fbpx
Wikipedia

Constellation

A constellation is an area on the celestial sphere in which a group of visible stars forms a perceived pattern or outline, typically representing an animal, mythological subject, or inanimate object.[1]

Three views of the constellation Orion: the old Baroque mythological figure, a modern stick figure, and a photo of the stars themselves.

  • Top: Baroque drawing of the constellation Orion from Johannes Hevelius' Celestial catalogue, showing the stars as they would appear to an observer looking down upon the imaginary celestial sphere from the outside
  • Bottom: Contemporary map of Orion from the IAU and photograph of the night sky with drawn lines

The origins of the earliest constellations likely go back to prehistory. People used them to relate stories of their beliefs, experiences, creation, or mythology. Different cultures and countries adopted their own constellations, some of which lasted into the early 20th century before today's constellations were internationally recognized. The recognition of constellations has changed significantly over time. Many changed in size or shape. Some became popular, only to drop into obscurity. Some were limited to a single culture or nation.

The 48 traditional Western constellations are Greek. They are given in Aratus' work Phenomena and Ptolemy's Almagest, though their origin probably predates these works by several centuries. Constellations in the far southern sky were added from the 15th century until the mid-18th century when European explorers began traveling to the Southern Hemisphere. Twelve (or thirteen) ancient constellations belong to the zodiac (straddling the ecliptic, which the Sun, Moon, and planets all traverse). The origins of the zodiac remain historically uncertain; its astrological divisions became prominent c. 400 BC in Babylonian or Chaldean astronomy.[2]

In 1922, the International Astronomical Union (IAU) formally accepted the modern list of 88 constellations, and in 1928 adopted official constellation boundaries that together cover the entire celestial sphere.[3][4] Any given point in a celestial coordinate system lies in one of the modern constellations. Some astronomical naming systems include the constellation where a given celestial object is found to convey its approximate location in the sky. The Flamsteed designation of a star, for example, consists of a number and the genitive form of the constellation's name.

Other star patterns or groups called asterisms are not constellations under the formal definition, but are also used by observers to navigate the night sky. Asterisms may be several stars within a constellation, or they may share stars with more than one constellation. Examples of asterisms include the teapot within the constellation Sagittarius, or the big dipper in the constellation of Ursa Major.[5][6]

Terminology

The word constellation comes from the Late Latin term cōnstellātiō, which can be translated as "set of stars"; it came into use in Middle English during the 14th century.[7] The Ancient Greek word for constellation is ἄστρον (astron). These terms historically referred to any recognisable pattern of stars whose appearance was associated with mythological characters or creatures, earthbound animals, or objects.[1] Over time, among European astronomers, the constellations became clearly defined and widely recognised. Today, there are 88 IAU designated constellations.[8]

A constellation or star that never sets below the horizon when viewed from a particular latitude on Earth is termed circumpolar. From the North Pole or South Pole, all constellations south or north of the celestial equator are circumpolar. Depending on the definition, equatorial constellations may include those that lie between declinations 45° north and 45° south,[9] or those that pass through the declination range of the ecliptic or zodiac ranging between 23½° north, the celestial equator, and 23½° south.[10][11]

Stars in constellations can appear near each other in the sky, but they usually lie at a variety of distances away from the Earth. Since each star has its own independent motion, all constellations will change slowly over time. After tens to hundreds of thousands of years, familiar outlines will become unrecognizable.[12] Astronomers can predict the past or future constellation outlines by measuring individual stars' common proper motions or cpm[13] by accurate astrometry[14][15] and their radial velocities by astronomical spectroscopy.[16]

Identification

The 88 constellations recognized by the International Astronomical Union as well as those that cultures have recognized throughout history are imagined figures and shapes derived from the patterns of stars in the observable sky.[17] Many officially recognized constellations are based in the imaginations of ancient, Near Eastern and Mediterranean mythologies.[18] H.A. Rey, who wrote popular books on astronomy, pointed out the imaginative nature of the constellations and their mythological, artistic basis, and the practical use of identifying them through definite images, according to the classical names they were given.[19]

History of the early constellations

Lascaux Caves, Southern France

It has been suggested that the 17,000-year-old cave paintings in Lascaux Southern France depict star constellations such as Taurus, Orion's Belt, and the Pleiades. However, this view is not generally accepted among scientists.[20][21]

Mesopotamia

Inscribed stones and clay writing tablets from Mesopotamia (in modern Iraq) dating to 3000 BC provide the earliest generally accepted evidence for humankind's identification of constellations.[22] It seems that the bulk of the Mesopotamian constellations were created within a relatively short interval from around 1300 to 1000 BC. Mesopotamian constellations appeared later in many of the classical Greek constellations.[23]

Ancient Near East

 
Babylonian tablet recording Halley's Comet in 164 BC.

The oldest Babylonian catalogues of stars and constellations date back to the beginning of the Middle Bronze Age, most notably the Three Stars Each texts and the MUL.APIN, an expanded and revised version based on more accurate observation from around 1000 BC. However, the numerous Sumerian names in these catalogues suggest that they built on older, but otherwise unattested, Sumerian traditions of the Early Bronze Age.[24]

The classical Zodiac is a revision of Neo-Babylonian constellations from the 6th century BC. The Greeks adopted the Babylonian constellations in the 4th century BC. Twenty Ptolemaic constellations are from the Ancient Near East. Another ten have the same stars but different names.[23]

Biblical scholar E. W. Bullinger interpreted some of the creatures mentioned in the books of Ezekiel and Revelation as the middle signs of the four-quarters of the Zodiac,[25][26] with the Lion as Leo, the Bull as Taurus, the Man representing Aquarius, and the Eagle standing in for Scorpio.[27] The biblical Book of Job also makes reference to a number of constellations, including עיש ‘Ayish "bier", כסיל chesil "fool" and כימה chimah "heap" (Job 9:9, 38:31–32), rendered as "Arcturus, Orion and Pleiades" by the KJV, but ‘Ayish "the bier" actually corresponding to Ursa Major.[28] The term Mazzaroth מַזָּרוֹת, translated as a garland of crowns, is a hapax legomenon in Job 38:32, and it might refer to the zodiacal constellations.

Classical antiquity

 
Egyptian star chart and decanal clock, from the ceiling of Senenmut's tomb, c. 1473 BC

There is only limited information on ancient Greek constellations, with some fragmentary evidence being found in the Works and Days of the Greek poet Hesiod, who mentioned the "heavenly bodies".[29] Greek astronomy essentially adopted the older Babylonian system in the Hellenistic era,[citation needed] first introduced to Greece by Eudoxus of Cnidus in the 4th century BC. The original work of Eudoxus is lost, but it survives as a versification by Aratus, dating to the 3rd century BC. The most complete existing works dealing with the mythical origins of the constellations are by the Hellenistic writer termed pseudo-Eratosthenes and an early Roman writer styled pseudo-Hyginus. The basis of Western astronomy as taught during Late Antiquity and until the Early Modern period is the Almagest by Ptolemy, written in the 2nd century.

In the Ptolemaic Kingdom, native Egyptian tradition of anthropomorphic figures represented the planets, stars, and various constellations.[30] Some of these were combined with Greek and Babylonian astronomical systems culminating in the Zodiac of Dendera; it remains unclear when this occurred, but most were placed during the Roman period between 2nd to 4th centuries AD. The oldest known depiction of the zodiac showing all the now familiar constellations, along with some original Egyptian constellations, decans, and planets.[22][31] Ptolemy's Almagest remained the standard definition of constellations in the medieval period both in Europe and in Islamic astronomy.

Ancient China

 
Chinese star map with a cylindrical projection (Su Song)

Ancient China had a long tradition of observing celestial phenomena.[32] Nonspecific Chinese star names, later categorized in the twenty-eight mansions, have been found on oracle bones from Anyang, dating back to the middle Shang dynasty. These constellations are some of the most important observations of Chinese sky, attested from the 5th century BC. Parallels to the earliest Babylonian (Sumerian) star catalogues suggest that the ancient Chinese system did not arise independently.[33]

Three schools of classical Chinese astronomy in the Han period are attributed to astronomers of the earlier Warring States period. The constellations of the three schools were conflated into a single system by Chen Zhuo, an astronomer of the 3rd century (Three Kingdoms period). Chen Zhuo's work has been lost, but information on his system of constellations survives in Tang period records, notably by Qutan Xida. The oldest extant Chinese star chart dates to that period and was preserved as part of the Dunhuang Manuscripts. Native Chinese astronomy flourished during the Song dynasty, and during the Yuan dynasty became increasingly influenced by medieval Islamic astronomy (see Treatise on Astrology of the Kaiyuan Era).[33] As maps were prepared during this period on more scientific lines, they were considered as more reliable.[34]

A well-known map from the Song period is the Suzhou Astronomical Chart, which was prepared with carvings of stars on the planisphere of the Chinese sky on a stone plate; it is done accurately based on observations, and it shows the supernova of the year of 1054 in Taurus.[34]

