fbpx
Wikipedia

al-Battani

Abū ʿAbd Allāh Muḥammad ibn Jābir ibn Sinān al-Raqqī al-Ḥarrānī aṣ-Ṣābiʾ al-Battānī [n 1](Arabic: محمد بن جابر بن سنان البتاني), usually called al-Battānī, a name that was in the past Latinized as Albategnius,[n 2] (before 858 – 929) was an astronomer, astrologer and mathematician, who lived and worked for most of his life at Raqqa, now in Syria. He is considered to be the greatest and most famous of the astronomers of the medieval Islamic world.

al-Battānī
محمد بن جابر بن سنان البتاني
A folio from a Latin translation of Kitāb az-Zīj aṣ-Ṣābi’ (c. 900), Latin 7266, Bibliothèque nationale de France
Bornbefore 858
Harran, modern-day Turkey
Died929
Qasr al-Jiss, near Samarra
Academic background
Academic work
EraIslamic Golden Age
Main interestsMathematics, astronomy, astrology
Notable worksKitāb az-Zīj
Notable ideas

Al-Battānī's writings became instrumental in the development of science and astronomy in the west. His Kitāb az-Zīj aṣ-Ṣābi’ (c. 900), is the earliest extant zīj (astronomical table) made in the Ptolemaic tradition that is hardly influenced by Hindu or Sasanian–Iranian astronomy. It refined and corrected Ptolemy's Almagest, but also included new ideas and astronomical tables. A handwritten Latin version of Kitāb az-Zīj aṣ-Ṣābi’ by the Italian astronomer Plato Tiburtinus was produced between 1134 and 1138, through which medieval astronomers became familiar with al-Battānī. In 1537, a Latin translation of the zīj was printed in Nuremberg. An annotated version, also in Latin, published in three separate volumes between 1899 and 1907 by the Italian Orientalist Carlo Alfonso Nallino, provided the foundation of the modern study of medieval Islamic astronomy.

Al-Battānī's observations of the Sun led him to understand the nature of annular solar eclipses. He accurately calculated the Earth’s obliquity (the angle between the planes of the equator and the ecliptic), the solar year, and the equinoxes (obtaining a value for the precession of the equinoxes of one degree in 66 years). The accuracy of al-Battānī's data encouraged Nicolaus Copernicus to pursue his ideas about the heliocentric nature of the cosmos. Al-Battānī's tables were used by the German mathematician Christopher Clavius in reforming the Julian calendar, and the astronomers Tycho Brahe, Johannes Kepler, Galileo Galilei and Edmund Halley all used his observations.

Al-Battānī introduced the use of sines and tangents in geometrical calculations, replacing the geometrical methods of the Greeks. Using trigonometry, he created an equation for finding the qibla (the direction which Muslims need to face during their prayers). His equation was widely used until superseded by more accurate methods, introduced a century later by the polymath al-Biruni.

Life

Al-Battānī, whose full name was Abū ʿAbd Allāh Muḥammad ibn Jābir ibn Sinān al-Raqqī al-Ḥarrānī al-Ṣābiʾ al-Battānī, and whose Latinized name was Albategnius, was born before 858 in Harran, 44 kilometres (27 mi) southeast of the modern Turkish city of Urfa. He was the son of Jabir ibn Sinan al-Harrani, a maker of astronomical instruments.[3] The epithet al-Ṣabi’ suggests that his family belonged to the pagan Sabian sect of Harran,[4][5] whose religion featured star worship, and who had inherited the Mesopotamian legacy of an interest in mathematics and astronomy.[2][n 3] His contemporary, the polymath Thābit ibn Qurra, was also an adherent of Sabianism, which died out during the 11th century.[7]

Although his ancestors were likely Sabian, al-Battānī was a Muslim, as shown by his first name.[5] Between 877 and 918/19 he lived in Raqqa, now in north central Syria, which was an ancient Roman settlement beside the Euphrates, near Harran. During this period he also lived in Antioch,[3] where he observed a solar and a lunar eclipse in 901. According to the Arab biographer Ibn al-Nadīm, the financial problems encountered by al-Battānī' in old age forced him to move from Raqqa to Baghdad.[8]

Al-Battānī died in 929 at Qasr al-Jiss,[2] near Samarra, after returning from Baghdad where he had resolved an unfair taxation grievance on behalf of a clan from Raqqa.[9]

Astronomy

Al-Battānī is considered to be the greatest[10][11][12] and most famous of the known astronomers of the medieval Islamic world. He made more accurate observations of the night sky than any of his contemporaries,[3] and was the first of a generation of new Islamic astronomers that followed the founding of the House of Wisdom in the 8th century.[13] His meticulously described methods allowed others to assess his results, but some of his explanations about the movements of the planets were poorly written, and have mistakes.[14]

Sometimes referred to as the "Ptolemy of the Arabs",[15] al-Battānī's works reveal him to have been a devout believer in Ptolemy's geocentric model of the cosmos. He refined the observations found in Ptolemy's Almagest,[3] and compiled new tables of the Sun and the Moon, long accepted as authoritative.[5] Al-Battānī established his own observatory at Raqqa. He recommended that the astronomical instruments there were greater than one metre (3 ft 3 in) in size.[8] Such instruments, being larger—and so having scales capable of measuring smaller values—were capable of greater precision than had previously been achieved.[16] Some of his measurements were more accurate than those taken by the Polish astronomer and mathematician Nicolaus Copernicus during the Renaissance. A reason for this is thought to be that al-Battānī's location for his observations at Raqqa was closer to the Earth's equator, so that the ecliptic and the Sun, being higher in the sky, were less susceptible to atmospheric refraction.[5] The careful construction and alignment of his astronomical instruments enabled him to achieve an accuracy of observations of equinoxes and solstices that had previously been unknown.[8]

 
An annular solar eclipse. Al-Battānī was one the first astronomers to understand why such phenomena can occur.
 
A representation of the celestial equator and Earth's ecliptic

Al-Battānī was one the first astronomers to observe that the distance between the Earth and the Sun varies during the year, which led him to understand the reason why annular solar eclipses occur.[3][17][18] He saw that the position in the sky at which the angular diameter of the Sun appeared smallest was no longer located where Ptolemy had stated it should be,[3] and that since Ptolemy's time, the longitudinal position of the apogee had increased by 16°47'.[12]

Al-Battānī was an excellent observer.[19] He improved Ptolemy's measurement of the obliquity of the ecliptic (the angle between the planes of the equator and the ecliptic),[9] producing a value of 23° 35';[5][n 4] the accepted value is around 23°.44.[20] Al-Battānī obtained the criterion for observation of the lunar crescent—i.e., if the longitude difference between the Moon and the Sun is greater than 13° 66˝ and the Moon’s delay after sunset is more than 43.2 minutes, the crescent will be visible.[2] His value for the solar year of 365 days, 5 hours, 46 minutes and 24 seconds, is 2 minutes and 22 seconds from the accepted value.[5]

