fbpx
Wikipedia

Bifidobacterium

Bifidobacterium is a genus of gram-positive, nonmotile, often branched anaerobic bacteria. They are ubiquitous inhabitants of the gastrointestinal tract[2][3] though strains have been isolated from the vagina[4] and mouth (B. dentium) of mammals, including humans. Bifidobacteria are one of the major genera of bacteria that make up the gastrointestinal tract microbiota in mammals. Some bifidobacteria are used as probiotics.

Bifidobacterium
Bifidobacterium adolescentis
Scientific classification
Domain: Bacteria
Phylum: Actinomycetota
Class: Actinomycetia
Order: Bifidobacteriales
Family: Bifidobacteriaceae
Genus: Bifidobacterium
Orla-Jensen 1924 (Approved Lists 1980)[1]
Type species
Bifidobacterium bifidum
(Tissier 1900) Orla-Jensen 1924 (Approved Lists 1980)
Species

See text.

Before the 1960s, Bifidobacterium species were collectively referred to as Lactobacillus bifidus.

History edit

 
Some of the Bifidobacterium animalis bacteria found in a sample of Activia yogurt:  The numbered ticks on the scale are 10 micrometres apart.

In 1899, Henri Tissier, a French pediatrician at the Pasteur Institute in Paris, isolated a bacterium characterised by a Y-shaped morphology ("bifid") in the intestinal microbiota of breast-fed infants and named it "bifidus".[5] In 1907, Élie Metchnikoff, deputy director at the Pasteur Institute, propounded the theory that lactic acid bacteria are beneficial to human health.[5] Metchnikoff observed that the longevity of Bulgarians was the result of their consumption of fermented milk products.[6] Metchnikoff also suggested that "oral administration of cultures of fermentative bacteria would implant the beneficial bacteria in the intestinal tract".[7]

Metabolism edit

The genus Bifidobacterium possesses a unique fructose-6-phosphate phosphoketolase pathway employed to ferment carbohydrates.[citation needed]

Much metabolic research on bifidobacteria has focused on oligosaccharide metabolism, as these carbohydrates are available in their otherwise nutrient-limited habitats. Infant-associated bifidobacterial phylotypes appear to have evolved the ability to ferment milk oligosaccharides, whereas adult-associated species use plant oligosaccharides, consistent with what they encounter in their respective environments. As breast-fed infants often harbor bifidobacteria-dominated gut consortia, numerous applications attempt to mimic the bifidogenic properties of milk oligosaccharides. These are broadly classified as plant-derived fructooligosaccharides or dairy-derived galactooligosaccharides, which are differentially metabolized and distinct from milk oligosaccharide catabolism.[3]

Response to oxygen edit

The sensitivity of members of the genus Bifidobacterium to O2 generally limits probiotic activity to anaerobic habitats. Recent research has reported that some Bifidobacterium strains exhibit various types of oxic growth. Low concentrations of O2 and CO2 can have a stimulatory effect on the growth of these Bifidobacterium strains. Based on the growth profiles under different O2 concentrations, the Bifidobacterium species were classified into four classes: O2-hypersensitive, O2-sensitive, O2-tolerant, and microaerophilic. The primary factor responsible for aerobic growth inhibition is proposed to be the production of hydrogen peroxide (H2O2) in the growth medium. A H2O2-forming NADH oxidase was purified from O2-sensitive Bifidobacterium bifidum and was identified as a b-type dihydroorotate dehydrogenase. The kinetic parameters suggested that the enzyme could be involved in H2O2 production in highly aerated environments.[8]

Genomes edit

Members of the genus Bifidobacterium have genome sizes ranging from 1.73 (Bifidobacterium indicum) to 3.25 Mb (Bifidobacterium biavatii), corresponding to 1,352 and 2,557 predicted protein-encoding open reading frames, respectively.[9]

Functional classification of Bifidobacterium genes, including the pan-genome of this genus, revealed that 13.7% of the identified bifidobacterial genes encode enzymes involved in carbohydrate metabolism.[9]

Clinical uses edit

Adding Bifidobacterium as a probiotic to conventional treatment of ulcerative colitis has been shown to be associated with improved rates of remission and improved maintenance of remission.[10] Some Bifidobacterium strains are considered as important probiotics and used in the food industry. Different species and/or strains of bifidobacteria may exert a range of beneficial health effects, including the regulation of intestinal microbial homeostasis, the inhibition of pathogens and harmful bacteria that colonize and/or infect the gut mucosa, the modulation of local and systemic immune responses, the repression of procarcinogenic enzymatic activities within the microbiota, the production of vitamins, and the bioconversion of a number of dietary compounds into bioactive molecules.[3] Bifidobacteria improve the gut mucosal barrier and lower levels of lipopolysaccharide in the intestine.[11]

