fbpx
Wikipedia

Titanosauria

Titanosaurs (or titanosaurians; members of the group Titanosauria) were a diverse group of sauropod dinosaurs, including genera from all seven continents. The titanosaurs were the last surviving group of long-necked sauropods, with taxa still thriving at the time of the extinction event at the end of the Cretaceous. This group includes some of the largest land animals known to have ever existed, such as Patagotitan—estimated at 37 m (121 ft) long[13] with a weight of 69 tonnes (76 tons)[14]—and the comparably-sized Argentinosaurus and Puertasaurus from the same region.

Titanosaurs
Temporal range: Cretaceous, 140–66 Ma
Mounted Patagotitan on display at the Field Museum of Natural History, Chicago, IL
Scientific classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Clade: Dinosauria
Clade: Saurischia
Clade: Sauropodomorpha
Clade: Sauropoda
Clade: Macronaria
Clade: Somphospondyli
Clade: Titanosauria
Bonaparte & Coria, 1993
Subgroups[9][10][11][12]

The group's name alludes to the mythological Titans of ancient Greek mythology, via the type genus (now considered a nomen dubium) Titanosaurus. Together with the brachiosaurids and relatives, titanosaurs make up the larger sauropod clade Titanosauriformes. Titanosaurs have long been a poorly-known group, and the relationships between titanosaur species are still not well-understood.

Fossil record edit

 
Excavation of titanosaur fossils at the Lo Hueco fossil site in Spain

Due to the near-global distribution of titanosaurs during the Cretaceous, titanosaur fossils have been found on every continent, including Antarctica.[15] However, titanosaurs have the least complete fossil record of any major sauropodomorph group.[16] No complete titanosaur skeletons are known, and many species are only known from a few bones. Titanosaur skulls are especially rare. Though fragmentary cranial remains are known for several titanosaur genera, nearly complete skulls have been described for only four: Nemegtosaurus, Rapetosaurus, Sarmientosaurus, and Tapuiasaurus.[17] As is the case in most other sauropod groups, there are few titanosaur specimens with complete necks preserving all of the cervical vertebrae in sequence. Only three complete titanosaur necks are known: the holotype of Futalognkosaurus and two undescribed specimens from Argentina. A fourth specimen, of an unidentified titanosaur from Brazil, preserves a nearly complete neck, with only the atlas, the tiny vertebra forming the joint between the skull and neck, missing.[18] Only five titanosaur specimens preserve complete, articulated hind feet.[19] This incompleteness is especially significant for giant titanosaurs, which are generally known from disarticulated and fragmentary remains.[19]

Titanosaurs are one of the few groups of dinosaurs for which fossil eggs are known.[20] The fossil site of Auca Mahuevo preserves a titanosaur nesting ground. Some titanosaur eggs have been found containing fossil embryos, which even preserve fossil skin.[21] These fossil embryos are among the few titanosaur specimens to preserve complete skulls.[22]

Description edit

Titanosauria have the largest range of body size of any sauropod clade, and includes both the largest known sauropods and some of the smallest.[23] One of the largest titanosaurs, Patagotitan, had a body mass estimated to be 69 tonnes (76 tons), whereas one of the smallest, Magyarosaurus, had a body mass of approximately 900 kilograms (2,000 lb).[14][24] Even relatively closely related titanosaurs could have very different body sizes, as the small rinconsaurs were closely related to the gigantic lognkosaurs.[14] Fossils from perhaps the largest dinosaur ever found were discovered in 2021 in the Neuquén Province of northwest Patagonia, Argentina. It is believed that they are from a titanosaur.[25][26] Some of smallest titanosaurs, such as Magyarosaurus, inhabited Europe, which was largely made up of islands during the Cretaceous, and were likely island dwarfs. Another taxon of tiny titanosaurs, Ibirania, lived a non-insular context in Upper Creaceous Brazil, and is an example of nanism resultant from other ecological pressures.[27]

Head and neck edit

 
Unnamed titanosaur from Japan labelled "Xinghesaurus"

The heads of titanosaurs are poorly known. However, several different cranial morphologies are apparent. In some species, such as Sarmientosaurus, the head resembled that of brachiosaurids.[17] In others, such as Rapetosaurus and Nemegtosaurus, the head resembled that of diplodocids. In some titanosaurs, the skull was especially diplodocid-like due to square-shaped jaws;[28] the titanosaur Antarctosaurus is especially similar to the rebbachisaurid Nigersaurus.[29] Titanosaurs had small heads, even when compared with other sauropods. The head was also wide, similar to the heads of Camarasaurus and Brachiosaurus, though somewhat more elongated. Titanosaurian nostrils were large ("macronarian") and all had crests formed by the nasal bones. Their teeth were either somewhat spatulate (spoon-like) or like pegs or pencils, but were always very small.

Titanosaur necks were of average length for sauropods, and their tails were whip-like though not as long as in the diplodocids. While the pelvis was slimmer than some sauropods, the pectoral (chest) area was much wider, giving them a uniquely "wide-legged" stance. As a result, the fossilized trackways of titanosaurs are distinctly broader than other sauropods. Their forelimbs were also stocky, and often longer than their hind limbs. Unlike other sauropods, some titanosaurs had no digits, walking only on horseshoe-shaped "stumps" made up of the columnar metacarpal bones.[30][31] Their vertebrae (back bones) were solid (not hollowed-out), which may be a reversal to more basal saurischian characteristics. Their spinal column was relatively flexible, likely making them more agile than other sauropods and more able to rear onto their hind legs. One of the most characteristic features shared by most titanosaurs were their procoelous caudal vertebrae, with ball-and-socket articulations between the vertebral centra.

Torso and limbs edit

 
Manus of Diamantinasaurus, the only titanosaur known to have multiple phalanges

The dorsal vertebrae of titanosaurs show multiple derived features among sauropods. Similarly to the Rebbachisauridae, titanosaurs lost the hyposphene-hypantrum articulations, a set of surfaces between vertebrae that prevent additional rotation of the bones. Andesaurus, one of the most basal titanosaurs, shows a normal hyposphene. The same area is reduced in Argentinosaurus to only two ridges, and is fully absent in taxa like Opisthocoelicaudia and Saltasaurus. Both Argentinosaurus and Epachthosaurus bear similar intermediate "hyposphenal ridges", which suggests they represent a more primitive form of dorsal vertebrae.[32]

Sauropod hands already are highly derived from other dinosaurs, being reduced into columnar metacarpals and blocky phalanges with fewer claws. However, titanosaurs evolved the manus even further, completely losing the phalanges and heavily modifying the metacarpals. Argyrosaurus is the only titanosaur known to possess carpals. Other taxa like Epachthosaurus show a reduction of phalanges to one or two bones. Opisthoeoclicaudia shows even more reduction of the hand than other titanosaurs, with both carpals and phalanges completely absent.[33] However, Diamantinasaurus, while lacking carpals, preserves a manual formula of 2–1–1–1–1, including a thumb claw and phalanges on all other digits. This, coupled with the preservation of a single phalanx on digit IV of Epachthosaurus and potentially Opisthocoelicaudia (further study is necessary), show that preservation biases may be responsible for the lack of hand phalanges in these taxa. This suggests that Alamosaurus, Neuquensaurus, Saltasaurus and Rapetosaurus - all known from imperfect or disarticulated remains previously associated with a lack of phalanges - may have had phalanges but lost them after death.[34]

Titanosaurs have a poor fossil record of their pedes (feet), only being complete in five definitive titanosaurs. Among these, Notocolossus is the largest, and also has the most specialized pes: like all titanosaurs, its pes is composed of short, thick metatarsals of approximately the same lengths; however, metatarsals I and V are notably more robust than in other taxa.[35]

Integument edit

 
Ampelosaurus, a titanosaur with osteoderms, depicted with the osteoderms arranged in a pair of rows

From skin impressions found with fossils, it has been determined that the skin of many titanosaurs was armored with a small mosaic of small, bead-like scales surrounding larger scales.[21] While most titanosaurs were very large animals, many were fairly average in size compared to other giant dinosaurs. Some island-dwelling dwarf titanosaurs, such as Magyarosaurus, were probably the result of allopatric speciation and insular dwarfism.

Some titanosaurs had osteoderms. Osteoderms were first confirmed in the genus Saltasaurus but are now known to have been present in a variety of titanosaurs within the clade Lithostrotia.[36] The exact arrangement of osteoderms on the body of a titanosaur is not known, but some paleontologists consider it likely that the osteoderms were arranged in two parallel rows on the animal's back, an arrangement similar to the plates of stegosaurs.[37] Several other arrangements have been proposed, such as a single row along the midline, and it is possible that different species had different arrangements. The osteoderms were certainly far more sparse than those of ankylosaurs, and did not completely cover the back in scutes. Because of their sparse arrangement, it was unlikely that they served a significant role in defense. However, they may have played an important role in nutrient storage for titanosaurs living in highly seasonal climates and for female titanosaurs laying eggs.[38][39] Osteoderms were present on both large and small species, so they were not solely used by smaller species as protection against predators.[40] New evidence published in 2021 suggests there were indeed some defensive purposes in titanosaur osteoderms; simulated bite marks from both baurusuchid crocodiles and abelisaurids on titanosaurid osteoderms suggest they could be useful for protecting the animals in addition to functioning in mineral storage.[41]

Classification edit

Phylogenetic position of Titanosauria within Eusauropoda[42]

Titanosaurs are classified as sauropod dinosaurs. This highly diverse group forms the dominant clade of Cretaceous sauropods.[43] Within Sauropoda, titanosaurs were once classified as close relatives of Diplodocidae due to their shared characteristic of narrow teeth, but this is now known to be the result of convergent evolution.[44] Titanosaurs are now known to be most closely related to euhelopodids and brachiosaurids; together they form a clade named Titanosauriformes.[45]

For much of the 20th century, most known species of titanosaurs were classified in the family Titanosauridae, which is no longer in widespread use.[7] Titanosauria was first proposed in 1993 as a taxon to encompass titanosaurids and their close relatives.[46] It has been phylogenetically defined as the clade composed of the most recent common ancestor of Saltasaurus and Andesaurus and all of its descendants.[44][7][47][48][36][45] The relationships of species within Titanosauria remain largely unresolved, and it is considered one of the most poorly-understood areas of dinosaur classification. One of the few areas of agreement is that the majority of titanosaurs except Andesaurus and some other basal species form a clade called Lithostrotia, which some researchers consider equivalent to the deprecated Titanosauridae.[7][49][48] Lithostrotians include titanosaurs such as Alamosaurus, Isisaurus, Malawisaurus, Rapetosaurus, and Saltasaurus.[49]

Early history edit

 
Lectotype of Titanosaurus indicus, the name-bearing genus of Titanosauria

Titanosaurus indicus was first named by British paleontologist Richard Lydekker in 1877, as a new taxon of dinosaur based on two caudals and a femur collected on different occasions at the same location in India.[50] While it was later given a position as a sauropod within Cetiosauridae by Lydekker in 1888,[51] he named the new sauropod family Titanosauridae for the genus in 1893, which included only Titanosaurus and Argyrosaurus, united by procoelous caudals, opisthocoelous presacrals, a lack of pleurocoels and open chevrons.[52] Following this, Austro-Hungarian paleontologist Franz Nopcsa reviewed reptile genera in 1928, and provided a short classification of Sauropoda, where he placed the Titanosaurinae (a reranking of Lydekker's Titanosauridae) in Morosauridae, and included the genera Titanosaurus, Hypselosaurus and Macrurosaurus because they all had strongly procoelous caudals.[53] German paleontologist Friedrich von Huene provided a significant revision of Titanosauridae the following year in 1929, where he reviewed the dinosaurs of Cretaceous Argentina, and named multiple new genera. Huene included multiple species of Titanosaurus from India, England, France, Romania, Madagascar and Argentina, Hypselosaurus and Aepisaurus from France, Macrurosaurus from England, Alamosaurus from United States, and Argyrosaurus, Antarctosaurus, and Laplatasaurus from Argentina. The material between them represented almost all regions of the skeleton, which showed they were derived sauropods Huene interpreted as closest to Pleurocoelus of the various non-titanosaurid genera.[54]

 
Skeletal mount of Neuquensaurus australis

For his 1986 thesis, Argentinian paleontologist Jaime Powell described and classified many new genera of South American titanosaurs. Using the family Titanosauridae to include them all, he grouped the genera into Titanosaurinae, Saltasaurinae, Antarctosaurinae, Argyrosaurinae and Titanosauridae indet. Titanosaurinae included Titanosaurus and the new genus Aeolosaurus, united by multiple features of the caudal vertebrae; the new clade Saltasaurinae was created to include Saltasaurus and the new genus Neuquensaurus, united by very distinct dorsals, caudals, and ilia; the new clade Antarctosaurinae was created to include Antarctosaurus, distinguished by large size, a different form of braincase, more elongate girdle bones, and more robust limb bones; and Argyrosaurinae was created for Argyrosaurus, bearing a more robust forelimb and hand and more primitive dorsals. The new genus Epachthosaurus was named for a more basal titanosaurid classified as Titanosauridae indet. along with unnamed specimens, Clasmodosaurus and Campylodoniscus.[55]

John Stanton McIntosh provided a synopsis of sauropod relationships in 1990, using Titanosauridae as the group to contain all taxa like previous authors. Opisthocoelicaudia was placed in Opisthocoelicaudiinae within Camarasauridae, following its original description and not later works, and Nemegtosaurus and Quaesitosaurus were placed within Dicraeosaurinae. Titanosauridae included many previously named genera, plus taxa like Tornieria and Janenschia.[56] Saltasaurus included the species previously known as Titanosaurus australis and T. robustus, which were named Neuquensaurus by Powell in 1986.[7] McIntosh provided a large diagnosis of the family: "dorsals with irregularly shaped pleurocoels and spines directed strongly backward; transverse processes directed dorsally as well as laterally, very robust in shoulder region; a second dorsosacral, its rib fused to ilium; caudals strongly procoelous with a prominent ball on distal end of centrum throughout tail; caudal arches on front half of centrum; sternal plates large; preacetabular process of ilium swept outward to become almost horizontal", but stressed that the relationships of titanosaurids to other sauropod groups couldn't be determined due to a lack of cranial material.[56]

A brief review of putative titanosaurids from Europe was authored by Jean Le Loeuff in 1993, and covered the supposed genera known so far. The Barremian (middle Early Cretaceous) species Titanosaurus valdensis, named decades previous by Huene, was kept as the oldest of the titanosaurid and given the new genus name Iuticosaurus. The French taxon Aepisaurus was removed from the family and placed in undetermined Sauropoda. Macrurosaurus was considered a chimaera of titanosaurid and non-titanosaurid material because of the presence of both procoelous and amphicoelous caudals. Huene's species Titanosaurus lydekkeri was left as a nomen dubium, but left within Titanosauridae. Maastrichtian fossils from France and Spain were removed from Hypselosaurus and Titanosaurus, with Hypselosaurus being declared dubious like T. lydekkeri. The variety of Romanian fossils named as Magyarosaurus by Huene were also moved into the same species again, M. dacus as originally named by Nopcsa.[57]

Titanosauria named edit

 
Argentinosaurus dorsal and sauropod paleontologist Matt Wedel

José Bonaparte and Rodolfo Coria in 1993 concluded that a new clade of derived sauropods was necessary because Argentinosaurus, Andesaurus and Epachthosaurus were distinct from Titanosauridae as they possessed hyposphene-hypantrum articulations, but were still very closely related to the titanosaurids. The taxa that possessed the articulations were united within the new family Andesauridae, and the two families were grouped together within the new clade Titanosauria. The titanosaurs were diagnosed by possessing small pleurocoels centered within an anteroposteriorly elongate depression and the presence of two well defined depressions on the posterior face of the neural arch. The entire group was compared favourably with cetiosaurids like Patagosaurus and Volkheimeria.[46]

Overlooking the naming of Titanosauria, Paul Upchurch in 1995 named the clade Titanosauroidea, to include Opisthocoelicaudia and the more derived Titanosauridae (Malawisaurus, Alamosaurus and Saltasaurus). United by: caudals with anteriorly-shifted neural spines, extremely robust forearm bones, a prominent concavity on the ulna for articulation with the humerus, a laterally flared and flattened ilium, and a less robust pubis; Upchurch considered the clade sister taxon to Diplodocoidea, because of their shared dental anatomy, although he noted that peg-like teeth might have been independently evolved.[58] This was followed up by Upchurch's 1998 study on sauropod phylogenetics, which additionally recovered Phuwiangosaurus and Andesaurus within Titanosauroidea and resolved Opisthocoelicaudia as the sister of Saltasaurus instead of the most basal titanosauroid. This result places Titanosauroidea in a group with Camarasaurus and Brachiosaurus, although Nemegtosauridae (Nemegtosaurus and Quaesitosaurus) was still classified as the basalmost family of diplodocoids. Upchurch chose to use Titanosauroidea as a replacement name for Titanosauria due to the recommended use of Linnean taxonomy and ranks.[59]

