fbpx
Wikipedia

Formal language

In logic, mathematics, computer science, and linguistics, a formal language consists of words whose letters are taken from an alphabet and are well-formed according to a specific set of rules called a formal grammar.

Structure of the syntactically well-formed, although nonsensical, English sentence, "Colorless green ideas sleep furiously" (historical example from Chomsky 1957)

The alphabet of a formal language consists of symbols, letters, or tokens that concatenate into strings called words.[1] Words that belong to a particular formal language are sometimes called well-formed words or well-formed formulas. A formal language is often defined by means of a formal grammar such as a regular grammar or context-free grammar, which consists of its formation rules.

In computer science, formal languages are used among others as the basis for defining the grammar of programming languages and formalized versions of subsets of natural languages in which the words of the language represent concepts that are associated with meanings or semantics. In computational complexity theory, decision problems are typically defined as formal languages, and complexity classes are defined as the sets of the formal languages that can be parsed by machines with limited computational power. In logic and the foundations of mathematics, formal languages are used to represent the syntax of axiomatic systems, and mathematical formalism is the philosophy that all of mathematics can be reduced to the syntactic manipulation of formal languages in this way.

The field of formal language theory studies primarily the purely syntactical aspects of such languages—that is, their internal structural patterns. Formal language theory sprang out of linguistics, as a way of understanding the syntactic regularities of natural languages.

History edit

In the 17th century, Gottfried Leibniz imagined and described the characteristica universalis, a universal and formal language which utilised pictographs. Later, Carl Friedrich Gauss investigated the problem of Gauss codes.[2]

Gottlob Frege attempted to realize Leibniz's ideas, through a notational system first outlined in Begriffsschrift (1879) and more fully developed in his 2-volume Grundgesetze der Arithmetik (1893/1903).[3] This described a "formal language of pure language."[4]

In the first half of the 20th century, several developments were made with relevance to formal languages. Axel Thue published four papers relating to words and language between 1906 and 1914. The last of these introduced what Emil Post later termed 'Thue Systems', and gave an early example of an undecidable problem.[5] Post would later use this paper as the basis for a 1947 proof "that the word problem for semigroups was recursively insoluble",[6] and later devised the canonical system for the creation of formal languages.

In 1907, Leonardo Torres Quevedo introduced a formal language for the description of mechanical drawings (mechanical devices), in Vienna. He published "Sobre un sistema de notaciones y símbolos destinados a facilitar la descripción de las máquinas" ("On a system of notations and symbols intended to facilitate the description of machines").[7] Heinz Zemanek rated it as an equivalent to a programming language for the numerical control of machine tools.[8]

Noam Chomsky devised an abstract representation of formal and natural languages, known as the Chomsky hierarchy.[9] In 1959 John Backus developed the Backus-Naur form to describe the syntax of a high level programming language, following his work in the creation of FORTRAN.[10] Peter Naur was the secretary/editor for the ALGOL60 Report in which he used Backus–Naur form to describe the Formal part of ALGOL60.

Words over an alphabet edit

An alphabet, in the context of formal languages, can be any set; its elements are called letters. An alphabet may contain an infinite number of elements;[note 1] however, most definitions in formal language theory specify alphabets with a finite number of elements, and many results apply only to them. It often makes sense to use an alphabet in the usual sense of the word, or more generally any finite character encoding such as ASCII or Unicode.

A word over an alphabet can be any finite sequence (i.e., string) of letters. The set of all words over an alphabet Σ is usually denoted by Σ* (using the Kleene star). The length of a word is the number of letters it is composed of. For any alphabet, there is only one word of length 0, the empty word, which is often denoted by e, ε, λ or even Λ. By concatenation one can combine two words to form a new word, whose length is the sum of the lengths of the original words. The result of concatenating a word with the empty word is the original word.

In some applications, especially in logic, the alphabet is also known as the vocabulary and words are known as formulas or sentences; this breaks the letter/word metaphor and replaces it by a word/sentence metaphor.

Definition edit

A formal language L over an alphabet Σ is a subset of Σ*, that is, a set of words over that alphabet. Sometimes the sets of words are grouped into expressions, whereas rules and constraints may be formulated for the creation of 'well-formed expressions'.

In computer science and mathematics, which do not usually deal with natural languages, the adjective "formal" is often omitted as redundant.