Al-Battānī observed changes in the direction of the Sun's apogee, as recorded by Ptolemy,[21] and that as a result, the equation of time was subject to a slow cyclical variation.[22] His careful measurements of when the March and September equinoxes took place allowed him to obtain a value for the precession of the equinoxes of 54.5" per year, or 1 degree in 66 years,[5][9] a phenomenon that he realised was altering the Sun's annual apparent motion through the zodiac constellations.[23]

It was impossible for al-Battānī, who adhered to the ideas of a stationary Earth and geocentricism, to understand the underlying scientific reasons for his observations or the importance of his discoveries.[23]

Mathematics

 
The fundamental trigonometric functions defined from a right-angled triangle: sine, cosine, and tangent
 
A spherical triangle with sides a, b, and c

One of al-Battani's greatest contributions was his introduction of the use of use of sines and tangents in geometrical calculations, especially spherical trigonometric functions, to replace Ptolemy's geometrical methods. Al-Battānī's methods involved some of the most complex mathematics developed up to that time.[23] He was aware of the superiority of trigonometry over geometrical chords, and demonstrated awareness of a relation between the sides and angles of a spherical triangle, now given by the expression:[12]

 

Al-Battānī produced a number of trigonometrical relationships:[24]

 
 , where  .

He also solved the equation

 ,

discovering the formula

 

Al-Battānī used the Iranian astronomer Habash al-Hasib al-Marwazi's idea of tangents to develop equations for calculating and compiling tables of both tangents and cotangents. He discovered their reciprocal functions, the secant and cosecant, and produced the first table of cosecants for each degree from 1° to 90°, which he referred to as a "table of shadows", in reference to the shadow produced on a sundial.[24]

 
A geometrical representation of the method used by al-Battānī to determine the qibla, shown as q from O to M[25][n 5]

Using these trigonometrical relationships, al-Battānī created an equation for finding the qibla, which Muslims face in each of the five prayers they practice every day.[26] The equation he created did not give accurate directions, as it did not take into account the fact that Earth is a sphere. The relationship he used was precise enough only for a person located in (or close to) Mecca, but was still a widely used method at the time. Al-Battānī's equation for  , the angle of the direction of a place towards Mecca is given by:[25]

 

where   is the difference between the longitude of the place and Mecca, and   is the difference between the latitude of the place and Mecca.

Al-Battānī's equation was superseded a century after it was first used, when the polymath al-Biruni summarized several other methods to produce results that were more accurate than those that could be obtained using al-Battānī's equation.[27]

A small work on trigonometry, Tajrīd uṣūl tarkīb al‐juyūb ("Summary of the principles for establishing sines") is known. Once attributed to the Iranian astronomer Kushyar Gilani by the German orientalist Carl Brockelmann, it is a fragment of al‐Battānī's zīj. The manuscript is extant in Istanbul as MS Carullah 1499/3. [2] The authenticity of this work has been questioned, as scholars believe al-Battānī would have not have included al‐juyūb for "sines" in the title.[8]

Works

Kitāb az-Zīj aṣ-Ṣābi’

Al-Battānī's Kitāb az-Zīj (كتاب الزيج or زيج البتاني, "Book of Astronomical Tables"), written in around 900, and also known as the al-Zīj al-Ṣābī (كتاب الزيج الصابئ),[2] is the earliest extant zīj made in the Ptolemaic tradition that is hardly influenced by Hindu or Sasanian–Iranian astronomy.[8] It corrected mistakes made by Ptolemy and described instruments such as horizontal and vertical sundials, the triquetrum, the mural instrument,[2] and a quadrant instrument.[28] Ibn al‐Nadim wrote that al-Battānī's zīj existed in two different editions, "the second being better than the first".[8] In the west, the work was sometimes called the Sabean Tables.[6]

The work, consisting of 57 chapters and additional tables, is extant (in the manuscript árabe 908, held in El Escorial), copied in Al-Andalus during the 12th or 13th century. Incomplete copies exist in other western European libraries.[8] Much of the book consists of instructions for using the attached tables. Al-Battānī used an Arabic translation of the Almagest made from Syriac, and used few foreign terms. He copied some data directly from Ptolemy's Handy Tables, but also produced his own. His star table of 880 used around half the stars found in the then 743-year-old Almagest. It was made by increasing Ptolemy's stellar longitudes, to allow for the different positions of the stars, now known to be caused by precession.[8]

Other zījes based on Kitāb az-Zīj aṣ-Ṣābi’ include those written by Kushyar Gilani, Alī ibn Ahmad al-Nasawī, Abū Rashīd Dāneshī, and Ibn al-Kammad.[2]

The first version in Latin from the Arabic was made by the English astronomer Robert of Ketton; this version is now lost.[2][22] A Latin edition was also produced by the Italian astronomer Plato Tiburtinus between 1134 and 1138.[29] Medieval astronomers became quite familiar with al-Battānī through this translation, renamed De motu stellarum ("On stellar motion").[9] It was also translated from Arabic into Spanish during the 13th century, under the orders of Alphonso X of Castile; a part of the manuscript is extant.[22]

The zīj appears to have been widely used until the early 12th century. One 11th-century zīj, now lost, was compiled by al-Nasawī. That it was based on al-Battānī can be inferred from the matching values for the longitudes of the solar and planetary apogees. Al-Nasawī had as a young man written astronomical tables using data obtained from al-Battānī's zīj, but then discovered the data he used had been superseded by more accurately made calculations.[30]

 
The frontispiece of De scientia stellarum (Bologna, 1645)

The invention of movable type in 1436 made it possible for astronomical works to be circulated more widely, and a Latin translation of the Kitāb az-Zīj aṣ-Ṣābi’ was printed in Nuremberg in 1537 by the astronomer Regiomontanus, which enabled Al-Battānī's observations to become accessible at the start of the scientific revolution in astronomy.[9][29] The zīj was reprinted in Bologna in 1645;[29] the original document is preserved at the Vatican Library in Rome.[31]

The Latin translations, including the printed edition of 1537, made the zīj influential in the development of European astronomy.[19] A chapter of the Ṣābiʾ Zīj also appeared as a separate work, Kitāb Taḥqīq aqdār al‐ittiṣālāt [bi‐ḥasab ʿurūḍ al‐kawākib] ("On the accurate determination of the quantities of conjunctions [according to the latitudes of the planets]").[8]

Al-Battānī's work was published in three volumes, in 1899, 1903, and 1907, by the Italian Orientalist Carlo Alfonso Nallino,[2] who gave it the title Al-Battānī sive Albatenii opus astronomicum: ad fidem codicis Escurialensis Arabice editum. Nallino's edition, although in Latin, is the foundation of the modern study of medieval Islamic astronomy.[19]

Maʻrifat Maṭāliʻi l-Burūj

Kitāb maʿrifat maṭāliʿ al-burūd̲j̲ fī mā baina arbāʿ al-falak (معرفة مطالع البروج, “The book of the science of the ascensions of the signs of the zodiac in the spaces between the quadrants of the celestial sphere”)[22] may have been about calculations relating to the zodiac. The work is mentioned in a work by Ibn al-Nadim, and is probably identical with chapter 55 of al-Battānī's zīj. It provided methods of calculation needed in the astrological problem of finding al-tasyīr (directio).[8]