In 1997, Leonardo Salgado et al. published a phylogenetic study on Titanosauriformes, including relationships within Titanosauria. They provided a definition for the clade of "including the most recent common ancestor of Andesaurus delgadoi and Titanosauridae and all of its descendants". Titanosauria resolved including the same two subclades as Bonaparte & Coria (1993), where Andesauridae was monotypic, only including the name genus, and Titanosauridae was all other titanosaurs. Titanosauria was additionally rediagnosed, with eye-shaped pleurocoels, forked infradiapophyseal laminae, centro-parapophyseal laminae, procoelous anterior caudals, and a significantly longer pubis than ischium. Titanosauridae was less strongly defined because of the polytomy between Malawisaurus and Epachthosaurus, so some diagnostic features couldn't be resolved. Saltasaurinae was defined as the most recent ancestor of Neuquensaurus, Saltasaurus and its descendants, and diagnosed by short cervical prezygapophyses, vertically compressed anterior caudals, and a posteriorly shifted anterior caudal neural spine.[44]

 
Mounted rearing skeleton of Epachthosaurus

Contributing additional work to the systematics of titanosaurs, Spanish paleontologist José Sanz et al. published an additional study in 1999, utilizing both the names Titanosauria and Titanosauroidea in displaying their results. Similar to Upchurch (1995), Sanz et al. recovered Opisthocoelicaudia as a titanosauroid outside Titanosauria, while Titanosauria was redefined to include only the taxa classified by their study. Eutitanosauria was proposed as a name for the titanosaurs more derived than Epachthosaurus, and noted the presence of osteoderms as a probable synapomorphy of this clade. Aeolosaurus, Alamosaurus, Ampelosaurus and Magyarosaurus were looked at using their character list, but were considered too incomplete to add to the final study.[60]

Argentinian paleontologist Jaime Powell published his 1986 thesis in 2003, with revisions to bring his old work up to date, including the addition of more phylogenetics and the recognition of Titanosauria as a clade name. Using the datamatrix of Sanz et al. (1999) and modifying it to include additional taxa and some character changes, Powell found that titanosaurs formed mostly a single gradual radiation beginning with Epachthosaurus as the most basal titanosaur, and Ampelosaurus and Isisaurus as the most derived. Titanosauroidea (following Upchurch 1995), was distinguished by pre- and post-spinal laminae in anterior caudals, a laterally flared ilium, a lateral expansion of the upper femur, and strongly opisthocoelous posterior dorsals. Less inclusive, Titanosauria was diagnosed by horizontally facing dorsal diapophyses, prominent procoelous anterior caudals, and a ridge on the sternal plates. Within Titanosauria, Eutitanosauria was characterized by the absence of a hyposphene-hypantrum, no femoral fourth trochanter, and osteoderms. A small clade of Alamosaurus, Lirainosaurus and the "Peirópolis titanosaur" (Trigonosaurus) was resolved, and diagnosed by only a rotation of the tibia so the proximal end is perpendicular to the distal end. More derived clades, while resolved, were only weakly supported, or characterized by reversions of diagnostic traits of larger groups (below and left).[61]

Rapetosaurus was described in 2001 by Kristina Curry-Rogers and Catherine Forster, who additionally provided a new phylogenetic analysis of Titanosauriformes (above and right). Titanosauria was strongly supported, distinguished by up to 20 characters depending on unknown traits in basal taxa. Similarly, Saltasaurinae was characterised by up to 16 traits, and the clade of Rapetosaurus and related taxa possessed four unique features. Nemegtosaurus and Quaesitosaurus were resolved within Titanosauria for the first time, after being placed in Diplodocoidea by multiple other analyses, because Rapetosaurus provided the first significant titanosaur cranial material with associated postcrania. All three genera were resolved in a clade together, although Curry-Rogers & Forster noted that it was possible the group was only resolved because no other titanosaurs had comparable cranial material. Opisthocoelicaudia was also nested deeply in Saltasaurinae, though a further investigation of titanosaur interrelationships was proposed.[62]

 
Mounted skeleton of a juvenile Rapetosaurus

American paleontologist Jeff Wilson presented another revision of overall sauropod phylogeny in 2002, resolving strong support for most groups, and a similar result to Upchurch (1998) although with Euhelopus closest to titanosaurs instead of outside Neosauropoda. More internal clades were resolved for Titanosauria, with Nemegtosaurus and Rapetosaurus united within Nemegtosauridae, and Saltasauridae including two subfamilies, Opisthocoelicaudiinae and Saltasaurinae. Saltasauridae was defined as a node-stem triplet, where everything descended from the common ancestor of Opisthocoelicaudia and Saltasaurus was within Saltasauridae, and the subfamilies Saltasaurinae and Opisthocoelicaudiinae were for every taxon on one branch of the saltasaurid tree or the other.[29]

Wilson and Paul Upchurch followed this study up in 2003 with a significant revision of the type genus Titanosaurus, and revisited all the material that had been assigned to the genus while reviewing titanosaur inter-relationships. Because they found Titanosaurus to be a dubious name, they proposed that Linnaean-named groups Titanosauridae and Titanosauroidea should be considered invalid as well. Wilson & Upchurch (2003) supported the definition of Salgado et al. (1997) for Titanosauria, since it was oldest and most similar to the original content of the group when named by Bonaparte & Coria (1993). Lithostrotia (Upchurch et al. 2004) was defined to be Malawisaurus and all more derived titanosaurs, and the clade Eutitanosauria (Sanz et al. 1999) was considered a possible synonym of Saltasauridae. Wilson & Upchurch (2003) presented a reduced cladogram of Titanosauria, including only the most commonly-analyzed taxa from previous studies, resulting in a tree similar to that of Wilson (2002) but with Rapetosaurus and Nemegtosaurus excluded and Epachthosaurus included. Alamosaurus and Opisthocoelicaudia were united within Opisthocoelicaudiinae, Neuquensaurus and Saltasaurus formed Saltasaurinae, and Isisaurus placed as the next most derived titanosaurid.[7]

 
Holotype skeleton of Opisthocoelicaudia

At the same time as Wilson & Upchurch redescribing the species of Titanosaurus, Saldago (2003) looked over the potential invalidity of the family Titanosauridae and redefined the internal clades of Titanosauria.[7][63] Titanosauria was defined as more inclusive than Titanosauroidea, contrasting with earlier used by Upchurch (1995) and Sanz et al. (1999), as all taxa in Somphospondyli closer to Saltasaurus than Euhelopus. In order to create additional stability, Saldago also defined Andesauroidea for only Andesaurus, as every titanosaur closer to that genus than Saltasaurus, and also it's opposite Titanosauroidea as every titanosaur closer to Saltasaurus than Andesaurus. Next most inclusive, Salgado revitalised Titanosauridae to include everything descended from the ancestor of Epachthosaurus and Saltasaurus, and to replace the node-stem triplet of Saltasauridae, defined the clades Epachthosaurinae and Eutitanosauria as Epachthosaurus>Saltasaurus and Saltasaurus<Epachthosaurus respectively. Saltasaurinae and Opisthocoelicaudiinae were retained with their original definitions, but Lithostrotia was considered a synonym of Titanosauridae, and Titanosaurinae was considered a paraphyletic clade of unrelated titanosaurids.[63]

 
Life restoration of Rinconsaurus, a derived titanosaur possessing unique caudals that significantly change articular surfaces throughout the tail

Following the clade definitions proposed in previous Salgado studies, Bernardo González-Riga published two papers in 2003 describing new taxa in Titanosauria: Mendozasaurus, and Rinconsaurus (with Jorge O. Calvo). In both studies, the new taxa formed clades within Titanosauridae, although neither were named, and new diagnostic features were proposed for the family.[64][65] For Mendozasaurus, the new genus grouped with Malawisaurus as basal within Titanosauridae, but because of the features of caudal vertebrae in these basal taxa, González-Riga recommended revising the diagnosis of the family, instead of changing the content.[64] The situation of caudals in Rinconsaurus also suggested procoelous caudals were no longer diagnostic, because in the tail of Rinconsaurus the vertebrae regularly changed their articular surfaces, being from procoelous caudals interspersed with amphicoelous, opisthocoelous and biconvex vertebrae.[65] Rinconsaurus was then included in Aeolosaurini, a clade named the following year by Aldirene Franco-Rosas et al. containing everything closer to Aeolosaurus and Gondwanatitan than Saltasaurus or Opisthocoelicaudia. Only the three genera and various intermediate specimens were included in Aeolosaurini in their 2004 paper, with the tribe being considered to be within Saltasaurinae.[66]

The second edition of The Dinosauria, published in 2004, included newly described titanosaurs and other taxa reidentified as titanosaurs. Written by Upchurch, Paul Barrett and Peter Dodson, a review of Sauropoda included a more expansive Titanosauria for sauropods more derived than brachiosaurids. Titanosauria, defined as everything closer to Saltasaurus than Brachiosaurus, included a very large variety of taxa, and the new clade Lithostrotia was named for a large number of more derived taxa, although Nemegtosauridae was placed in Diplodocoidea following earlier publications of Upchurch.[49] Lithostrotia adopted the distinguishing feature of strongly procoelous caudals, previously used for Titanosauria.[7][49]

New phylogenetic frameworks edit

In 2005, Curry-Rogers proposed a new phylogenetic analysis that focused on the inter-relationships of Titanosauria and included the most expansive character and taxon list of any study before it. 364 characters were selected from all previous phylogenetic analyses and scored across 29 probable titanosaurs, ranging from the Late Jurassic African Janenschia to the large variety of Late Cretaceous global genera. Proposing her analysis as the basis for a new phylogenetic framework of Titanosauria, Curry-Rogers recommended only using named for clades that were very strongly supported. For the strict consensus, every taxon more derived than Brachiosaurus was in an unresolved polytomy except for a clade of Rapetosaurus and Nemegtosaurus, and one of Saltasaurinae. Within the recommended results, she only named Titanosauria, Lithostrotia, Saltasauridae, Saltasaurinae and Opisthocoelicaudiinae, because of the weakness of support (below and left).[47]

Another form of composite matrix was created by Calvo, González-Riga and Juan Porfiri in 2007, based upon multiple previous studies between 1997 and 2003. The final analysis included 15 titanosaurs and 65 characters, and the typical titanosaur subclades were resolved, Titanosauridae being used over Lithostrotia following Salgado (2003), and the new clade Rinconsauria for the clade of Rinconsaurus and Muyelensaurus. The new clade (defined as Rinconsaurus and Muyelensaurus) was placed as the sister taxon of Aeolosaurini, which together grouped with Rapetosaurus as sister to Saltasauridae.[48] In the same year, Calvo et al. published another paper, describing the basal titanosaur Futalognkosaurus. The only difference in the resulting phylogeny, based on the matrix of the Calvo, González-Riga & Porfiri (2007), was the addition of Futalognkosaurus as the sister taxon to Mendozasaurus in a clade Calvo et al. named Lognkosauria, defined by the two genera classified within it.[67] A very similar result was also recovered by González-Riga et al. in 2009 in a phylogenetic analysis based partially on that of Calvo et al. (2007), although Epachthosaurus was nested with Rapetosaurus outside the clades of aeolosaurines.[68] Further updates and modifications were then made by Palbo Gallina & Apesteguía in 2011, with the additions of Ligabuesaurus, Antarctosaurus, Nemegtosaurus and Bonitasaura and character updates to match, bringing the total to 77 characters and 22 taxa. Significantly contrasting the earlier results, internal relationships of Titanosauria were rearranged. Malawisaurus nested with Andesaurus in a clade of the basalmost titanosaurs outside Titanosauroidea, where Lirainosaurus, instead of being the basal member of the saltasaur-branch was instead basalmost titanosauroid. Lognkosauria moved to be within rinconsaurs, while Nemegtosauridae was resolved as the sister of Aeolosaurus and Gondwanatitan, and the rinconsaur-lognkosaur branch. Antarctosaurus was unstable, but placed in a polytomy with the lognkosaurs and rinconsaurs before being excluded. Saltasaurinae and its relationship with Opisthocoelicaudia remained the same.[69]

 
Skull of Tapuiasaurus macedoi

Nemegtosauridae was additionally revised by Hussam Zaher et al. (2011) with the description of Tapuiasaurus, which nested closer to Rapetosaurus than Nemegtosaurus, with all three forming a clade of derived lithostrotians. Using the matrix of Wilson (2002), following the additions of a few cranial characters and Diamantinasaurus, Tangvayosaurus and Phuwiangosaurus, remained the same as originally found by Wilson but with Diamantinasaurus sister to Saltasauridae and the other two genera as basal titanosaurs outside Lithostrotia, since Titanosauria, while undefined, was labelled to include all taxa closer to Saltasaurus than Euhelopus.[70] Following a revision of the skull of Tapuiasaurus, Wilson et al. (2016) rescored the analysis of Zaher et al. and recovered similar results for everything but Nemegtosauridae, where the family dissolved into a more basal Tapuiasaurus outside Lithostrota and Nemegtosaurus outside Saltasauridae. While non-titanosaur phylogeny remained identical in every single result, the topology within Titanosauria was very labile and prone to change with minor adjustments.[71]

 
Mounted replica skeleton of Futalognkosaurus dukei, Royal Ontario Museum

Also following the 2002 analysis of Wilson, José Carballido and colleagues published a redescription of Chubutisaurus in 2011, and utilized an updated Wilson matrix, expanded to 289 characters across 41 taxa, including 15 titanosaurs. The primary focus of the analysis was on the basal titanosauriform taxa, but Titanosauria was defined, as the most recent common ancestor of Andesaurus delgadoi and Saltasaurus loricatus, and all its descendants, although the only autapomorphy of the group recovered was the absence of a prominent ventral process on the scapula.[72] This same matrix and basis of characters was further utilized and expanded for analyses on Tehuelchesaurus, Comahuesaurus and related rebbachisaurs, Europasaurus, and Padillasaurus, before being expanded upon once again in 2017 by Carballido et al. during the description of Patagotitan to 405 characters and 87 taxa, including 28 titanosaurs (above and right).[73][74][75][76][77] The definition of Titanosauria was preserved following Salgado et al. (1997) as Andesaurus plus Saltasaurus. Eutitanosauria (closer to Saltasaurus than Epachthosaurus) was resolved as a very inclusive clade composed of two distinct branches, one leading to the larger-bodied lognkosaurs and the other to the smaller-bodied saltasaurs. On the lognkosaur branch of Eutitanosauria, there is a branch of lognkosaurs and one of Rinconsauria. Following Calvo, González-Riga and Porfiri (2007), Rinconsauria was defined as Muyelensaurus plus Rinconsaurus, and Lognkosauria was defined as Mendozasaurus plus Futalognkosaurus. Rinconsauria included taxa typically found within Aeolosaurini as well, so Aeolosaurini was redefined as Aeolosaurus rionegrinus plus Gondwanatitan to preserve the original restricted content, otherwise the entire rinconsaur-lognkosaur branch would be classified within Aeolosaurini. Lithostrotia, Saltasauridae and Saltasaurinae had their definitions preserved from earlier studies, and included their typical content.[77]

Philip Mannion and colleagues redescribed Lusotitan in 2013, creating a new analysis of 279 characters drawn from significant previous analyses by Upchurch and Wilson supplemented by other studies. 63 sauropods were included, focusing on non-titanosaurian sauropods, although 14 probable titanosaurs were included. Unique to Mannion et al., continuous characters were distinguished in a run of the matrix, which resolved almost all of Somphospondyli within Titanosauria because of Andesaurus placing very basal in a large group of Andesauroidea. Titanosauroidea was tentatively retained as the opposite clade of titanosaurs, which included all other traditional titanosaurs, although it was noted because of the invalidity of Titanosaurus, Titanosauroidea should be considered an invalid name as well.[45] While the original analysis didn't focus on titanosaurs, it was utilised during the descriptions of Savannasaurus and Diamantinasaurus, Yongjinglong, an osteology of Mendozasaurus, and redescribing Tendaguria.[34][78][79][80][42] From these updates, an analysis of 548 characters and 124 taxa was published by Mannion et al. in 2019 for a redescription of Jiangshanosaurus and Dongyangosaurus, and additional revisions of Ruyangosaurus were made. No differentiation between continuous and discrete characters was made like performed by Mannion et al. (2013), but a large clade of Andesauroidea was still resolved with implied weights. Both redescribed Asian taxa, as well as Yongjinglong, previously considered derived titanosaurs related to Saltasauridae, were removed to outside the clade.[81]

In the description of Mansourasaurus, Sallam et al. (2017) published a phylogenetic analysis of Titanosauria including the most taxa of any analysis of the clade.[82] In an updated version of the analysis, with the taxon Mnyamawamtuka added, Gorscak & O'Connor (2019) got similar results, with slightly different relationships within small clades.[12]

 
Humerus of Ampelosaurus (left) and Magyarosaurus (right), and femora of (left to right) Magyarosaurus, Lirainosaurus and Ampelosaurus

Paleobiology edit

Diet edit

Fossilized dung associated with late Cretaceous titanosaurids from India has revealed phytoliths, silicified plant fragments, that offer clues to a broad, unselective plant diet. Besides the plant remains that might have been expected, such as cycads and conifers, discoveries published in 2005[83] revealed an unexpectedly wide range of monocotyledons, including palms and grasses (Poaceae), including ancestors of rice and bamboo, which has given rise to speculation that herbivorous dinosaurs and grasses co-evolved.

