methanothermobacter defluvii Methanobacterium defluvii Methanothermobacter thermautotrophicus Methanobacterium thermoautotrophicum Methanothermobacter thermoflexus Methanobacterium thermoflexum Methanothermobacter wolfei Methanobacterium wolfei Methanothrix sochngeniiSee also EditExtremophile Hydrogen cycle Methane clathrate Methanogens in digestive tract of ruminants Methanopyrus MethanotrophReferences Edit Joseph W Lengeler 1999 Biology of the Prokaryotes Stuttgart Thieme p 796 ISBN 978 0 632 05357 5 J K Kristjansson et al 1982 Different Ks values for hydrogen of methanogenic bacteria and sulfate reducing bacteria an explanation for the apparent inhibition of methanogenesis by sulfate Arch Microbiol 131 3 278 282 doi 10 1007 BF00405893 S2CID 29016356 Tabatabaei Meisam Rahim Raha Abdul Abdullah Norhani Wright Andre Denis G Shirai Yoshihito Sakai Kenji Sulaiman Alawi Hassan Mohd Ali 2010 Importance of the methanogenic archaea populations in anaerobic wastewater treatments PDF Process Biochemistry 45 8 1214 1225 doi 10 1016 j procbio 2010 05 017 Peters V Conrad R 1995 Methanogenic and other strictly anaerobic bacteria in desert soil and other oxic sois Applied and Environmental Microbiology 61 4 1673 1676 Bibcode 1995ApEnM 61 1673P doi 10 1128 AEM 61 4 1673 1676 1995 PMC 1388429 PMID 16535011 Archived copy Archived from the original on 2009 03 27 Retrieved 2009 09 20 a href Template Cite web html title Template Cite web cite web a CS1 maint archived copy as title link Boone David R 2015 Methanobacterium Bergey s Manual of Systematics of Archaea and Bacteria John Wiley amp Sons Ltd pp 1 8 doi 10 1002 9781118960608 gbm00495 ISBN 9781118960608 Kvenvolden K 1995 A review of the geochemistry of methane in natural gas hydrate Organic Geochemistry 23 11 12 997 1008 Bibcode 1995OrGeo 23 997K doi 10 1016 0146 6380 96 00002 2 Milkov Alexei V 2004 Global estimates of hydrate bound gas in marine sediments how much is really out there Earth Science Reviews 66 3 4 183 197 Bibcode 2004ESRv 66 183M doi 10 1016 j earscirev 2003 11 002 Tung H C Bramall N E Price P B 2005 Microbial origin of excess methane in glacial ice and implications for life on Mars Proceedings of the National Academy of Sciences 102 51 18292 6 Bibcode 2005PNAS 10218292T doi 10 1073 pnas 0507601102 PMC 1308353 PMID 16339015 Icarus vol 178 p 277 cs Methanogen Extreme bugs back idea of life on Mars Crater Critters Where Mars Microbes Might Lurk Space com 20 December 2005 Retrieved 16 December 2014 NASA Rover on Mars Detects Puff of Gas That Hints at Possibility of Life The New York Times 22 June 2019 Thauer R K amp Shima S 2006 Biogeochemistry Methane and microbes Nature 440 7086 878 879 Bibcode 2006Natur 440 878T doi 10 1038 440878a PMID 16612369 S2CID 4373591 Gao Beile Gupta Radhey S 2007 Phylogenomic analysis of proteins that are distinctive of Archaea and its main subgroups and the origin of methanogenesis BMC Genomics 8 1 86 doi 10 1186 1471 2164 8 86 PMC 1852104 PMID 17394648 Rauch Benjamin Julius Gustafson Andrew Perona John J December 2014 Novel proteins for homocysteine biosynthesis in anaerobic microorganisms Molecular Microbiology 94 6 1330 1342 doi 10 1111 mmi 12832 ISSN 0950 382X PMID 25315403 Chen Sheng Chung Weng Chieh Yin Lai Mei Chin Tamaki Hideyuki Narihiro Takashi October 2019 Comparative genomic analyses reveal trehalose synthase genes as the signature in genus Methanoculleus Marine Genomics 47 100673 Bibcode 2019MarGn 4700673C doi 10 1016 j margen 2019 03 008 PMID 30935830 Guan