Other works

  • Kitāb fī dalāʾil al‐qirānāt wa‐l‐kushūfāt ("On the astrological indications of conjunctions and eclipses") is a treatise on horoscopes and astrology in connection with conjunctions of Saturn and Jupiter that occurred during the earliest period of Islam. The extant manuscript is held in the İsmail Saib Library at Ankara University.[8]
  • Sharḥ kitāb al‐arbaʿa li‐Baṭlamiyūs (شرح كتاب الأربع مقالات في أحكام علم النجوم, "Commentary on Ptolemy's Tetrabiblos") is a commentary on the Kitāb al-Arbaʿ maqālāt in the version of Abu as-Salt. Al‐Battānī mentions two earlier treatises that are likely identical to two chapters of the Ṣābiʾ Zīj.[32] It is extant in the manuscripts Berlin Spr. 1840 (Ahlwardt #5875) and Escorial árabe 969/2.[8]
  • Arbaʻ maqālāt (أربع مقالات, "Four discourses") was a commentary on Ptolemy’s Quadripartitum de apotelesmatibus e judiciis astrorum, known as the Tetrabiblos.[33] The 10th-century encyclopedist Ibn Nadim in his Kitāb al-Fihrist, lists al-Battānī among a number of authors of commentaries on this work.[34][8][n 6]
  • Maʻrifat maṭāliʻ al-burūj (معرفة مطالع البروج, "Knowledge of the rising-places of the zodiacal signs").[35]
  • Kitāb fī miqdār al-ittiṣālāt (كتاب في مقدار الاتصالات), an astrological treatise on the four "quarters of the sphere".[35]

Legacy

Medieval period

The al-Zīj al-Ṣābī was renowned by medieval Islamic astronomers; the Arab polymath al-Bīrūnī wrote Jalā' al‐adhhān fī zīj al‐Battānī ("Elucidation of genius in al‐Battānī's Zīj"), now lost.[8]

Al-Battānī's work was instrumental in the development of science and astronomy in the west.[5] Once it became known, it was used by medieval European astronomers and during the Renaissance.[8] He influenced Jewish rabbis and philosophers such as Abraham ibn Ezra and Gersonides.[17] The 12th-century scholar Moses Maimonides, the intellectual leader of medieval Judaism, closely followed al-Battānī.[36] Hebrew editions of the al-Zīj al-Ṣābī were produced by the 12th-century Catalan astronomer Abraham bar Hiyya and the 14th-century French mathematician Immanuel Bonfils.[8]

Copernicus referred to "al-Battani the Harranite" when discussing the orbits of Mercury and Venus. He compared to his own value for the sidereal year with those obtained by al-Battānī, Ptolemy and a value he attributed to the 9th-century scholar Thabit ibn Qurra.[6] The accuracy of al-Battānī's observations encouraged Copernicus to pursue his ideas about the heliocentric nature of the cosmos,[3] and in the book that initiated the Copernican Revolution, the De Revolutionibus Orbium Coelestium, al-Battānī is mentioned 23 times.[37]

16th and 17th centuries

Al-Battānī's tables were used by the German mathematician Christopher Clavius in reforming the Julian calendar, leading to it being replaced by the Gregorian calendar in 1582.[9] The astronomers Tycho Brahe, Giovanni Battista Riccioli, Johannes Kepler and Galileo Galilei cited Al-Battānī or his observations.[5] His almost exactly correct value obtained for the Sun’s eccentricity is better than the values determined by both Copernicus and Brahe.[8]

The lunar crater Albategnius was named in his honour during the 17th century. Like many of the craters on the Moon's near side, it was given its name by Riccioli, whose 1651 nomenclature system has become standardized.[38]

In the 1690s, the English physicist and astronomer Edmund Halley, using Plato Tiburtius's translation of al-Battānī's zīj, discovered that the Moon's speed was possibly increasing.[39] Halley researched the location of Raqqa, where al-Battānī's observatory had been built, using the astronomer's calculations for the solar obliquity, the interval between successive autumnal equinoxes and several solar and lunar eclipses seen from Raqqa and Antioch. From this information, Halley derived the mean motion and position of the Moon for the years 881, 882, 883, 891, and 901. To interpret his results, Halley was dependent upon on knowing the location of Raqqa, which he was able to do once he had corrected the accepted value for the latitude of Aleppo.[40]

18th century – present

Al-Battānī's observations of eclipses were used by the English astronomer Richard Dunthorne to determine a value for the increasing speed of the Moon in its orbit, he calculated that the lunar longitude was changing at a rate of 10 arcseconds per century.[8][41]

Al-Battānī's data is still used by geophysicists.[42]

See also

Notes

  1. ^ Al-Qifṭī gives his name: Ibn Sinān Abū ‘Abd Allāh al-Harranī, known as al-Battānī and mentions that Said al-Andalusi in his book Kitāb al-Qāsī (كتاب القاصى) gives: Abū Jāfar Muḥammad ibn Sinān ibn Jābir al-Harranī, known as al-Battānī, [1]
  2. ^ He was also known in the West as Albategni or Albatenius.[2]
  3. ^ According to the History of Learned Men by Ibn al-Qifti, writing in the 13th century, al-Battānī's recorded astronomical observations date from 877, and it has been suggested that he was born before 858. Al-Qifti wrote that al-Battani's zīj included observations of the Sun and the Moon that corrected Ptolemy's Almagest, and that al-Battani ceased observing in 918, and died in 929.[6]
  4. ^ A century earlier, other Islamic astronomers had previously found values for the obliquity that came close to the value obtained by al-Battānī, changes in the solar apogee had earlier been detected by Thabit ibn Qurra (or perhaps the Banū Mūsā brothers).[14]
  5. ^ From the diagram, it can be shown that:[25]
     
  6. ^ Ptolemy's treatise was translated into Arabic by Ibrahim ibn al-Salt and this translation was amended by Hunayn ibn Ishaq.cite