While formal language theory usually concerns itself with formal languages that are described by some syntactical rules, the actual definition of the concept "formal language" is only as above: a (possibly infinite) set of finite-length strings composed from a given alphabet, no more and no less. In practice, there are many languages that can be described by rules, such as regular languages or context-free languages. The notion of a formal grammar may be closer to the intuitive concept of a "language", one described by syntactic rules. By an abuse of the definition, a particular formal language is often thought of as being equipped with a formal grammar that describes it.

Examples edit

The following rules describe a formal language L over the alphabet Σ = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, +, =}:

  • Every nonempty string that does not contain "+" or "=" and does not start with "0" is in L.
  • The string "0" is in L.
  • A string containing "=" is in L if and only if there is exactly one "=", and it separates two valid strings of L.
  • A string containing "+" but not "=" is in L if and only if every "+" in the string separates two valid strings of L.
  • No string is in L other than those implied by the previous rules.

Under these rules, the string "23+4=555" is in L, but the string "=234=+" is not. This formal language expresses natural numbers, well-formed additions, and well-formed addition equalities, but it expresses only what they look like (their syntax), not what they mean (semantics). For instance, nowhere in these rules is there any indication that "0" means the number zero, "+" means addition, "23+4=555" is false, etc.

Constructions edit

For finite languages, one can explicitly enumerate all well-formed words. For example, we can describe a language L as just L = {a, b, ab, cba}. The degenerate case of this construction is the empty language, which contains no words at all (L = ).

However, even over a finite (non-empty) alphabet such as Σ = {a, b} there are an infinite number of finite-length words that can potentially be expressed: "a", "abb", "ababba", "aaababbbbaab", .... Therefore, formal languages are typically infinite, and describing an infinite formal language is not as simple as writing L = {a, b, ab, cba}. Here are some examples of formal languages:

  • L = Σ*, the set of all words over Σ;
  • L = {a}* = {an}, where n ranges over the natural numbers and "an" means "a" repeated n times (this is the set of words consisting only of the symbol "a");
  • the set of syntactically correct programs in a given programming language (the syntax of which is usually defined by a context-free grammar);
  • the set of inputs upon which a certain Turing machine halts; or
  • the set of maximal strings of alphanumeric ASCII characters on this line, i.e.,
    the set {the, set, of, maximal, strings, alphanumeric, ASCII, characters, on, this, line, i, e}.

Language-specification formalisms edit

Formal languages are used as tools in multiple disciplines. However, formal language theory rarely concerns itself with particular languages (except as examples), but is mainly concerned with the study of various types of formalisms to describe languages. For instance, a language can be given as

Typical questions asked about such formalisms include:

  • What is their expressive power? (Can formalism X describe every language that formalism Y can describe? Can it describe other languages?)
  • What is their recognizability? (How difficult is it to decide whether a given word belongs to a language described by formalism X?)
  • What is their comparability? (How difficult is it to decide whether two languages, one described in formalism X and one in formalism Y, or in X again, are actually the same language?).

Surprisingly often, the answer to these decision problems is "it cannot be done at all", or "it is extremely expensive" (with a characterization of how expensive). Therefore, formal language theory is a major application area of computability theory and complexity theory. Formal languages may be classified in the Chomsky hierarchy based on the expressive power of their generative grammar as well as the complexity of their recognizing automaton. Context-free grammars and regular grammars provide a good compromise between expressivity and ease of parsing, and are widely used in practical applications.

Operations on languages edit

Certain operations on languages are common. This includes the standard set operations, such as union, intersection, and complement. Another class of operation is the element-wise application of string operations.

Examples: suppose   and   are languages over some common alphabet  .

  • The concatenation   consists of all strings of the form   where   is a string from   and   is a string from  .
  • The intersection   of   and   consists of all strings that are contained in both languages
  • The complement   of   with respect to   consists of all strings over   that are not in  .
  • The Kleene star: the language consisting of all words that are concatenations of zero or more words in the original language;
  • Reversal:
    • Let ε be the empty word, then  , and
    • for each non-empty word   (where  are elements of some alphabet), let  ,
    • then for a formal language  ,  .
  • String homomorphism

Such string operations are used to investigate closure properties of classes of languages. A class of languages is closed under a particular operation when the operation, applied to languages in the class, always produces a language in the same class again. For instance, the context-free languages are known to be closed under union, concatenation, and intersection with regular languages, but not closed under intersection or complement. The theory of trios and abstract families of languages studies the most common closure properties of language families in their own right.[11]