Influenced by European astronomy during the late Ming dynasty, charts depicted more stars but retained the traditional constellations. Newly observed stars were incorporated as supplementary to old constellations in the southern sky, which did not depict the traditional stars recorded by ancient Chinese astronomers. Further improvements were made during the later part of the Ming dynasty by Xu Guangqi and Johann Adam Schall von Bell, the German Jesuit and was recorded in Chongzhen Lishu (Calendrical Treatise of Chongzhen period, 1628).[clarification needed] Traditional Chinese star maps incorporated 23 new constellations with 125 stars of the southern hemisphere of the sky based on the knowledge of Western star charts; with this improvement, the Chinese Sky was integrated with the World astronomy.[34][35]

Early modern astronomy

Historically, the origins of the constellations of the northern and southern skies are distinctly different. Most northern constellations date to antiquity, with names based mostly on Classical Greek legends.[10] Evidence of these constellations has survived in the form of star charts, whose oldest representation appears on the statue known as the Farnese Atlas, based perhaps on the star catalogue of the Greek astronomer Hipparchus.[36] Southern constellations are more modern inventions, sometimes as substitutes for ancient constellations (e.g. Argo Navis). Some southern constellations had long names that were shortened to more usable forms; e.g. Musca Australis became simply Musca.[10]

Some of the early constellations were never universally adopted. Stars were often grouped into constellations differently by different observers, and the arbitrary constellation boundaries often led to confusion as to which constellation a celestial object belonged. Before astronomers delineated precise boundaries (starting in the 19th century), constellations generally appeared as ill-defined regions of the sky.[37] Today they now follow officially accepted designated lines of right ascension and declination based on those defined by Benjamin Gould in epoch 1875.0 in his star catalogue Uranometria Argentina.[38]

The 1603 star atlas "Uranometria" of Johann Bayer assigned stars to individual constellations and formalized the division by assigning a series of Greek and Latin letters to the stars within each constellation. These are known today as Bayer designations.[39] Subsequent star atlases led to the development of today's accepted modern constellations.

Origin of the southern constellations

 
Sketch of the southern celestial sky by Portuguese astronomer João Faras (1 May 1500).

The southern sky, below about −65° declination, was only partially catalogued by ancient Babylonians, Egyptians, Greeks, Chinese, and Persian astronomers of the north. The knowledge that northern and southern star patterns differed goes back to Classical writers, who describe, for example, the African circumnavigation expedition commissioned by Egyptian Pharaoh Necho II in c. 600 BC and those of Hanno the Navigator in c. 500 BC.

The history of southern constellations is not straightforward. Different groupings and different names were proposed by various observers, some reflecting national traditions or designed to promote various sponsors. Southern constellations were important from the 14th to 16th centuries, when sailors used the stars for celestial navigation. Italian explorers who recorded new southern constellations include Andrea Corsali, Antonio Pigafetta, and Amerigo Vespucci.[27]

Many of the 88 IAU-recognized constellations in this region first appeared on celestial globes developed in the late 16th century by Petrus Plancius, based mainly on observations of the Dutch navigators Pieter Dirkszoon Keyser[40] and Frederick de Houtman.[41][42][43][44] These became widely known through Johann Bayer's star atlas Uranometria of 1603.[45] Fourteen more were created in 1763 by the French astronomer Nicolas Louis de Lacaille, who also split the ancient constellation Argo Navis into three; these new figures appeared in his star catalogue, published in 1756.[46]

Several modern proposals have not survived. The French astronomers Pierre Lemonnier and Joseph Lalande, for example, proposed constellations that were once popular but have since been dropped. The northern constellation Quadrans Muralis survived into the 19th century (when its name was attached to the Quadrantid meteor shower), but is now divided between Boötes and Draco.

88 modern constellations

A list of 88 constellations was produced for the International Astronomical Union in 1922.[4] It is roughly based on the traditional Greek constellations listed by Ptolemy in his Almagest in the 2nd century and Aratus' work Phenomena, with early modern modifications and additions (most importantly introducing constellations covering the parts of the southern sky unknown to Ptolemy) by Petrus Plancius (1592, 1597/98 and 1613), Johannes Hevelius (1690) and Nicolas Louis de Lacaille (1763),[47][48][49] who introduced fourteen new constellations.[50] Lacaille studied the stars of the southern hemisphere from 1751 until 1752 from the Cape of Good Hope, when he was said to have observed more than 10,000 stars using a 0.5 inches (13 mm) refracting telescope.

In 1922, Henry Norris Russell produced a list of 88 constellations with three-letter abbreviations for them.[51] However, these constellations did not have clear borders between them. In 1928, the International Astronomical Union (IAU) formally accepted 88 modern constellations, with contiguous boundaries[52] along vertical and horizontal lines of right ascension and declination developed by Eugene Delporte that, together, cover the entire celestial sphere;[4][53] this list was finally published in 1930.[3] Where possible, these modern constellations usually share the names of their Graeco-Roman predecessors, such as Orion, Leo or Scorpius. The aim of this system is area-mapping, i.e. the division of the celestial sphere into contiguous fields.[47] Out of the 88 modern constellations, 36 lie predominantly in the northern sky, and the other 52 predominantly in the southern.

The boundaries developed by Delporte used data that originated back to epoch B1875.0, which was when Benjamin A. Gould first made his proposal to designate boundaries for the celestial sphere,[54] a suggestion on which Delporte based his work. The consequence of this early date is that because of the precession of the equinoxes, the borders on a modern star map, such as epoch J2000, are already somewhat skewed and no longer perfectly vertical or horizontal.[55] This effect will increase over the years and centuries to come.

Symbols

The constellations have no official symbols, though those of the ecliptic may take the signs of the zodiac.[56] Symbols for the other modern constellations, as well as older ones that still occur in modern nomenclature, have occasionally been published.[57]

Dark cloud constellations

The Great Rift, a series of dark patches in the Milky Way, is more visible and striking in the southern hemisphere than in the northern. It vividly stands out when conditions are otherwise so dark that the Milky Way's central region casts shadows on the ground.[58] Some cultures have discerned shapes in these patches and have given names to these "dark cloud constellations". Members of the Inca civilization identified various dark areas or dark nebulae in the Milky Way as animals and associated their appearance with the seasonal rains.[59][60][61] Australian Aboriginal astronomy also describes dark cloud constellations, the most famous being the "emu in the sky" whose head is formed by the Coalsack, a dark nebula, instead of the stars.[62]