References

  1. ^ Qifṭī (al-) 1903, p. 280.
  2. ^ a b c d e f g h i j Zamani 2014.
  3. ^ a b c d e f g Angelo 2014, p. 78.
  4. ^ de Blois 2012.
  5. ^ a b c d e f g h i O'Connor, John J.; Robertson, Edmund F. "Abu Abdallah Mohammad ibn Jabir Al-Battānī". MacTutor. University of St Andrews. Retrieved 21 January 2023.
  6. ^ a b c Freely 2010, p. 61.
  7. ^ Ronan 1983, p. 208.
  8. ^ a b c d e f g h i j k l m n o p q r Van Dalen 2007.
  9. ^ a b c d e f Angelo 2014, p. 79.
  10. ^ Schlager & Lauer 2001, p. 291.
  11. ^ Griffin 2006, p. 31.
  12. ^ a b c Ben-Menaḥem 2009, p. 541.
  13. ^ Freely 2010, p. 60.
  14. ^ a b North 1994, p. 187.
  15. ^ Wurm 2020, p. 17.
  16. ^ McLeod 2016, p. 160.
  17. ^ a b "Al-Battānī, Abū 'Abd Allāh Muḥammad Ibn Jābir Ibn Sinān Al-Raqqī Al-Ḥarrānī Al-Ṣābi'". Dictionary of Scientific Biography. Charles Scribner's Sons. 1: 507–516. 2008. ISSN 0036-8075. Retrieved 21 January 2023.
  18. ^ Kennedy 2010, pp. 13–14.
  19. ^ a b c Kennedy 1956, pp. 10–11.
  20. ^ "Glossary ("Obliquity")". Information Center. Astronomical Applications Department U.S. Naval Observatory. Retrieved 23 February 2023.
  21. ^ Singer 1997, p. 135.
  22. ^ a b c d Nallino 1987, pp. 680–681.
  23. ^ a b c Angelo 2014, pp. 78–79.
  24. ^ a b Maor, Eli. "Trigonometry". Encyclopædia Britannica. Retrieved 21 July 2008.
  25. ^ a b c Van Brummelen 2013, pp. 15–16.
  26. ^ Van Brummelen 2013, p. 15.
  27. ^ Van Brummelen 2013, p. 17.
  28. ^ Moussa 2011.
  29. ^ a b c Kunitzsch 1974, p. 115.
  30. ^ Mozaffari, S. Mohammad (2020). . Muslim Heritage. Foundation for Science, Technology and Civilisation, UK (FSTCUK). Archived from the original on 23 January 2023. Retrieved 23 January 2023.
  31. ^ "Manuscript – Vat.lat.3098". DigiVatLib. Vatican Library. Retrieved 24 January 2023.
  32. ^ Löhr, Nadine. "al-Battānī, Sharḥ Kitāb al-Arbaʿ maqālāt fī aḥkām ʿilm al-nujūm". Ptolemaeus Arabus et Latinus. Retrieved 23 January 2023.
  33. ^ Khallikān (ibn) 1868, pp. 318, 320.
  34. ^ Nadīm (al-) 1899, p. 640.
  35. ^ a b Khallikān (ibn) 1868, p. 317.
  36. ^ Ronan 1983, p. 211.
  37. ^ Hoskin 1999, p. 58.
  38. ^ Whitaker 1999, p. 61.
  39. ^ Cook 1998, pp. 225–227.
  40. ^ Cook 1998, p. 226.
  41. ^ North 1994, p. 389.
  42. ^ Dalmau 1997.

Sources

Versions of Kitāb az-Zīj aṣ-Ṣābi’

Kitāb az-Zīj aṣ-Ṣābi’ manuscripts

  • c. 1245–1250Gerard of Abbeville Manuscript: Latin 16657 (Liber Albategni. – Almagesti minoris libri VI. – Tabule stellarum fixarum)
  • 1376–1475 – Manuscript:Vat.lat.3098 (De Scientia stellarum (opus astronomicum) – Interpretatio latina Platonis Tiburtini. Praeit interpretis praefatio)
  • 14th century – Manuscript Latin 7266 (Opusculum cujus titulus : liber Machometi, filii Gebir, filii Cinem, qui vocatur Albateni , in numeris stellarum et in locis motuum earum, experimenti ratione conceptorum : interprete Platone Tiburtino)

19th, 20th century publications

  • Battani (al-), Muḥammad ibn Jabir (1899). Nallino, Carlo Alfonso (ed.). Al-Battānī sive Albatenii opus astronomicum: ad fidem codicis Escurialensis Arabice editum (Kitāb Zīj al-Ṣābī') (in Arabic). Vol. 3. Milan: Mediolani Insubrum: Prostat apud Urlichum Hoeplium. ISBN 978-88-88097-26-8.
  • Battani (al-), Muḥammad ibn Jabir (1903). Nallino, Carlo Alfonso (ed.). Al-Battānī sive Albatenii opus astronomicum: ad fidem codicis Escurialensis Arabice editum (Kitāb Zīj al-Ṣābī') (in Arabic). Vol. 1. Milan: Mediolani Insubrum: Prostat apud Urlichum Hoeplium. ISBN 978-88-88097-26-8.
  • Battani (al-), Muḥammad ibn Jabir (1907). Nallino, Carlo Alfonso (ed.). Al-Battānī sive Albatenii opus astronomicum: ad fidem codicis Escurialensis Arabice editum (Kitāb Zīj al-Ṣābī') (in Arabic). Vol. 2. Milan: Mediolani Insubrum: Prostat apud Urlichum Hoeplium. ISBN 978-88-88097-26-8.

Further reading

  1. ^ McLeod, Alexus (2016). Astronomy in the Ancient World: Early and Modern Views on Celestial Events. Berlin: Springer International Publishing. ISBN 978-33192-3-600-1.