Closure properties of language families (  Op   where both   and   are in the language family given by the column). After Hopcroft and Ullman.
Operation Regular DCFL CFL IND CSL recursive RE
Union   Yes No Yes Yes Yes Yes Yes
Intersection   Yes No No No Yes Yes Yes
Complement   Yes Yes No No Yes Yes No
Concatenation   Yes No Yes Yes Yes Yes Yes
Kleene star   Yes No Yes Yes Yes Yes Yes
(String) homomorphism     Yes No Yes Yes No No Yes
ε-free (string) homomorphism     Yes No Yes Yes Yes Yes Yes
Substitution     Yes No Yes Yes Yes No Yes
Inverse homomorphism     Yes Yes Yes Yes Yes Yes Yes
Reverse   Yes No Yes Yes Yes Yes Yes
Intersection with a regular language     Yes Yes Yes Yes Yes Yes Yes

Applications edit

Programming languages edit

A compiler usually has two distinct components. A lexical analyzer, sometimes generated by a tool like lex, identifies the tokens of the programming language grammar, e.g. identifiers or keywords, numeric and string literals, punctuation and operator symbols, which are themselves specified by a simpler formal language, usually by means of regular expressions. At the most basic conceptual level, a parser, sometimes generated by a parser generator like yacc, attempts to decide if the source program is syntactically valid, that is if it is well formed with respect to the programming language grammar for which the compiler was built.

Of course, compilers do more than just parse the source code – they usually translate it into some executable format. Because of this, a parser usually outputs more than a yes/no answer, typically an abstract syntax tree. This is used by subsequent stages of the compiler to eventually generate an executable containing machine code that runs directly on the hardware, or some intermediate code that requires a virtual machine to execute.

Formal theories, systems, and proofs edit

 
This diagram shows the syntactic divisions within a formal system. Strings of symbols may be broadly divided into nonsense and well-formed formulas. The set of well-formed formulas is divided into theorems and non-theorems.

In mathematical logic, a formal theory is a set of sentences expressed in a formal language.

A formal system (also called a logical calculus, or a logical system) consists of a formal language together with a deductive apparatus (also called a deductive system). The deductive apparatus may consist of a set of transformation rules, which may be interpreted as valid rules of inference, or a set of axioms, or have both. A formal system is used to derive one expression from one or more other expressions. Although a formal language can be identified with its formulas, a formal system cannot be likewise identified by its theorems. Two formal systems   and   may have all the same theorems and yet differ in some significant proof-theoretic way (a formula A may be a syntactic consequence of a formula B in one but not another for instance).

A formal proof or derivation is a finite sequence of well-formed formulas (which may be interpreted as sentences, or propositions) each of which is an axiom or follows from the preceding formulas in the sequence by a rule of inference. The last sentence in the sequence is a theorem of a formal system. Formal proofs are useful because their theorems can be interpreted as true propositions.

Interpretations and models edit

Formal languages are entirely syntactic in nature, but may be given semantics that give meaning to the elements of the language. For instance, in mathematical logic, the set of possible formulas of a particular logic is a formal language, and an interpretation assigns a meaning to each of the formulas—usually, a truth value.

The study of interpretations of formal languages is called formal semantics. In mathematical logic, this is often done in terms of model theory. In model theory, the terms that occur in a formula are interpreted as objects within mathematical structures, and fixed compositional interpretation rules determine how the truth value of the formula can be derived from the interpretation of its terms; a model for a formula is an interpretation of terms such that the formula becomes true.

See also edit

Notes edit

  1. ^ For example, first-order logic is often expressed using an alphabet that, besides symbols such as ∧, ¬, ∀ and parentheses, contains infinitely many elements x0x1x2, … that play the role of variables.