See also

References

  1. ^ a b . Oxford English Dictionary. Archived from the original on 2 January 2013. Retrieved 2 August 2016.
  2. ^ Britton, John P. (2010). "Studies in Babylonian lunar theory: part III. The introduction of the uniform zodiac". Archive for History of Exact Sciences. 64 (6): 617–63. doi:10.1007/S00407-010-0064-Z. JSTOR 41134332. S2CID 122004678. [T]he zodiac was introduced between −408 and −397 and probably within a very few years of −400.
  3. ^ a b Delporte, Eugène (1930). Délimitation scientifique des constellations. International Astronomical Union.
  4. ^ a b c Ridpath, Ian (2018). "Star Tales: The final 88".
  5. ^ "DOCdb Deep Sky Observer's Companion – the online database". Retrieved 21 September 2018.
  6. ^ . Archived from the original on 29 September 2012. Retrieved 21 September 2018.
  7. ^ "constellation | Origin and meaning of constellation by Online Etymology Dictionary". www.etymonline.com.
  8. ^ "Constellation". Oxford Dictionary of Astronomy. Retrieved 26 July 2019.
  9. ^ Harbord, John Bradley; Goodwin, H. B. (1897). Glossary of navigation: a vade mecum for practical navigators (3rd ed.). Portsmouth: Griffin. p. 142.
  10. ^ a b c Norton, Arthur P. (1959). Norton's Star Atlas. p. 1.
  11. ^ Steele, Joel Dorman (1884). "The story of the stars: New descriptive astronomy". Science series. American Book Company: 220. {{cite journal}}: Cite journal requires |journal= (help)
  12. ^ . NASA. Archived from the original on 13 October 2011. Retrieved 27 November 2014.
  13. ^ Theo Koupelis; Karl F. Kuhn (2007). In Quest of the Universe. Jones & Bartlett Publishers. p. 369. ISBN 978-0-7637-4387-1.
  14. ^ Kovalevsky, Jean; Seidelmann, P. Kenneth (2004). Fundamentals of Astrometry. Cambridge University Press. ISBN 978-0-521-64216-3.
  15. ^ Soffel, M; Klioner, S. A; Petit, G; Wolf, P; Kopeikin, S. M; Bretagnon, P; Brumberg, V. A; Capitaine, N; Damour, T; Fukushima, T; Guinot, B; Huang, T.-Y; Lindegren, L; Ma, C; Nordtvedt, K; Ries, J. C; Seidelmann, P. K; Vokrouhlický, D; Will, C. M; Xu, C (2003). "The IAU 2000 Resolutions for Astrometry, Celestial Mechanics, and Metrology in the Relativistic Framework: Explanatory Supplement". The Astronomical Journal. 126 (6): 2687–706. arXiv:astro-ph/0303376. Bibcode:2003AJ....126.2687S. doi:10.1086/378162. S2CID 32887246.
  16. ^ "Resolution C1 on the Definition of a Spectroscopic "Barycentric Radial-Velocity Measure". Special Issue: Preliminary Program of the XXVth GA in Sydney, July 13–26, 2003 Information Bulletin n° 91" (PDF). IAU Secretariat. July 2002. p. 50. Archived (PDF) from the original on 9 October 2022. Retrieved 28 September 2017.
  17. ^ What Are the Constellations?, University of Wisconsin, http://www.astro.wisc.edu/~dolan/constellations/extra/constellations.html
  18. ^ "Forest for the Trees – Why We Recognize Faces & Constellations". Nautilus Magazine. 19 May 2014. Retrieved 3 February 2020.
  19. ^ Rey, H.A. (1954). The Stars: A New Way to See Them. Houghton Mifflin Harcourt Publishing. ISBN 978-0547132808.
  20. ^ Rappenglück, M. (1997). "The Pleiades in the "Salle des Taureaux", grotte de Lascaux. Does a rock picture in the cave of Lascaux show the open star cluster of the Pleiades at the Magdalénien era (ca 15.300 BC?"". Astronomy and Culture: 217. Bibcode:1997ascu.conf..217R.
  21. ^ Cunningham, D. (2011). "The Oldest Maps of the World: Deciphering the Hand Paintings of Cueva de El Castillo Cave in Spain and Lascaux in France". Midnight Science. 4: 3.
  22. ^ a b Rogers, J. H (1998). "Origins of the ancient constellations: I. The Mesopotamian traditions". Journal of the British Astronomical Association. 108: 9. Bibcode:1998JBAA..108....9R.
  23. ^ a b Schaefer, Bradley E. (2006). "The Origin of the Greek Constellations". Scientific American. 295 (5): 96–101. Bibcode:2006SciAm.295e..96S. doi:10.1038/scientificamerican1106-96. PMID 17076089.
  24. ^ . Gary D. Thompson. 21 April 2015. Archived from the original on 7 September 2015. Retrieved 30 August 2015.
  25. ^ E. William Bullinger (2015). The Witness of the Stars. eKitap Projesi. ISBN 978-963-527-403-1.
  26. ^ Dennis James Kennedy (June 1989). The Real Meaning of the Zodiac. Coral Ridge Ministries Media, Inc. ISBN 978-1-929626-14-4.
  27. ^ a b Richard H. Allen (2013). Star Names: Their Lore and Meaning. Courier Corp. ISBN 978-0-486-13766-7.
  28. ^ "H5906 - ʿayiš - Strong's Hebrew Lexicon (KJV)". Blue Letter Bible.
  29. ^ Lorimer, H. L. (1951). "Stars and Constellations in Homer and Hesiod". The Annual of the British School at Athens. 46: 86–101. doi:10.1017/S0068245400018359. S2CID 192976174.
  30. ^ Marshall Clagett (1989). Ancient Egyptian Science: Calendars, clocks, and astronomy. American Philosophical Society. ISBN 978-0-87169-214-6.
  31. ^ Denderah (1825). Zodiac of Dendera, epitome. (Exhib., Leic. square).
  32. ^ Needham, Joseph (1959). Mathematics and the Sciences of the Heavens and the Earth. Science and Civilisation in China. Vol. 3. Cambridge University Press. p. 171. ISBN 978-0521058018.
  33. ^ a b Xiaochun Sun; Jacob Kistemaker (1997). The Chinese Sky During the Han: Constellating Stars and Society. Brill. ISBN 978-90-04-10737-3.
  34. ^ a b c Selin, Helaine Elise (2008). Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures. Springer Science & Business Media. p. 2022. ISBN 978-1-4020-4559-2.
  35. ^ Sun, Xiaochun (1997). Helaine Selin (ed.). Encyclopaedia of the History of Science, Technology, and Medicine in Non-Western Cultures. Kluwer Academic Publishers. p. 910. ISBN 978-0-7923-4066-9.
  36. ^ Schaefer, Bradley E. (May 2005). "The epoch of the constellations on the Farnese Atlas and their origin in Hipparchus's lost catalogue" (PDF). Journal for the History of Astronomy. 36/2 (123): 167–19. Bibcode:2005JHA....36..167S. doi:10.1177/002182860503600202. S2CID 15431718. Archived (PDF) from the original on 9 October 2022.
  37. ^ Norton, Arthur P. (1919). Norton's Star Atlas. p. 1.
  38. ^ . Archived from the original on 24 July 2011. Retrieved 16 July 2010.
  39. ^ Swerdlow, N. M. (August 1986). "A Star Catalogue Used by Johannes Bayer". Journal for the History of Astronomy. 17 (5): 189–97. Bibcode:1986JHA....17..189S. doi:10.1177/002182868601700304. S2CID 118829690.
  40. ^ Sawyer Hogg, Helen (1951). "Out of Old Books (Pieter Dircksz Keijser, Delineator of the Southern Constellations)". Journal of the Royal Astronomical Society of Canada. 45: 215. Bibcode:1951JRASC..45..215S.
  41. ^ Knobel, E. B. (1917). On Frederick de Houtman's Catalogue of Southern Stars, and the Origin of the Southern Constellations. (Monthly Notices of the Royal Astronomical Society, Vol. 77, pp.  414–32)
  42. ^ Dekker, Elly (1987). Early Explorations of the Southern Celestial Sky. (Annals of Science 44, pp.  439–70)
  43. ^ Dekker, Elly (1987). On the Dispersal of Knowledge of the Southern Celestial Sky. (Der Globusfreund, 35–37, pp.  211–30)
  44. ^ Verbunt, Frank; van Gent, Robert H. (2011). Early Star Catalogues of the Southern Sky: De Houtman, Kepler (Second and Third Classes), and Halley. (Astronomy & Astrophysics 530)
  45. ^ Ian Ridpath. "Johann Bayer's southern star chart". Star Tales.
  46. ^ Ian Ridpath. "Lacaille's southern planisphere of 1756". Star Tales.
  47. ^ a b "The Constellations". IAU – International Astronomical Union. Retrieved 29 August 2015.
  48. ^ Ian Ridpath. "Constellation names, abbreviations and sizes". Retrieved 30 August 2015.
  49. ^ Ian Ridpath. "Star Tales – The Almagest". Retrieved 30 August 2015.
  50. ^ Ian Ridpath. "Nicolas Louis de Lacaille at the Cape". Retrieved 4 July 2022.
  51. ^ "The original names and abbreviations for constellations from 1922". Retrieved 31 January 2010.
  52. ^ "Constellation boundaries". Retrieved 24 May 2011.
  53. ^ Marc Lachièze-Rey; Jean-Pierre Luminet; Bibliothèque Nationale de France. Paris (2001). Celestial Treasury: From the Music of the Spheres to the Conquest of Space. Cambridge University Press. p. 80. ISBN 978-0-521-80040-2.
  54. ^ Ian Ridpath. "Benjamin Apthorp Gould and the Uranometria Argentina". Star Tales.
  55. ^ A.C. Davenhall & S.K. Leggett, "A Catalogue of Constellation Boundary Data", (Centre de Donneés astronomiques de Strasbourg, February 1990).
  56. ^ For example, in the Nautical Almanac and Astronomical Ephemeris for the year 1833 (Board of Admiralty, London)
  57. ^ Peter Grego (2012) The Star Book: Stargazing Throughout the Seasons in the Northern Hemisphere. F+W Media.
  58. ^ Rao, Joe (11 September 2009). "A Great Week to See the Milky Way". Space. Retrieved 5 January 2016.
  59. ^ . Astronomy.pomona.edu. Archived from the original on 16 December 2010. Retrieved 12 March 2019.
  60. ^ Dearborn, D.S.P.; White, R.E. (1983). "The "Torreon" of Machu Picchu as an Observatory". Archaeoastronomy. 14 (5): S37. Bibcode:1983JHAS...14...37D.
  61. ^ Krupp, Edwin (1994). Echoes of the Ancient Skies. Mineola: Dover Publications, Inc. pp. 47–51. ISBN 978-0486428826.
  62. ^ Bordeleau, André G. (2013). Flags of the Night Sky: When Astronomy Meets National Pride. Springer Science & Business Media. pp. 124–. ISBN 978-1-4614-0929-8.