battani, albategnius, redirects, here, lunar, crater, albategnius, crater, abū, ʿabd, allāh, muḥammad, jābir, sinān, raqqī, Ḥarrānī, aṣ, Ṣābiʾ, battānī, arabic, محمد, بن, جابر, بن, سنان, البتاني, usually, called, battānī, name, that, past, latinized, albategni. Albategnius redirects here For the lunar crater see Albategnius crater Abu ʿAbd Allah Muḥammad ibn Jabir ibn Sinan al Raqqi al Ḥarrani aṣ Ṣabiʾ al Battani n 1 Arabic محمد بن جابر بن سنان البتاني usually called al Battani a name that was in the past Latinized as Albategnius n 2 before 858 929 was an astronomer astrologer and mathematician who lived and worked for most of his life at Raqqa now in Syria He is considered to be the greatest and most famous of the astronomers of the medieval Islamic world al Battaniمحمد بن جابر بن سنان البتانيA folio from a Latin translation of Kitab az Zij aṣ Ṣabi c 900 Latin 7266 Bibliotheque nationale de FranceBornbefore 858Harran modern day TurkeyDied929Qasr al Jiss near SamarraAcademic backgroundAcademic workEraIslamic Golden AgeMain interestsMathematics astronomy astrologyNotable worksKitab az ZijNotable ideasTrigonometrical relationshipsAl Battani s writings became instrumental in the development of science and astronomy in the west His Kitab az Zij aṣ Ṣabi c 900 is the earliest extant zij astronomical table made in the Ptolemaic tradition that is hardly influenced by Hindu or Sasanian Iranian astronomy It refined and corrected Ptolemy s Almagest but also included new ideas and astronomical tables A handwritten Latin version of Kitab az Zij aṣ Ṣabi by the Italian astronomer Plato Tiburtinus was produced between 1134 and 1138 through which medieval astronomers became familiar with al Battani In 1537 a Latin translation of the zij was printed in Nuremberg An annotated version also in Latin published in three separate volumes between 1899 and 1907 by the Italian Orientalist Carlo Alfonso Nallino provided the foundation of the modern study of medieval Islamic astronomy Al Battani s observations of the Sun led him to understand the nature of annular solar eclipses He accurately calculated the Earth s obliquity the angle between the planes of the equator and the ecliptic the solar year and the equinoxes obtaining a value for the precession of the equinoxes of one degree in 66 years The accuracy of al Battani s data encouraged Nicolaus Copernicus to pursue his ideas about the heliocentric nature of the cosmos Al Battani s tables were used by the German mathematician Christopher Clavius in reforming the Julian calendar and the astronomers Tycho Brahe Johannes Kepler Galileo Galilei and Edmund Halley all used his observations Al Battani introduced the use of sines and tangents in geometrical calculations replacing the geometrical methods of the Greeks Using trigonometry he created an equation for finding the qibla the direction which Muslims need to face during their prayers His equation was widely used until superseded by more accurate methods introduced a century later by the polymath al Biruni Contents 1 Life 2 Astronomy 3 Mathematics 4 Works 4 1 Kitab az Zij aṣ Ṣabi 4 2 Maʻrifat Maṭaliʻi l Buruj 4 3 Other works 5 Legacy 5 1 Medieval period 5 2 16th and 17th centuries 5 3 18th century present 6 See also 7 Notes 8 References 9 Sources 9 1 Versions of Kitab az Zij aṣ Ṣabi 9 1 1 Kitab az Zij aṣ Ṣabi manuscripts 9 1 2 19th 20th century publications 10 Further readingLife EditAl Battani whose full name was Abu ʿAbd Allah Muḥammad ibn Jabir ibn Sinan al Raqqi al Ḥarrani al Ṣabiʾ al Battani and whose Latinized name was Albategnius was born before 858 in Harran 44 kilometres 27 mi southeast of the modern Turkish city of Urfa He was the son of Jabir ibn Sinan al Harrani a maker of astronomical instruments 3 The epithet al Ṣabi suggests that his family belonged to the pagan Sabian sect of Harran 4 5 whose religion featured star worship and who had inherited the Mesopotamian legacy of an interest in mathematics and astronomy 2 n 3 His contemporary the polymath Thabit ibn Qurra was also an adherent of Sabianism which died out during the 11th century 7 Although his ancestors were likely Sabian al Battani was a Muslim as shown by his first name 5 Between 877 and 918 19 he lived in Raqqa now in north central Syria which was an ancient Roman settlement beside the Euphrates near Harran During this period he also lived in Antioch 3 where he observed a solar and a lunar eclipse in 901 According to the Arab biographer Ibn al Nadim the financial problems encountered by al Battani in old age forced him to move from Raqqa to Baghdad 8 Al Battani died in 929 at Qasr al Jiss 2 near Samarra after returning from Baghdad where he had resolved an unfair taxation grievance on behalf of a clan from Raqqa 9 Astronomy EditAl Battani is considered to be the greatest 10 11 12 and most famous of the known astronomers of the medieval Islamic world He made more accurate observations of the night sky than any of his contemporaries 3 and was the first of a generation of new Islamic astronomers that followed the founding of the House of Wisdom in the 8th century 13 His meticulously described methods allowed others to assess his results but some of his explanations about the movements of the planets were poorly written and have mistakes 14 Sometimes referred to as the Ptolemy of the Arabs 15 al Battani s works reveal him to have been a devout believer in Ptolemy s geocentric model of the cosmos He refined the observations found in Ptolemy s Almagest 3 and compiled new tables of the Sun and the Moon long accepted as authoritative 5 Al Battani established his own observatory at Raqqa He recommended that the astronomical instruments there were greater than one metre 3 ft 3 in in size 8 Such instruments being larger and so having scales capable of measuring smaller values were capable of greater precision than had previously been achieved 16 Some of his measurements were more accurate than those taken by the Polish astronomer and mathematician Nicolaus Copernicus during the Renaissance A reason for this is thought to be that al Battani s location for his observations at Raqqa was closer to the Earth s equator so that the ecliptic and the Sun being higher in the sky were less susceptible to atmospheric refraction 5 The careful construction and alignment of his astronomical instruments enabled him to achieve an accuracy of observations of equinoxes and solstices that had previously been unknown 8 An annular solar eclipse Al Battani was one the first astronomers to understand why such phenomena can occur A representation of the celestial equator and Earth s ecliptic Al Battani was one the first astronomers to observe that the distance between the Earth and the Sun varies during the year which led him to understand the reason why annular solar eclipses occur 3 17 18 He saw that the position in the sky at which the angular diameter of the Sun appeared smallest was no longer located where Ptolemy had stated it should be 3 and that since Ptolemy s time the longitudinal position of the apogee had increased by 16 47 12 Al Battani was an excellent observer 19 He improved Ptolemy s measurement of the obliquity of the ecliptic the angle between the planes of the equator and the ecliptic 9 producing a value of 23 35 5 n 4 the accepted value is around 23 44 20 Al Battani obtained the