Nesting edit

 
Diagram showing titanosaur nest excavation and egg laying

A large titanosaurid nesting ground was discovered in Auca Mahuevo, in Patagonia, Argentina and another colony has reportedly been discovered in Spain. Several hundred female saltasaurs dug holes with their back feet, laid eggs in clutches averaging around 25 eggs each, and buried the nests under dirt and vegetation. The small eggs, about 11–12 centimetres (4.3–4.7 in) in diameter, contained fossilised embryos, complete with skin impressions. The impressions showed that titanosaurs were covered in a mosaic armour of small bead-like scales.[21] The huge number of individuals gives evidence of herd behavior, which, along with their armor, could have helped provide protection against large predators such as Abelisaurus.[84]

Range edit

 
Patagotitan skeleton cast on display at the American Museum of Natural History

The titanosaurs were the last great group of sauropods, which existed from about 136[85] to 66 million years ago, before the Cretaceous–Paleogene extinction event, and were the dominant herbivores of their time.[citation needed] The fossil evidence suggests they replaced the other sauropods, like the diplodocids and the brachiosaurids, which died out between the late Jurassic and the mid-Cretaceous Periods.

Titanosaurs were widespread. In December 2011, Argentine scientists announced titanosaur fossils had been found on Antarctica[15]—meaning that titanosaur fossils have been found on all continents. They are especially numerous in the southern continents (then part of the supercontinent of Gondwana). Australia had titanosaurs around 96 million years ago: fossils have been discovered in Queensland of a creature around 25 metres (82 ft) long.[86][87] Remains have also been discovered in New Zealand.[88] One of the largest ever titanosaur footprints was discovered in the Gobi desert in 2016.[89] One of the oldest remains of this group was described by Ghilardi et al. (2016).[90] It was found from the Valley of the Dinosaurs, Paraíba state of Brazil, representing a 136-million-year-old subadult individual.[85]

Paleopathology edit

Ibirania, a nanoid titanosaur fossil from Brazil suggests that individuals of various genera were susceptible to diseases such as osteomyelitis and parasite infestations. The specimen hails from the late cretaceous São José do Rio Preto Formation, Bauru Basin, and was described in the journal Cretaceous Research by Aureliano et al. (2021).[91] Examination of the titanosaur's bones revealed what appear to be parasitic blood worms similar to the prehistoric Paleoleishmania but are 10-100 times larger, that seemed to have caused the osteomyelitis. The fossil is the first known instance of an aggressive case of osteomyelitis being caused by blood worms in an extinct animal.[92][93][94]