Bifidobacteria may also improve abdominal pain in patients with irritable bowel syndrome (IBS) though studies to date have been inconclusive.[12]

Naturally occurring Bifidobacterium spp. may discourage the growth of Gram-negative pathogens in infants.[13]

Mother's milk contains high concentrations of lactose and lower quantities of phosphate (pH buffer). Therefore, when mother's milk is fermented by lactic acid bacteria (including bifidobacteria) in the infant's gastrointestinal tract, the pH may be reduced, making it more difficult for Gram-negative bacteria to grow.[citation needed]

Bifidobacteria and the infant gut edit

The human infant gut is relatively sterile up until birth, where it takes up bacteria from its surrounding environment and its mother.[14] The microbiota that makes up the infant gut differs from the adult gut. An infant reaches the adult stage of their microbiome at around three years of age, when their microbiome diversity increases, stabilizes, and the infant switches over to solid foods. Breast-fed infants are colonized earlier by Bifidobacterium when compared to babies that are primarily formula-fed.[15] Bifidobacterium is the most common bacteria in the infant gut microbiome.[16] There is more variability in genotypes over time in infants, making them less stable compared to the adult Bifidobacterium. Infants and children under three years old show low diversity in microbiome bacteria, but more diversity between individuals when compared to adults.[17] Reduction of Bifidobacterium and increase in diversity of the infant gut microbiome occurs with less breast-milk intake and increase of solid food intake. Mammalian milk all contain oligosaccharides showing natural selection [clarification needed]. Human milk oligosaccharides are not digested by enzymes and remain whole through the digestive tract before being broken down in the colon by microbiota. Bifidobacterium species genomes of B. longum, B. bifidum, B. breve contain genes that can hydrolyze some of the human milk oligosaccharides and these are found in higher numbers in infants that are breast-fed. Glycans that are produced by the humans are converted into food and energy for the B. bifidum. showing an example of coevolution.[18]

Species edit

The genus Bifidobacterium comprises the following species:[19]