References edit

Citations edit

  1. ^ See e.g. Reghizzi, Stefano Crespi (2009). Formal Languages and Compilation. Texts in Computer Science. Springer. p. 8. Bibcode:2009flc..book.....C. ISBN 9781848820500. An alphabet is a finite set
  2. ^ "In the prehistory of formal language theory: Gauss Languages". January 1992. Retrieved 30 April 2021.
  3. ^ "Gottlob Frege". 5 December 2019. Retrieved 30 April 2021.
  4. ^ Martin Davis (1995). "Influences of Mathematical Logic on Computer Science". In Rolf Herken (ed.). The universal Turing machine: a half-century survey. Springer. p. 290. ISBN 978-3-211-82637-9.
  5. ^ "Thue's 1914 paper: a translation" (PDF). 28 August 2013. (PDF) from the original on 30 April 2021. Retrieved 30 April 2021.
  6. ^ "Emil Leon Post". September 2001. Retrieved 30 April 2021.
  7. ^ Torres Quevedo, Leonardo. Sobre un sistema de notaciones y símbolos destinados a facilitar la descripción de las máquinas, (pdf), pp. 25–30, Revista de Obras Públicas, 17 January 1907.
  8. ^ Bruderer, Herbert (2021). "The Global Evolution of Computer Technology". Milestones in Analog and Digital Computing. Springer. p. 1212. ISBN 978-3030409739.
  9. ^ Jager, Gerhard; Rogers, James (19 July 2012). "Formal language theory: refining the Chomsky hierarchy". Philosophical Transactions of the Royal Society B. 367 (1598): 1956–1970. doi:10.1098/rstb.2012.0077. PMC 3367686. PMID 22688632.
  10. ^ "John Warner Backus". February 2016. Retrieved 30 April 2021.
  11. ^ Hopcroft & Ullman (1979), Chapter 11: Closure properties of families of languages.

Sources edit

Works cited
General references

External links edit

  • "Formal language", Encyclopedia of Mathematics, EMS Press, 2001 [1994]
  • University of Maryland, Formal Language Definitions
  • James Power, "Notes on Formal Language Theory and Parsing" 21 November 2007 at the Wayback Machine, 29 November 2002.
  • Drafts of some chapters in the "Handbook of Formal Language Theory", Vol. 1–3, G. Rozenberg and A. Salomaa (eds.), Springer Verlag, (1997):
    • Alexandru Mateescu and Arto Salomaa, "Preface" in Vol.1, pp. v–viii, and "Formal Languages: An Introduction and a Synopsis", Chapter 1 in Vol. 1, pp. 1–39
    • Sheng Yu, "Regular Languages", Chapter 2 in Vol. 1
    • Jean-Michel Autebert, Jean Berstel, Luc Boasson, "Context-Free Languages and Push-Down Automata", Chapter 3 in Vol. 1
    • Christian Choffrut and Juhani Karhumäki, "Combinatorics of Words", Chapter 6 in Vol. 1
    • Tero Harju and Juhani Karhumäki, "Morphisms", Chapter 7 in Vol. 1, pp. 439–510
    • Jean-Eric Pin, "Syntactic semigroups", Chapter 10 in Vol. 1, pp. 679–746
    • M. Crochemore and C. Hancart, "Automata for matching patterns", Chapter 9 in Vol. 2
    • Dora Giammarresi, Antonio Restivo,