Further reading

Mythology, lore, history, and archaeoastronomy

  • Allen, Richard Hinckley. (1899) Star-Names And Their Meanings, G. E. Stechert, New York, hardcover; reprint 1963 as Star Names: Their Lore and Meaning, Dover Publications, Inc., Mineola, NY, ISBN 978-0-486-21079-7 softcover.
  • Olcott, William Tyler. (1911); Star Lore of All Ages, G. P. Putnam's Sons, New York, hardcover; reprint 2004 as Star Lore: Myths, Legends, and Facts, Dover Publications, Inc., Mineola, NY, ISBN 978-0-486-43581-7 softcover.
  • Kelley, David H. and Milone, Eugene F. (2004) Exploring Ancient Skies: An Encyclopedic Survey of Archaeoastronomy, Springer, ISBN 978-0-387-95310-6 hardcover.
  • Ridpath, Ian. (2018) Star Tales 2nd ed., Lutterworth Press, ISBN 978-0-718-89478-8 softcover.
  • Staal, Julius D. W. (1988) The New Patterns in the Sky: Myths and Legends of the Stars, McDonald & Woodward Publishing Co., ISBN 0-939923-10-6 hardcover, ISBN 0-939923-04-1 softcover.
  • Rogers, John H. (1998). "Origins of the Ancient Constellations: I. The Mesopotamian Traditions". Journal of the British Astronomical Association. 108: 9–28. Bibcode:1998JBAA..108....9R.
  • Rogers, John H. (1998). "Origins of the Ancient Constellations: II. The Mediterranean Traditions". Journal of the British Astronomical Association. 108: 79–89. Bibcode:1998JBAA..108...79R.

Atlases and celestial maps

 
Ottoman period celestial map, signs of the Zodiac and lunar mansions.

General and nonspecialized – entire celestial heavens

  • Becvar, Antonin. Atlas Coeli. Published as Atlas of the Heavens, Sky Publishing Corporation, Cambridge, MA, with coordinate grid transparency overlay.
  • Norton, Arthur Philip. (1910) Norton's Star Atlas, 20th Edition 2003 as Norton's Star Atlas and Reference Handbook, edited by Ridpath, Ian, Pi Press, ISBN 978-0-13-145164-3, hardcover.
  • National Geographic Society. (1957, 1970, 2001, 2007) The Heavens (1970), Cartographic Division of the National Geographic Society (NGS), Washington, DC, two-sided large map chart depicting the constellations of the heavens; as a special supplement to the August 1970 issue of National Geographic. Forerunner map as A Map of The Heavens, as a special supplement to the December 1957 issue. Current version 2001 (Tirion), with 2007 reprint.
  • Sinnott, Roger W. and Perryman, Michael A.C. (1997) Millennium Star Atlas, Epoch 2000.0, Sky Publishing Corporation, Cambridge, MA, and European Space Agency (ESA), ESTEC, Noordwijk, The Netherlands. Subtitle: "An All-Sky Atlas Comprising One Million Stars to Visual Magnitude Eleven from the Hipparcos and Tycho Catalogues and Ten Thousand Nonstellar Objects". 3 volumes, hardcover, ISBN 0-933346-84-0. Vol. 1, 0–8 Hours (Right Ascension), ISBN 0-933346-81-6 hardcover; Vol. 2, 8–16 Hours, ISBN 0-933346-82-4 hardcover; Vol. 3, 16–24 Hours, ISBN 0-933346-83-2 hardcover. Softcover version available. Supplemental separate purchasable coordinate grid transparent overlays.
  • Tirion, Wil; et al. (1987) Uranometria 2000.0, Willmann-Bell, Inc., Richmond, VA, 3 volumes, hardcover. Vol. 1 (1987): "The Northern Hemisphere to −6°", by Wil Tirion, Barry Rappaport, and George Lovi, ISBN 0-943396-14-X hardcover, printed boards. Vol. 2 (1988): "The Southern Hemisphere to +6°", by Wil Tirion, Barry Rappaport and George Lovi, ISBN 0-943396-15-8 hardcover, printed boards. Vol. 3 (1993) as a separate added work: The Deep Sky Field Guide to Uranometria 2000.0, by Murray Cragin, James Lucyk, and Barry Rappaport, ISBN 0-943396-38-7 hardcover, printed boards. 2nd Edition 2001 as collective set of 3 volumes – Vol. 1: Uranometria 2000.0 Deep Sky Atlas, by Wil Tirion, Barry Rappaport, and Will Remaklus, ISBN 978-0-943396-71-2 hardcover, printed boards; Vol. 2: Uranometria 2000.0 Deep Sky Atlas, by Wil Tirion, Barry Rappaport, and Will Remaklus, ISBN 978-0-943396-72-9 hardcover, printed boards; Vol. 3: Uranometria 2000.0 Deep Sky Field Guide by Murray Cragin and Emil Bonanno, ISBN 978-0-943396-73-6, hardcover, printed boards.
  • Tirion, Wil and Sinnott, Roger W. (1998) Sky Atlas 2000.0, various editions. 2nd Deluxe Edition, Cambridge University Press, Cambridge, England.

Northern celestial hemisphere and north circumpolar region

  • Becvar, Antonin. (1962) Atlas Borealis 1950.0, Czechoslovak Academy of Sciences (Ceskoslovenske Akademie Ved), Praha, Czechoslovakia, 1st Edition, elephant folio hardcover, with small transparency overlay coordinate grid square and separate paper magnitude legend ruler. 2nd Edition 1972 and 1978 reprint, Czechoslovak Academy of Sciences (Ceskoslovenske Akademie Ved), Prague, Czechoslovakia, and Sky Publishing Corporation, Cambridge, MA, ISBN 0-933346-01-8 oversize folio softcover spiral-bound, with transparency overlay coordinate grid ruler.

Equatorial, ecliptic, and zodiacal celestial sky

  • Becvar, Antonin. (1958) Atlas Eclipticalis 1950.0, Czechoslovak Academy of Sciences (Ceskoslovenske Akademie Ved), Praha, Czechoslovakia, 1st Edition, elephant folio hardcover, with small transparency overlay coordinate grid square and separate paper magnitude legend ruler. 2nd Edition 1974, Czechoslovak Academy of Sciences (Ceskoslovenske Akademie Ved), Prague, Czechoslovakia, and Sky Publishing Corporation, Cambridge, MA, oversize folio softcover spiral-bound, with transparency overlay coordinate grid ruler.

Southern celestial hemisphere and south circumpolar region

  • Becvar, Antonin. Atlas Australis 1950.0, Czechoslovak Academy of Sciences (Ceskoslovenske Akademie Ved), Praha, Czechoslovakia, 1st Edition, hardcover, with small transparency overlay coordinate grid square and separate paper magnitude legend ruler. 2nd Edition, Czechoslovak Academy of Sciences (Ceskoslovenske Akademie Ved), Prague, Czechoslovakia, and Sky Publishing Corporation, Cambridge, MA, oversize folio softcover spiral-bound, with transparency overlay coordinate grid ruler.

Catalogs

  • Becvar, Antonin. (1959) Atlas Coeli II Katalog 1950.0, Praha, 1960 Prague. Published 1964 as Atlas of the Heavens – II Catalogue 1950.0, Sky Publishing Corporation, Cambridge, MA
  • Hirshfeld, Alan and Sinnott, Roger W. (1982) Sky Catalogue 2000.0, Cambridge University Press and Sky Publishing Corporation, 1st Edition, 2 volumes. LCCN 81-17975 both vols., and LCCN 83-240310 vol. 1. "Volume 1: Stars to Magnitude 8.0", ISBN 0-521-24710-1 (Cambridge) and ISBN 0-933346-35-2 hardcover, ISBN 0-933346-34-4 softcover. Vol. 2 (1985) – "Volume 2: Double Stars, Variable Stars, and Nonstellar Objects", ISBN 0-521-25818-9 (Cambridge) hardcover, ISBN 0-521-27721-3 (Cambridge) softcover. 2nd Edition (1991) with additional third author François Ochsenbein, 2 volumes, LCCN 91-26764. Vol. 1: ISBN 0-521-41743-0 (Cambridge) hardcover; ISBN 0-521-42736-3 (Cambridge) softcover . Vol. 2 (1999): ISBN 0-521-27721-3 (Cambridge) softcover and 0-933346-38-7 softcover – reprint of 1985 edition.
  • Yale University Observatory. (1908, et al.) Catalogue of Bright Stars, New Haven, CN. Referred to commonly as "Bright Star Catalogue". Various editions with various authors historically, the longest term revising author as (Ellen) Dorrit Hoffleit. 1st Edition 1908. 2nd Edition 1940 by Frank Schlesinger and Louise F. Jenkins. 3rd Edition (1964), 4th Edition, 5th Edition (1991), and 6th Edition (pending posthumous) by Hoffleit.