  • B. actinocoloniiforme Killer et al. 2011
  • B. adolescentis Reuter 1963 (Approved Lists 1980)
  • B. aemilianum Alberoni et al. 2019
  • B. aerophilum Michelini et al. 2017
  • B. aesculapii Modesto et al. 2014
  • B. amazonense Lugli et al. 2021
  • B. angulatum Scardovi and Crociani 1974 (Approved Lists 1980)
  • B. animalis (Mitsuoka 1969) Scardovi and Trovatelli 1974 (Approved Lists 1980)
  • B. anseris Lugli et al. 2018
  • B. apousia Chen et al. 2022
  • B. apri Pechar et al. 2017
  • B. aquikefiri Laureys et al. 2016
  • B. asteroides Scardovi and Trovatelli 1969 (Approved Lists 1980)
  • B. avesanii Michelini et al. 2019
  • B. biavatii Endo et al. 2012
  • B. bifidum (Tissier 1900) Orla-Jensen 1924 (Approved Lists 1980)
  • B. bohemicum Killer et al. 2011
  • B. bombi Killer et al. 2009
  • B. boum Scardovi et al. 1979 (Approved Lists 1980)
  • B. breve Reuter 1963 (Approved Lists 1980)
  • B. callimiconis Duranti et al. 2019
  • B. callitrichidarum Modesto et al. 2018
  • B. callitrichos Endo et al. 2012
  • B. canis Neuzil-Bunesova et al. 2020
  • B. castoris Duranti et al. 2019
  • B. catenulatum Scardovi and Crociani 1974 (Approved Lists 1980)
  • B. catulorum Modesto et al. 2018
  • B. cebidarum Duranti et al. 2020
  • B. choerinum Scardovi et al. 1979 (Approved Lists 1980)
  • B.choladohabitans Chen et al. 2022
  • B. choloepi Modesto et al. 2020
  • B. colobi Lugli et al. 2021
  • B. commune Praet et al. 2015
  • B. criceti Lugli et al. 2018
  • "B. crudilactis" Delcenserie et al. 2007
  • B.cuniculi Scardovi et al. 1979 (Approved Lists 1980)
  • B. dentium Scardovi and Crociani 1974 (Approved Lists 1980)
  • B. dolichotidis Duranti et al. 2019
  • "B. eriksonii" Cato et al. 1970
  • B. erythrocebi Neuzil-Bunesova et al. 2021
  • B. eulemuris Michelini et al. 2016
  • B. faecale Choi et al. 2014
  • B. felsineum Modesto et al. 2020
  • B. gallicum Lauer 1990
  • B. gallinarum Watabe et al. 1983
  • B. globosum (ex Scardovi et al. 1969) Biavati et al. 1982
  • B. goeldii Duranti et al. 2019
  • B. hapali Michelini et al. 2016
  • B. Lugli et al. 2018
  • B. indicum Scardovi and Trovatelli 1969 (Approved Lists 1980)
  • B. italicum Lugli et al. 2018
  • B. jacchi Modesto et al. 2019
  • B. lemurum Modesto et al. 2015
  • B. leontopitheci Duranti et al. 2020
  • B. longum Reuter 1963 (Approved Lists 1980)
  • B. magnum Scardovi and Zani 1974 (Approved Lists 1980)
  • B.margollesii Lugli et al. 2018
  • B. merycicum Biavati and Mattarelli 1991
  • B. miconis Lugli et al. 2021
  • B. miconisargentati Lugli et al. 2021
  • B. minimum Biavati et al. 1982
  • B. mongoliense Watanabe et al. 2009
  • B. moraviense Neuzil-Bunesova et al. 2021
  • B. moukalabense Tsuchida et al. 2014
  • B. myosotis Michelini et al. 2016
  • B. oedipodis Neuzil-Bunesova et al. 2021
  • B. olomucense Neuzil-Bunesova et al. 2021
  • B. panos Neuzil-Bunesova et al. 2021
  • B. parmae Lugli et al. 2018
  • "B. platyrrhinorum" Modesto et al. 2020
  • B. pluvialisilvae Lugli et al. 2021
  • B. polysaccharolyticum Chen et al. 2022
  • B. pongonis Lugli et al. 2021
  • B. porcinum (Zhu et al. 2003) Nouioui et al. 2018
  • B. primatium Modesto et al. 2020
  • B. pseudocatenulatum Scardovi et al. 1979 (Approved Lists 1980)
  • B. pseudolongum Mitsuoka 1969 (Approved Lists 1980)
  • B. psychraerophilum Simpson et al. 2004
  • B. pullorum Trovatelli et al. 1974 (Approved Lists 1980)
  • B. ramosum Michelini et al. 2017
  • B. reuteri Endo et al. 2012
  • B. rousetti Modesto et al. 2021
  • "B. ruminale" Scardovi et al. 1969
  • B. ruminantium Biavati and Mattarelli 1991
  • B. saguini Endo et al. 2012
  • B. saguinibicoloris Lugli et al. 2021
  • "B. saimiriisciurei" Modesto et al. 2020
  • B. samirii Duranti et al. 2019
  • B. santillanense Lugli et al. 2021
  • B. scaligerum Modesto et al. 2020
  • B. scardovii Hoyles et al. 2002
  • B. simiarum Modesto et al. 2020
  • B. simiiventris Lugli et al. 2021
  • B. stellenboschense Endo et al. 2012
  • B. subtile Biavati et al. 1982
  • B. thermacidophilum Dong et al. 2000
  • B. thermophilum corrig. Mitsuoka 1969 (Approved Lists 1980)
  • B. tibiigranuli Eckel et al. 2020
  • B. tissieri corrig. Michelini et al. 2016
  • B. tsurumiense Okamoto et al. 2008
  • "B. urinalis" Hojo et al. 2007
  • B. vansinderenii Duranti et al. 2017
  • B. vespertilionis Modesto et al. 2021
  • B. xylocopae Alberoni et al. 2019