formal, language, this, article, about, technical, term, mathematics, computer, science, formal, type, language, usage, literary, language, studies, about, natural, languages, formal, semantics, natural, language, logic, mathematics, computer, science, linguis. This article is about a technical term in mathematics and computer science For any formal type of language usage see Literary language For studies about natural languages see Formal semantics natural language In logic mathematics computer science and linguistics a formal language consists of words whose letters are taken from an alphabet and are well formed according to a specific set of rules called a formal grammar Structure of the syntactically well formed although nonsensical English sentence Colorless green ideas sleep furiously historical example from Chomsky 1957 The alphabet of a formal language consists of symbols letters or tokens that concatenate into strings called words 1 Words that belong to a particular formal language are sometimes called well formed words or well formed formulas A formal language is often defined by means of a formal grammar such as a regular grammar or context free grammar which consists of its formation rules In computer science formal languages are used among others as the basis for defining the grammar of programming languages and formalized versions of subsets of natural languages in which the words of the language represent concepts that are associated with meanings or semantics In computational complexity theory decision problems are typically defined as formal languages and complexity classes are defined as the sets of the formal languages that can be parsed by machines with limited computational power In logic and the foundations of mathematics formal languages are used to represent the syntax of axiomatic systems and mathematical formalism is the philosophy that all of mathematics can be reduced to the syntactic manipulation of formal languages in this way The field of formal language theory studies primarily the purely syntactical aspects of such languages that is their internal structural patterns Formal language theory sprang out of linguistics as a way of understanding the syntactic regularities of natural languages Contents 1 History 2 Words over an alphabet 3 Definition 4 Examples 4 1 Constructions 5 Language specification formalisms 6 Operations on languages 7 Applications 7 1 Programming languages 7 2 Formal theories systems and proofs 7 2 1 Interpretations and models 8 See also 9 Notes 10 References 10 1 Citations 10 2 Sources 11 External linksHistory editThis section needs expansion You can help by adding to it March 2021 In the 17th century Gottfried Leibniz imagined and described the characteristica universalis a universal and formal language which utilised pictographs Later Carl Friedrich Gauss investigated the problem of Gauss codes 2 Gottlob Frege attempted to realize Leibniz s ideas through a notational system first outlined in Begriffsschrift 1879 and more fully developed in his 2 volume Grundgesetze der Arithmetik 1893 1903 3 This described a formal language of pure language 4 In the first half of the 20th century several developments were made with relevance to formal languages Axel Thue published four papers relating to words and language between 1906 and 1914 The last of these introduced what Emil Post later termed Thue Systems and gave an early example of an undecidable problem 5 Post would later use this paper as the basis for a 1947 proof that the word problem for semigroups was recursively insoluble 6 and later devised the canonical system for the creation of formal languages In 1907 Leonardo Torres Quevedo introduced a formal language for the description of mechanical drawings mechanical devices in Vienna He published Sobre un sistema de notaciones y simbolos destinados a facilitar la descripcion de las maquinas On a system of notations and symbols intended to facilitate the description of machines 7 Heinz Zemanek rated it as an equivalent to a programming language for the numerical control of machine tools 8 Noam Chomsky devised an abstract representation of formal and natural languages known as the Chomsky hierarchy 9 In 1959 John Backus developed the Backus Naur form to describe the syntax of a high level programming language following his work in the creation of FORTRAN 10 Peter Naur was the secretary editor for the ALGOL60 Report in which he used Backus Naur form to describe the Formal part of ALGOL60 Words over an alphabet editAn alphabet in the context of formal languages can be any set its elements are called letters An alphabet may contain an infinite number of elements note 1 however most definitions in formal language theory specify alphabets with a finite number of elements and many results apply only to them It often makes sense to use an alphabet in the usual sense of the word or more generally any finite character encoding such as ASCII or Unicode A word over an alphabet can be any finite sequence i e string of letters The set of all words over an alphabet S is usually denoted by S using the Kleene star The length of a word is the number of letters it is composed of For any alphabet there is only one word of length 0 the empty word which is often denoted by e e l or even L By concatenation one can combine two words to form a new word whose length is the sum of the lengths of the original words The result of concatenating