References edit

  1. ^ Averianov, A.O.; Lopatin, A.V. (2020). "An unusual new sauropod dinosaur from the Late Cretaceous of Mongolia". Journal of Systematic Palaeontology. 18 (12): 1009–1032. Bibcode:2020JSPal..18.1009A. doi:10.1080/14772019.2020.1716402. S2CID 214244529.
  2. ^ Gorscak, E.; O'Connor, P.M.; Stevens, N.J.; Roberts, E.M. (2014). "The basal titanosaurian Rukwatitan bisepultus (Dinosauria, Sauropoda) from the middle Cretaceous Galula Formation, Rukwa Rift Basin, southwestern Tanzania". Journal of Vertebrate Paleontology. 34 (5): 1133–1154. Bibcode:2014JVPal..34.1133G. doi:10.1080/02724634.2014.845568. S2CID 677002.
  3. ^ Averianov, A.O.; Sues, H.D. (2017). "Review of Cretaceous sauropod dinosaurs from Central Asia". Cretaceous Research. 69: 184–197. Bibcode:2017CrRes..69..184A. doi:10.1016/j.cretres.2016.09.006.
  4. ^ Martínez, R.D.; Lamanna, M.C.; Novas, F.E.; Ridgely, R.C.; Casal, G.A.; Martínez, J.E.; Vita, J.R.; Witmer, L.M. (2016). "A Basal Lithostrotian Titanosaur (Dinosauria: Sauropoda) with a Complete Skull: Implications for the Evolution and Paleobiology of Titanosauria". PLOS ONE. 11 (4): e0151661. Bibcode:2016PLoSO..1151661M. doi:10.1371/journal.pone.0151661. PMC 4846048. PMID 27115989.
  5. ^ Han, F.; Yang, L.; Lou, F.; Sullivan, C.; Xu, X.; Qiu, W.; Liu, H.; Yu, J.; Wu, R.; Ke, Y.; Xu, M.; Hu, J.; Lu, P. (2024). "A new titanosaurian sauropod, Gandititan cavocaudatus gen. et sp. nov., from the Late Cretaceous of southern China". Journal of Systematic Palaeontology. 22 (1). 2293038. doi:10.1080/14772019.2023.2293038.
  6. ^ Wang, X.; Bandeira, K.L.; Qiu, R.; Jiang, S.; Cheng, X.; Ma, Y.; Kellner, A.W. (2021). "The first dinosaurs from the Early Cretaceous Hami Pterosaur Fauna, China". Scientific Reports. 11 (1): 14962. Bibcode:2021NatSR..1114962W. doi:10.1038/s41598-021-94273-7. PMC 8361124. PMID 34385481.
  7. ^ a b c d e f g h i j k Wilson, J.A. and Upchurch, P. (2003). "A revision of Titanosaurus Lydekker (Dinosauria – Sauropoda), the first dinosaur genus with a 'Gondwanan' distribution" (PDF). Journal of Systematic Palaeontology. 1 (3): 125–160. doi:10.1017/S1477201903001044. S2CID 53997295.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  8. ^ Mannion, P.D.; Upchurch, P.; Jin, X.; Zheng, W. (2019). "New information on the Cretaceous sauropod dinosaurs of Zhejiang Province, China: impact on Laurasian titanosauriform phylogeny and biogeography". Royal Society Open Science. 6 (8): 191057. Bibcode:2019RSOS....691057M. doi:10.1098/rsos.191057. PMC 6731702. PMID 31598266.
  9. ^ Gallina, P.A.; González Riga, B.J.; Ortiz David, L.D. (2022). "Time for Giants: Titanosaurs from the Berriasian–Santonian Age". In Otero, A.; Carballido, J.L.; Pol, D. (eds.). South American Sauropodomorph Dinosaurs. Record, Diversity and Evolution. Springer. pp. 299–340. doi:10.1007/978-3-030-95959-3. ISBN 978-3-030-95958-6. ISSN 2197-9596. S2CID 248368302.
  10. ^ Santucci, R.M.; Filippi, L.S. (2022). "Last Titans: Titanosaurs From the Campanian–Maastrichtian Age". In Otero, A.; Carballido, J.L.; Pol, D. (eds.). South American Sauropodomorph Dinosaurs. Record, Diversity and Evolution. Springer. pp. 341–391. doi:10.1007/978-3-030-95959-3. ISBN 978-3-030-95958-6. ISSN 2197-9596. S2CID 248368302.
  11. ^ Poropat, S.F.; Kundrát, M.; Mannion, P.D.; Upchurch, P.; Tischler, T.R.; Elliott, D.A. (2021). "Second specimen of the Late Cretaceous Australian sauropod dinosaur Diamantinasaurus matildae provides new anatomical information on the skull and neck of early titanosaurs". Zoological Journal of the Linnean Society. 192 (2): 610–674. doi:10.1093/zoolinnean/zlaa173.
  12. ^ a b Gorscak, E.; O'Connor, P. (2019). "A new African Titanosaurian Sauropod Dinosaur from the middle Cretaceous Galula Formation (Mtuka Member), Rukwa Rift Basin, Southwestern Tanzania". PLOS ONE. 14 (2): e0211412. Bibcode:2019PLoSO..1411412G. doi:10.1371/journal.pone.0211412. PMC 6374010. PMID 30759122.
  13. ^ "Giant dinosaur slims down... a bit". BBC News. 10 August 2017. Retrieved 8 April 2020.
  14. ^ a b c Carballido, J.L.; Pol, D.; Otero, A.; Cerda, I.A.; Salgado, L.; Garrido, A.C.; Ramezani, J.; Cúneo, N.R.; Krause, J.M. (2017). "A new giant titanosaur sheds light on body mass evolution among sauropod dinosaurs". Proceedings of the Royal Society B: Biological Sciences. 284 (1860): 20171219. doi:10.1098/rspb.2017.1219. PMC 5563814. PMID 28794222.
  15. ^ a b Cerda, Ignacio A.; Paulina Carabajal, Ariana; Salgado, Leonardo; Coria, Rodolfo A.; Reguero, Marcelo A.; Tambussi, Claudia P.; Moly, Juan J. (January 2012). "The first record of a sauropod dinosaur from Antarctica". Naturwissenschaften. 99 (1): 83–87. Bibcode:2012NW.....99...83C. doi:10.1007/s00114-011-0869-x. hdl:11336/52393. PMID 22173579. S2CID 18921496.
  16. ^ Cashmore, Daniel D.; Mannion, Philip D.; Upchurch, Paul; Butler, Richard J. (2020). "Ten more years of discovery: revisiting the quality of the sauropodomorph dinosaur fossil record". Palaeontology. 63 (6): 951–978. Bibcode:2020Palgy..63..951C. doi:10.1111/pala.12496. eISSN 1475-4983. ISSN 0031-0239.
  17. ^ a b Rubén D. F. Martínez, Matthew C. Lamanna, Fernando E. Novas, Ryan C. Ridgely, Gabriel A. Casal, Javier E. Martínez, Javier R. Vita and Lawrence M. Witmer (2016). "A Basal Lithostrotian Titanosaur (Dinosauria: Sauropoda) with a Complete Skull: Implications for the Evolution and Paleobiology of Titanosauria". PLOS ONE. 11 (4): e0151661. Bibcode:2016PLoSO..1151661M. doi:10.1371/journal.pone.0151661. PMC 4846048. PMID 27115989.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  18. ^ Taylor, Michael P. (24 January 2022). "Almost all known sauropod necks are incomplete and distorted". PeerJ. 10: –12810. doi:10.7717/peerj.12810. ISSN 2167-8359. PMC 8793732. PMID 35127288.
  19. ^ a b González Riga, Bernardo J.; Casal, Gabriel A.; Fiorillo, Anthony R.; Ortiz David, Leonardo D. (2022). "Taphonomy: Overview and New Perspectives Related to the Paleobiology of Giants". In Otero, Alejandro; Carballido, José L.; Pol, Diego (eds.). South American Sauropodomorph Dinosaurs. Springer Earth System Sciences. Cham: Springer International Publishing. pp. 541–582. doi:10.1007/978-3-030-95959-3_15. ISBN 978-3-030-95958-6.
  20. ^ Norell, Mark A.; Wiemann, Jasmina; Fabbri, Matteo; Yu, Congyu; Marsicano, Claudia A.; Moore-Nall, Anita; Varricchio, David J.; Pol, Diego; Zelenitsky, Darla K. (17 June 2020). "The first dinosaur egg was soft". Nature. 583 (7816): 406–410. Bibcode:2020Natur.583..406N. doi:10.1038/s41586-020-2412-8. ISSN 0028-0836. S2CID 219730449.
  21. ^ a b c Coria, R. A.; Chiappe, L. M. (2007). "Embryonic Skin From Late Cretaceous Sauropods (Dinosauria) of Auca Mahuevo, Patgonia, Argentina". Journal of Paleontology. 81 (6): 1528–1532. Bibcode:2007JPal...81.1528C. doi:10.1666/05-150.1. S2CID 131612932.
  22. ^ Kundrát, Martin; Coria, Rodolfo A.; Manning, Terry W.; Snitting, Daniel; Chiappe, Luis M.; Nudds, John; Ahlberg, Per E. (2020). "Specialized Craniofacial Anatomy of a Titanosaurian Embryo from Argentina". Current Biology. 30 (21): 4263–4269.e2. doi:10.1016/j.cub.2020.07.091. hdl:11336/150635. ISSN 0960-9822. PMID 32857974. S2CID 221343275.
  23. ^ Wilson, J. A. (2006). "An overview of titanosaur evolution and phylogeny". Actas de las III Jornadas sobre Dinosaurios y su Entorno. Salas de los Infantes, Burgos, Spain. pp. 169–190.
  24. ^ Stein, K.; Csiki, Z.; Rogers, K. C.; Weishampel, D. B.; Redelstorff, R.; Carballido, J. L.; Sander, P. M. (30 April 2010). "Small body size and extreme cortical bone remodeling indicate phyletic dwarfism in Magyarosaurus dacus (Sauropoda: Titanosauria)". Proceedings of the National Academy of Sciences. 107 (20): 9258–9263. Bibcode:2010PNAS..107.9258S. doi:10.1073/pnas.1000781107. PMC 2889090. PMID 20435913.
  25. ^ Baker, Harry (2021). "Massive new dinosaur might be the largest creature to ever roam Earth". LiveScience.com. Retrieved 22 January 2021.
  26. ^ Otero, Alejandro; Carballido, José L.; Salgado, Leonardo; Canudo, José Ignacio; Garrido, Alberto C. (January 2021). "Report of a giant titanosaur sauropod from the Upper Cretaceous of Neuquén Province, Argentina". Cretaceous Research. 122: 104754. Bibcode:2021CrRes.12204754O. doi:10.1016/j.cretres.2021.104754. S2CID 233582290.
  27. ^ Navarro, Bruno A.; Ghilardi, Aline M.; Aureliano, Tito; Díaz, Verónica Díez; Bandeira, Kamila L. N.; Cattaruzzi, André G. S.; Iori, Fabiano V.; Martine, Ariel M.; Carvalho, Alberto B.; Anelli, Luiz E.; Fernandes, Marcelo A.; Zaher, Hussam (15 September 2022). "A New Nanoid Titanosaur (Dinosauria: Sauropoda) from the Upper Cretaceous of Brazil". Ameghiniana. 59 (5). doi:10.5710/AMGH.25.08.2022.3477. ISSN 0002-7014. S2CID 251875979.
  28. ^ Apesteguía, Sebastián (10 September 2004). "Bonitasaura salgadoi gen. et sp. nov.: a beaked sauropod from the Late Cretaceous of Patagonia". Naturwissenschaften. 91 (10): 493–497. Bibcode:2004NW.....91..493A. doi:10.1007/s00114-004-0560-6. PMID 15729763. S2CID 33590452.
  29. ^ a b Wilson, J.A. (2002). "Sauropod dinosaur phylogeny: critique and cladistic analysis". Zoological Journal of the Linnean Society. 136 (2): 215–275. doi:10.1046/j.1096-3642.2002.00029.x. hdl:2027.42/73066.
  30. ^ Apesteguía, S. (2005). "Evolution of the titanosaur metacarpus". Pp. 321–345 in Tidwell, V. and Carpenter, K. (eds.) Thunder-Lizards: The Sauropodomorph Dinosaurs. Indianapolis: Indiana University Press.
  31. ^ Day, J.J.; Norman, D.B.; Gale, A.S.; Upchurch, P.; Powell, H.P. (2004). "A Middle Jurassic dinosaur trackway site from Oxfordshire, UK". Palaeontology. 47 (2): 319–348. Bibcode:2004Palgy..47..319D. doi:10.1111/j.0031-0239.2004.00366.x.
  32. ^ Apesteguía, S. (2005). "Evolution of the Hyposphene-Hypantrum Complex within Sauropoda". In Tidwell, V.; Carpenter, K. (eds.). Thunder Lizards: The Sauropodomorph Dinosaurs. Indiana University Press. pp. 248–267. ISBN 0-253-34542-1.
  33. ^ Apesteguía, S. (2005). "Evolution of the Titanosaur Metacarpus". In Tidwell, V.; Carpenter, K. (eds.). Thunder Lizards: The Sauropodomorph Dinosaurs. Indiana University Press. pp. 321–345. ISBN 0-253-34542-1.
  34. ^ a b Poropat, S.F.; Upchurch, P.; Mannion, P.D.; Hocknull, S.A.; Kear, B.P.; Sloan, T.; Sinapius, G.H.K.; Elliot, D.A. (2014). "Revision of the sauropod dinosaur Diamantinasaurus matildae Hocknull et al. 2009 from the mid-Cretaceous of Australia: Implications for Gondwanan titanosauriform dispersal". Gondwana Research. 27 (3): 995–1033. doi:10.1016/j.gr.2014.03.014. hdl:10044/1/27497.
  35. ^ González-Riga, B.J.; Lamanna, M.C.; David, L.O.; Calvo, J.O.; Coria, J.P. (2016). "A gigantic new dinosaur from Argentina and the evolution of the sauropod hind foot". Scientific Reports. 6: 19165. Bibcode:2016NatSR...619165G. doi:10.1038/srep19165. PMC 4725985. PMID 26777391.
  36. ^ a b D'Emic, Michael D. (2012). "The early evolution of titanosauriform sauropod dinosaurs" (PDF). Zoological Journal of the Linnean Society. 166 (3): 624–671. doi:10.1111/j.1096-3642.2012.00853.x.
  37. ^ Vidal, Daniel; Ortega, Francisco; Sanz, José Luis (13 August 2014). Peter Dodson (ed.). "Titanosaur Osteoderms from the Upper Cretaceous of Lo Hueco (Spain) and Their Implications on the Armor of Laurasian Titanosaurs". PLOS ONE. 9 (8): –102488. Bibcode:2014PLoSO...9j2488V. doi:10.1371/journal.pone.0102488. ISSN 1932-6203. PMC 4131861. PMID 25118985.
  38. ^ Curry Rogers, Kristina; D'Emic, Michael; Rogers, Raymond; Vickaryous, Matthew; Cagan, Amanda (29 November 2011). "Sauropod dinosaur osteoderms from the Late Cretaceous of Madagascar". Nature Communications. 2: 564. Bibcode:2011NatCo...2..564C. doi:10.1038/ncomms1578. ISSN 2041-1723. PMID 22127060.
  39. ^ Vidal, Daniel; Ortega, Francisco; Gascó, Francisco; Serrano-Martínez, Alejandro; Sanz, José Luis (7 February 2017). "The internal anatomy of titanosaur osteoderms from the Upper Cretaceous of Spain is compatible with a role in oogenesis". Scientific Reports. 7: 42035. Bibcode:2017NatSR...742035V. doi:10.1038/srep42035. ISSN 2045-2322. PMC 5294579. PMID 28169348.
  40. ^ Carrano, Matthew T.; D’Emic, Michael D. (3 February 2015). "Osteoderms of the titanosaur sauropod dinosaur Alamosaurus sanjuanensis Gilmore, 1922". Journal of Vertebrate Paleontology. 35 (1): e901334. Bibcode:2015JVPal..35E1334C. doi:10.1080/02724634.2014.901334. S2CID 86797277.
  41. ^ Silva Junior, Julian C. G.; Montefeltro, Felipe C.; Marinho, Thiago S.; Martinelli, Agustín G.; Langer, Max C. (1 January 2022). "Finite elements analysis suggests a defensive role for osteoderms in titanosaur dinosaurs (Sauropoda)". Cretaceous Research. 129: 105031. Bibcode:2022CrRes.12905031S. doi:10.1016/j.cretres.2021.105031. ISSN 0195-6671. S2CID 239121820.
  42. ^ a b Mannion, P.D.; Upchurch, P.; Schwarz, D.; Wings, O. (2019). "Taxonomic affinities of the putative titanosaurs from the Late Jurassic Tendaguru Formation of Tanzania: phylogenetic and biogeographic implications for eusauropod dinosaur evolution". Zoological Journal of the Linnean Society. 185 (3): 784–909. doi:10.1093/zoolinnean/zly068. hdl:10044/1/64080.