See also edit

References edit

  1. ^ Orla-Jensen S. (1924). "Classification des bactéries lactiques" [Classification of the lactic acid bacteria]. Le Lait. 4 (36): 468–474. doi:10.1051/lait:19243627.
  2. ^ Schell MA, Karmirantzou M, Snel B, Vilanova D, Berger B, Pessi G, Zwahlen MC, Desiere F, Bork P, Delley M, Pridmore RD, Arigoni F (October 2002). "The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract". Proceedings of the National Academy of Sciences of the United States of America. 99 (22): 14422–7. Bibcode:2002PNAS...9914422S. doi:10.1073/pnas.212527599. PMC 137899. PMID 12381787.
  3. ^ a b c Mayo B, van Sinderen D, eds. (2010). Bifidobacteria: Genomics and Molecular Aspects. Caister Academic Press. ISBN 978-1-904455-68-4.[page needed]
  4. ^ Albert, Arianne Y. K.; Chaban, Bonnie; Wagner, Emily C.; Schellenberg, John J.; Links, Matthew G.; Schalkwyk, Julie van; Reid, Gregor; Hemmingsen, Sean M.; Hill, Janet E.; Money, Deborah; Group, VOGUE Research (12 August 2015). "A Study of the Vaginal Microbiome in Healthy Canadian Women Utilizing cpn60-Based Molecular Profiling Reveals Distinct Gardnerella Subgroup Community State Types". PLOS ONE. 10 (8): e0135620. Bibcode:2015PLoSO..1035620A. doi:10.1371/journal.pone.0135620. PMC 4534464. PMID 26266808.
  5. ^ a b "Potential of probiotics as biotherapeutic agents targeting the innate immune system" (PDF). African Journal of Biotechnology. February 2005.
  6. ^ (PDF). Communicating Current Research and Educational Topics and Trends in Applied Microbiology. February 2007. Archived from the original (PDF) on 2012-10-04.
  7. ^ . European Probiotic Association. February 2012. Archived from the original on 2013-07-22. Retrieved 2013-07-01.
  8. ^ Sonomoto K, Yokota A, eds. (2011). Lactic Acid Bacteria and Bifidobacteria: Current Progress in Advanced Research. Caister Academic Press. ISBN 978-1-904455-82-0.[page needed]
  9. ^ a b Milani C, Turroni F, Duranti S, Lugli GA, Mancabelli L, Ferrario C, van Sinderen D, Ventura M (February 2016). "Genomics of the Genus Bifidobacterium Reveals Species-Specific Adaptation to the Glycan-Rich Gut Environment". Applied and Environmental Microbiology. 82 (4): 980–991. Bibcode:2016ApEnM..82..980M. doi:10.1128/AEM.03500-15. PMC 4751850. PMID 26590291.
  10. ^ Ghouri YA, Richards DM, Rahimi EF, Krill JT, Jelinek KA, DuPont AW (9 December 2014). "Systematic review of randomized controlled trials of probiotics, prebiotics, and synbiotics in inflammatory bowel disease". Clinical and Experimental Gastroenterology. 7: 473–87. doi:10.2147/CEG.S27530. PMC 4266241. PMID 25525379.
  11. ^ Pinzone MR, Celesia BM, Di Rosa M, Cacopardo B, Nunnari G (2012). "Microbial translocation in chronic liver diseases". International Journal of Microbiology. 2012: 694629. doi:10.1155/2012/694629. PMC 3405644. PMID 22848224.
  12. ^ Pratt, Charlotte; Campbell, Matthew D. (2019-11-18). "The Effect of Bifidobacterium on Reducing Symptomatic Abdominal Pain in Patients with Irritable Bowel Syndrome: A Systematic Review". Probiotics and Antimicrobial Proteins. 12 (3): 834–839. doi:10.1007/s12602-019-09609-7. ISSN 1867-1306. PMC 7456408. PMID 31741311.
  13. ^ Liévin V, Peiffer I, Hudault S, Rochat F, Brassart D, Neeser JR, Servin AL (November 2000). "Bifidobacterium strains from resident infant human gastrointestinal microflora exert antimicrobial activity". Gut. 47 (5): 646–52. doi:10.1136/gut.47.5.646. PMC 1728100. PMID 11034580.
  14. ^ Pham VT, Lacroix C, Braegger CP, Chassard C (July 2016). "Early colonization of functional groups of microbes in the infant gut". Environmental Microbiology. 18 (7): 2246–58. Bibcode:2016EnvMi..18.2246P. doi:10.1111/1462-2920.13316. PMID 27059115.
  15. ^ Bourlieu C, Bouzerzour K, FerretBernard S, Bourgot CL, Chever S, Menard O, Deglaire A, Cuinet I, Ruyet PL, Bonhomme C, Dupont D (2015). "Infant formula interface and fat source impact on neonatal digestion and gut microbiota". European Journal of Lipid Science and Technology. 117 (10): 1500–1512. doi:10.1002/ejlt.201500025. ISSN 1438-9312.
  16. ^ Turroni F, Peano C, Pass DA, Foroni E, Severgnini M, Claesson MJ, Kerr C, Hourihane J, Murray D, Fuligni F, Gueimonde M, Margolles A, De Bellis G, O'Toole PW, van Sinderen D, Marchesi JR, Ventura M (2012-05-11). "Diversity of bifidobacteria within the infant gut microbiota". PLOS ONE. 7 (5): e36957. Bibcode:2012PLoSO...736957T. doi:10.1371/journal.pone.0036957. PMC 3350489. PMID 22606315.
  17. ^ Matamoros S, Gras-Leguen C, Le Vacon F, Potel G, de La Cochetiere MF (April 2013). "Development of intestinal microbiota in infants and its impact on health". Trends in Microbiology. 21 (4): 167–73. doi:10.1016/j.tim.2012.12.001. PMID 23332725.
  18. ^ Turroni F, Milani C, Duranti S, Ferrario C, Lugli GA, Mancabelli L, van Sinderen D, Ventura M (January 2018). "Bifidobacteria and the infant gut: an example of co-evolution and natural selection". Cellular and Molecular Life Sciences. 75 (1): 103–118. doi:10.1007/s00018-017-2672-0. PMID 28983638. S2CID 24103287.
  19. ^ Euzéby JP, Parte AC. "Actinomycetaceae". List of Prokaryotic names with Standing in Nomenclature (LPSN). Retrieved June 17, 2021.