a word with the empty word is the original word In some applications especially in logic the alphabet is also known as the vocabulary and words are known as formulas or sentences this breaks the letter word metaphor and replaces it by a word sentence metaphor Definition editA formal language L over an alphabet S is a subset of S that is a set of words over that alphabet Sometimes the sets of words are grouped into expressions whereas rules and constraints may be formulated for the creation of well formed expressions In computer science and mathematics which do not usually deal with natural languages the adjective formal is often omitted as redundant While formal language theory usually concerns itself with formal languages that are described by some syntactical rules the actual definition of the concept formal language is only as above a possibly infinite set of finite length strings composed from a given alphabet no more and no less In practice there are many languages that can be described by rules such as regular languages or context free languages The notion of a formal grammar may be closer to the intuitive concept of a language one described by syntactic rules By an abuse of the definition a particular formal language is often thought of as being equipped with a formal grammar that describes it Examples editThe following rules describe a formal language L over the alphabet S 0 1 2 3 4 5 6 7 8 9 Every nonempty string that does not contain or and does not start with 0 is in L The string 0 is in L A string containing is in L if and only if there is exactly one and it separates two valid strings of L A string containing but not is in L if and only if every in the string separates two valid strings of L No string is in L other than those implied by the previous rules Under these rules the string 23 4 555 is in L but the string 234 is not This formal language expresses natural numbers well formed additions and well formed addition equalities but it expresses only what they look like their syntax not what they mean semantics For instance nowhere in these rules is there any indication that 0 means the number zero means addition 23 4 555 is false etc Constructions edit For finite languages one can explicitly enumerate all well formed words For example we can describe a language L as just L a b ab cba The degenerate case of this construction is the empty language which contains no words at all L However even over a finite non empty alphabet such as S a b there are an infinite number of finite length words that can potentially be expressed a abb ababba aaababbbbaab Therefore formal languages are typically infinite and describing an infinite formal language is not as simple as writing L a b ab cba Here are some examples of formal languages L S the set of all words over S L a an where n ranges over the natural numbers and an means a repeated n times this is the set of words consisting only of the symbol a the set of syntactically correct programs in a given programming language the syntax of which is usually defined by a context free grammar the set of inputs upon which a certain Turing machine halts or the set of maximal strings of alphanumeric ASCII characters on this line i e the set the set of maximal strings alphanumeric ASCII characters on this line i e Language specification formalisms editFormal languages are used as tools in multiple disciplines However formal language theory rarely concerns itself with particular languages except as examples but is mainly concerned with the study of various types of formalisms to describe languages For instance a language can be given as those strings generated by some formal grammar those strings described or matched by a particular regular expression those strings accepted by some automaton such as a Turing machine or finite state automaton those strings for which some decision procedure an algorithm that asks a sequence of related YES NO questions produces the answer YES Typical questions asked about such formalisms include What is their expressive power Can formalism X describe every language that formalism Y can describe Can it describe other languages What is their recognizability How difficult is it to decide whether a given word belongs to a language described by formalism X What is their comparability How difficult is it to decide whether two languages one described in formalism X and one in formalism Y or in X again are actually the same language Surprisingly often the answer to these decision problems is it cannot be done at all or it is extremely expensive with a characterization of how expensive Therefore formal language theory is a major application area of computability theory and complexity theory Formal languages may be classified in the Chomsky hierarchy based on the expressive power of their generative grammar as well as the complexity of their recognizing automaton Context free grammars and regular grammars provide a good compromise between expressivity and ease of parsing and are widely used in practical applications Operations on languages editCertain operations on languages are common This includes the standard set operations such as union intersection and complement Another class of operation is the element wise application of string operations Examples suppose L 1 displaystyle L 1 nbsp and L 2 displaystyle L 2 nbsp are languages over some common alphabet S displaystyle Sigma nbsp The concatenation