criterion for observation of the lunar crescent i e if the longitude difference between the Moon and the Sun is greater than 13 66 and the Moon s delay after sunset is more than 43 2 minutes the crescent will be visible 2 His value for the solar year of 365 days 5 hours 46 minutes and 24 seconds is 2 minutes and 22 seconds from the accepted value 5 Al Battani observed changes in the direction of the Sun s apogee as recorded by Ptolemy 21 and that as a result the equation of time was subject to a slow cyclical variation 22 His careful measurements of when the March and September equinoxes took place allowed him to obtain a value for the precession of the equinoxes of 54 5 per year or 1 degree in 66 years 5 9 a phenomenon that he realised was altering the Sun s annual apparent motion through the zodiac constellations 23 It was impossible for al Battani who adhered to the ideas of a stationary Earth and geocentricism to understand the underlying scientific reasons for his observations or the importance of his discoveries 23 Mathematics Edit The fundamental trigonometric functions defined from a right angled triangle sine cosine and tangent A spherical triangle with sides a b and c One of al Battani s greatest contributions was his introduction of the use of use of sines and tangents in geometrical calculations especially spherical trigonometric functions to replace Ptolemy s geometrical methods Al Battani s methods involved some of the most complex mathematics developed up to that time 23 He was aware of the superiority of trigonometry over geometrical chords and demonstrated awareness of a relation between the sides and angles of a spherical triangle now given by the expression 12 cos a cos b cos c sin b sin c cos A displaystyle cos a cos b cos c sin b sin c cos A dd Al Battani produced a number of trigonometrical relationships 24 tan a sin a cos a displaystyle tan alpha frac sin alpha cos alpha dd sec a 1 tan 2 a displaystyle sec alpha sqrt 1 tan 2 alpha where sec a 1 sin a displaystyle sec alpha frac 1 sin alpha dd He also solved the equation sin x y cos x displaystyle sin x y cos x dd discovering the formula sin x y 1 y 2 displaystyle sin x frac y sqrt 1 y 2 dd Al Battani used the Iranian astronomer Habash al Hasib al Marwazi s idea of tangents to develop equations for calculating and compiling tables of both tangents and cotangents He discovered their reciprocal functions the secant and cosecant and produced the first table of cosecants for each degree from 1 to 90 which he referred to as a table of shadows in reference to the shadow produced on a sundial 24 A geometrical representation of the method used by al Battani to determine the qibla shown as q from O to M 25 n 5 Using these trigonometrical relationships al Battani created an equation for finding the qibla which Muslims face in each of the five prayers they practice every day 26 The equation he created did not give accurate directions as it did not take into account the fact that Earth is a sphere The relationship he used was precise enough only for a person located in or close to Mecca but was still a widely used method at the time Al Battani s equation for q displaystyle q the angle of the direction of a place towards Mecca is given by 25 tan q sin D l sin D ϕ displaystyle tan q frac sin Delta lambda sin Delta phi where D l displaystyle Delta lambda is the difference between the longitude of the place and Mecca and D ϕ displaystyle Delta phi is the difference between the latitude of the place and Mecca Al Battani s equation was superseded a century after it was first used when the polymath al Biruni summarized several other methods to produce results that were more accurate than those that could be obtained using al Battani s equation 27 A small work on trigonometry Tajrid uṣul tarkib al juyub Summary of the principles for establishing sines is known Once attributed to the Iranian astronomer Kushyar Gilani by the German orientalist Carl Brockelmann it is a fragment of al Battani s zij The manuscript is extant in Istanbul as MS Carullah 1499 3 2 The authenticity of this work has been questioned as scholars believe al Battani would have not have included al juyub for sines in the title 8 Works EditKitab az Zij aṣ Ṣabi Edit Al Battani s Kitab az Zij كتاب الزيج or زيج البتاني Book of Astronomical Tables written in around 900 and also known as the al Zij al Ṣabi كتاب الزيج الصابئ 2 is the earliest extant zij made in the Ptolemaic tradition that is hardly influenced by Hindu or Sasanian Iranian astronomy 8 It corrected mistakes made by Ptolemy and described instruments such as horizontal and vertical sundials the triquetrum the mural instrument 2 and a quadrant instrument 28 Ibn al Nadim wrote that al Battani s zij existed in two different editions the second being better than the first 8 In the west the work was sometimes called the Sabean Tables 6 The work consisting of 57 chapters and additional tables is extant in the manuscript arabe 908 held in El Escorial copied in Al Andalus during the 12th or 13th century Incomplete copies exist in other western European libraries 8 Much of the book consists of instructions for using the attached tables Al Battani used an Arabic translation of the Almagest made from Syriac and used few foreign terms He copied some data directly from Ptolemy s Handy Tables but also produced his own His star table of 880 used around half the stars found in the then 743 year old Almagest It was made by increasing Ptolemy s stellar longitudes to allow for the different positions of the stars now known to be caused by precession 8 Other zijes based on Kitab az Zij aṣ Ṣabi include those written by Kushyar Gilani Ali ibn Ahmad al Nasawi Abu Rashid Daneshi and Ibn al Kammad 2 The first version in Latin from the Arabic was made by the English astronomer Robert of Ketton this version is now lost 2 22 A Latin edition was also produced by the Italian astronomer Plato Tiburtinus between 1134 and 1138 29 Medieval astronomers became quite familiar with al Battani through this translation renamed De motu stellarum On stellar motion 9 It was also translated from Arabic into Spanish during the 13th century under the orders of Alphonso X of Castile a part of the manuscript is extant 22 The zij appears to have been widely used until the early 12th century One 11th century zij now lost was compiled by al Nasawi That it was based on al Battani can be inferred from the matching values for the longitudes of the solar and planetary apogees Al Nasawi had as a young man written astronomical tables using data obtained from al Battani s zij but then discovered the data he used had been superseded by more accurately made calculations 30 The frontispiece of De scientia stellarum Bologna 1645 The invention of movable type in 1436 made it possible for astronomical works to be circulated more widely and a Latin translation of the Kitab az Zij aṣ Ṣabi was printed in Nuremberg in 1537 by the astronomer Regiomontanus which enabled Al Battani s observations to become accessible at the start of the scientific revolution in astronomy 9 29 The zij was reprinted in Bologna in 1645 29 the original document is preserved at the Vatican Library in Rome 31 The Latin translations including the printed edition of 1537 made the zij influential in the development of European astronomy 