  43. ^ González Riga, Bernardo J.; Lamanna, Matthew C.; Otero, Alejandro; Ortiz David, Leonardo D.; Kellner, Alexander W. A.; Ibiricu, Lucio M. (2019). "An overview of the appendicular skeletal anatomy of South American titanosaurian sauropods, with definition of a newly recognized clade". Anais da Academia Brasileira de Ciências. 91 (suppl 2): e20180374. doi:10.1590/0001-3765201920180374. hdl:11336/106658. PMID 31340217.
  44. ^ a b c Salgado, L.; Coria, R.A.; Calvo, J.O. (1997). "Evolution of titanosaurid sauropods. I: Phylogenetic analysis based on the postcranial evidence". Ameghiniana. 34 (1): 3–32.
  45. ^ a b c Mannion, P.D.; Upchurch, P.; Barnes, R.N.; Mateus, O. (2013). "Osteology of the Late Jurassic Portuguese sauropod dinosaur Lusotitan atalaiensis (Macronaria) and the evolutionary history of basal titanosauriforms". Zoological Journal of the Linnean Society. 168: 98–206. doi:10.1111/zoj.12029.
  46. ^ a b Bonaparte, J.F.; Coria, R.A. (1993). "Un nuevo y gigantesco sauropodo titanosaurio de la Formacion Rio Limay (Albiano-Cenomaniano) de la Provincia del Neuquen, Argentina". Ameghiniana. 30 (3): 271–282.
  47. ^ a b Curry-Rogers, K. (2005). "Titanosauria: a phylogenetic overview". In Curry-Rogers, K.; Wilson, J. (eds.). The Sauropods: Evolution and Paleobiology. Indiana University Press. pp. 50–103. ISBN 0-520-24623-3.
  48. ^ a b c Calvo, J.O.; González-Riga, B.J.; Porfiri, J.D. (2007). "A new titanosaur sauropod from the Late Cretaceous of Neuquén, Patagonia, Argentina". Arquivos do Museu Nacional, Rio de Janeiro. 65 (4): 485–504.
  49. ^ a b c d Upchurch, P.; Barrett, P.M.; Dodson, P. (2004). "Sauropoda". In Weishampel, D.B.; Dodson, P.; Osmólska, H. (eds.). The Dinosauria (2nd ed.). University of California Press. pp. 259–322. ISBN 0-520-24209-2.
  50. ^ Lydekker, R. (1877). "Notice of new and other Vertebrata from Indian Tertiary and Secondary rocks". Records of the Geological Survey of India. 10 (1): 30–43.
  51. ^ Lydekker, R. (1888). "Part I. Containing the orders Ornithosauria, Crocodilia, Dinosauria, Squamata, Rhynchocephalia and Proterosauria". Catalogue of the fossil Reptilia and Amphibia in the British Museum (Natural History). British Museum of Natural History. pp. 134–136.
  52. ^ Lydekker, R. (1893). "Part I. The dinosaurs of Patagonia". Contributions to a knowledge of the fossil vertebrates of Argentina. Vol. 2. Anales del Museo de La Plata. pp. 1–14.
  53. ^ Nopcsa, F. (1928). "The genera of reptiles". Palaeobiologica. 1: 184.
  54. ^ Huene, F. von (1929). "Los Saurisquios y Ornitisquios del Cretáceo Argentino". Anales del Museo de la Plata. 3 (2): 1–196.
  55. ^ Powell, J.E. (1986). "Revision de los Titanosauridos de America del Sur". PhD Thesis. Universidad Nacional de Tucuman Facultad de Ciencas Naturales: 1–340.
  56. ^ a b McIntosh, J.S. (1990). "Sauropoda". In Weishampel, D.B.; Dodson, P.; Osmólska, H. (eds.). The Dinosauria (1st ed.). University of California Press. pp. 345–402. ISBN 0-520-06726-6.
  57. ^ Le Loeuff, J. (1993). "European titanosaurids". Revue de Paléobiologie. Spécial (7): 105–117.
  58. ^ Upchurch, P. (1995). "The evolutionary history of sauropod dinosaurs" (PDF). Philosophical Transactions of the Royal Society of London B. 349 (1330): 365–390. Bibcode:1995RSPTB.349..365U. doi:10.1098/rstb.1995.0125.
  59. ^ Upchurch, P. (1998). "The phylogenetic relationships of sauropod dinosaurs". Zoological Journal of the Linnean Society. 124 (1): 43–103. doi:10.1006/zjls.1997.0138.
  60. ^ Sanz, J.L.; Powell, J.E.; Le Loeuff, J.; Martinez, R.; Pereda-Suberbiola, X. (1999). "Sauropod remains from the Upper Cretaceous of Laño (Northcentral Spain). Titanosaur phylogenetic relationships". Estudios del Museo de Ciencias Naturales de Alava. 14 (1): 235–255.
  61. ^ Powell, J.E. (2003). "Revision of South American Titanosaurid dinosaurs: palaeobiological, palaeobiogeographical and phylogenetic aspects". Records of the Queen Victoria Museum. 111: 1–173.
  62. ^ Curry-Rogers, K.; Forster, C.A. (2001). "The last of the dinosaur titans: a new sauropod from Madagascar". Nature. 412 (6846): 530–534. Bibcode:2001Natur.412..530C. doi:10.1038/35087566. PMID 11484051. S2CID 4347583.
  63. ^ a b Salgado, L. (2003). "Should we abandon the name Titanosauridae? Some comments on the taxonomy of Titanosaurian Sauropods (Dinosauria)". Revista Española de Paleontología. 18 (1): 15–21.
  64. ^ a b González-Riga, B.J. (2003). "A new titanosaur (Dinosauria, Sauropoda) from the Upper Cretaceous of Mendoza Province, Argentina". Ameghiniana. 40 (2): 155–172.
  65. ^ a b Calvo, J.O.; González-Riga, B.J. (2003). "Rinconsaurus caudamirus gen. et sp. nov., a new titanosaurid (Dinosauria, Sauropoda) from the Late Cretaceous of Patagonia, Argentina". Revista Geológica de Chile. 30 (2): 333–353. doi:10.4067/S0716-02082003000200011.
  66. ^ Franco-Rosas, A.C.; Salgado, L.; Rosas, C.F.; Carvalho, I.S. (2004). "Nuevos materiales de Titanosaurios (Sauropoda) en el Cretácico Superior de Mato Grosso, Brazil". Revista Brasileira de Paleontologia. 7 (3): 329–336. doi:10.4072/rbp.2004.3.04.
  67. ^ Calvo, J.O.; Porfiri, J.D.; González-Riga, B.J.; Kellner, A.W. (2007). "A new Cretaceous terrestrial ecosystem from Gondwana with the description of a new sauropod dinosaur". Anais da Academia Brasileira de Ciências. 79 (3): 529–541. doi:10.1590/S0001-37652007000300013. PMID 17768539.
  68. ^ González-Riga, B.J.; Previtera, E.; Pirrone, C.A. (2009). "Malarguesaurus florenciae gen. et sp. nov., a new titanosauriform (Dinosauria, Sauropoda) from the Upper Cretaceous of Mendoza, Argentina". Cretaceous Research. 30 (1): 135–148. Bibcode:2009CrRes..30..135G. doi:10.1016/j.cretres.2008.06.006.
  69. ^ Gallina, P.A.; Apesteguía, S. (2011). "Cranial anatomy and phylogenetic position of the titanosaurian sauropod Bonitasaura salgadoi". Acta Palaeontologica Polonica. 56 (1): 45–60. doi:10.4202/app.2010.0011. hdl:11336/192915.
  70. ^ Zaher, H.; Pol, D.; Carvalho, A.B.; Nascimento, P.M.; Riccomini, C.; Larson, P.; Juarez-Valieri, R.; Pires-Dominigues, R.; da Silva Jr, N.J.; Campos, D.A. (2011). "A Complete Skull of an Early Cretaceous Sauropod and the Evolution of Advanced Titanosaurians". PLOS ONE. 6 (2): e16663. Bibcode:2011PLoSO...616663Z. doi:10.1371/journal.pone.0016663. PMC 3034730. PMID 21326881.
  71. ^ Wilson, J.A.; Pol, D.; Carvalho, A.B.; Zaher, H. (2016). "The skull of the titanosaur Tapuiasaurus macedoi (Dinosauria: Sauropoda), a basal titanosaur from the Lower Cretaceous of Brazil". Zoological Journal of the Linnean Society. 178 (3): 611–662. doi:10.1111/zoj.12420. hdl:2027.42/134419.
  72. ^ Carballido, José L.; Pol, Diego; Cerda, Ignacio; Salgado, Leonardo (10 February 2011). "The osteology of Chubutisaurus insignis del Corro, 1975 (Dinosauria: Neosauropoda) from the 'middle' Cretaceous of central Patagonia, Argentina". Journal of Vertebrate Paleontology. 31 (1): 93–110. Bibcode:2011JVPal..31...93C. doi:10.1080/02724634.2011.539651. hdl:11336/94194. S2CID 86055386.
  73. ^ Carballido, J.L.; Rauhut, O.W.M.; Pol, D.; Salgado, L. (2011). "Osteology and phylogenetic relationships of Tehuelchesaurus benitezii (Dinosauria, Sauropoda) from the Upper Jurassic of Patagonia". Zoological Journal of the Linnean Society. 163 (2): 605–662. doi:10.1111/j.1096-3642.2011.00723.x. hdl:11336/71888.
  74. ^ Carballido, J.L.; Salgado, L.; Pol, D.; Canudo, J.I.; Garrido, A. (2012). "A new basal rebbachisaurid (Sauropoda, Diplodocoidea) from the Early Cretaceous of the Neuquén Basin; evolution and biogeography of the group". Historical Biology. 24 (6): 631–654. Bibcode:2012HBio...24..631C. doi:10.1080/08912963.2012.672416. S2CID 130423764.
  75. ^ Carballido, J.L.; Sander, M.P. (2014). "Postcranial axial skeleton of Europasaurus holgeri (Dinosauria, Sauropoda) from the Upper Jurassic of Germany: implications for sauropod ontogeny and phylogenetic relationships of basal Macronaria". Journal of Systematic Palaeontology. 12 (3): 335–387. Bibcode:2014JSPal..12..335C. doi:10.1080/14772019.2013.764935. hdl:11336/19199. S2CID 85087382.
  76. ^ Carballido, J.L.; Pol, D.; Parra-Ruge, M.L.; Bernal, S.P.; Páramo-Fonseca, M.E.; Etayo-Serna, F. (2015). "A new Early Cretaceous brachiosaurid (Dinosauria, Neosauropoda) from northwestern Gondwana (Villa de Leiva, Colombia)". Journal of Vertebrate Paleontology. e980505 (5): 1–12. Bibcode:2015JVPal..35E0505C. doi:10.1080/02724634.2015.980505. S2CID 129498917.
  77. ^ a b Carballido, J.L.; Pol, D.; Otero, A.; Cerda, I.A.; Salgado, L.; Garrido, A.C.; Ramezani, J.; Cúneo, N.R.; Krause, J.R. (2017). "A new giant titanosaur sheds light on body mass evolution among sauropod dinosaurs". Proceedings of the Royal Society B. 284 (1860): 20171219. doi:10.1098/rspb.2017.1219. PMC 5563814. PMID 28794222.
  78. ^ Poropat, S.F.; Mannion, P.D.; Upchurch, P.; Hocknull, S.A.; Kear, B.P.; Kundrát, M.; Tischler, T.R.; Sloan, T.; Sinapius, G.H.K.; Elliott, J.A.; Elliott, D.A. (2016). "New Australian sauropods shed light on Cretaceous dinosaur palaeobiogeography". Scientific Reports. 6: 34467. Bibcode:2016NatSR...634467P. doi:10.1038/srep34467. PMC 5072287. PMID 27763598.
  79. ^ Li, L.G.; Li, D.Q.; You, H.L.; Dodson, P. (2014). "A New Titanosaurian Sauropod from the Hekou Group (Lower Cretaceous) of the Lanzhou-Minhe Basin, Gansu Province, China". PLOS ONE. 9 (1): e85979. Bibcode:2014PLoSO...985979L. doi:10.1371/journal.pone.0085979. PMC 3906019. PMID 24489684.
  80. ^ González-Riga, B.J.; Mannion, P.D.; Poropat, S.F.; Ortiz David, L.; Coria, J.P. (2018). "Osteology of the Late Cretaceous Argentinean sauropod dinosaur Mendozasaurus neguyelap: implications for basal titanosaur relationships". Zoological Journal of the Linnean Society. 184 (1): 136–181. doi:10.1093/zoolinnean/zlx103. hdl:10044/1/53967.
  81. ^ Mannion, P.D.; Upchurch, P.; Jin, X.; Zheng, W. (2019). "New information on the Cretaceous sauropod dinosaurs of Zhejiang Province, China: impact on Laurasian titanosauriform phylogeny and biogeography". Royal Society Open Science. 6 (8): 191057. Bibcode:2019RSOS....691057M. doi:10.1098/rsos.191057. PMC 6731702. PMID 31598266.
  82. ^ Sallam, H.; Gorscak, E.; O'Connor, P.; El-Dawoudi, I.; El-Sayed, S.; Saber, S. (26 June 2017). "New Egyptian sauropod reveals Late Cretaceous dinosaur dispersal between Europe and Africa". Nature. 2 (3): 445–451. doi:10.1038/s41559-017-0455-5. PMID 29379183. S2CID 3375335.
  83. ^ Prasad, Vandana; Strömberg, Caroline A. E.; Alimohammadian, Habib; Sahni, Ashok (18 November 2005). "Dinosaur Coprolites and the Early Evolution of Grasses and Grazers". Science. 310 (5751): 1177–1180. Bibcode:2005Sci...310.1177P. doi:10.1126/science.1118806. PMID 16293759. S2CID 1816461.
  84. ^ Vila, Bernat; Jackson, Frankie D.; Fortuny, Josep; Sellés, Albert G.; Galobart, Àngel (2010). "3-D Modelling of Megaloolithid Clutches: Insights about Nest Construction and Dinosaur Behaviour". PLOS ONE. 5 (5): e10362. Bibcode:2010PLoSO...510362V. doi:10.1371/journal.pone.0010362. PMC 2864735. PMID 20463953.
  85. ^ a b Ghilardi, Aline M.; Aureliano, Tito; Duque, Rudah R. C.; Fernandes, Marcelo A.; Barreto, Alcina M. F.; Chinsamy, Anusuya (1 December 2016). "A new titanosaur from the Lower Cretaceous of Brazil". Cretaceous Research. 67: 16–24. Bibcode:2016CrRes..67...16G. doi:10.1016/j.cretres.2016.07.001.
  86. ^ Roberts, Greg (3 May 2007). "Bones reveal Queensland's prehistoric titans". The Australian. Retrieved 4 May 2007.
  87. ^ Molnar, R. E.; Salisbury, S. W. (2005). "Observations on Cretaceous Sauropods from Australia". In Carpenter, Kenneth; Tidswell, Virginia (eds.). Thunder Lizards: The Sauropodomorph Dinosaurs. Indiana University Press. pp. 454–465. ISBN 978-0-253-34542-4.
  88. ^ "Bone discovery confirms big dinosaur roamed NZ". The New Zealand Herald. 24 June 2008. Retrieved 18 January 2009.
  89. ^ "Giant footprint could shed light on titanosaurus behaviour". BBC News Online. 5 October 2016. Retrieved 5 October 2016.
  90. ^ Ghilardi, Aline M.; Aureliano, Tito; Duque, Rudah R. C.; Fernandes, Marcelo A.; Barreto, Alcina M. F.; Chinsamy, Anusuya (1 December 2016). "A new titanosaur from the Lower Cretaceous of Brazil". Cretaceous Research. 67: 16–24. Bibcode:2016CrRes..67...16G. doi:10.1016/j.cretres.2016.07.001. ISSN 0195-6671.
  91. ^ Aureliano, Tito; Nascimento, Carolina S. I.; Fernandes, Marcelo A.; Ricardi-Branco, Fresia; Ghilardi, Aline M. (1 February 2021). "Blood parasites and acute osteomyelitis in a non-avian dinosaur (Sauropoda, Titanosauria) from the Upper Cretaceous Adamantina Formation, Bauru Basin, Southeast Brazil". Cretaceous Research. 118: 104672. Bibcode:2021CrRes.11804672A. doi:10.1016/j.cretres.2020.104672. ISSN 0195-6671. S2CID 225134198.
  92. ^ Aureliano, Tito; Nascimento, Carolina S.I.; Fernandes, Marcelo A.; Ricardi-Branco, Fresia; Ghilardi, Aline M. (February 2021). "Blood parasites and acute osteomyelitis in a non-avian dinosaur (Sauropoda, Titanosauria) from the Upper Cretaceous Adamantina Formation, Bauru Basin, Southeast Brazil". Cretaceous Research. 118: 104672. Bibcode:2021CrRes.11804672A. doi:10.1016/j.cretres.2020.104672. S2CID 225134198.
  93. ^ Baraniuk, Chris (January 2021). "Gruesome 'Blood Worms' Invaded a Dinosaur's Leg Bone, Fossil Suggests". Scientific American.
  94. ^ "Cretaceous Titanosaur Suffered from Blood Parasites and Severe Bone Inflammation | Paleontology | Sci-News.com". Breaking Science News | Sci-News.com.