External links edit

  • Bifidobacterium at Microbe Wiki
  • Genomes Online Database contains many Bifidobacterium genome projects
  • Comparative Analysis of Bifidobacterium Genomes (at DOE's IMG system)
  • Bifidobacterium at BacDive - the Bacterial Diversity Metadatabase
  • Spotlight on Bifidobacteria

bifidobacterium, genus, gram, positive, nonmotile, often, branched, anaerobic, bacteria, they, ubiquitous, inhabitants, gastrointestinal, tract, though, strains, have, been, isolated, from, vagina, mouth, dentium, mammals, including, humans, bifidobacteria, ma. Bifidobacterium is a genus of gram positive nonmotile often branched anaerobic bacteria They are ubiquitous inhabitants of the gastrointestinal tract 2 3 though strains have been isolated from the vagina 4 and mouth B dentium of mammals including humans Bifidobacteria are one of the major genera of bacteria that make up the gastrointestinal tract microbiota in mammals Some bifidobacteria are used as probiotics Bifidobacterium Bifidobacterium adolescentis Scientific classification Domain Bacteria Phylum Actinomycetota Class Actinomycetia Order Bifidobacteriales Family Bifidobacteriaceae Genus BifidobacteriumOrla Jensen 1924 Approved Lists 1980 1 Type species Bifidobacterium bifidum Tissier 1900 Orla Jensen 1924 Approved Lists 1980 Species See text Before the 1960s Bifidobacterium species were collectively referred to as Lactobacillus bifidus Contents 1 History 2 Metabolism 3 Response to oxygen 4 Genomes 5 Clinical uses 6 Bifidobacteria and the infant gut 7 Species 8 See also 9 References 10 External linksHistory edit nbsp Some of the Bifidobacterium animalis bacteria found in a sample of Activia yogurt The numbered ticks on the scale are 10 micrometres apart In 1899 Henri Tissier a French pediatrician at the Pasteur Institute in Paris isolated a bacterium characterised by a Y shaped morphology bifid in the intestinal microbiota of breast fed infants and named it bifidus 5 In 1907 Elie Metchnikoff deputy director at the Pasteur Institute propounded the theory that lactic acid bacteria are beneficial to human health 5 Metchnikoff observed that the longevity of Bulgarians was the result of their consumption of fermented milk products 6 Metchnikoff also suggested that oral administration of cultures of fermentative bacteria would implant the beneficial bacteria in the intestinal tract 7 Metabolism editThe genus Bifidobacterium possesses a unique fructose 6 phosphate phosphoketolase pathway employed to ferment carbohydrates citation needed Much metabolic research on bifidobacteria has focused on oligosaccharide metabolism as these carbohydrates are available in their otherwise nutrient limited habitats Infant associated bifidobacterial phylotypes appear to have evolved the ability to ferment milk oligosaccharides whereas adult associated species use plant oligosaccharides consistent with what they encounter in their respective environments As breast fed infants often harbor bifidobacteria dominated gut consortia numerous applications attempt to mimic the bifidogenic properties of milk oligosaccharides These are broadly classified as plant derived fructooligosaccharides or dairy derived galactooligosaccharides which are differentially metabolized and distinct from milk oligosaccharide catabolism 3 Response to oxygen editThe sensitivity of members of the genus Bifidobacterium to O2 generally limits probiotic activity to anaerobic habitats Recent research has reported that some Bifidobacterium strains exhibit various types of oxic growth Low concentrations of O2 and CO2 can have a stimulatory effect on the growth of these Bifidobacterium strains Based on the growth profiles under different O2 concentrations the Bifidobacterium species were classified into four classes O2 hypersensitive O2 sensitive O2 tolerant and microaerophilic The primary factor responsible for aerobic growth inhibition is proposed to be the production of hydrogen peroxide H2O2 in the growth medium A H2O2 forming NADH oxidase was purified from O2 sensitive Bifidobacterium bifidum and was identified as a b type dihydroorotate dehydrogenase The kinetic parameters suggested that the enzyme could be involved in H2O2 production in highly aerated