19 A chapter of the Ṣabiʾ Zij also appeared as a separate work Kitab Taḥqiq aqdar al ittiṣalat bi ḥasab ʿuruḍ al kawakib On the accurate determination of the quantities of conjunctions according to the latitudes of the planets 8 Al Battani s work was published in three volumes in 1899 1903 and 1907 by the Italian Orientalist Carlo Alfonso Nallino 2 who gave it the title Al Battani sive Albatenii opus astronomicum ad fidem codicis Escurialensis Arabice editum Nallino s edition although in Latin is the foundation of the modern study of medieval Islamic astronomy 19 Maʻrifat Maṭaliʻi l Buruj Edit Kitab maʿrifat maṭaliʿ al burud j fi ma baina arbaʿ al falak معرفة مطالع البروج The book of the science of the ascensions of the signs of the zodiac in the spaces between the quadrants of the celestial sphere 22 may have been about calculations relating to the zodiac The work is mentioned in a work by Ibn al Nadim and is probably identical with chapter 55 of al Battani s zij It provided methods of calculation needed in the astrological problem of finding al tasyir directio 8 Other works Edit Kitab fi dalaʾil al qiranat wa l kushufat On the astrological indications of conjunctions and eclipses is a treatise on horoscopes and astrology in connection with conjunctions of Saturn and Jupiter that occurred during the earliest period of Islam The extant manuscript is held in the Ismail Saib Library at Ankara University 8 Sharḥ kitab al arbaʿa li Baṭlamiyus شرح كتاب الأربع مقالات في أحكام علم النجوم Commentary on Ptolemy s Tetrabiblos is a commentary on the Kitab al Arbaʿ maqalat in the version of Abu as Salt Al Battani mentions two earlier treatises that are likely identical to two chapters of the Ṣabiʾ Zij 32 It is extant in the manuscripts Berlin Spr 1840 Ahlwardt 5875 and Escorial arabe 969 2 8 Arbaʻ maqalat أربع مقالات Four discourses was a commentary on Ptolemy s Quadripartitum de apotelesmatibus e judiciis astrorum known as the Tetrabiblos 33 The 10th century encyclopedist Ibn Nadim in his Kitab al Fihrist lists al Battani among a number of authors of commentaries on this work 34 8 n 6 Maʻrifat maṭaliʻ al buruj معرفة مطالع البروج Knowledge of the rising places of the zodiacal signs 35 Kitab fi miqdar al ittiṣalat كتاب في مقدار الاتصالات an astrological treatise on the four quarters of the sphere 35 Legacy EditMedieval period Edit The al Zij al Ṣabi was renowned by medieval Islamic astronomers the Arab polymath al Biruni wrote Jala al adhhan fi zij al Battani Elucidation of genius in al Battani s Zij now lost 8 Al Battani s work was instrumental in the development of science and astronomy in the west 5 Once it became known it was used by medieval European astronomers and during the Renaissance 8 He influenced Jewish rabbis and philosophers such as Abraham ibn Ezra and Gersonides 17 The 12th century scholar Moses Maimonides the intellectual leader of medieval Judaism closely followed al Battani 36 Hebrew editions of the al Zij al Ṣabi were produced by the 12th century Catalan astronomer Abraham bar Hiyya and the 14th century French mathematician Immanuel Bonfils 8 Copernicus referred to al Battani the Harranite when discussing the orbits of Mercury and Venus He compared to his own value for the sidereal year with those obtained by al Battani Ptolemy and a value he attributed to the 9th century scholar Thabit ibn Qurra 6 The accuracy of al Battani s observations encouraged Copernicus to pursue his ideas about the heliocentric nature of the cosmos 3 and in the book that initiated the Copernican Revolution the De Revolutionibus Orbium Coelestium al Battani is mentioned 23 times 37 16th and 17th centuries Edit Al Battani s tables were used by the German mathematician Christopher Clavius in reforming the Julian calendar leading to it being replaced by the Gregorian calendar in 1582 9 The astronomers Tycho Brahe Giovanni Battista Riccioli Johannes Kepler and Galileo Galilei cited Al Battani or his observations 5 His almost exactly correct value obtained for the Sun s eccentricity is better than the values determined by both Copernicus and Brahe 8 The lunar crater Albategnius was named in his honour during the 17th century Like many of the craters on the Moon s near side it was given its name by Riccioli whose 1651 nomenclature system has become standardized 38 In the 1690s the English physicist and astronomer Edmund Halley using Plato Tiburtius s translation of al Battani s zij discovered that the Moon s speed was possibly increasing 39 Halley researched the location of Raqqa where al Battani s observatory had been built using the astronomer s calculations for the solar obliquity the interval between successive autumnal equinoxes and several solar and lunar eclipses seen from Raqqa and Antioch From this information Halley derived the mean motion and position of the Moon for the years 881 882 883 891 and 901 To interpret his results Halley was dependent upon on knowing the location of Raqqa which he was able to do once he had corrected the accepted value for the latitude of Aleppo 40 18th century present Edit Al Battani s observations of eclipses were used by the English astronomer Richard Dunthorne to determine a value for the increasing speed of the Moon in its orbit he calculated that the lunar longitude was changing at a rate of 10 arcseconds per century 8 41 Al Battani s data is still used by geophysicists 42 See also EditList of Arab scientists and scholarsNotes Edit Al Qifṭi gives his name Ibn Sinan Abu Abd Allah al Harrani known as al Battani and mentions that Said al Andalusi in his book Kitab al Qasi كتاب القاصى gives Abu Jafar Muḥammad ibn Sinan ibn Jabir al Harrani known as al Battani 1 He was also known in the West as Albategni or Albatenius 2 According to the History of Learned Men by Ibn al Qifti writing in the 13th century al Battani s recorded astronomical observations date from 877 and it has been suggested that he was born before 858 Al Qifti wrote that al Battani s zij included observations of the Sun and the Moon that corrected Ptolemy s Almagest and that al Battani ceased observing in 918 and died in 929 6 A century earlier other Islamic astronomers had previously found values for the obliquity that came close to the value obtained by al Battani changes in the solar apogee had earlier been detected by Thabit ibn Qurra or perhaps the Banu Musa brothers 14 From the diagram it can be shown that 25 tan q O A O D sin l sin ϕ O A r O D r displaystyle tan q frac OA OD frac sin lambda sin phi frac OA r OD r dd Ptolemy s treatise was translated into Arabic by Ibrahim ibn al Salt and this translation was amended by Hunayn ibn Ishaq citeReferences Edit Qifṭi al 1903 p 280 a b c d e f g h i j Zamani 2014 a b c d e f g Angelo 2014 p 78 de Blois 2012 a b c d e f g h i O Connor John J Robertson Edmund F Abu Abdallah Mohammad ibn Jabir Al Battani MacTutor University of St Andrews Retrieved 21 January 2023 a b c Freely 2010 p 61 Ronan 1983 p 208 a b c d e f g h i j k l m n o p q r Van Dalen 2007 a b c d e f Angelo 2014 p 79 Schlager amp Lauer 2001 p 291 Griffin 2006 p 31 a b c Ben Menaḥem 2009 p 541 Freely 2010 p 60 a b North 1994 p 187 Wurm 2020 p 17 McLeod 2016 p 160 a b Al Battani Abu Abd Allah Muḥammad Ibn Jabir Ibn Sinan Al Raqqi Al Ḥarrani Al Ṣabi Dictionary of Scientific Biography Charles Scribner s Sons 1 507 516 2008 