External links edit

Titanosauria at the Encyclopædia Britannica

titanosauria, titanosaurs, titanosaurians, members, group, were, diverse, group, sauropod, dinosaurs, including, genera, from, seven, continents, titanosaurs, were, last, surviving, group, long, necked, sauropods, with, taxa, still, thriving, time, extinction,. Titanosaurs or titanosaurians members of the group Titanosauria were a diverse group of sauropod dinosaurs including genera from all seven continents The titanosaurs were the last surviving group of long necked sauropods with taxa still thriving at the time of the extinction event at the end of the Cretaceous This group includes some of the largest land animals known to have ever existed such as Patagotitan estimated at 37 m 121 ft long 13 with a weight of 69 tonnes 76 tons 14 and the comparably sized Argentinosaurus and Puertasaurus from the same region TitanosaursTemporal range Cretaceous 140 66 Ma PreꞒ Ꞓ O S D C P T J K Pg NMounted Patagotitan on display at the Field Museum of Natural History Chicago ILScientific classificationDomain EukaryotaKingdom AnimaliaPhylum ChordataClade DinosauriaClade SaurischiaClade SauropodomorphaClade SauropodaClade MacronariaClade SomphospondyliClade TitanosauriaBonaparte amp Coria 1993Subgroups 9 10 11 12 Abdarainurus 1 Adamantisaurus Aegyptosaurus 2 Andesaurus Angolatitan Arackar Argyrosaurus Atacamatitan Austroposeidon Baotianmansaurus Barrosasaurus Baurutitan Bonatitan Borealosaurus 3 Brasilotitan Campylodoniscus 4 Choconsaurus Daxiatitan Dongyangosaurus Dreadnoughtus Gandititan 5 Hamititan 6 Huabeisaurus Hypselosaurus 7 Iuticosaurus 7 Jiangshanosaurus Kaijutitan Karongasaurus Laplatasaurus Ligabuesaurus Macrurosaurus 7 Malarguesaurus Narambuenatitan Ninjatitan Nullotitan Pellegrinisaurus Pitekunsaurus Ruyangosaurus 8 Tastavinsaurus Titanosaurus 7 Traukutitan Trigonosaurus Uberabatitan Wintonotitan Xianshanosaurus Diamantinasauria LithostrotiaThe group s name alludes to the mythological Titans of ancient Greek mythology via the type genus now considered a nomen dubium Titanosaurus Together with the brachiosaurids and relatives titanosaurs make up the larger sauropod clade Titanosauriformes Titanosaurs have long been a poorly known group and the relationships between titanosaur species are still not well understood Contents 1 Fossil record 2 Description 2 1 Head and neck 2 2 Torso and limbs 2 3 Integument 3 Classification 3 1 Early history 3 2 Titanosauria named 3 3 New phylogenetic frameworks 4 Paleobiology 4 1 Diet 4 2 Nesting 4 3 Range 4 4 Paleopathology 5 References 6 External linksFossil record edit nbsp Excavation of titanosaur fossils at the Lo Hueco fossil site in SpainDue to the near global distribution of titanosaurs during the Cretaceous titanosaur fossils have been found on every continent including Antarctica 15 However titanosaurs have the least complete fossil record of any major sauropodomorph group 16 No complete titanosaur skeletons are known and many species are only known from a few bones Titanosaur skulls are especially rare Though fragmentary cranial remains are known for several titanosaur genera nearly complete skulls have been described for only four Nemegtosaurus Rapetosaurus Sarmientosaurus and Tapuiasaurus 17 As is the case in most other sauropod groups there are few titanosaur specimens with complete necks preserving all of the cervical vertebrae in sequence Only three complete titanosaur necks are known the holotype of Futalognkosaurus and two undescribed specimens from Argentina A fourth specimen of an unidentified titanosaur from Brazil preserves a nearly complete neck with only the atlas the tiny vertebra forming the joint between the skull and neck missing 18 Only five titanosaur specimens preserve complete articulated hind feet 19 This incompleteness is especially significant for giant titanosaurs which are generally known from disarticulated and fragmentary remains 19 Titanosaurs are one of the few groups of dinosaurs for which fossil eggs are known 20 The fossil site of Auca Mahuevo preserves a titanosaur nesting ground Some titanosaur eggs have been found containing fossil embryos which even preserve fossil skin 21 These fossil embryos are among the few titanosaur specimens to preserve complete skulls 22 Description editTitanosauria have the largest range of body size of any sauropod clade and includes both the largest known sauropods and some of the smallest 23 One of the largest titanosaurs Patagotitan had a body mass estimated to be 69 tonnes 76 tons whereas one of the smallest Magyarosaurus had a body mass of approximately 900 kilograms 2 000 lb 14 24 Even relatively closely related titanosaurs could have very different body sizes as the small rinconsaurs were closely related to the gigantic lognkosaurs 14 Fossils from perhaps the largest dinosaur ever found were discovered in 2021 in the Neuquen Province of northwest Patagonia Argentina It is believed that they are from a titanosaur 25 26 Some of smallest titanosaurs such as Magyarosaurus inhabited Europe which was largely made up of islands during the Cretaceous and were likely island dwarfs Another taxon of tiny titanosaurs Ibirania lived a non insular context in Upper Creaceous Brazil and is an example of nanism resultant from other ecological pressures 27 Head and neck edit nbsp Unnamed titanosaur from Japan labelled Xinghesaurus The heads of titanosaurs are poorly known However several different cranial morphologies are apparent In some species such as Sarmientosaurus the head resembled that of brachiosaurids 17 In others such as Rapetosaurus and Nemegtosaurus the head resembled that of diplodocids In some titanosaurs the skull was especially diplodocid like due to square shaped jaws 28 the titanosaur Antarctosaurus is especially similar to the rebbachisaurid Nigersaurus 29 Titanosaurs had small heads even when compared with other sauropods The head was also wide similar to the heads of Camarasaurus and Brachiosaurus though somewhat more elongated Titanosaurian nostrils were large macronarian and all had crests formed by the nasal bones Their teeth were either somewhat spatulate spoon like or like pegs or pencils but were always very small Titanosaur necks were of average length for sauropods and their tails were whip like though not as long as in the diplodocids While the pelvis was slimmer than some sauropods the pectoral chest area was much wider giving them a uniquely wide legged stance As a result the fossilized trackways of titanosaurs are distinctly broader than other sauropods Their forelimbs were also stocky and often longer than their hind limbs Unlike other sauropods some titanosaurs had no digits walking only on horseshoe shaped stumps made up of the columnar metacarpal bones 30 31 Their vertebrae back bones were solid not hollowed out which may be a reversal to more basal saurischian characteristics Their spinal column was relatively flexible likely making them more agile than other sauropods and more able to rear onto their hind legs One of the most characteristic features shared by most titanosaurs were their procoelous caudal vertebrae with ball and socket articulations between the vertebral centra Torso and limbs edit nbsp Manus of Diamantinasaurus the only titanosaur known to have multiple phalangesThe dorsal vertebrae of titanosaurs show multiple derived features among sauropods Similarly to the Rebbachisauridae titanosaurs lost the hyposphene hypantrum articulations a set of surfaces between vertebrae that prevent additional rotation of the bones Andesaurus one of the most basal titanosaurs shows a normal hyposphene The same area is reduced in Argentinosaurus to only two ridges and is fully absent in taxa like Opisthocoelicaudia and Saltasaurus Both Argentinosaurus and Epachthosaurus bear similar intermediate hyposphenal ridges which suggests they represent a more primitive form of dorsal vertebrae 32 Sauropod hands already are highly derived from other dinosaurs being reduced into columnar metacarpals and blocky phalanges with fewer claws However titanosaurs evolved the manus even further completely losing the phalanges and heavily modifying the metacarpals Argyrosaurus is the only titanosaur known to possess carpals Other taxa like Epachthosaurus show a reduction of phalanges to one or two bones Opisthoeoclicaudia shows even more reduction of the hand than other titanosaurs with both carpals and phalanges completely absent 33 However Diamantinasaurus while lacking carpals preserves a manual formula of 2 1 1 1 1 including a thumb claw and phalanges on all other digits This coupled with the preservation of a single phalanx on digit IV of Epachthosaurus and potentially Opisthocoelicaudia further study is necessary show that preservation biases may be responsible for the lack of hand phalanges in these taxa This suggests that Alamosaurus Neuquensaurus Saltasaurus and Rapetosaurus all known from imperfect or disarticulated remains previously associated with a lack of phalanges may have had phalanges but lost them after death 34 Titanosaurs have a poor fossil record of their pedes feet only being complete in five definitive titanosaurs Among these Notocolossus is the largest and also has the most specialized pes like all titanosaurs its pes is composed of short thick metatarsals of approximately the same lengths however metatarsals I and V are notably more robust than in other taxa 35 Integument edit nbsp Ampelosaurus a titanosaur with osteoderms depicted with the osteoderms arranged in a pair of rowsFrom skin impressions found with fossils it has been determined that the skin of many titanosaurs was armored with a small mosaic of small bead like scales surrounding larger scales 21 While most titanosaurs were very large animals many were fairly average in size compared to other giant dinosaurs Some island dwelling dwarf titanosaurs such as Magyarosaurus were probably the result of allopatric speciation and insular dwarfism Some titanosaurs had osteoderms Osteoderms were first confirmed in the genus Saltasaurus but are now known to have been present in a variety of titanosaurs within the clade Lithostrotia 36 The exact arrangement of osteoderms on the body of a titanosaur is not known but some paleontologists consider it likely that the osteoderms were arranged in two parallel rows on the animal s back an arrangement similar to the plates of stegosaurs 37 Several other arrangements have been proposed such as a single row along the midline and it is possible that different species had different arrangements The osteoderms were certainly far more sparse than those of ankylosaurs and did not completely cover the back in scutes Because of their sparse arrangement it was unlikely that they served a significant role in defense However they may have played an important role in nutrient storage for titanosaurs living in highly seasonal climates and for female titanosaurs laying eggs 38 39 Osteoderms were present on both large and small species so they were not solely used by smaller species as protection against predators 40 New evidence published in 2021 suggests there were indeed some defensive purposes in titanosaur osteoderms simulated bite marks from both baurusuchid crocodiles and abelisaurids on titanosaurid osteoderms suggest they could be useful for protecting the animals in addition to functioning in mineral storage 41 Classification editShunosaurusMamenchisauridaeTuriasauriaNeosauropoda Diplodocoidea RebbachisauridaeDicraeosauridaeDiplodocidaeMacronaria CamarasaurusTitanosauriformes BrachiosauridaeSomphospondyli EuhelopodidaeTitanosauriaPhylogenetic position of Titanosauria within Eusauropoda 42 Titanosaurs are classified as sauropod dinosaurs This highly diverse group forms the dominant clade of Cretaceous sauropods 43 Within Sauropoda titanosaurs were once classified as close relatives of Diplodocidae due to their shared characteristic of narrow teeth but this is now known to be the result of convergent evolution 44 Titanosaurs are now known to be most closely related to euhelopodids and brachiosaurids together they form a clade named Titanosauriformes 45 For much of the 20th century most known species of titanosaurs were classified in the family Titanosauridae which is no longer in widespread use 7 Titanosauria was first proposed in 1993 as a taxon to encompass titanosaurids and their close relatives 46 It has been phylogenetically defined as the clade composed of the most recent common ancestor of Saltasaurus and Andesaurus and all of its descendants 44 7 47 48 36 45 The relationships of species within Titanosauria remain largely unresolved and it is considered one of the most poorly understood areas of dinosaur classification One of the few areas of agreement is that the majority of titanosaurs except Andesaurus and some other basal species form a clade called Lithostrotia which some researchers consider equivalent to the deprecated Titanosauridae 7 49 48 Lithostrotians include titanosaurs such as Alamosaurus Isisaurus Malawisaurus Rapetosaurus and Saltasaurus 49 Early history edit nbsp Lectotype of Titanosaurus indicus the name bearing genus of TitanosauriaTitanosaurus indicus was first named by British paleontologist Richard Lydekker in 1877 as a new taxon of dinosaur based on two caudals and a femur collected on different occasions at the same location in India 50 While it was later given a position as a sauropod within Cetiosauridae by Lydekker in 1888 51 he named the new sauropod family Titanosauridae for the genus in 1893 which included only Titanosaurus and Argyrosaurus united by procoelous caudals opisthocoelous presacrals a lack of pleurocoels and open chevrons 52 Following this Austro Hungarian paleontologist Franz Nopcsa reviewed reptile genera in 1928 and provided a short classification of Sauropoda where he placed the Titanosaurinae a reranking of Lydekker s Titanosauridae in Morosauridae and included the genera Titanosaurus Hypselosaurus and Macrurosaurus because they all had strongly procoelous caudals 53 German paleontologist Friedrich von Huene provided a significant revision of Titanosauridae the following year in 1929 where he reviewed the dinosaurs of Cretaceous Argentina and named multiple new genera Huene included multiple species of Titanosaurus from India England France Romania Madagascar and Argentina Hypselosaurus and Aepisaurus from France Macrurosaurus from England Alamosaurus from United States and Argyrosaurus Antarctosaurus and Laplatasaurus from Argentina The material between them represented almost all regions of the skeleton which showed they were derived sauropods Huene interpreted as closest to Pleurocoelus of the various non titanosaurid genera 54 nbsp Skeletal mount of Neuquensaurus australisFor his 1986 thesis Argentinian paleontologist Jaime Powell described and classified many new genera of South American titanosaurs Using the family Titanosauridae to include them all he grouped the genera into Titanosaurinae Saltasaurinae Antarctosaurinae Argyrosaurinae and Titanosauridae indet Titanosaurinae included Titanosaurus and the new genus Aeolosaurus united by multiple features of the caudal vertebrae the new clade Saltasaurinae was created to include Saltasaurus and the new genus Neuquensaurus united by very distinct dorsals caudals and ilia the new clade Antarctosaurinae was created to include Antarctosaurus distinguished by large size a different form of braincase more elongate girdle bones and more robust limb bones and Argyrosaurinae was created for Argyrosaurus bearing a more robust forelimb and hand and more primitive dorsals The new genus Epachthosaurus was named for a more basal titanosaurid classified as Titanosauridae indet along with unnamed specimens Clasmodosaurus and Campylodoniscus 55 John Stanton McIntosh provided a synopsis of sauropod relationships in 1990 using Titanosauridae as the group to contain all taxa like previous authors Opisthocoelicaudia was placed in Opisthocoelicaudiinae within Camarasauridae following its original description and not later works and Nemegtosaurus and Quaesitosaurus were placed within Dicraeosaurinae Titanosauridae included many previously named genera plus taxa like Tornieria and Janenschia 56 Saltasaurus included the species previously known as Titanosaurus australis and T robustus which were named Neuquensaurus by Powell in 1986 7 McIntosh provided a large diagnosis of the family dorsals with irregularly shaped pleurocoels and spines directed strongly backward transverse processes directed dorsally as well as laterally very robust in shoulder region a second dorsosacral its rib fused to ilium caudals strongly procoelous with a prominent ball on distal end of centrum throughout tail caudal arches on front half of centrum sternal plates large preacetabular process of ilium swept outward to become almost horizontal but stressed that the relationships of titanosaurids to other sauropod groups couldn t be determined due to a lack of cranial material 56 A brief review of putative titanosaurids from Europe was authored by Jean Le Loeuff in 1993 and covered the supposed genera known so far The Barremian middle Early Cretaceous species Titanosaurus valdensis named decades previous by Huene was kept as the oldest of the titanosaurid and given the new genus name Iuticosaurus The French taxon Aepisaurus was removed from the family and placed in undetermined Sauropoda Macrurosaurus was considered a chimaera of titanosaurid and non titanosaurid material because of the presence of both procoelous and amphicoelous caudals Huene s species Titanosaurus lydekkeri was left as a nomen dubium but left within Titanosauridae Maastrichtian fossils from France and Spain were removed from Hypselosaurus and Titanosaurus with Hypselosaurus being declared dubious like T lydekkeri The variety of Romanian fossils named as Magyarosaurus by Huene were also moved into the same species again M dacus as originally named by Nopcsa 57 Titanosauria named edit nbsp Argentinosaurus dorsal and sauropod paleontologist Matt WedelJose Bonaparte and Rodolfo Coria in 1993 concluded that a new clade of derived sauropods was necessary because Argentinosaurus Andesaurus and Epachthosaurus were distinct from Titanosauridae as they possessed hyposphene hypantrum articulations but were still very closely related to the titanosaurids The taxa that possessed the articulations were united within the new family Andesauridae and the two families were grouped together within the new clade Titanosauria The titanosaurs were diagnosed by possessing small pleurocoels centered within an anteroposteriorly elongate depression and the presence of two well defined depressions on the posterior face of the neural arch The entire group was compared favourably with cetiosaurids like Patagosaurus and Volkheimeria 46 Overlooking the naming of Titanosauria Paul Upchurch in 1995 named the clade Titanosauroidea to include Opisthocoelicaudia and the more derived Titanosauridae Malawisaurus Alamosaurus and Saltasaurus United by caudals with anteriorly shifted neural spines extremely robust forearm bones a prominent concavity on the ulna for articulation with the humerus a laterally flared and flattened ilium and a less robust pubis Upchurch considered the clade sister taxon to Diplodocoidea because of their shared dental anatomy although he noted that peg like teeth might have been independently evolved 58 This was followed up by Upchurch s 1998 study on sauropod phylogenetics which additionally recovered Phuwiangosaurus and Andesaurus within Titanosauroidea and resolved Opisthocoelicaudia as the sister of Saltasaurus instead of the most basal titanosauroid This result places Titanosauroidea in a group with Camarasaurus and Brachiosaurus although Nemegtosauridae Nemegtosaurus and Quaesitosaurus was still classified as the basalmost family of diplodocoids Upchurch chose to use Titanosauroidea as a replacement name for Titanosauria due to the recommended use of Linnean taxonomy and ranks 59 In 1997 Leonardo Salgado et al published a phylogenetic study on Titanosauriformes including relationships within Titanosauria They provided a definition for the clade of including the most recent common ancestor of Andesaurus delgadoi and Titanosauridae and all of its descendants Titanosauria resolved including the same two subclades as Bonaparte amp Coria 1993 where Andesauridae was monotypic only including the name genus and Titanosauridae was all other titanosaurs Titanosauria was additionally rediagnosed with eye shaped pleurocoels forked infradiapophyseal laminae centro parapophyseal laminae procoelous anterior caudals and a significantly longer pubis than ischium Titanosauridae was less strongly defined because of the polytomy between Malawisaurus and Epachthosaurus so some diagnostic features couldn t be resolved Saltasaurinae was defined as the most recent ancestor of Neuquensaurus Saltasaurus and its descendants and diagnosed by short cervical prezygapophyses vertically compressed anterior caudals and a posteriorly shifted anterior caudal neural spine 44 nbsp Mounted rearing skeleton of EpachthosaurusTitanosauria AndesaurusTitanosauridae