Yue Ngugi David K Vinu Manikandan Blom Jochen Alam Intikhab Guillot Sylvain Ferry James G Stingl Ulrich 2019 04 24 Comparative Genomics of the Genus Methanohalophilus Including a Newly Isolated Strain From Kebrit Deep in the Red Sea Frontiers in Microbiology 10 839 doi 10 3389 fmicb 2019 00839 ISSN 1664 302X PMC 6491703 PMID 31068917 Borton Mikayla A Daly Rebecca A O Banion Bridget Hoyt David W Marcus Daniel N Welch Susan Hastings Sybille S Meulia Tea Wolfe Richard A Booker Anne E Sharma Shikha December 2018 Comparative genomics and physiology of the genus Methanohalophilus a prevalent methanogen in hydraulically fractured shale Environmental Microbiology 20 12 4596 4611 doi 10 1111 1462 2920 14467 ISSN 1462 2912 PMID 30394652 Sollinger Andrea Schwab Clarissa Weinmaier Thomas Loy Alexander Tveit Alexander T Schleper Christa Urich Tim January 2016 King Gary ed Phylogenetic and genomic analysis of Methanomassiliicoccales in wetlands and animal intestinal tracts reveals clade specific habitat preferences FEMS Microbiology Ecology 92 1 fiv149 doi 10 1093 femsec fiv149 ISSN 1574 6941 PMID 26613748 Lyu Zhe Lu Yahai June 2015 Comparative genomics of three M ethanocellales strains reveal novel taxonomic and metabolic features Comparative genomics of three Methanocellales strains Environmental Microbiology Reports 7 3 526 537 doi 10 1111 1758 2229 12283 PMID 25727385 Lyu Zhe Lu Yahai February 2018 Metabolic shift at the class level sheds light on adaptation of methanogens to oxidative environments The ISME Journal 12 2 411 423 doi 10 1038 ismej 2017 173 ISSN 1751 7362 PMC 5776455 PMID 29135970 Borrel Guillaume Parisot Nicolas Harris Hugh MB Peyretaillade Eric Gaci Nadia Tottey William Bardot Olivier Raymann Kasie Gribaldo Simonetta Peyret Pierre O Toole Paul W 2014 Comparative genomics highlights the unique biology of Methanomassiliicoccales a Thermoplasmatales related seventh order of methanogenic archaea that encodes pyrrolysine BMC Genomics 15 1 679 doi 10 1186 1471 2164 15 679 ISSN 1471 2164 PMC 4153887 PMID 25124552 Borrel Guillaume O Toole Paul W Harris Hugh M B Peyret Pierre Brugere Jean Francois Gribaldo Simonetta October 2013 Phylogenomic Data Support a Seventh Order of Methylotrophic Methanogens and Provide Insights into the Evolution of Methanogenesis Genome Biology and Evolution 5 10 1769 1780 doi 10 1093 gbe evt128 ISSN 1759 6653 PMC 3814188 PMID 23985970 a b c d e Blaut M 1994 Metabolism of methanogens Antonie van Leeuwenhoek 66 1 3 187 208 doi 10 1007 bf00871639 ISSN 0003 6072 PMID 7747931 S2CID 23706408 Dybas M Konisky J 1992 Energy transduction in the methanogen Methanococcus voltae is based on a sodium current J Bacteriol 174 17 5575 5583 doi 10 1128 jb 174 17 5575 5583 1992 PMC 206501 PMID 1324904 Karrasch M Borner G Enssle M Thauer R K 1990 12 12 The molybdoenzyme formylmethanofuran dehydrogenase from Methanosarcina barkeri contains a pterin cofactor European Journal of Biochemistry 194 2 367 372 doi 10 1111 j 1432 1033 1990 tb15627 x ISSN 0014 2956 PMID 2125267 Borner G Karrasch M Thauer R K 1991 09 23 Molybdopterin adenine dinucleotide and molybdopterin hypoxanthine dinucleotide in formylmethanofuran dehydrogenase from Methanobacterium thermoautotrophicum Marburg FEBS Letters 290 1 2 31 34 doi 10 1016 0014 5793 91 81218 w ISSN 0014 5793 PMID 1915887 S2CID 24174561 Schmitz Ruth A Albracht Simon P J Thauer Rudolf K 1992 11 01 A molybdenum and a tungsten isoenzyme of formylmethanofuran dehydrogenase in the thermophilic archaeon Methanobacterium