L 1 L 2 displaystyle L 1 cdot L 2 nbsp consists of all strings of the form v w displaystyle vw nbsp where v displaystyle v nbsp is a string from L 1 displaystyle L 1 nbsp and w displaystyle w nbsp is a string from L 2 displaystyle L 2 nbsp The intersection L 1 L 2 displaystyle L 1 cap L 2 nbsp of L 1 displaystyle L 1 nbsp and L 2 displaystyle L 2 nbsp consists of all strings that are contained in both languages The complement L 1 displaystyle neg L 1 nbsp of L 1 displaystyle L 1 nbsp with respect to S displaystyle Sigma nbsp consists of all strings over S displaystyle Sigma nbsp that are not in L 1 displaystyle L 1 nbsp The Kleene star the language consisting of all words that are concatenations of zero or more words in the original language Reversal Let e be the empty word then e R e displaystyle varepsilon R varepsilon nbsp and for each non empty word w s 1 s n displaystyle w sigma 1 cdots sigma n nbsp where s 1 s n displaystyle sigma 1 ldots sigma n nbsp are elements of some alphabet let w R s n s 1 displaystyle w R sigma n cdots sigma 1 nbsp then for a formal language L displaystyle L nbsp L R w R w L displaystyle L R w R mid w in L nbsp String homomorphismSuch string operations are used to investigate closure properties of classes of languages A class of languages is closed under a particular operation when the operation applied to languages in the class always produces a language in the same class again For instance the context free languages are known to be closed under union concatenation and intersection with regular languages but not closed under intersection or complement The theory of trios and abstract families of languages studies the most common closure properties of language families in their own right 11 Closure properties of language families L 1 displaystyle L 1 nbsp Op L 2 displaystyle L 2 nbsp where both L 1 displaystyle L 1 nbsp and L 2 displaystyle L 2 nbsp are in the language family given by the column After Hopcroft and Ullman Operation Regular DCFL CFL IND CSL recursive REUnion L 1 L 2 w w L 1 w L 2 displaystyle L 1 cup L 2 w mid w in L 1 lor w in L 2 nbsp Yes No Yes Yes Yes Yes YesIntersection L 1 L 2 w w L 1 w L 2 displaystyle L 1 cap L 2 w mid w in L 1 land w in L 2 nbsp Yes No No No Yes Yes YesComplement L 1 w w L 1 displaystyle neg L 1 w mid w not in L 1 nbsp Yes Yes No No Yes Yes NoConcatenation L 1 L 2 w z w L 1 z L 2 displaystyle L 1 cdot L 2 wz mid w in L 1 land z in L 2 nbsp Yes No Yes Yes Yes Yes YesKleene star L 1 e w z w L 1 z L 1 displaystyle L 1 varepsilon cup wz mid w in L 1 land z in L 1 nbsp Yes No Yes Yes Yes Yes Yes String homomorphism h displaystyle h nbsp h L 1 h w w L 1 displaystyle h L 1 h w mid w in L 1 nbsp Yes No Yes Yes No No Yese free string homomorphism h displaystyle h nbsp h L 1 h w w L 1 displaystyle h L 1 h w mid w in L 1 nbsp Yes No Yes Yes Yes Yes YesSubstitution f displaystyle varphi nbsp f L 1 s 1 s n L 1 f s 1 f s n displaystyle varphi L 1 bigcup sigma 1 cdots sigma n in L 1 varphi sigma 1 cdot ldots cdot varphi sigma n nbsp Yes No Yes Yes Yes No YesInverse homomorphism h 1 displaystyle h 1 nbsp h 1 L 1 w L 1 h 1 w displaystyle h 1 L 1 bigcup w in L 1 h 1 w nbsp Yes Yes Yes Yes Yes Yes YesReverse L R w R w L displaystyle L R w R mid w in L nbsp Yes No Yes Yes Yes Yes YesIntersection with a regular language R displaystyle R nbsp L R w w L w R displaystyle L cap R w mid w in L land w in R nbsp Yes Yes Yes Yes Yes Yes YesApplications editProgramming languages edit Main articles Syntax programming languages and Compiler compiler A compiler usually has two distinct components A lexical analyzer sometimes generated by a tool like lex identifies the tokens of the programming language grammar e g identifiers or keywords numeric and string literals punctuation and operator symbols which are themselves specified by a simpler formal language usually by means of regular expressions At the most basic conceptual level a parser sometimes generated by a parser generator like a href Yacc html title Yacc yacc a attempts to decide if the source program is syntactically valid that is if it is well formed with respect to the programming language grammar for which the compiler was built Of course compilers do more than just parse the source code they usually translate it into some executable format Because of this a parser usually outputs more than a yes no answer typically an abstract syntax tree This is used by subsequent stages of the compiler to eventually generate an executable containing machine code that runs directly on the hardware or some intermediate code that requires a virtual machine to execute Formal theories systems and proofs edit Main articles Theory mathematical logic and Formal system nbsp This diagram shows the syntactic divisions within a formal system Strings of symbols may be broadly divided into nonsense and well formed formulas The set of well formed formulas is divided into theorems and non theorems In mathematical logic a formal theory is a set of sentences expressed in a formal language A formal system also called a logical calculus or a logical system consists of a formal language together with a deductive apparatus also called a deductive system The deductive apparatus may consist of a set of transformation rules which may be interpreted as valid rules of inference or a set of axioms or have both A formal system is used to derive one expression from one or more other expressions Although