External links

  • IAU: The Constellations, including high quality maps.
  • Atlascoelestis, di Felice Stoppa.
  • Celestia free 3D realtime space-simulation (OpenGL)
  • Stellarium realtime sky rendering program (OpenGL)
  • Interactive Sky Charts (Java applets allowing navigation through the entire sky with variable star detail, optional constellation lines)
  • Table of Constellations
  • Online Text: Hyginus, Astronomica translated by Mary Grant Greco-Roman constellation myths
  • Neave Planetarium Adobe Flash interactive web browser planetarium and stardome with realistic movement of stars and the planets.
  • Audio – Cain/Gay (2009) Astronomy Cast Constellations
  • The Greek Star-Map short essay by Gavin White
  • Bucur D. The network signature of constellation line figures. PLOS ONE 17(7): e0272270 (2022). A comparative analysis on the structure of constellation line figures across 56 sky cultures.

constellation, this, article, about, star, grouping, other, uses, disambiguation, constellation, area, celestial, sphere, which, group, visible, stars, forms, perceived, pattern, outline, typically, representing, animal, mythological, subject, inanimate, objec. This article is about the star grouping For other uses see Constellation disambiguation A constellation is an area on the celestial sphere in which a group of visible stars forms a perceived pattern or outline typically representing an animal mythological subject or inanimate object 1 Three views of the constellation Orion the old Baroque mythological figure a modern stick figure and a photo of the stars themselves Top Baroque drawing of the constellation Orion from Johannes Hevelius Celestial catalogue showing the stars as they would appear to an observer looking down upon the imaginary celestial sphere from the outside Bottom Contemporary map of Orion from the IAU and photograph of the night sky with drawn lines The origins of the earliest constellations likely go back to prehistory People used them to relate stories of their beliefs experiences creation or mythology Different cultures and countries adopted their own constellations some of which lasted into the early 20th century before today s constellations were internationally recognized The recognition of constellations has changed significantly over time Many changed in size or shape Some became popular only to drop into obscurity Some were limited to a single culture or nation The 48 traditional Western constellations are Greek They are given in Aratus work Phenomena and Ptolemy s Almagest though their origin probably predates these works by several centuries Constellations in the far southern sky were added from the 15th century until the mid 18th century when European explorers began traveling to the Southern Hemisphere Twelve or thirteen ancient constellations belong to the zodiac straddling the ecliptic which the Sun Moon and planets all traverse The origins of the zodiac remain historically uncertain its astrological divisions became prominent c 400 BC in Babylonian or Chaldean astronomy 2 In 1922 the International Astronomical Union IAU formally accepted the modern list of 88 constellations and in 1928 adopted official constellation boundaries that together cover the entire celestial sphere 3 4 Any given point in a celestial coordinate system lies in one of the modern constellations Some astronomical naming systems include the constellation where a given celestial object is found to convey its approximate location in the sky The Flamsteed designation of a star for example consists of a number and the genitive form of the constellation s name Other star patterns or groups called asterisms are not constellations under the formal definition but are also used by observers to navigate the night sky Asterisms may be several stars within a constellation or they may share stars with more than one constellation Examples of asterisms include the teapot within the constellation Sagittarius or the big dipper in the constellation of Ursa Major 5 6 Contents 1 Terminology 2 Identification 3 History of the early constellations 3 1 Lascaux Caves Southern France 3 2 Mesopotamia 3 3 Ancient Near East 3 4 Classical antiquity 3 5 Ancient China 4 Early modern astronomy 4 1 Origin of the southern constellations 4 2 88 modern constellations 4 3 Symbols 5 Dark cloud constellations 6 See also 7 References 8 Further reading 8 1 Mythology lore history and archaeoastronomy 8 2 Atlases and celestial maps 8 2 1 General and nonspecialized entire celestial heavens 8 2 2 Northern celestial hemisphere and north circumpolar region 8 2 3 Equatorial ecliptic and zodiacal celestial sky 8 2 4 Southern celestial hemisphere and south circumpolar region 8 3 Catalogs 9 External linksTerminology EditThe word constellation comes from the Late Latin term cōnstellatiō which can be translated as set of stars it came into use in Middle English during the 14th century 7 The Ancient Greek word for constellation is ἄstron astron These terms historically referred to any recognisable pattern of stars whose appearance was associated with mythological characters or creatures earthbound animals or objects 1 Over time among European astronomers the constellations became clearly defined and widely recognised Today there are 88 IAU designated constellations 8 A constellation or star that never sets below the horizon when viewed from a particular latitude on Earth is termed circumpolar From the North Pole or South Pole all constellations south or north of the celestial equator are circumpolar Depending on the definition equatorial constellations may include those that lie between declinations 45 north and 45 south 9 or those that pass through the declination range of the ecliptic or zodiac ranging between 23 north the celestial equator and 23 south 10 11 Stars in constellations can appear near each other in the sky but they usually lie at a variety of distances away from the Earth Since each star has its own independent motion all constellations will change slowly over time After tens to hundreds of thousands of years familiar outlines will become unrecognizable 12 Astronomers can predict the past or future constellation outlines by measuring individual stars common proper motions or cpm 13 by accurate astrometry 14 15 and their radial velocities by astronomical spectroscopy 16 Identification EditThe 88 constellations recognized by the International Astronomical Union as well as those that cultures have recognized throughout history are imagined figures and shapes derived from the patterns of stars in the observable sky 17 Many officially recognized constellations are based in the imaginations of ancient Near Eastern and Mediterranean mythologies 18 H A Rey who wrote popular books on astronomy pointed out the imaginative nature of the constellations and their mythological artistic basis and the practical use of identifying them through definite images according to the classical names they were given 19 History of the early constellations EditLascaux Caves Southern France Edit It has been suggested that the 17 000 year old cave paintings in Lascaux Southern France depict star constellations such as Taurus Orion s Belt and the Pleiades However this view is not generally accepted among scientists 20 21 Mesopotamia Edit Inscribed stones and clay writing tablets from Mesopotamia in modern Iraq dating to 3000 BC provide the earliest generally accepted evidence for humankind s identification of constellations 22 It seems that the bulk of the Mesopotamian constellations were created within a relatively short interval from around 1300 to 1000 BC Mesopotamian constellations appeared later in many of the classical Greek constellations 23 Ancient Near East Edit See also Old Babylonian astronomy Babylonian tablet recording Halley s Comet in 164 BC The oldest Babylonian catalogues of stars and constellations date back to the beginning of the Middle Bronze Age most notably the Three Stars Each texts and the MUL APIN an expanded and revised version based on more accurate observation from around 1000 BC However the numerous Sumerian names in these catalogues suggest that they built on older but otherwise unattested Sumerian traditions of the Early Bronze Age 24 The classical Zodiac is a revision of Neo Babylonian constellations from the 6th century BC The Greeks adopted the Babylonian constellations in the 4th century BC Twenty Ptolemaic constellations are from the Ancient Near East Another ten have the same stars but different names 23 Biblical scholar E W Bullinger interpreted some of the creatures mentioned in the books of Ezekiel and Revelation as the middle signs of the four quarters of the Zodiac 25 26 with the Lion as Leo the Bull as Taurus the Man representing Aquarius and the Eagle standing in for Scorpio 27 The biblical Book of Job also makes reference to a number of constellations including עיש Ayish bier כסיל chesil fool and כימה chimah heap Job 9 9 38 31 32 rendered as Arcturus Orion and Pleiades by the KJV but Ayish the bier actually corresponding to Ursa Major 28 The term Mazzaroth מ ז רו ת translated as a garland of crowns is a hapax legomenon in Job 38 32 and it might refer to the zodiacal constellations Classical antiquity Edit See also Egyptian astronomy and Ancient Greek astronomy Egyptian star chart and decanal clock from the ceiling of Senenmut s tomb c 1473 BC There is only limited information on ancient Greek constellations with some fragmentary evidence being found in the Works and Days of the Greek poet Hesiod who mentioned the heavenly bodies 29 