MalawisaurusEpachthosaurusArgentinosaurusOpisthocoelicaudiaTrigonosaurus Titanosaurinae indet DGM Serie B AeolosaurusAlamosaurusSaltasaurinae NeuquensaurusSaltasaurusContributing additional work to the systematics of titanosaurs Spanish paleontologist Jose Sanz et al published an additional study in 1999 utilizing both the names Titanosauria and Titanosauroidea in displaying their results Similar to Upchurch 1995 Sanz et al recovered Opisthocoelicaudia as a titanosauroid outside Titanosauria while Titanosauria was redefined to include only the taxa classified by their study Eutitanosauria was proposed as a name for the titanosaurs more derived than Epachthosaurus and noted the presence of osteoderms as a probable synapomorphy of this clade Aeolosaurus Alamosaurus Ampelosaurus and Magyarosaurus were looked at using their character list but were considered too incomplete to add to the final study 60 Argentinian paleontologist Jaime Powell published his 1986 thesis in 2003 with revisions to bring his old work up to date including the addition of more phylogenetics and the recognition of Titanosauria as a clade name Using the datamatrix of Sanz et al 1999 and modifying it to include additional taxa and some character changes Powell found that titanosaurs formed mostly a single gradual radiation beginning with Epachthosaurus as the most basal titanosaur and Ampelosaurus and Isisaurus as the most derived Titanosauroidea following Upchurch 1995 was distinguished by pre and post spinal laminae in anterior caudals a laterally flared ilium a lateral expansion of the upper femur and strongly opisthocoelous posterior dorsals Less inclusive Titanosauria was diagnosed by horizontally facing dorsal diapophyses prominent procoelous anterior caudals and a ridge on the sternal plates Within Titanosauria Eutitanosauria was characterized by the absence of a hyposphene hypantrum no femoral fourth trochanter and osteoderms A small clade of Alamosaurus Lirainosaurus and the Peiropolis titanosaur Trigonosaurus was resolved and diagnosed by only a rotation of the tibia so the proximal end is perpendicular to the distal end More derived clades while resolved were only weakly supported or characterized by reversions of diagnostic traits of larger groups below and left 61 Powell 2003 Titanosauroidea OpisthocoelicaudiaTitanosauria EpachthosaurusEutitanosauria AlamosaurusLirainosaurusTrigonosaurus Peiropolis titanosaur AeolosaurusSaltasaurusArgyrosaurusIsisaurus Titanosaurus colberti Ampelosaurus Curry Rogers amp Forster 2001 Titanosauria Jainosaurus Antarctosaurus septentrionalis MalawisaurusQuaesitosaurusRapetosaurusNemegtosaurusSaltasaurinae AlamosaurusIsisaurus Titanosaurus colberti OpisthocoelicaudiaNeuquensaurusSaltasaurus Rapetosaurus was described in 2001 by Kristina Curry Rogers and Catherine Forster who additionally provided a new phylogenetic analysis of Titanosauriformes above and right Titanosauria was strongly supported distinguished by up to 20 characters depending on unknown traits in basal taxa Similarly Saltasaurinae was characterised by up to 16 traits and the clade of Rapetosaurus and related taxa possessed four unique features Nemegtosaurus and Quaesitosaurus were resolved within Titanosauria for the first time after being placed in Diplodocoidea by multiple other analyses because Rapetosaurus provided the first significant titanosaur cranial material with associated postcrania All three genera were resolved in a clade together although Curry Rogers amp Forster noted that it was possible the group was only resolved because no other titanosaurs had comparable cranial material Opisthocoelicaudia was also nested deeply in Saltasaurinae though a further investigation of titanosaur interrelationships was proposed 62 nbsp Mounted skeleton of a juvenile RapetosaurusAmerican paleontologist Jeff Wilson presented another revision of overall sauropod phylogeny in 2002 resolving strong support for most groups and a similar result to Upchurch 1998 although with Euhelopus closest to titanosaurs instead of outside Neosauropoda More internal clades were resolved for Titanosauria with Nemegtosaurus and Rapetosaurus united within Nemegtosauridae and Saltasauridae including two subfamilies Opisthocoelicaudiinae and Saltasaurinae Saltasauridae was defined as a node stem triplet where everything descended from the common ancestor of Opisthocoelicaudia and Saltasaurus was within Saltasauridae and the subfamilies Saltasaurinae and Opisthocoelicaudiinae were for every taxon on one branch of the saltasaurid tree or the other 29 Wilson and Paul Upchurch followed this study up in 2003 with a significant revision of the type genus Titanosaurus and revisited all the material that had been assigned to the genus while reviewing titanosaur inter relationships Because they found Titanosaurus to be a dubious name they proposed that Linnaean named groups Titanosauridae and Titanosauroidea should be considered invalid as well Wilson amp Upchurch 2003 supported the definition of Salgado et al 1997 for Titanosauria since it was oldest and most similar to the original content of the group when named by Bonaparte amp Coria 1993 Lithostrotia Upchurch et al 2004 was defined to be Malawisaurus and all more derived titanosaurs and the clade Eutitanosauria Sanz et al 1999 was considered a possible synonym of Saltasauridae Wilson amp Upchurch 2003 presented a reduced cladogram of Titanosauria including only the most commonly analyzed taxa from previous studies resulting in a tree similar to that of Wilson 2002 but with Rapetosaurus and Nemegtosaurus excluded and Epachthosaurus included Alamosaurus and Opisthocoelicaudia were united within Opisthocoelicaudiinae Neuquensaurus and Saltasaurus formed Saltasaurinae and Isisaurus placed as the next most derived titanosaurid 7 nbsp Holotype skeleton of OpisthocoelicaudiaAt the same time as Wilson amp Upchurch redescribing the species of Titanosaurus Saldago 2003 looked over the potential invalidity of the family Titanosauridae and redefined the internal clades of Titanosauria 7 63 Titanosauria was defined as more inclusive than Titanosauroidea contrasting with earlier used by Upchurch 1995 and Sanz et al 1999 as all taxa in Somphospondyli closer to Saltasaurus than Euhelopus In order to create additional stability Saldago also defined Andesauroidea for only Andesaurus as every titanosaur closer to that genus than Saltasaurus and also it s opposite Titanosauroidea as every titanosaur closer to Saltasaurus than Andesaurus Next most inclusive Salgado revitalised Titanosauridae to include everything descended from the ancestor of Epachthosaurus and Saltasaurus and to replace the node stem triplet of Saltasauridae defined the clades Epachthosaurinae and Eutitanosauria as Epachthosaurus gt Saltasaurus and Saltasaurus lt Epachthosaurus respectively Saltasaurinae and Opisthocoelicaudiinae were retained with their original definitions but Lithostrotia was considered a synonym of Titanosauridae and Titanosaurinae was considered a paraphyletic clade of unrelated titanosaurids 63 nbsp Life restoration of Rinconsaurus a derived titanosaur possessing unique caudals that significantly change articular surfaces throughout the tailFollowing the clade definitions proposed in previous Salgado studies Bernardo Gonzalez Riga published two papers in 2003 describing new taxa in Titanosauria Mendozasaurus and Rinconsaurus with Jorge O Calvo In both studies the new taxa formed clades within Titanosauridae although neither were named and new diagnostic features were proposed for the family 64 65 For Mendozasaurus the new genus grouped with Malawisaurus as basal within Titanosauridae but because of the features of caudal vertebrae in these basal taxa Gonzalez Riga recommended revising the diagnosis of the family instead of changing the content 64 The situation of caudals in Rinconsaurus also suggested procoelous caudals were no longer diagnostic because in the tail of Rinconsaurus the vertebrae regularly changed their articular surfaces being from procoelous caudals interspersed with amphicoelous opisthocoelous and biconvex vertebrae 65 Rinconsaurus was then included in Aeolosaurini a clade named the following year by Aldirene Franco Rosas et al containing everything closer to Aeolosaurus and Gondwanatitan than Saltasaurus or Opisthocoelicaudia Only the three genera and various intermediate specimens were included in Aeolosaurini in their 2004 paper with the tribe being considered to be within Saltasaurinae 66 The second edition of The Dinosauria published in 2004 included newly described titanosaurs and other taxa reidentified as titanosaurs Written by Upchurch Paul Barrett and Peter Dodson a review of Sauropoda included a more expansive Titanosauria for sauropods more derived than brachiosaurids Titanosauria defined as everything closer to Saltasaurus than Brachiosaurus included a very large variety of taxa and the new clade Lithostrotia was named for a large number of more derived taxa although Nemegtosauridae was placed in Diplodocoidea following earlier publications of Upchurch 49 Lithostrotia adopted the distinguishing feature of strongly procoelous caudals previously used for Titanosauria 7 49 New phylogenetic frameworks edit In 2005 Curry Rogers proposed a new phylogenetic analysis that focused on the inter relationships of Titanosauria and included the most expansive character and taxon list of any study before it 364 characters were selected from all previous phylogenetic analyses and scored across 29 probable titanosaurs ranging from the Late Jurassic African Janenschia to the large variety of Late Cretaceous global genera Proposing her analysis as the basis for a new phylogenetic framework of Titanosauria Curry Rogers recommended only using named for clades that were very strongly supported For the strict consensus every taxon more derived than Brachiosaurus was in an unresolved polytomy except for a clade of Rapetosaurus and Nemegtosaurus and one of Saltasaurinae Within the recommended results she only named Titanosauria Lithostrotia Saltasauridae Saltasaurinae and Opisthocoelicaudiinae because of the weakness of support below and left 47 Curry Rogers 2005 Titanosauria AndesaurusPhuwiangosaurusParalititanArgyrosaurusJanenschiaAeolosaurusSaltasauridae Santa Rosa indet Opisthocoelicaudiinae IsisaurusAlamosaurusArgentinosaurusAntarctosaurusOpisthocoelicaudiaAegyptosaurusLithostrotia EpachthosaurusAmpelosaurusMagyarosaurusAgustiniaTrigonosaurus Brazil Series B MalawisaurusRapetosaurusNemegtosaurusSaltasaurinae LirainosaurusRocasaurus Jabalpur indet Quaesitosaurus Malagasy Taxon B NeuquensaurusSaltasaurus Carballido et al 2017 Titanosauria AndesaurusWintonotitanMalarguesaurusRuyangosaurusEpachthosaurusEu Rinconsauria RinconsaurusMuyelensaurusOverosaurusAeolosaurus maximusBonitasauraNotocolossusLognkosauria MendozasaurusQuetecsaurusFutalognkosaurusPuertasaurusDrusilasauraArgentinosaurusPatagotitanDreadnoughtusLithostrotia MalawisaurusBaurutitanRapetosaurusTapuiasaurusIsisaurusAlamosaurusSaltasauridae Opisthocoelicaudia inae NeuquensaurusSaltasaurus Another form of composite matrix was created by Calvo Gonzalez Riga and Juan Porfiri in 2007 based upon multiple previous studies between 1997 and 2003 The final analysis included 15 titanosaurs and 65 characters and the typical titanosaur subclades were resolved Titanosauridae being used over Lithostrotia following Salgado 2003 and the new clade Rinconsauria for the clade of Rinconsaurus and Muyelensaurus The new clade defined as Rinconsaurus and Muyelensaurus was placed as the sister taxon of Aeolosaurini which together grouped with Rapetosaurus as sister to Saltasauridae 48 In the same year Calvo et al published another paper describing the basal titanosaur Futalognkosaurus The only difference in the resulting phylogeny based on the matrix of the Calvo Gonzalez Riga amp Porfiri 2007 was the addition of Futalognkosaurus as the sister taxon to Mendozasaurus in a clade Calvo et al named Lognkosauria defined by the two genera classified within it 67 A very similar result was also recovered by Gonzalez Riga et al in 2009 in a phylogenetic analysis based partially on that of Calvo et al 2007 although Epachthosaurus was nested with Rapetosaurus outside the clades of aeolosaurines 68 Further updates and modifications were then made by Palbo Gallina amp Apesteguia in 2011 with the additions of Ligabuesaurus Antarctosaurus Nemegtosaurus and Bonitasaura and character updates to match bringing the total to 77 characters and 22 taxa Significantly contrasting the earlier results internal relationships of Titanosauria were rearranged Malawisaurus nested with Andesaurus in a clade of the basalmost titanosaurs outside Titanosauroidea where Lirainosaurus instead of being the basal member of the saltasaur branch was instead basalmost titanosauroid Lognkosauria moved to be within rinconsaurs while Nemegtosauridae was resolved as the sister of Aeolosaurus and Gondwanatitan and the rinconsaur lognkosaur branch Antarctosaurus was unstable but placed in a polytomy with the lognkosaurs and rinconsaurs before being excluded Saltasaurinae and its relationship with Opisthocoelicaudia remained the same 69 nbsp Skull of Tapuiasaurus macedoiNemegtosauridae was additionally revised by Hussam Zaher et al 2011 with the description of Tapuiasaurus which nested closer to Rapetosaurus than Nemegtosaurus with all three forming a clade of derived lithostrotians Using the matrix of Wilson 2002 following the additions of a few cranial characters and Diamantinasaurus Tangvayosaurus and Phuwiangosaurus remained the same as originally found by Wilson but with Diamantinasaurus sister to Saltasauridae and the other two genera as basal titanosaurs outside Lithostrotia since Titanosauria while undefined was labelled to include all taxa closer to Saltasaurus than Euhelopus 70 Following a revision of the skull of Tapuiasaurus Wilson et al 2016 rescored the analysis of Zaher et al and recovered similar results for everything but Nemegtosauridae where the family dissolved into a more basal Tapuiasaurus outside Lithostrota and Nemegtosaurus outside Saltasauridae While non titanosaur phylogeny remained identical in every single result the topology within Titanosauria was very labile and prone to change with minor adjustments 71 nbsp Mounted replica skeleton of Futalognkosaurus dukei Royal Ontario MuseumAlso following the 2002 analysis of Wilson Jose Carballido and colleagues published a redescription of Chubutisaurus in 2011 and utilized an updated Wilson matrix expanded to 289 characters across 41 taxa including 15 titanosaurs The primary focus of the analysis was on the basal titanosauriform taxa but Titanosauria was defined as the most recent common ancestor of Andesaurus delgadoi and Saltasaurus loricatus and all its descendants although the only autapomorphy of the group recovered was the absence of a prominent ventral process on the scapula 72 This same matrix and basis of characters was further utilized and expanded for analyses on Tehuelchesaurus Comahuesaurus and related rebbachisaurs Europasaurus and Padillasaurus before being expanded upon once again in 2017 by Carballido et al during the description of Patagotitan to 405 characters and 87 taxa including 28 titanosaurs above and right 73 74 75 76 77 The definition of Titanosauria was preserved following Salgado et al 1997 as Andesaurus plus Saltasaurus Eutitanosauria closer to Saltasaurus than Epachthosaurus was resolved as a very inclusive clade composed of two distinct branches one leading to the larger bodied lognkosaurs and the other to the smaller bodied saltasaurs On the lognkosaur branch of Eutitanosauria there is a branch of lognkosaurs and one of Rinconsauria Following Calvo Gonzalez Riga and Porfiri 2007 Rinconsauria was defined as Muyelensaurus plus Rinconsaurus and Lognkosauria was defined as Mendozasaurus plus Futalognkosaurus Rinconsauria included taxa typically found within Aeolosaurini as well so Aeolosaurini was redefined as Aeolosaurus rionegrinus plus Gondwanatitan to preserve the original restricted content otherwise the entire rinconsaur lognkosaur branch would be classified within Aeolosaurini Lithostrotia Saltasauridae and Saltasaurinae had their definitions preserved from earlier studies and included their typical content 77 Philip Mannion and colleagues redescribed Lusotitan in 2013 creating a new analysis of 279 characters drawn from significant previous analyses by Upchurch and Wilson supplemented by other studies 63 sauropods were included focusing on non titanosaurian sauropods although 14 probable titanosaurs were included Unique to Mannion et al continuous characters were distinguished in a run of the matrix which resolved almost all of Somphospondyli within Titanosauria because of Andesaurus placing very basal in a large group of Andesauroidea Titanosauroidea was tentatively retained as the opposite clade of titanosaurs which included all other traditional titanosaurs although it was noted because of the invalidity of Titanosaurus Titanosauroidea should be considered an invalid name as well 45 While the original analysis didn t focus on titanosaurs it was utilised during the descriptions of Savannasaurus and Diamantinasaurus Yongjinglong an osteology of Mendozasaurus and redescribing Tendaguria 34 78 79 80 42 From these updates an analysis of 548 characters and 124 taxa was published by Mannion et al in 2019 for a redescription of Jiangshanosaurus and Dongyangosaurus and additional revisions of Ruyangosaurus were made No differentiation between continuous and discrete characters was made like performed by Mannion et al 2013 but a large clade of Andesauroidea was still resolved with implied weights Both redescribed Asian taxa as well as Yongjinglong previously considered derived titanosaurs related to Saltasauridae were removed to outside the clade 81 Titanosauria AndesaurusRuyangosaurusDaxiatitanXianshanosaurusLithostrotia MalawisaurusTapuiasaurusNemegtosaurusAeolosaurusRapetosaurusAlamosaurusIsisaurusSaltasaurusOpisthocoelicaudiaSavannasaurusDiamantinasaurusEpachthosaurusMuyelensaurusRinconsaurusPitekunsaurusAntarctosaurusJainosaurusVahinyNormanniasaurusLognkosauria ArgentinosaurusFutalognkosaurusMendozasaurusNotocolossusPatagotitanPuertasaurusIn the description of Mansourasaurus Sallam et al 2017 published a phylogenetic analysis of Titanosauria including the most taxa of any analysis of the clade 82 In an updated version of the analysis with the taxon Mnyamawamtuka added Gorscak amp O Connor 2019 got similar results with slightly different relationships within small clades 12 nbsp Humerus of Ampelosaurus left and Magyarosaurus right and femora of left to right Magyarosaurus Lirainosaurus and AmpelosaurusTitanosauria KarongasaurusArgentinosaurusAndesaurusLigabuesaurusJiangshanosaurusAngolatitanMalarguesaurusChubutisaurusWintonotitanTastavinsaurusLithostrotia MalawisaurusMnyamawamtukaTapuiasaurusNormanniasaurusRinconsaurusIsisaurusRapetosaurusMuyelensaurusBonitasauraGondwanatitanPanamericansaurusOverosaurusShingopanaTrigonosaurusAeolosaurusArgyrosaurusDiamantinasaurusPatagotitanSaltasauridae ParalititanMaxakalisaurusNeuquensaurusSaltasaurusEpachthosaurusFutalognkosaurusMendozasaurusAtsinganosaurusNotocolossusRukwatitanLohuecotitanNemegtosaurusLirainosaurusOpisthocoelicaudiaAmpelosaurusMansourasaurusPaludititanPellegrinisaurusDreadnoughtusAlamosaurusBaurutitanPaleobiology editDiet edit Fossilized dung associated with late Cretaceous titanosaurids from India has revealed phytoliths silicified plant fragments that offer clues to a broad unselective plant diet Besides the plant remains that might have been expected such as cycads and conifers discoveries published in 2005 83 revealed an unexpectedly wide range of monocotyledons including palms and grasses Poaceae including ancestors of rice and bamboo which has given rise to speculation that herbivorous dinosaurs and grasses co evolved Nesting edit nbsp Diagram showing titanosaur nest excavation and egg layingA large titanosaurid nesting ground was discovered in Auca Mahuevo in Patagonia Argentina and another colony has reportedly been discovered in Spain Several hundred female saltasaurs dug holes with their back feet laid eggs in clutches averaging around 25 eggs each and buried the nests under dirt and vegetation The small eggs about 11 12 centimetres 4 3 4 7 in in diameter contained fossilised embryos complete with skin impressions The impressions showed that titanosaurs were covered in a mosaic armour of small bead like scales 21 The huge number of individuals gives evidence of herd behavior which along with their armor could have helped provide protection against large predators such as Abelisaurus 84 Range edit nbsp Patagotitan skeleton cast on display at the American Museum of Natural HistoryThe titanosaurs were the last great group of sauropods which existed from about 136 85 to 66 million years ago before the Cretaceous Paleogene extinction event and were the dominant herbivores of their time citation needed The fossil evidence suggests they replaced the other sauropods like the diplodocids and the brachiosaurids which died out between the late