environments 8 Genomes editMembers of the genus Bifidobacterium have genome sizes ranging from 1 73 Bifidobacterium indicum to 3 25 Mb Bifidobacterium biavatii corresponding to 1 352 and 2 557 predicted protein encoding open reading frames respectively 9 Functional classification of Bifidobacterium genes including the pan genome of this genus revealed that 13 7 of the identified bifidobacterial genes encode enzymes involved in carbohydrate metabolism 9 Clinical uses editAdding Bifidobacterium as a probiotic to conventional treatment of ulcerative colitis has been shown to be associated with improved rates of remission and improved maintenance of remission 10 Some Bifidobacterium strains are considered as important probiotics and used in the food industry Different species and or strains of bifidobacteria may exert a range of beneficial health effects including the regulation of intestinal microbial homeostasis the inhibition of pathogens and harmful bacteria that colonize and or infect the gut mucosa the modulation of local and systemic immune responses the repression of procarcinogenic enzymatic activities within the microbiota the production of vitamins and the bioconversion of a number of dietary compounds into bioactive molecules 3 Bifidobacteria improve the gut mucosal barrier and lower levels of lipopolysaccharide in the intestine 11 Bifidobacteria may also improve abdominal pain in patients with irritable bowel syndrome IBS though studies to date have been inconclusive 12 Naturally occurring Bifidobacterium spp may discourage the growth of Gram negative pathogens in infants 13 Mother s milk contains high concentrations of lactose and lower quantities of phosphate pH buffer Therefore when mother s milk is fermented by lactic acid bacteria including bifidobacteria in the infant s gastrointestinal tract the pH may be reduced making it more difficult for Gram negative bacteria to grow citation needed Bifidobacteria and the infant gut editThe human infant gut is relatively sterile up until birth where it takes up bacteria from its surrounding environment and its mother 14 The microbiota that makes up the infant gut differs from the adult gut An infant reaches the adult stage of their microbiome at around three years of age when their microbiome diversity increases stabilizes and the infant switches over to solid foods Breast fed infants are colonized earlier by Bifidobacterium when compared to babies that are primarily formula fed 15 Bifidobacterium is the most common bacteria in the infant gut microbiome 16 There is more variability in genotypes over time in infants making them less stable compared to the adult Bifidobacterium Infants and children under three years old show low diversity in microbiome bacteria but more diversity between individuals when compared to adults 17 Reduction of Bifidobacterium and increase in diversity of the infant gut microbiome occurs with less breast milk intake and increase of solid food intake Mammalian milk all contain oligosaccharides showing natural selection clarification needed Human milk oligosaccharides are not digested by enzymes and remain whole through the digestive tract before being broken down in the colon by microbiota Bifidobacterium species genomes of B longum B bifidum B breve contain genes that can hydrolyze some of the human milk oligosaccharides and these are found in higher numbers in infants that are breast fed Glycans that are produced by the humans are converted into food and energy for the B bifidum showing an example of coevolution 18 Species editThe genus Bifidobacterium comprises the following species 19 B actinocoloniiforme Killer et al 2011 B adolescentis Reuter 1963 Approved Lists 1980 B aemilianum Alberoni et al 2019 B aerophilum Michelini et al 2017 B aesculapii Modesto et al 2014 B amazonense Lugli et al 2021 B angulatum Scardovi and Crociani 1974 Approved Lists 1980 B animalis Mitsuoka 1969 Scardovi and Trovatelli 1974 Approved Lists 1980 B anseris Lugli et al 2018 B apousia Chen et al 2022 B apri Pechar et al 2017 B aquikefiri Laureys et al 2016 B asteroides Scardovi and Trovatelli 1969 Approved Lists 1980 B avesanii Michelini et al 2019 B biavatii Endo et al 2012 B bifidum Tissier 1900 