Greek astronomy essentially adopted the older Babylonian system in the Hellenistic era citation needed first introduced to Greece by Eudoxus of Cnidus in the 4th century BC The original work of Eudoxus is lost but it survives as a versification by Aratus dating to the 3rd century BC The most complete existing works dealing with the mythical origins of the constellations are by the Hellenistic writer termed pseudo Eratosthenes and an early Roman writer styled pseudo Hyginus The basis of Western astronomy as taught during Late Antiquity and until the Early Modern period is the Almagest by Ptolemy written in the 2nd century In the Ptolemaic Kingdom native Egyptian tradition of anthropomorphic figures represented the planets stars and various constellations 30 Some of these were combined with Greek and Babylonian astronomical systems culminating in the Zodiac of Dendera it remains unclear when this occurred but most were placed during the Roman period between 2nd to 4th centuries AD The oldest known depiction of the zodiac showing all the now familiar constellations along with some original Egyptian constellations decans and planets 22 31 Ptolemy s Almagest remained the standard definition of constellations in the medieval period both in Europe and in Islamic astronomy Ancient China Edit Further information Chinese constellations and Chinese astronomy Chinese star map with a cylindrical projection Su Song Ancient China had a long tradition of observing celestial phenomena 32 Nonspecific Chinese star names later categorized in the twenty eight mansions have been found on oracle bones from Anyang dating back to the middle Shang dynasty These constellations are some of the most important observations of Chinese sky attested from the 5th century BC Parallels to the earliest Babylonian Sumerian star catalogues suggest that the ancient Chinese system did not arise independently 33 Three schools of classical Chinese astronomy in the Han period are attributed to astronomers of the earlier Warring States period The constellations of the three schools were conflated into a single system by Chen Zhuo an astronomer of the 3rd century Three Kingdoms period Chen Zhuo s work has been lost but information on his system of constellations survives in Tang period records notably by Qutan Xida The oldest extant Chinese star chart dates to that period and was preserved as part of the Dunhuang Manuscripts Native Chinese astronomy flourished during the Song dynasty and during the Yuan dynasty became increasingly influenced by medieval Islamic astronomy see Treatise on Astrology of the Kaiyuan Era 33 As maps were prepared during this period on more scientific lines they were considered as more reliable 34 A well known map from the Song period is the Suzhou Astronomical Chart which was prepared with carvings of stars on the planisphere of the Chinese sky on a stone plate it is done accurately based on observations and it shows the supernova of the year of 1054 in Taurus 34 Influenced by European astronomy during the late Ming dynasty charts depicted more stars but retained the traditional constellations Newly observed stars were incorporated as supplementary to old constellations in the southern sky which did not depict the traditional stars recorded by ancient Chinese astronomers Further improvements were made during the later part of the Ming dynasty by Xu Guangqi and Johann Adam Schall von Bell the German Jesuit and was recorded in Chongzhen Lishu Calendrical Treatise of Chongzhen period 1628 clarification needed Traditional Chinese star maps incorporated 23 new constellations with 125 stars of the southern hemisphere of the sky based on the knowledge of Western star charts with this improvement the Chinese Sky was integrated with the World astronomy 34 35 Early modern astronomy EditHistorically the origins of the constellations of the northern and southern skies are distinctly different Most northern constellations date to antiquity with names based mostly on Classical Greek legends 10 Evidence of these constellations has survived in the form of star charts whose oldest representation appears on the statue known as the Farnese Atlas based perhaps on the star catalogue of the Greek astronomer Hipparchus 36 Southern constellations are more modern inventions sometimes as substitutes for ancient constellations e g Argo Navis Some southern constellations had long names that were shortened to more usable forms e g Musca Australis became simply Musca 10 Some of the early constellations were never universally adopted Stars were often grouped into constellations differently by different observers and the arbitrary constellation boundaries often led to confusion as to which constellation a celestial object belonged Before astronomers delineated precise boundaries starting in the 19th century constellations generally appeared as ill defined regions of the sky 37 Today they now follow officially accepted designated lines of right ascension and declination based on those defined by Benjamin Gould in epoch 1875 0 in his star catalogue Uranometria Argentina 38 The 1603 star atlas Uranometria of Johann Bayer assigned stars to individual constellations and formalized the division by assigning a series of Greek and Latin letters to the stars within each constellation These are known today as Bayer designations 39 Subsequent star atlases led to the development of today s accepted modern constellations Origin of the southern constellations Edit See also Constellations created and listed by Dutch explorers and celestial cartographers in the Age of Discovery Uranometria Harmonia Macrocosmica and Former constellations Sketch of the southern celestial sky by Portuguese astronomer Joao Faras 1 May 1500 A celestial map from the Golden Age of Netherlandish cartography by the Dutch cartographer Frederik de Wit The southern sky below about 65 declination was only partially catalogued by ancient Babylonians Egyptians Greeks Chinese and Persian astronomers of the north The knowledge that northern and southern star patterns differed goes back to Classical writers who describe for example the African circumnavigation expedition commissioned by Egyptian Pharaoh Necho II in c 600 BC and those of Hanno the Navigator in c 500 BC The history of southern constellations is not straightforward Different groupings and different names were proposed by various observers some reflecting national traditions or designed to promote various sponsors Southern constellations were important from the 14th to 16th centuries when sailors used the stars for celestial navigation Italian explorers who recorded new southern constellations include Andrea Corsali Antonio Pigafetta and Amerigo Vespucci 27 Many of the 88 IAU recognized constellations in this region first appeared on celestial globes developed in the late 16th century by Petrus Plancius based mainly on observations of the Dutch navigators Pieter Dirkszoon Keyser 40 and Frederick de Houtman 41 42 43 44 These became widely known through Johann Bayer s star atlas Uranometria of 1603 45 Fourteen more were created in 1763 by the French astronomer Nicolas Louis de Lacaille who also split the ancient constellation Argo Navis into three these new figures appeared in his star catalogue published in 1756 46 Several modern proposals have not survived The French astronomers Pierre Lemonnier and Joseph Lalande for example proposed constellations that were once popular but have since been dropped The northern constellation Quadrans Muralis survived into the 19th century when its name was attached to the Quadrantid meteor shower but is now divided between Bootes and Draco 88 modern constellations Edit Main article IAU designated constellations A list of 88 constellations was produced for the International Astronomical Union in 1922 4 It is roughly based on the traditional Greek constellations listed by Ptolemy in his Almagest in the 2nd century and Aratus work Phenomena with early modern modifications and additions most importantly introducing constellations covering the parts of the southern sky unknown to Ptolemy by Petrus Plancius 1592 1597 98 and 1613 Johannes Hevelius 1690 and Nicolas Louis de Lacaille 1763 47 48 49 who introduced fourteen new constellations 50 Lacaille studied the stars of the southern hemisphere from 1751 until 1752 from the Cape of Good Hope when he was said to have observed more than 10 000 stars using a 0 5 inches 13 mm refracting telescope In 1922 Henry Norris Russell produced a list of 88 constellations with three letter abbreviations for them 51 However these constellations did not have clear borders between them In 1928 the International Astronomical Union IAU formally accepted 88 modern constellations with contiguous boundaries 52 along vertical and horizontal lines of right ascension and declination developed by Eugene Delporte that together cover the entire celestial sphere 4 53 this list was finally published in 1930 3 Where possible these modern constellations usually share the names of their Graeco Roman predecessors such as Orion Leo or Scorpius The aim of this system is area mapping i e the division of the celestial sphere into contiguous fields 47 Out of the 88 modern constellations 36 lie predominantly in the northern sky and the other 52 predominantly in the southern Equirectangular plot of declination vs right ascension of stars brighter than apparent magnitude 5 on the Hipparcos Catalogue coded by spectral type and apparent magnitude relative to the modern constellations and the ecliptic The boundaries developed by