wolfei European Journal of Biochemistry 209 3 1013 1018 doi 10 1111 j 1432 1033 1992 tb17376 x ISSN 1432 1033 PMID 1330558 Zirngibl C February 1990 N5 N10 Methylenetetrahydromethanopterin dehydrogenase from Methanobacterium thermoautotrophicum has hydrogenase activity Laboratorium Fir Mikrobiologie 261 1 112 116 doi 10 1016 0014 5793 90 80649 4 te Brommelstroet B W Geerts W J Keltjens J T van der Drift C Vogels G D 1991 09 20 Purification and properties of 5 10 methylenetetrahydromethanopterin dehydrogenase and 5 10 methylenetetrahydromethanopterin reductase two coenzyme F420 dependent enzymes from Methanosarcina barkeri Biochimica et Biophysica Acta BBA Protein Structure and Molecular Enzymology 1079 3 293 302 doi 10 1016 0167 4838 91 90072 8 ISSN 0006 3002 PMID 1911853 Kengen Serve W M Mosterd Judith J Nelissen Rob L H Keltjens Jan T Drift Chris van der Vogels Godfried D 1988 08 01 Reductive activation of the methyl tetrahydromethanopterin coenzyme M methyltransferase from Methanobacterium thermoautotrophicum strain DH Archives of Microbiology 150 4 405 412 doi 10 1007 BF00408315 ISSN 0302 8933 S2CID 36366503 Bobik T A Olson K D Noll K M Wolfe R S 1987 12 16 Evidence that the heterodisulfide of coenzyme M and 7 mercaptoheptanoylthreonine phosphate is a product of the methylreductase reaction in Methanobacterium Biochemical and Biophysical Research Communications 149 2 455 460 doi 10 1016 0006 291x 87 90389 5 ISSN 0006 291X PMID 3122735 Ellermann J Hedderich R Bocher R Thauer R K 1988 03 15 The final step in methane formation Investigations with highly purified methyl CoM reductase component C from Methanobacterium thermoautotrophicum strain Marburg European Journal of Biochemistry 172 3 669 677 doi 10 1111 j 1432 1033 1988 tb13941 x ISSN 0014 2956 PMID 3350018 Appels Lise et al 2008 Principles and potential of the anaerobic digestion of waste activated sludge Progress in Energy and Combustion Science 34 6 755 781 doi 10 1016 j pecs 2008 06 002 Christensen Thomas H et al 2010 Anaerobic Digestion Process Solid Waste Technology amp Management Volume 1 amp 2 doi 10 1002 9780470666883 ch372 Shah Fayyaz Ali et al 2014 Microbial Ecology of Anaerobic Digesters The Key Players of Anaerobiosis ScientificWorldJournal 3852369 1 doi 10 1155 2014 183752 Lettinga G 1995 Anaerobic Digestion and Wastewater Treatment Systems Antonie van Leeuwenhoek 67 1 3 28 doi 10 1007 bf00872193 PMID 7741528 S2CID 9415571 a b Tabatabaei Meisa et al 2010 Importance of the methanogenic archaea populations in anaerobic wastewater treatments PDF Process Biochemistry 45 8 1214 1225 doi 10 1016 j procbio 2010 05 017 Marihiro Takashi Sekiguchi Yuji 2007 Microbial communities in anaerobic digestion processes for waste and wastewater treatment a microbiological update Current Opinion in Biotechnology 18 3 273 278 doi 10 1016 j copbio 2007 04 003 Advanced anaerobic wastewater treatment in the near future Water Science and Technology 35 10 1997 doi 10 1016 S0273 1223 97 00222 9 Mondav Rhiannon Woodcroft Ben J Kim Eun Hae McCalley Carmody K Hodgkins Suzanne B Crill Patrick M Chanton Jeffrey Hurst Gregory B Verberkmoes Nathan C Saleska Scott R Hugenholtz Philip Rich Virginia I Tyson Gene W 2014 Discovery of a novel methanogen prevalent in thawing permafrost PDF Nature Communications 5 3212 Bibcode 2014NatCo 5 3212M doi 10 1038 ncomms4212 PMID 24526077 Retrieved from https en wikipedia org w index php title Methanogen amp oldid 1150632280, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.