Orla Jensen 1924 Approved Lists 1980 B bohemicum Killer et al 2011 B bombi Killer et al 2009 B boum Scardovi et al 1979 Approved Lists 1980 B breve Reuter 1963 Approved Lists 1980 B callimiconis Duranti et al 2019 B callitrichidarum Modesto et al 2018 B callitrichos Endo et al 2012 B canis Neuzil Bunesova et al 2020 B castoris Duranti et al 2019 B catenulatum Scardovi and Crociani 1974 Approved Lists 1980 B catulorum Modesto et al 2018 B cebidarum Duranti et al 2020 B choerinum Scardovi et al 1979 Approved Lists 1980 B choladohabitans Chen et al 2022 B choloepi Modesto et al 2020 B colobi Lugli et al 2021 B commune Praet et al 2015 B criceti Lugli et al 2018 B crudilactis Delcenserie et al 2007 B cuniculi Scardovi et al 1979 Approved Lists 1980 B dentium Scardovi and Crociani 1974 Approved Lists 1980 B dolichotidis Duranti et al 2019 B eriksonii Cato et al 1970 B erythrocebi Neuzil Bunesova et al 2021 B eulemuris Michelini et al 2016 B faecale Choi et al 2014 B felsineum Modesto et al 2020 B gallicum Lauer 1990 B gallinarum Watabe et al 1983 B globosum ex Scardovi et al 1969 Biavati et al 1982 B goeldii Duranti et al 2019 B hapali Michelini et al 2016 B Lugli et al 2018 B indicum Scardovi and Trovatelli 1969 Approved Lists 1980 B italicum Lugli et al 2018 B jacchi Modesto et al 2019 B lemurum Modesto et al 2015 B leontopitheci Duranti et al 2020 B longum Reuter 1963 Approved Lists 1980 B magnum Scardovi and Zani 1974 Approved Lists 1980 B margollesii Lugli et al 2018 B merycicum Biavati and Mattarelli 1991 B miconis Lugli et al 2021 B miconisargentati Lugli et al 2021 B minimum Biavati et al 1982 B mongoliense Watanabe et al 2009 B moraviense Neuzil Bunesova et al 2021 B moukalabense Tsuchida et al 2014 B myosotis Michelini et al 2016 B oedipodis Neuzil Bunesova et al 2021 B olomucense Neuzil Bunesova et al 2021 B panos Neuzil Bunesova et al 2021 B parmae Lugli et al 2018 B platyrrhinorum Modesto et al 2020 B pluvialisilvae Lugli et al 2021 B polysaccharolyticum Chen et al 2022 B pongonis Lugli et al 2021 B porcinum Zhu et al 2003 Nouioui et al 2018 B primatium Modesto et al 2020 B pseudocatenulatum Scardovi et al 1979 Approved Lists 1980 B pseudolongum Mitsuoka 1969 Approved Lists 1980 B psychraerophilum Simpson et al 2004 B pullorum Trovatelli et al 1974 Approved Lists 1980 B ramosum Michelini et al 2017 B reuteri Endo et al 2012 B rousetti Modesto et al 2021 B ruminale Scardovi et al 1969 B ruminantium Biavati and Mattarelli 1991 B saguini Endo et al 2012 B saguinibicoloris Lugli et al 2021 B saimiriisciurei Modesto et al 2020 B samirii Duranti et al 2019 B santillanense Lugli et al 2021 B scaligerum Modesto et al 2020 B scardovii Hoyles et al 2002 B simiarum Modesto et al 2020 B simiiventris Lugli et al 2021 B stellenboschense Endo et al 2012 B subtile Biavati et al 1982 B thermacidophilum Dong et al 2000 B thermophilum corrig Mitsuoka 1969 Approved Lists 1980 B tibiigranuli Eckel et al 2020 B tissieri corrig Michelini et al 2016 B tsurumiense Okamoto et al 2008 B urinalis Hojo et al 2007 B vansinderenii Duranti et al 2017 B vespertilionis Modesto et al 2021 B xylocopae Alberoni et al 2019See also editList of bacterial vaginosis microbiota Probiotic Proteobiotics PrebioticsReferences edit Orla Jensen S 1924 Classification des bacteries lactiques Classification of the lactic acid bacteria Le Lait 4 36 468 474 doi 10 1051 lait 19243627 Schell MA Karmirantzou M Snel B Vilanova D Berger B Pessi G Zwahlen MC Desiere F Bork P Delley M Pridmore RD Arigoni F October 2002 The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract Proceedings of the National Academy of Sciences of the United States of America 99 22 14422 7 Bibcode 2002PNAS 9914422S doi 10 1073 pnas 212527599 PMC 137899 PMID 12381787 a b c Mayo B van Sinderen D eds 2010 Bifidobacteria Genomics and Molecular Aspects Caister Academic Press ISBN 978 1 904455 68 4 page needed Albert Arianne Y K Chaban Bonnie Wagner Emily C Schellenberg John J Links Matthew G Schalkwyk Julie van Reid Gregor Hemmingsen Sean M Hill Janet E Money Deborah Group VOGUE Research 12 August 2015 A Study of the Vaginal Microbiome in Healthy Canadian Women Utilizing cpn60 Based Molecular Profiling Reveals Distinct Gardnerella