Delporte used data that originated back to epoch B1875 0 which was when Benjamin A Gould first made his proposal to designate boundaries for the celestial sphere 54 a suggestion on which Delporte based his work The consequence of this early date is that because of the precession of the equinoxes the borders on a modern star map such as epoch J2000 are already somewhat skewed and no longer perfectly vertical or horizontal 55 This effect will increase over the years and centuries to come Symbols Edit The constellations have no official symbols though those of the ecliptic may take the signs of the zodiac 56 Symbols for the other modern constellations as well as older ones that still occur in modern nomenclature have occasionally been published 57 Dark cloud constellations EditFurther information Great Rift astronomy The Great Rift a series of dark patches in the Milky Way is more visible and striking in the southern hemisphere than in the northern It vividly stands out when conditions are otherwise so dark that the Milky Way s central region casts shadows on the ground 58 Some cultures have discerned shapes in these patches and have given names to these dark cloud constellations Members of the Inca civilization identified various dark areas or dark nebulae in the Milky Way as animals and associated their appearance with the seasonal rains 59 60 61 Australian Aboriginal astronomy also describes dark cloud constellations the most famous being the emu in the sky whose head is formed by the Coalsack a dark nebula instead of the stars 62 The Emu in the sky a constellation defined by dark clouds rather than by stars The head of the emu is the Coalsack with the Southern Cross directly above Scorpius is to the left Inca dark cloud constellations in the Mayu Celestial River also known as the Milky Way The Southern Cross is above Yutu while the eyes of the Llama are Alpha Centauri and Beta Centauri See also EditCelestial cartography Constellation family Former constellations IAU designated constellations Lists of stars by constellation Constellations listed by Johannes Hevelius Constellations listed by Lacaille Constellations listed by Petrus Plancius Constellations listed by PtolemyReferences Edit a b Definition of constellation Oxford English Dictionary Archived from the original on 2 January 2013 Retrieved 2 August 2016 Britton John P 2010 Studies in Babylonian lunar theory part III The introduction of the uniform zodiac Archive for History of Exact Sciences 64 6 617 63 doi 10 1007 S00407 010 0064 Z JSTOR 41134332 S2CID 122004678 T he zodiac was introduced between 408 and 397 and probably within a very few years of 400 a b Delporte Eugene 1930 Delimitation scientifique des constellations International Astronomical Union a b c Ridpath Ian 2018 Star Tales The final 88 DOCdb Deep Sky Observer s Companion the online database Retrieved 21 September 2018 A Complete List of Asterisms Archived from the original on 29 September 2012 Retrieved 21 September 2018 constellation Origin and meaning of constellation by Online Etymology Dictionary www etymonline com Constellation Oxford Dictionary of Astronomy Retrieved 26 July 2019 Harbord John Bradley Goodwin H B 1897 Glossary of navigation a vade mecum for practical navigators 3rd ed Portsmouth Griffin p 142 a b c Norton Arthur P 1959 Norton s Star Atlas p 1 Steele Joel Dorman 1884 The story of the stars New descriptive astronomy Science series American Book Company 220 a href Template Cite journal html title Template Cite journal cite journal a Cite journal requires journal help Do Constellations Ever Break Apart or Change NASA Archived from the original on 13 October 2011 Retrieved 27 November 2014 Theo Koupelis Karl F Kuhn 2007 In Quest of the Universe Jones amp Bartlett Publishers p 369 ISBN 978 0 7637 4387 1 Kovalevsky Jean Seidelmann P Kenneth 2004 Fundamentals of Astrometry Cambridge University Press ISBN 978 0 521 64216 3 Soffel M Klioner S A Petit G Wolf P Kopeikin S M Bretagnon P Brumberg V A Capitaine N Damour T Fukushima T Guinot B Huang T Y Lindegren L Ma C Nordtvedt K Ries J C Seidelmann P K Vokrouhlicky D Will C M Xu C 2003 The IAU 2000 Resolutions for Astrometry Celestial Mechanics and Metrology in the Relativistic Framework Explanatory Supplement The Astronomical Journal 126 6 2687 706 arXiv astro ph 0303376 Bibcode 2003AJ 126 2687S doi 10 1086 378162 S2CID 32887246 Resolution C1 on the Definition of a Spectroscopic Barycentric Radial Velocity Measure Special Issue Preliminary Program of the XXVth GA in Sydney July 13 26 2003 Information Bulletin n 91 PDF IAU Secretariat July 2002 p 50 Archived PDF from the original on 9 October 2022 Retrieved 28 September 2017 What Are the Constellations University of Wisconsin http www astro wisc edu dolan constellations extra constellations html Forest for the Trees Why We Recognize Faces amp Constellations Nautilus Magazine 19 May 2014 Retrieved 3 February 2020 Rey H A 1954 The Stars A New Way to See Them Houghton Mifflin Harcourt Publishing ISBN 978 0547132808 Rappengluck M 1997 The Pleiades in the Salle des Taureaux grotte de Lascaux Does a rock picture in the cave of Lascaux show the open star cluster of the Pleiades at the Magdalenien era ca 15 300 BC Astronomy and Culture 217 Bibcode 1997ascu conf 217R Cunningham D 2011 The Oldest Maps of the World Deciphering the Hand Paintings of Cueva de El Castillo Cave in Spain and Lascaux in France Midnight Science 4 3 a b Rogers J H 1998 Origins of the ancient constellations I The Mesopotamian traditions Journal of the British Astronomical Association 108 9 Bibcode 1998JBAA 108 9R a b Schaefer Bradley E 2006 The Origin of the Greek Constellations Scientific American 295 5 96 101 Bibcode 2006SciAm 295e 96S doi 10 1038 scientificamerican1106 96 PMID 17076089 History of the Constellations and Star Names D 4 Sumerian constellations and star names Gary D Thompson 21 April 2015 Archived from the original on 7 September 2015 Retrieved 30 August 2015 E William Bullinger 2015 The Witness of the Stars eKitap Projesi ISBN 978 963 527 403 1 Dennis James Kennedy June 1989 The Real Meaning of the Zodiac Coral Ridge Ministries Media Inc ISBN 978 1 929626 14 4 a b Richard H Allen 2013 Star Names Their Lore and Meaning Courier Corp ISBN 978 0 486 13766 7 H5906 ʿayis Strong s Hebrew Lexicon KJV Blue Letter Bible Lorimer H L 1951 Stars and Constellations in Homer and Hesiod The Annual of the British School at Athens 46 86 101 doi 10 1017 S0068245400018359 S2CID 192976174 Marshall Clagett 1989 Ancient Egyptian Science Calendars clocks and astronomy American Philosophical Society ISBN 978 0 87169 214 6 Denderah 1825 Zodiac of Dendera epitome Exhib Leic square Needham Joseph 1959 Mathematics and the Sciences of the Heavens and the Earth Science and Civilisation in China Vol 3 Cambridge University Press p 171 ISBN 978 0521058018 a b Xiaochun Sun Jacob Kistemaker 1997 The Chinese Sky During the Han Constellating Stars and Society Brill ISBN 978 90 04 10737 3 a b c Selin Helaine Elise 2008 Encyclopaedia of the History of Science Technology and Medicine in Non Western Cultures Springer Science amp Business Media p 2022 ISBN 978 1 4020 4559 2 Sun Xiaochun 1997 Helaine Selin ed Encyclopaedia of the History of Science Technology and Medicine in Non Western Cultures Kluwer Academic Publishers p 910 ISBN 978 0 7923 4066 9 Schaefer Bradley E May 2005 The epoch of the constellations on the Farnese Atlas and their origin in Hipparchus s lost catalogue PDF Journal for the History of Astronomy 36 2 123 167 19 Bibcode 2005JHA 36 167S doi 10 1177 002182860503600202 S2CID 15431718 Archived PDF from the original on 9 October 2022 Norton Arthur P 1919 Norton s Star Atlas p 1 Astronomical Epoch Archived from the original on 24 July 2011 Retrieved 16 July 2010 Swerdlow N M August 1986 A Star Catalogue Used by Johannes Bayer Journal for the History of Astronomy 17 5 189 97 Bibcode 1986JHA 17 189S doi 10 1177 002182868601700304 S2CID 118829690 Sawyer Hogg Helen 1951 Out of Old Books Pieter Dircksz Keijser Delineator of the Southern Constellations Journal of the Royal Astronomical Society of Canada 45 215 Bibcode 1951JRASC 45 215S Knobel E B 1917 On Frederick de Houtman s Catalogue of Southern Stars and the Origin of the Southern Constellations Monthly Notices of the Royal Astronomical Society Vol 77 pp 414 32 Dekker Elly 1987 Early Explorations of the Southern Celestial Sky Annals of Science 44 pp 439 70 Dekker Elly 1987 On the Dispersal of Knowledge of the Southern Celestial Sky Der Globusfreund 35 37 pp 211 30 Verbunt Frank van Gent Robert H 2011 Early Star Catalogues of the Southern Sky De Houtman Kepler Second and Third Classes and Halley Astronomy amp Astrophysics 530 Ian Ridpath Johann Bayer s southern star chart Star Tales Ian Ridpath Lacaille s southern planisphere of 1756 Star Tales a b The Constellations IAU International Astronomical Union Retrieved 29 August 2015 Ian Ridpath Constellation names abbreviations and sizes Retrieved 30 August 2015 Ian Ridpath Star Tales The Almagest Retrieved 30 August 2015 Ian Ridpath Nicolas Louis de Lacaille at the Cape Retrieved 4 July 2022 The original names and abbreviations for constellations from 1922 Retrieved 31 January 2010 Constellation boundaries Retrieved 24 May 2011 Marc Lachieze Rey Jean Pierre Luminet Bibliotheque Nationale de France Paris 2001 Celestial Treasury From the Music of the Spheres to the Conquest of Space Cambridge University Press p 80 ISBN 978 0 521 80040 2 Ian Ridpath Benjamin Apthorp Gould and the Uranometria Argentina Star Tales A C Davenhall amp S K Leggett A Catalogue