ISSN 0036 8075 Retrieved 21 January 2023 Kennedy 2010 pp 13 14 a b c Kennedy 1956 pp 10 11 Glossary Obliquity Information Center Astronomical Applications Department U S Naval Observatory Retrieved 23 February 2023 Singer 1997 p 135 a b c d Nallino 1987 pp 680 681 a b c Angelo 2014 pp 78 79 a b Maor Eli Trigonometry Encyclopaedia Britannica Retrieved 21 July 2008 a b c Van Brummelen 2013 pp 15 16 Van Brummelen 2013 p 15 Van Brummelen 2013 p 17 Moussa 2011 a b c Kunitzsch 1974 p 115 Mozaffari S Mohammad 2020 The Orbital Elements of Venus in Medieval Islamic Astronomy Interaction Between Traditions and the Accuracy of Observations Muslim Heritage Foundation for Science Technology and Civilisation UK FSTCUK Archived from the original on 23 January 2023 Retrieved 23 January 2023 Manuscript Vat lat 3098 DigiVatLib Vatican Library Retrieved 24 January 2023 Lohr Nadine al Battani Sharḥ Kitab al Arbaʿ maqalat fi aḥkam ʿilm al nujum Ptolemaeus Arabus et Latinus Retrieved 23 January 2023 Khallikan ibn 1868 pp 318 320 Nadim al 1899 p 640 a b Khallikan ibn 1868 p 317 Ronan 1983 p 211 Hoskin 1999 p 58 Whitaker 1999 p 61 Cook 1998 pp 225 227 Cook 1998 p 226 North 1994 p 389 Dalmau 1997 Sources EditAngelo Joseph A 2014 Encyclopedia of Space and Astronomy New York Infobase Publishing ISBN 978 14381 1 018 9 Ben Menaḥem Ari 2009 Historical Encyclopedia of Natural and Mathematical Sciences Vol 1 Prescience 1583 CE Berlin Springer Science amp Business Media doi 10 1007 978 3 540 68832 7 ISBN 978 35406 8 832 7 de Blois F C 2012 Ṣabiʾ In Bearman P Bianquis T Bosworth C E van Donzel E Heinrichs W P eds Encyclopaedia of Islam 2nd ed doi 10 1163 1573 3912 islam COM 0952 Retrieved 22 January 2023 Van Brummelen Glen 2013 Seeking the Divine on Earth The Direction of Prayer in Islam Math Horizons 21 1 15 17 doi 10 4169 mathhorizons 21 1 15 ISSN 1072 4117 JSTOR 10 4169 mathhorizons 21 1 15 S2CID 218543141 Cook Alan H 1998 Edmond Halley Charting the Heavens and the Seas Oxford Clarendon Press ISBN 978 0 19 850031 5 Van Dalen Benno 2007 Battani Abu ʿAbd Allah Muḥammad ibn Jabir ibn Sinan al Battani al Ḥarrani al Ṣabiʾ In Hockey Thomas et al eds Biographical Encyclopedia of Astronomers Springer pp 101 103 doi 10 1007 978 0 387 30400 7 1433 ISBN 978 1 4419 9918 4 PDF version Dalmau W 1997 Critical Remarks on the use of Medieval Eclipse Records for the Determination of Long Term Changes in the Earth s Rotation Surveys in Geophysics 18 2 3 213 223 doi 10 1023 A 1006588010109 ISSN 1573 0956 S2CID 128191632 Archived from the original on 23 October 2012 Freely John 2010 Light from the East How the Science of Medieval Islam Helped to Shape the Western World London I B Tauris ISBN 978 17845 3 138 6 Griffin Rosarii ed 2006 Education in the Muslim World Different Perspectives Oxford Symposium Books Ltd ISBN 978 18739 2 755 7 Hoskin Michael 1999 The Cambridge Concise History of Astronomy Cambridge Cambridge University Press ISBN 978 05215 7 600 0 Kennedy Edward Stewart 1956 A Survey of Islamic Astronomical Tables Transactions of the American Philosophical Society New Series Philadelphia Pennsylvania American Philosophical Society 46 2 10 11 32 34 doi 10 2307 1005726 hdl 2027 mdp 39076006359272 ISSN 0065 9746 JSTOR 1005726 Kennedy Edward Stewart et al 2010 Al Battani s Astrological History of the Prophet and the Early Caliphate PDF Suhayl Barcelona University of Barcelona 9 ISSN 1576 9372 Khallikan ibn Aḥmad i M 1868 Mac Guckin de Slane William ed Wafayat al A yan wa Anba Ibn Khallian s Biographical Dictionary Vol III Paris amp London W H Allen p 317 Kunitzsch Paul 1974 Der Almagest die Syntaxis mathematica des Claudius Ptolemaus in arab latein Uberlieferung in German Wiesbaden Germany Harrassowitz Verlag ISBN 978 34470 1 517 2 1 Moussa Ali 2011 Mathematical Methods in Abu al Wafaʾ s Almagest and the Qibla Determinations Arabic Sciences and Philosophy Cambridge University of Cambridge 21 1 1 56 doi 10 1017 S095742391000007X ISSN 0957 4239 S2CID 171015175 Ibn al Nadim 1970 Dodge Bayard ed The Fihrist of al Nadim a tenth century survey of Muslim culture New York amp London Columbia University Press Nallino C A 1987 al Battani In Houtsma M T Arnold T W Basset R Hartmann R eds Encyclopaedia of Islam Vol 2 1st ed Brill doi 10 1163 2214 871X ei1 SIM 1392 ISBN 9004082654 Qifṭi al Jamal al Din Abu al Ḥasan Ali ibn Yusuf 1903 Lippert Julius ed Ta rikh al Ḥukama in Arabic Leipzig Theodor Weicher p 280 Schlager Neil Lauer Josh eds 2001 Science and Its Times 700 1449 Vol 2 New York Gale Group ISBN 978 0 7876 3934 1 North John 1994 The Norton History of Astronomy and Cosmology New York W W Norton ISBN 978 0 393 31193 8 Ronan Colin A 1983 The Cambridge Illustrated History of the World s Science New York Feltham UK Cambridge University Press ISBN 978 05212 5 844 9 Singer Charles Joseph 1997 A Short History of Science to the Nineteenth Century Mineola New York Courier Dover Publications ISBN 978 0 486 29887 0 Whitaker Ewen A 1999 Mapping and Naming the Moon A History of Lunar Cartography and Nomenclature Cambridge Cambridge University Press ISBN 978 05215 4 414 6 Wurm Stefan 2020 The Human Condition Our Place in the Cosmos and in Life ATICE LLC ISBN 978 19518 9 400 9 Zamani Maryann 2014 Battani al Oxford Reference Oxford Oxford University Press ISBN 978 0 19 981257 8 Retrieved 22 January 2023 via subscription which may be required or content may be available in libraries that are in the UK Versions of Kitab az Zij aṣ Ṣabi Edit Kitab az Zij aṣ Ṣabi manuscripts Edit c 1245 1250 Gerard of Abbeville Manuscript Latin 16657 Liber Albategni Almagesti minoris libri VI Tabule stellarum fixarum 1376 1475 Manuscript Vat lat 3098 De Scientia stellarum opus astronomicum Interpretatio latina Platonis Tiburtini Praeit interpretis praefatio 14th century Manuscript Latin 7266 Opusculum cujus titulus liber Machometi filii Gebir filii Cinem qui vocatur Albateni in numeris stellarum et in locis motuum earum experimenti ratione conceptorum interprete Platone Tiburtino 19th 20th century publications Edit Battani al Muḥammad ibn Jabir 1899 Nallino Carlo Alfonso ed Al Battani sive Albatenii opus astronomicum ad fidem codicis Escurialensis Arabice editum Kitab Zij al Ṣabi in Arabic Vol 3 Milan Mediolani Insubrum Prostat apud Urlichum Hoeplium ISBN 978 88 88097 26 8 Battani al Muḥammad ibn Jabir 1903 Nallino Carlo Alfonso ed Al Battani sive Albatenii opus astronomicum ad fidem codicis Escurialensis Arabice editum Kitab Zij al Ṣabi in Arabic Vol 1 Milan Mediolani Insubrum Prostat apud Urlichum Hoeplium ISBN 978 88 88097 26 8 Battani al Muḥammad ibn Jabir 1907 Nallino Carlo Alfonso ed Al Battani sive Albatenii opus astronomicum ad fidem codicis Escurialensis Arabice editum Kitab Zij al Ṣabi in Arabic Vol 2 Milan Mediolani Insubrum Prostat apud Urlichum Hoeplium ISBN 978 88 88097 26 8 Further reading Edit Wikimedia Commons has media related to Al Battani Sarton George 1960 A History of Science Ancient Science Through the Golden Age of Greece Vol 1 Cambridge Massachusetts Harvard University Press OCLC 179869164 McLeod Alexus 2016 Astronomy in the Ancient World Early and Modern Views on Celestial Events Berlin Springer International Publishing ISBN 978 33192 3 600 1 Retrieved from https en wikipedia org w index php title Al Battani amp oldid 1144908054, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.