Subgroup Community State Types PLOS ONE 10 8 e0135620 Bibcode 2015PLoSO 1035620A doi 10 1371 journal pone 0135620 PMC 4534464 PMID 26266808 a b Potential of probiotics as biotherapeutic agents targeting the innate immune system PDF African Journal of Biotechnology February 2005 Probiotics 100 years 1907 2007 after Elie Metchnikoff s Observation PDF Communicating Current Research and Educational Topics and Trends in Applied Microbiology February 2007 Archived from the original PDF on 2012 10 04 Pioneers of Probiotics European Probiotic Association February 2012 Archived from the original on 2013 07 22 Retrieved 2013 07 01 Sonomoto K Yokota A eds 2011 Lactic Acid Bacteria and Bifidobacteria Current Progress in Advanced Research Caister Academic Press ISBN 978 1 904455 82 0 page needed a b Milani C Turroni F Duranti S Lugli GA Mancabelli L Ferrario C van Sinderen D Ventura M February 2016 Genomics of the Genus Bifidobacterium Reveals Species Specific Adaptation to the Glycan Rich Gut Environment Applied and Environmental Microbiology 82 4 980 991 Bibcode 2016ApEnM 82 980M doi 10 1128 AEM 03500 15 PMC 4751850 PMID 26590291 Ghouri YA Richards DM Rahimi EF Krill JT Jelinek KA DuPont AW 9 December 2014 Systematic review of randomized controlled trials of probiotics prebiotics and synbiotics in inflammatory bowel disease Clinical and Experimental Gastroenterology 7 473 87 doi 10 2147 CEG S27530 PMC 4266241 PMID 25525379 Pinzone MR Celesia BM Di Rosa M Cacopardo B Nunnari G 2012 Microbial translocation in chronic liver diseases International Journal of Microbiology 2012 694629 doi 10 1155 2012 694629 PMC 3405644 PMID 22848224 Pratt Charlotte Campbell Matthew D 2019 11 18 The Effect of Bifidobacterium on Reducing Symptomatic Abdominal Pain in Patients with Irritable Bowel Syndrome A Systematic Review Probiotics and Antimicrobial Proteins 12 3 834 839 doi 10 1007 s12602 019 09609 7 ISSN 1867 1306 PMC 7456408 PMID 31741311 Lievin V Peiffer I Hudault S Rochat F Brassart D Neeser JR Servin AL November 2000 Bifidobacterium strains from resident infant human gastrointestinal microflora exert antimicrobial activity Gut 47 5 646 52 doi 10 1136 gut 47 5 646 PMC 1728100 PMID 11034580 Pham VT Lacroix C Braegger CP Chassard C July 2016 Early colonization of functional groups of microbes in the infant gut Environmental Microbiology 18 7 2246 58 Bibcode 2016EnvMi 18 2246P doi 10 1111 1462 2920 13316 PMID 27059115 Bourlieu C Bouzerzour K FerretBernard S Bourgot CL Chever S Menard O Deglaire A Cuinet I Ruyet PL Bonhomme C Dupont D 2015 Infant formula interface and fat source impact on neonatal digestion and gut microbiota European Journal of Lipid Science and Technology 117 10 1500 1512 doi 10 1002 ejlt 201500025 ISSN 1438 9312 Turroni F Peano C Pass DA Foroni E Severgnini M Claesson MJ Kerr C Hourihane J Murray D Fuligni F Gueimonde M Margolles A De Bellis G O Toole PW van Sinderen D Marchesi JR Ventura M 2012 05 11 Diversity of bifidobacteria within the infant gut microbiota PLOS ONE 7 5 e36957 Bibcode 2012PLoSO 736957T doi 10 1371 journal pone 0036957 PMC 3350489 PMID 22606315 Matamoros S Gras Leguen C Le Vacon F Potel G de La Cochetiere MF April 2013 Development of intestinal microbiota in infants and its impact on health Trends in Microbiology 21 4 167 73 doi 10 1016 j tim 2012 12 001 PMID 23332725 Turroni F Milani C Duranti S Ferrario C Lugli GA Mancabelli L van Sinderen D Ventura M January 2018 Bifidobacteria and the infant gut an example of co evolution and natural selection Cellular and Molecular Life Sciences 75 1 103 118 doi 10 1007 s00018 017 2672 0 PMID 28983638 S2CID 24103287 Euzeby JP Parte AC Actinomycetaceae List of Prokaryotic names with Standing in Nomenclature LPSN Retrieved June 17 2021 External links editBifidobacterium at Microbe Wiki Genomes Online Database contains many Bifidobacterium genome projects Comparative Analysis of Bifidobacterium Genomes at DOE s IMG system Bifidobacterium at BacDive the Bacterial Diversity Metadatabase Spotlight on Bifidobacteria nbsp Wikispecies has information related to Bifidobacterium Retrieved from https en wikipedia org w index php title Bifidobacterium amp oldid 1214708230, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.