of Constellation Boundary Data Centre de Donnees astronomiques de Strasbourg February 1990 For example in the Nautical Almanac and Astronomical Ephemeris for the year 1833 Board of Admiralty London Peter Grego 2012 The Star Book Stargazing Throughout the Seasons in the Northern Hemisphere F W Media Rao Joe 11 September 2009 A Great Week to See the Milky Way Space Retrieved 5 January 2016 Night sky Astronomy pomona edu Archived from the original on 16 December 2010 Retrieved 12 March 2019 Dearborn D S P White R E 1983 The Torreon of Machu Picchu as an Observatory Archaeoastronomy 14 5 S37 Bibcode 1983JHAS 14 37D Krupp Edwin 1994 Echoes of the Ancient Skies Mineola Dover Publications Inc pp 47 51 ISBN 978 0486428826 Bordeleau Andre G 2013 Flags of the Night Sky When Astronomy Meets National Pride Springer Science amp Business Media pp 124 ISBN 978 1 4614 0929 8 Further reading EditThis further reading section may contain inappropriate or excessive suggestions that may not follow Wikipedia s guidelines Please ensure that only a reasonable number of balanced topical reliable and notable further reading suggestions are given removing less relevant or redundant publications with the same point of view where appropriate Consider utilising appropriate texts as inline sources or creating a separate bibliography article August 2016 Learn how and when to remove this template message Mythology lore history and archaeoastronomy Edit Allen Richard Hinckley 1899 Star Names And Their Meanings G E Stechert New York hardcover reprint 1963 as Star Names Their Lore and Meaning Dover Publications Inc Mineola NY ISBN 978 0 486 21079 7 softcover Olcott William Tyler 1911 Star Lore of All Ages G P Putnam s Sons New York hardcover reprint 2004 as Star Lore Myths Legends and Facts Dover Publications Inc Mineola NY ISBN 978 0 486 43581 7 softcover Kelley David H and Milone Eugene F 2004 Exploring Ancient Skies An Encyclopedic Survey of Archaeoastronomy Springer ISBN 978 0 387 95310 6 hardcover Ridpath Ian 2018 Star Tales 2nd ed Lutterworth Press ISBN 978 0 718 89478 8 softcover Staal Julius D W 1988 The New Patterns in the Sky Myths and Legends of the Stars McDonald amp Woodward Publishing Co ISBN 0 939923 10 6 hardcover ISBN 0 939923 04 1 softcover Rogers John H 1998 Origins of the Ancient Constellations I The Mesopotamian Traditions Journal of the British Astronomical Association 108 9 28 Bibcode 1998JBAA 108 9R Rogers John H 1998 Origins of the Ancient Constellations II The Mediterranean Traditions Journal of the British Astronomical Association 108 79 89 Bibcode 1998JBAA 108 79R Atlases and celestial maps Edit Ottoman period celestial map signs of the Zodiac and lunar mansions General and nonspecialized entire celestial heavens Edit Becvar Antonin Atlas Coeli Published as Atlas of the Heavens Sky Publishing Corporation Cambridge MA with coordinate grid transparency overlay Norton Arthur Philip 1910 Norton s Star Atlas 20th Edition 2003 as Norton s Star Atlas and Reference Handbook edited by Ridpath Ian Pi Press ISBN 978 0 13 145164 3 hardcover National Geographic Society 1957 1970 2001 2007 The Heavens 1970 Cartographic Division of the National Geographic Society NGS Washington DC two sided large map chart depicting the constellations of the heavens as a special supplement to the August 1970 issue of National Geographic Forerunner map as A Map of The Heavens as a special supplement to the December 1957 issue Current version 2001 Tirion with 2007 reprint Sinnott Roger W and Perryman Michael A C 1997 Millennium Star Atlas Epoch 2000 0 Sky Publishing Corporation Cambridge MA and European Space Agency ESA ESTEC Noordwijk The Netherlands Subtitle An All Sky Atlas Comprising One Million Stars to Visual Magnitude Eleven from the Hipparcos and Tycho Catalogues and Ten Thousand Nonstellar Objects 3 volumes hardcover ISBN 0 933346 84 0 Vol 1 0 8 Hours Right Ascension ISBN 0 933346 81 6 hardcover Vol 2 8 16 Hours ISBN 0 933346 82 4 hardcover Vol 3 16 24 Hours ISBN 0 933346 83 2 hardcover Softcover version available Supplemental separate purchasable coordinate grid transparent overlays Tirion Wil et al 1987 Uranometria 2000 0 Willmann Bell Inc Richmond VA 3 volumes hardcover Vol 1 1987 The Northern Hemisphere to 6 by Wil Tirion Barry Rappaport and George Lovi ISBN 0 943396 14 X hardcover printed boards Vol 2 1988 The Southern Hemisphere to 6 by Wil Tirion Barry Rappaport and George Lovi ISBN 0 943396 15 8 hardcover printed boards Vol 3 1993 as a separate added work The Deep Sky Field Guide to Uranometria 2000 0 by Murray Cragin James Lucyk and Barry Rappaport ISBN 0 943396 38 7 hardcover printed boards 2nd Edition 2001 as collective set of 3 volumes Vol 1 Uranometria 2000 0 Deep Sky Atlas by Wil Tirion Barry Rappaport and Will Remaklus ISBN 978 0 943396 71 2 hardcover printed boards Vol 2 Uranometria 2000 0 Deep Sky Atlas by Wil Tirion Barry Rappaport and Will Remaklus ISBN 978 0 943396 72 9 hardcover printed boards Vol 3 Uranometria 2000 0 Deep Sky Field Guide by Murray Cragin and Emil Bonanno ISBN 978 0 943396 73 6 hardcover printed boards Tirion Wil and Sinnott Roger W 1998 Sky Atlas 2000 0 various editions 2nd Deluxe Edition Cambridge University Press Cambridge England Northern celestial hemisphere and north circumpolar region Edit Becvar Antonin 1962 Atlas Borealis 1950 0 Czechoslovak Academy of Sciences Ceskoslovenske Akademie Ved Praha Czechoslovakia 1st Edition elephant folio hardcover with small transparency overlay coordinate grid square and separate paper magnitude legend ruler 2nd Edition 1972 and 1978 reprint Czechoslovak Academy of Sciences Ceskoslovenske Akademie Ved Prague Czechoslovakia and Sky Publishing Corporation Cambridge MA ISBN 0 933346 01 8 oversize folio softcover spiral bound with transparency overlay coordinate grid ruler Equatorial ecliptic and zodiacal celestial sky Edit Becvar Antonin 1958 Atlas Eclipticalis 1950 0 Czechoslovak Academy of Sciences Ceskoslovenske Akademie Ved Praha Czechoslovakia 1st Edition elephant folio hardcover with small transparency overlay coordinate grid square and separate paper magnitude legend ruler 2nd Edition 1974 Czechoslovak Academy of Sciences Ceskoslovenske Akademie Ved Prague Czechoslovakia and Sky Publishing Corporation Cambridge MA oversize folio softcover spiral bound with transparency overlay coordinate grid ruler Southern celestial hemisphere and south circumpolar region Edit Becvar Antonin Atlas Australis 1950 0 Czechoslovak Academy of Sciences Ceskoslovenske Akademie Ved Praha Czechoslovakia 1st Edition hardcover with small transparency overlay coordinate grid square and separate paper magnitude legend ruler 2nd Edition Czechoslovak Academy of Sciences Ceskoslovenske Akademie Ved Prague Czechoslovakia and Sky Publishing Corporation Cambridge MA oversize folio softcover spiral bound with transparency overlay coordinate grid ruler Catalogs Edit Becvar Antonin 1959 Atlas Coeli II Katalog 1950 0 Praha 1960 Prague Published 1964 as Atlas of the Heavens II Catalogue 1950 0 Sky Publishing Corporation Cambridge MA Hirshfeld Alan and Sinnott Roger W 1982 Sky Catalogue 2000 0 Cambridge University Press and Sky Publishing Corporation 1st Edition 2 volumes LCCN 81 17975 both vols and LCCN 83 240310 vol 1 Volume 1 Stars to Magnitude 8 0 ISBN 0 521 24710 1 Cambridge and ISBN 0 933346 35 2 hardcover ISBN 0 933346 34 4 softcover Vol 2 1985 Volume 2 Double Stars Variable Stars and Nonstellar Objects ISBN 0 521 25818 9 Cambridge hardcover ISBN 0 521 27721 3 Cambridge softcover 2nd Edition 1991 with additional third author Francois Ochsenbein 2 volumes LCCN 91 26764 Vol 1 ISBN 0 521 41743 0 Cambridge hardcover ISBN 0 521 42736 3 Cambridge softcover Vol 2 1999 ISBN 0 521 27721 3 Cambridge softcover and 0 933346 38 7 softcover reprint of 1985 edition Yale University Observatory 1908 et al Catalogue of Bright Stars New Haven CN Referred to commonly as Bright Star Catalogue Various editions with various authors historically the longest term revising author as Ellen Dorrit Hoffleit 1st Edition 1908 2nd Edition 1940 by Frank Schlesinger and Louise F Jenkins 3rd Edition 1964 4th Edition 5th Edition 1991 and 6th Edition pending posthumous by Hoffleit External links EditConstellations at Wikipedia s sister projects Definitions from Wiktionary Media from Commons Texts from Wikisource Resources from Wikiversity IAU The Constellations including high quality maps Atlascoelestis di Felice Stoppa Celestia free 3D realtime space simulation OpenGL Stellarium realtime sky rendering program OpenGL Strasbourg Astronomical Data Center Files on official IAU constellation boundaries Interactive Sky Charts Java applets allowing navigation through the entire sky with variable star detail optional constellation lines Studies of Occidental Constellations and Star Names to the Classical Period An Annotated Bibliography Table of Constellations Online Text Hyginus Astronomica translated by Mary Grant Greco Roman constellation myths Neave Planetarium Adobe Flash interactive web browser planetarium and stardome with realistic movement of stars and the planets Audio Cain Gay 2009 Astronomy Cast Constellations The Greek Star Map short essay by Gavin White Bucur D The network signature of constellation line figures PLOS ONE 17 7 e0272270 2022 A comparative analysis on the structure of constellation line figures across 56 sky cultures Portals Astronomy Stars Spaceflight Outer space Solar System Retrieved from https en wikipedia org w index php title Constellation amp oldid 1128510294, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.