fbpx
Wikipedia

Recursively enumerable language

In mathematics, logic and computer science, a formal language is called recursively enumerable (also recognizable, partially decidable, semidecidable, Turing-acceptable or Turing-recognizable) if it is a recursively enumerable subset in the set of all possible words over the alphabet of the language, i.e., if there exists a Turing machine which will enumerate all valid strings of the language.

Recursively enumerable languages are known as type-0 languages in the Chomsky hierarchy of formal languages. All regular, context-free, context-sensitive and recursive languages are recursively enumerable.

The class of all recursively enumerable languages is called RE.

Definitions

There are three equivalent definitions of a recursively enumerable language:

  1. A recursively enumerable language is a recursively enumerable subset in the set of all possible words over the alphabet of the language.
  2. A recursively enumerable language is a formal language for which there exists a Turing machine (or other computable function) which will enumerate all valid strings of the language. Note that if the language is infinite, the enumerating algorithm provided can be chosen so that it avoids repetitions, since we can test whether the string produced for number n is "already" produced for a number which is less than n. If it already is produced, use the output for input n+1 instead (recursively), but again, test whether it is "new".
  3. A recursively enumerable language is a formal language for which there exists a Turing machine (or other computable function) that will halt and accept when presented with any string in the language as input but may either halt and reject or loop forever when presented with a string not in the language. Contrast this to recursive languages, which require that the Turing machine halts in all cases.

All regular, context-free, context-sensitive and recursive languages are recursively enumerable.

Post's theorem shows that RE, together with its complement co-RE, correspond to the first level of the arithmetical hierarchy.

Example

The set of halting turing machines is recursively enumerable but not recursive. Indeed, one can run the Turing Machine and accept if the machine halts, hence it is recursively enumerable. On the other hand, the problem is undecidable.

Some other recursively enumerable languages that are not recursive include:

Closure properties

Recursively enumerable languages (REL) are closed under the following operations. That is, if L and P are two recursively enumerable languages, then the following languages are recursively enumerable as well:

  • the Kleene star   of L
  • the concatenation   of L and P
  • the union  
  • the intersection  .

Recursively enumerable languages are not closed under set difference or complementation. The set difference    is recursively enumerable if   is recursive. If   is recursively enumerable, then the complement of   is recursively enumerable if and only if   is also recursive.

See also

References

  • Sipser, M. (1996), Introduction to the Theory of Computation, PWS Publishing Co.
  • Kozen, D.C. (1997), Automata and Computability, Springer.

External links

recursively, enumerable, language, this, article, includes, list, references, related, reading, external, links, sources, remain, unclear, because, lacks, inline, citations, please, help, improve, this, article, introducing, more, precise, citations, january, . This article includes a list of references related reading or external links but its sources remain unclear because it lacks inline citations Please help to improve this article by introducing more precise citations January 2013 Learn how and when to remove this template message In mathematics logic and computer science a formal language is called recursively enumerable also recognizable partially decidable semidecidable Turing acceptable or Turing recognizable if it is a recursively enumerable subset in the set of all possible words over the alphabet of the language i e if there exists a Turing machine which will enumerate all valid strings of the language Recursively enumerable languages are known as type 0 languages in the Chomsky hierarchy of formal languages All regular context free context sensitive and recursive languages are recursively enumerable The class of all recursively enumerable languages is called RE Contents 1 Definitions 2 Example 3 Closure properties 4 See also 5 References 6 External linksDefinitions EditThere are three equivalent definitions of a recursively enumerable language A recursively enumerable language is a recursively enumerable subset in the set of all possible words over the alphabet of the language A recursively enumerable language is a formal language for which there exists a Turing machine or other computable function which will enumerate all valid strings of the language Note that if the language is infinite the enumerating algorithm provided can be chosen so that it avoids repetitions since we can test whether the string produced for number n is already produced for a number which is less than n If it already is produced use the output for input n 1 instead recursively but again test whether it is new A recursively enumerable language is a formal language for which there exists a Turing machine or other computable function that will halt and accept when presented with any string in the language as input but may either halt and reject or loop forever when presented with a string not in the language Contrast this to recursive languages which require that the Turing machine halts in all cases All regular context free context sensitive and recursive languages are recursively enumerable Post s theorem shows that RE together with its complement co RE correspond to the first level of the arithmetical hierarchy Example EditThe set of halting turing machines is recursively enumerable but not recursive Indeed one can run the Turing Machine and accept if the machine halts hence it is recursively enumerable On the other hand the problem is undecidable Some other recursively enumerable languages that are not recursive include Post correspondence problem Mortality computability theory EntscheidungsproblemClosure properties EditRecursively enumerable languages REL are closed under the following operations That is if L and P are two recursively enumerable languages then the following languages are recursively enumerable as well the Kleene star L displaystyle L of L the concatenation L P displaystyle L circ P of L and P the union L P displaystyle L cup P the intersection L P displaystyle L cap P Recursively enumerable languages are not closed under set difference or complementation The set difference L displaystyle L P displaystyle P is recursively enumerable if P displaystyle P is recursive If L displaystyle L is recursively enumerable then the complement of L displaystyle L is recursively enumerable if and only if L displaystyle L is also recursive See also EditComputably enumerable set RecursionReferences EditSipser M 1996 Introduction to the Theory of Computation PWS Publishing Co Kozen D C 1997 Automata and Computability Springer External links EditComplexity Zoo Class RE Lecture slides Retrieved from https en wikipedia org w index php title Recursively enumerable language amp oldid 1102289416, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.