a formal language can be identified with its formulas a formal system cannot be likewise identified by its theorems Two formal systems F S displaystyle mathcal FS nbsp and F S displaystyle mathcal FS nbsp may have all the same theorems and yet differ in some significant proof theoretic way a formula A may be a syntactic consequence of a formula B in one but not another for instance A formal proof or derivation is a finite sequence of well formed formulas which may be interpreted as sentences or propositions each of which is an axiom or follows from the preceding formulas in the sequence by a rule of inference The last sentence in the sequence is a theorem of a formal system Formal proofs are useful because their theorems can be interpreted as true propositions Interpretations and models edit Main articles Formal semantics logic Interpretation logic and Model theory Formal languages are entirely syntactic in nature but may be given semantics that give meaning to the elements of the language For instance in mathematical logic the set of possible formulas of a particular logic is a formal language and an interpretation assigns a meaning to each of the formulas usually a truth value The study of interpretations of formal languages is called formal semantics In mathematical logic this is often done in terms of model theory In model theory the terms that occur in a formula are interpreted as objects within mathematical structures and fixed compositional interpretation rules determine how the truth value of the formula can be derived from the interpretation of its terms a model for a formula is an interpretation of terms such that the formula becomes true See also editCombinatorics on words Formal method Free monoid Grammar framework Mathematical notation String computer science Notes edit For example first order logic is often expressed using an alphabet that besides symbols such as and parentheses contains infinitely many elements x0 x1 x2 that play the role of variables References editCitations edit See e g Reghizzi Stefano Crespi 2009 Formal Languages and Compilation Texts in Computer Science Springer p 8 Bibcode 2009flc book C ISBN 9781848820500 An alphabet is a finite set In the prehistory of formal language theory Gauss Languages January 1992 Retrieved 30 April 2021 Gottlob Frege 5 December 2019 Retrieved 30 April 2021 Martin Davis 1995 Influences of Mathematical Logic on Computer Science In Rolf Herken ed The universal Turing machine a half century survey Springer p 290 ISBN 978 3 211 82637 9 Thue s 1914 paper a translation PDF 28 August 2013 Archived PDF from the original on 30 April 2021 Retrieved 30 April 2021 Emil Leon Post September 2001 Retrieved 30 April 2021 Torres Quevedo Leonardo Sobre un sistema de notaciones y simbolos destinados a facilitar la descripcion de las maquinas pdf pp 25 30 Revista de Obras Publicas 17 January 1907 Bruderer Herbert 2021 The Global Evolution of Computer Technology Milestones in Analog and Digital Computing Springer p 1212 ISBN 978 3030409739 Jager Gerhard Rogers James 19 July 2012 Formal language theory refining the Chomsky hierarchy Philosophical Transactions of the Royal Society B 367 1598 1956 1970 doi 10 1098 rstb 2012 0077 PMC 3367686 PMID 22688632 John Warner Backus February 2016 Retrieved 30 April 2021 Hopcroft amp Ullman 1979 Chapter 11 Closure properties of families of languages Sources edit Works citedHopcroft John E Ullman Jeffrey D 1979 Introduction to Automata Theory Languages and Computation Reading Massachusetts Addison Wesley Publishing ISBN 81 7808 347 7 General referencesA G Hamilton Logic for Mathematicians Cambridge University Press 1978 ISBN 0 521 21838 1 Seymour Ginsburg Algebraic and automata theoretic properties of formal languages North Holland 1975 ISBN 0 7204 2506 9 Michael A Harrison Introduction to Formal Language Theory Addison Wesley 1978 Rautenberg Wolfgang 2010 A Concise Introduction to Mathematical Logic 3rd ed New York Springer Science Business Media doi 10 1007 978 1 4419 1221 3 ISBN 978 1 4419 1220 6 Grzegorz Rozenberg Arto Salomaa Handbook of Formal Languages Volume I III Springer 1997 ISBN 3 540 61486 9 Patrick Suppes Introduction to Logic D Van Nostrand 1957 ISBN 0 442 08072 7 External links edit Formal language Encyclopedia of Mathematics EMS Press 2001 1994 University of Maryland Formal Language Definitions James Power Notes on Formal Language Theory and Parsing Archived 21 November 2007 at the Wayback Machine 29 November 2002 Drafts of some chapters in the Handbook of Formal Language Theory Vol 1 3 G Rozenberg and A Salomaa eds Springer Verlag 1997 Alexandru Mateescu and Arto Salomaa Preface in Vol 1 pp v viii and Formal Languages An Introduction and a Synopsis Chapter 1 in Vol 1 pp 1 39 Sheng Yu Regular Languages Chapter 2 in Vol 1 Jean Michel Autebert Jean Berstel Luc Boasson Context Free Languages and Push Down Automata Chapter 3 in Vol 1 Christian Choffrut and Juhani Karhumaki Combinatorics of Words Chapter 6 in Vol 1 Tero Harju and Juhani Karhumaki Morphisms Chapter 7 in Vol 1 pp 439 510 Jean Eric Pin Syntactic semigroups Chapter 10 in Vol 1 pp 679 746 M Crochemore and C Hancart Automata for matching patterns Chapter 9 in Vol 2 Dora Giammarresi Antonio Restivo Two dimensional Languages Chapter 4 in Vol 3 pp 215 267 Retrieved from https en wikipedia org w index php title Formal language amp oldid 1186043391 Constructions, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.