Jurassic and the mid Cretaceous Periods Titanosaurs were widespread In December 2011 Argentine scientists announced titanosaur fossils had been found on Antarctica 15 meaning that titanosaur fossils have been found on all continents They are especially numerous in the southern continents then part of the supercontinent of Gondwana Australia had titanosaurs around 96 million years ago fossils have been discovered in Queensland of a creature around 25 metres 82 ft long 86 87 Remains have also been discovered in New Zealand 88 One of the largest ever titanosaur footprints was discovered in the Gobi desert in 2016 89 One of the oldest remains of this group was described by Ghilardi et al 2016 90 It was found from the Valley of the Dinosaurs Paraiba state of Brazil representing a 136 million year old subadult individual 85 Paleopathology edit Ibirania a nanoid titanosaur fossil from Brazil suggests that individuals of various genera were susceptible to diseases such as osteomyelitis and parasite infestations The specimen hails from the late cretaceous Sao Jose do Rio Preto Formation Bauru Basin and was described in the journal Cretaceous Research by Aureliano et al 2021 91 Examination of the titanosaur s bones revealed what appear to be parasitic blood worms similar to the prehistoric Paleoleishmania but are 10 100 times larger that seemed to have caused the osteomyelitis The fossil is the first known instance of an aggressive case of osteomyelitis being caused by blood worms in an extinct animal 92 93 94 References edit Averianov A O Lopatin A V 2020 An unusual new sauropod dinosaur from the Late Cretaceous of Mongolia Journal of Systematic Palaeontology 18 12 1009 1032 Bibcode 2020JSPal 18 1009A doi 10 1080 14772019 2020 1716402 S2CID 214244529 Gorscak E O Connor P M Stevens N J Roberts E M 2014 The basal titanosaurian Rukwatitan bisepultus Dinosauria Sauropoda from the middle Cretaceous Galula Formation Rukwa Rift Basin southwestern Tanzania Journal of Vertebrate Paleontology 34 5 1133 1154 Bibcode 2014JVPal 34 1133G doi 10 1080 02724634 2014 845568 S2CID 677002 Averianov A O Sues H D 2017 Review of Cretaceous sauropod dinosaurs from Central Asia Cretaceous Research 69 184 197 Bibcode 2017CrRes 69 184A doi 10 1016 j cretres 2016 09 006 Martinez R D Lamanna M C Novas F E Ridgely R C Casal G A Martinez J E Vita J R Witmer L M 2016 A Basal Lithostrotian Titanosaur Dinosauria Sauropoda with a Complete Skull Implications for the Evolution and Paleobiology of Titanosauria PLOS ONE 11 4 e0151661 Bibcode 2016PLoSO 1151661M doi 10 1371 journal pone 0151661 PMC 4846048 PMID 27115989 Han F Yang L Lou F Sullivan C Xu X Qiu W Liu H Yu J Wu R Ke Y Xu M Hu J Lu P 2024 A new titanosaurian sauropod Gandititan cavocaudatus gen et sp nov from the Late Cretaceous of southern China Journal of Systematic Palaeontology 22 1 2293038 doi 10 1080 14772019 2023 2293038 Wang X Bandeira K L Qiu R Jiang S Cheng X Ma Y Kellner A W 2021 The first dinosaurs from the Early Cretaceous Hami Pterosaur Fauna China Scientific Reports 11 1 14962 Bibcode 2021NatSR 1114962W doi 10 1038 s41598 021 94273 7 PMC 8361124 PMID 34385481 a b c d e f g h i j k Wilson J A and Upchurch P 2003 A revision of Titanosaurus Lydekker Dinosauria Sauropoda the first dinosaur genus with a Gondwanan distribution PDF Journal of Systematic Palaeontology 1 3 125 160 doi 10 1017 S1477201903001044 S2CID 53997295 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link Mannion P D Upchurch P Jin X Zheng W 2019 New information on the Cretaceous sauropod dinosaurs of Zhejiang Province China impact on Laurasian titanosauriform phylogeny and biogeography Royal Society Open Science 6 8 191057 Bibcode 2019RSOS 691057M doi 10 1098 rsos 191057 PMC 6731702 PMID 31598266 Gallina P A Gonzalez Riga B J Ortiz David L D 2022 Time for Giants Titanosaurs from the Berriasian Santonian Age In Otero A Carballido J L Pol D eds South American Sauropodomorph Dinosaurs Record Diversity and Evolution Springer pp 299 340 doi 10 1007 978 3 030 95959 3 ISBN 978 3 030 95958 6 ISSN 2197 9596 S2CID 248368302 Santucci R M Filippi L S 2022 Last Titans Titanosaurs From the Campanian Maastrichtian Age In Otero A Carballido J L Pol D eds South American Sauropodomorph Dinosaurs Record Diversity and Evolution Springer pp 341 391 doi 10 1007 978 3 030 95959 3 ISBN 978 3 030 95958 6 ISSN 2197 9596 S2CID 248368302 Poropat S F Kundrat M Mannion P D Upchurch P Tischler T R Elliott D A 2021 Second specimen of the Late Cretaceous Australian sauropod dinosaur Diamantinasaurus matildae provides new anatomical information on the skull and neck of early titanosaurs Zoological Journal of the Linnean Society 192 2 610 674 doi 10 1093 zoolinnean zlaa173 a b Gorscak E O Connor P 2019 A new African Titanosaurian Sauropod Dinosaur from the middle Cretaceous Galula Formation Mtuka Member Rukwa Rift Basin Southwestern Tanzania PLOS ONE 14 2 e0211412 Bibcode 2019PLoSO 1411412G doi 10 1371 journal pone 0211412 PMC 6374010 PMID 30759122 Giant dinosaur slims down a bit BBC News 10 August 2017 Retrieved 8 April 2020 a b c Carballido J L Pol D Otero A Cerda I A Salgado L Garrido A C Ramezani J Cuneo N R Krause J M 2017 A new giant titanosaur sheds light on body mass evolution among sauropod dinosaurs Proceedings of the Royal Society B Biological Sciences 284 1860 20171219 doi 10 1098 rspb 2017 1219 PMC 5563814 PMID 28794222 a b Cerda Ignacio A Paulina Carabajal Ariana Salgado Leonardo Coria Rodolfo A Reguero Marcelo A Tambussi Claudia P Moly Juan J January 2012 The first record of a sauropod dinosaur from Antarctica Naturwissenschaften 99 1 83 87 Bibcode 2012NW 99 83C doi 10 1007 s00114 011 0869 x hdl 11336 52393 PMID 22173579 S2CID 18921496 Cashmore Daniel D Mannion Philip D Upchurch Paul Butler Richard J 2020 Ten more years of discovery revisiting the quality of the sauropodomorph dinosaur fossil record Palaeontology 63 6 951 978 Bibcode 2020Palgy 63 951C doi 10 1111 pala 12496 eISSN 1475 4983 ISSN 0031 0239 a b Ruben D F Martinez Matthew C Lamanna Fernando E Novas Ryan C Ridgely Gabriel A Casal Javier E Martinez Javier R Vita and Lawrence M Witmer 2016 A Basal Lithostrotian Titanosaur Dinosauria Sauropoda with a Complete Skull Implications for the Evolution and Paleobiology of Titanosauria PLOS ONE 11 4 e0151661 Bibcode 2016PLoSO 1151661M doi 10 1371 journal pone 0151661 PMC 4846048 PMID 27115989 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link Taylor Michael P 24 January 2022 Almost all known sauropod necks are incomplete and distorted PeerJ 10 12810 doi 10 7717 peerj 12810 ISSN 2167 8359 PMC 8793732 PMID 35127288 a b Gonzalez Riga Bernardo J Casal Gabriel A Fiorillo Anthony R Ortiz David Leonardo D 2022 Taphonomy Overview and New Perspectives Related to the Paleobiology of Giants In Otero Alejandro Carballido Jose L Pol Diego eds South American Sauropodomorph Dinosaurs Springer Earth System Sciences Cham Springer International Publishing pp 541 582 doi 10 1007 978 3 030 95959 3 15 ISBN 978 3 030 95958 6 Norell Mark A Wiemann Jasmina Fabbri Matteo Yu Congyu Marsicano Claudia A Moore Nall Anita Varricchio David J Pol Diego Zelenitsky Darla K 17 June 2020 The first dinosaur egg was soft Nature 583 7816 406 410 Bibcode 2020Natur 583 406N doi 10 1038 s41586 020 2412 8 ISSN 0028 0836 S2CID 219730449 a b c Coria R A Chiappe L M 2007 Embryonic Skin From Late Cretaceous Sauropods Dinosauria of Auca Mahuevo Patgonia Argentina Journal of Paleontology 81 6 1528 1532 Bibcode 2007JPal 81 1528C doi 10 1666 05 150 1 S2CID 131612932 Kundrat Martin Coria Rodolfo A Manning Terry W Snitting Daniel Chiappe Luis M Nudds John Ahlberg Per E 2020 Specialized Craniofacial Anatomy of a Titanosaurian Embryo from Argentina Current Biology 30 21 4263 4269 e2 doi 10 1016 j cub 2020 07 091 hdl 11336 150635 ISSN 0960 9822 PMID 32857974 S2CID 221343275 Wilson J A 2006 An overview of titanosaur evolution and phylogeny Actas de las III Jornadas sobre Dinosaurios y su Entorno Salas de los Infantes Burgos Spain pp 169 190 Stein K Csiki Z Rogers K C Weishampel D B Redelstorff R Carballido J L Sander P M 30 April 2010 Small body size and extreme cortical bone remodeling indicate phyletic dwarfism in Magyarosaurus dacus Sauropoda Titanosauria Proceedings of the National Academy of Sciences 107 20 9258 9263 Bibcode 2010PNAS 107 9258S doi 10 1073 pnas 1000781107 PMC 2889090 PMID 20435913 Baker Harry 2021 Massive new dinosaur might be the largest creature to ever roam Earth LiveScience com Retrieved 22 January 2021 Otero Alejandro Carballido Jose L Salgado Leonardo Canudo Jose Ignacio Garrido Alberto C January 2021 Report of a giant titanosaur sauropod from the Upper Cretaceous of Neuquen Province Argentina Cretaceous Research 122 104754 Bibcode 2021CrRes 12204754O doi 10 1016 j cretres 2021 104754 S2CID 233582290 Navarro Bruno A Ghilardi Aline M Aureliano Tito Diaz Veronica Diez Bandeira Kamila L N Cattaruzzi Andre G S Iori Fabiano V Martine Ariel M Carvalho Alberto B Anelli Luiz E Fernandes Marcelo A Zaher Hussam 15 September 2022 A New Nanoid Titanosaur Dinosauria Sauropoda from the Upper Cretaceous of Brazil Ameghiniana 59 5 doi 10 5710 AMGH 25 08 2022 3477 ISSN 0002 7014 S2CID 251875979 Apesteguia Sebastian 10 September 2004 Bonitasaura salgadoi gen et sp nov a beaked sauropod from the Late Cretaceous of Patagonia Naturwissenschaften 91 10 493 497 Bibcode 2004NW 91 493A doi 10 1007 s00114 004 0560 6 PMID 15729763 S2CID 33590452 a b Wilson J A 2002 Sauropod dinosaur phylogeny critique and cladistic analysis Zoological Journal of the Linnean Society 136 2 215 275 doi 10 1046 j 1096 3642 2002 00029 x hdl 2027 42 73066 Apesteguia S 2005 Evolution of the titanosaur metacarpus Pp 321 345 in Tidwell V and Carpenter K eds Thunder Lizards The Sauropodomorph Dinosaurs Indianapolis Indiana University Press Day J J Norman D B Gale A S Upchurch P Powell H P 2004 A Middle Jurassic dinosaur trackway site from Oxfordshire UK Palaeontology 47 2 319 348 Bibcode 2004Palgy 47 319D doi 10 1111 j 0031 0239 2004 00366 x Apesteguia S 2005 Evolution of the Hyposphene Hypantrum Complex within Sauropoda In Tidwell V Carpenter K eds Thunder Lizards The Sauropodomorph Dinosaurs Indiana University Press pp 248 267 ISBN 0 253 34542 1 Apesteguia S 2005 Evolution of the Titanosaur Metacarpus In Tidwell V Carpenter K eds Thunder Lizards The Sauropodomorph Dinosaurs Indiana University Press pp 321 345 ISBN 0 253 34542 1 a b Poropat S F Upchurch P Mannion P D Hocknull S A Kear B P Sloan T Sinapius G H K Elliot D A 2014 Revision of the sauropod dinosaur Diamantinasaurus matildae Hocknull et al 2009 from the mid Cretaceous of Australia Implications for Gondwanan titanosauriform dispersal Gondwana Research 27 3 995 1033 doi 10 1016 j gr 2014 03 014 hdl 10044 1 27497 Gonzalez Riga B J Lamanna M C David L O Calvo J O Coria J P 2016 A gigantic new dinosaur from Argentina and the evolution of the sauropod hind foot Scientific Reports 6 19165 Bibcode 2016NatSR 619165G doi 10 1038 srep19165 PMC 4725985 PMID 26777391 a b D Emic Michael D 2012 The early evolution of titanosauriform sauropod dinosaurs PDF Zoological Journal of the Linnean Society 166 3 624 671 doi 10 1111 j 1096 3642 2012 00853 x Vidal Daniel Ortega Francisco Sanz Jose Luis 13 August 2014 Peter Dodson ed Titanosaur Osteoderms from the Upper Cretaceous of Lo Hueco Spain and Their Implications on the Armor of Laurasian Titanosaurs PLOS ONE 9 8 102488 Bibcode 2014PLoSO 9j2488V doi 10 1371 journal pone 0102488 ISSN 1932 6203 PMC 4131861 PMID 25118985 Curry Rogers Kristina D Emic Michael Rogers Raymond Vickaryous Matthew Cagan Amanda 29 November 2011 Sauropod dinosaur osteoderms from the Late Cretaceous of Madagascar Nature Communications 2 564 Bibcode 2011NatCo 2 564C doi 10 1038 ncomms1578 ISSN 2041 1723 PMID 22127060 Vidal Daniel Ortega Francisco Gasco Francisco Serrano Martinez Alejandro Sanz Jose Luis 7 February 2017 The internal anatomy of titanosaur osteoderms from the Upper Cretaceous of Spain is compatible with a role in oogenesis Scientific Reports 7 42035 Bibcode 2017NatSR 742035V doi 10 1038 srep42035 ISSN 2045 2322 PMC 5294579 PMID 28169348 Carrano Matthew T D Emic Michael D 3 February 2015 Osteoderms of the titanosaur sauropod dinosaur Alamosaurus sanjuanensis Gilmore 1922 Journal of Vertebrate Paleontology 35 1 e901334 Bibcode 2015JVPal 35E1334C doi 10 1080 02724634 2014 901334 S2CID 86797277 Silva Junior Julian C G Montefeltro Felipe C Marinho Thiago S Martinelli Agustin G Langer Max C 1 January 2022 Finite elements analysis suggests a defensive role for osteoderms in titanosaur dinosaurs Sauropoda Cretaceous Research 129 105031 Bibcode 2022CrRes 12905031S doi 10 1016 j cretres 2021 105031 ISSN 0195 6671 S2CID 239121820 a b Mannion P D Upchurch P Schwarz D Wings O 2019 Taxonomic affinities of the putative titanosaurs from the Late Jurassic Tendaguru Formation of Tanzania phylogenetic and biogeographic implications for eusauropod dinosaur evolution Zoological Journal of the Linnean Society 185 3 784 909 doi 10 1093 zoolinnean zly068 hdl 10044 1 64080 Gonzalez Riga Bernardo J Lamanna Matthew C Otero Alejandro Ortiz David Leonardo D Kellner Alexander W A Ibiricu Lucio M 2019 An overview of the appendicular skeletal anatomy of South American titanosaurian sauropods with definition of a newly recognized clade Anais da Academia Brasileira de Ciencias 91 suppl 2 e20180374 doi 10 1590 0001 3765201920180374 hdl 11336 106658 PMID 31340217 a b c Salgado L Coria R A Calvo J O 1997 Evolution of titanosaurid sauropods I Phylogenetic analysis based on the postcranial evidence Ameghiniana 34 1 3 32 a b c Mannion P D Upchurch P Barnes R N Mateus O 2013 Osteology of the Late Jurassic Portuguese sauropod dinosaur Lusotitan atalaiensis Macronaria and the evolutionary history of basal titanosauriforms Zoological Journal of the Linnean Society 168 98 206 doi 10 1111 zoj 12029 a b Bonaparte J F Coria R A 1993 Un nuevo y gigantesco sauropodo titanosaurio de la Formacion Rio Limay Albiano Cenomaniano de la Provincia del Neuquen Argentina Ameghiniana 30 3 271 282 a b Curry Rogers K 2005 Titanosauria a phylogenetic overview In Curry Rogers K Wilson J eds The Sauropods Evolution and Paleobiology Indiana University Press pp 50 103 ISBN 0 520 24623 3 a b c Calvo J O Gonzalez Riga B J Porfiri J D 2007 A new titanosaur sauropod from the Late Cretaceous of Neuquen Patagonia Argentina Arquivos do Museu Nacional Rio de Janeiro 65 4 485 504 a b c d Upchurch P Barrett P M Dodson P 2004 Sauropoda In Weishampel D B Dodson P Osmolska H eds The Dinosauria 2nd ed University of California Press pp 259 322 ISBN 0 520 24209 2 Lydekker R 1877 Notice of new and other Vertebrata from Indian Tertiary and Secondary rocks Records of the Geological Survey of India 10 1 30 43 Lydekker R 1888 Part I Containing the orders Ornithosauria Crocodilia Dinosauria Squamata Rhynchocephalia and Proterosauria Catalogue of the fossil Reptilia and Amphibia in the British Museum Natural History British Museum of Natural History pp 134 136 Lydekker R 1893 Part I The dinosaurs of Patagonia Contributions to a knowledge of the fossil vertebrates of Argentina Vol 2 Anales del Museo de La Plata pp 1 14 Nopcsa F 1928 The genera of reptiles Palaeobiologica 1 184 Huene F von 1929 Los Saurisquios y Ornitisquios del Cretaceo Argentino Anales del Museo de la Plata 3 2 1 196 Powell J E 1986 Revision de los Titanosauridos de America del Sur PhD Thesis Universidad Nacional de Tucuman Facultad de Ciencas Naturales 1 340 a b McIntosh J S 1990 Sauropoda In Weishampel D B Dodson P Osmolska H eds The Dinosauria 1st ed University of California Press pp 345 402 ISBN 0 520 06726 6 Le Loeuff J 1993 European titanosaurids Revue de Paleobiologie Special 7 105 117 Upchurch P 1995 The evolutionary history of sauropod dinosaurs PDF Philosophical Transactions of the Royal Society of London B 349 1330 365 390 Bibcode 1995RSPTB 349 365U doi 10 1098 rstb 1995 0125 Upchurch P 1998 The phylogenetic relationships of sauropod dinosaurs Zoological Journal of the Linnean Society 124 1 43 103 doi 10 1006 zjls 1997 0138 Sanz J L Powell J E Le Loeuff J Martinez R Pereda Suberbiola X 1999 Sauropod remains from the Upper Cretaceous of Lano Northcentral Spain Titanosaur phylogenetic relationships Estudios del Museo de Ciencias Naturales de Alava 14 1 235 255 Powell J E 2003 Revision of South American Titanosaurid dinosaurs palaeobiological palaeobiogeographical and phylogenetic aspects Records of the Queen Victoria Museum 111 1 173 Curry Rogers K Forster C A 2001 The last of the dinosaur titans a new sauropod from Madagascar Nature 412 6846 530 534 Bibcode 2001Natur 412 530C doi 10 1038 35087566 PMID 11484051 S2CID 4347583 a b Salgado L 2003 Should we abandon the name Titanosauridae Some comments on the taxonomy of Titanosaurian Sauropods Dinosauria Revista Espanola de Paleontologia 18 1 15 21 a b Gonzalez Riga B J 2003 A new titanosaur Dinosauria Sauropoda from the Upper Cretaceous of Mendoza Province Argentina Ameghiniana 40 2 155 172 a b Calvo J O Gonzalez Riga B J 2003 Rinconsaurus caudamirus gen et sp nov a new titanosaurid Dinosauria Sauropoda from the Late Cretaceous of Patagonia Argentina Revista Geologica de Chile 30 2 333 353 doi 10 4067 S0716 02082003000200011 Franco Rosas A C Salgado L Rosas C F Carvalho I S 2004 Nuevos materiales de Titanosaurios Sauropoda en el Cretacico Superior de Mato Grosso Brazil Revista Brasileira de Paleontologia 7 3 329 336 doi 10 4072 rbp 2004 3 04 Calvo J O Porfiri J D Gonzalez Riga B J Kellner A W 2007 A new Cretaceous terrestrial ecosystem from Gondwana with the description of a new sauropod dinosaur Anais da Academia Brasileira de Ciencias 79 3 529 541 doi 10 1590 S0001 37652007000300013 PMID 17768539 Gonzalez Riga B J Previtera E Pirrone C A 2009 Malarguesaurus florenciae gen et sp nov a new titanosauriform Dinosauria Sauropoda from the Upper Cretaceous of Mendoza Argentina Cretaceous Research 30 1 135 148 Bibcode 2009CrRes 30 135G doi 10 1016 j cretres 2008 06 006 Gallina P A Apesteguia S 2011 Cranial anatomy and phylogenetic position of the titanosaurian sauropod Bonitasaura salgadoi Acta Palaeontologica Polonica 56 1 45 60 doi 10 4202 app 2010 0011 hdl 11336 192915 Zaher H Pol D Carvalho A B Nascimento P M Riccomini C Larson P Juarez Valieri R Pires Dominigues R da Silva Jr N J Campos D A 2011 A Complete Skull of an Early Cretaceous Sauropod and the Evolution of Advanced Titanosaurians PLOS ONE 6 2 e16663 Bibcode 2011PLoSO 616663Z doi 10 1371 journal pone 0016663 PMC 3034730 PMID 21326881 Wilson J A Pol D Carvalho A B Zaher H 2016 The skull of the titanosaur Tapuiasaurus macedoi Dinosauria Sauropoda a basal titanosaur from the Lower Cretaceous of Brazil Zoological Journal of the Linnean Society 178 3 611 662 doi 10 1111 zoj 12420 hdl 2027 42 134419 Carballido Jose L Pol Diego Cerda Ignacio Salgado Leonardo 10 February 2011 The osteology of Chubutisaurus insignis del Corro 1975 Dinosauria Neosauropoda from the middle Cretaceous of central Patagonia Argentina Journal of Vertebrate Paleontology 31 1 93 110 Bibcode 2011JVPal 31 93C doi 10 1080 02724634 2011 539651 hdl 11336 94194 S2CID 86055386 Carballido J L Rauhut O W M Pol D Salgado L 2011 Osteology and phylogenetic relationships of Tehuelchesaurus benitezii Dinosauria Sauropoda from the Upper Jurassic of Patagonia Zoological Journal of the Linnean Society 163 2 605 662 doi 10 1111 j 1096 3642 2011 00723 x hdl 11336 71888 Carballido J L Salgado L Pol D Canudo J I Garrido A 2012 A new basal rebbachisaurid Sauropoda Diplodocoidea from the Early Cretaceous of the Neuquen Basin evolution and biogeography of the group Historical Biology 24 6 631 654 Bibcode 2012HBio 24 631C doi 10 1080 08912963 2012 672416 S2CID 130423764 Carballido J L Sander M P 2014 Postcranial axial skeleton of Europasaurus holgeri Dinosauria Sauropoda from the Upper Jurassic of Germany implications for sauropod ontogeny and phylogenetic relationships of basal Macronaria Journal of Systematic Palaeontology 12 3 335 387 Bibcode 2014JSPal 12 335C doi 10 1080 14772019 2013 764935 hdl 11336 19199 S2CID 85087382 Carballido J L Pol D Parra Ruge M L Bernal S P Paramo Fonseca M E Etayo Serna F 2015 A new Early Cretaceous brachiosaurid Dinosauria Neosauropoda from northwestern Gondwana Villa de Leiva Colombia Journal of Vertebrate Paleontology e980505 5 1 12 Bibcode 2015JVPal 35E0505C doi 10 1080 02724634 2015 980505 S2CID 129498917 a b Carballido J L Pol D Otero A Cerda I A Salgado L Garrido A C Ramezani J Cuneo N R Krause J R 2017 A new giant titanosaur sheds light on body mass evolution among sauropod dinosaurs Proceedings of the Royal Society B 284 1860 20171219 doi 10 1098 rspb 2017 1219 PMC 5563814 PMID 28794222 Poropat S F Mannion P D Upchurch P Hocknull S A Kear B P Kundrat M Tischler T R Sloan T Sinapius G H K Elliott J A Elliott D A 2016 New Australian sauropods shed light on Cretaceous dinosaur palaeobiogeography Scientific Reports 6 34467 Bibcode 2016NatSR 634467P doi 10 1038 srep34467 PMC 5072287 PMID 27763598 Li L G Li D Q You H L Dodson P 2014 A New Titanosaurian Sauropod from the Hekou Group Lower Cretaceous of the Lanzhou Minhe Basin Gansu Province China PLOS ONE 9 1 e85979 Bibcode 2014PLoSO 985979L doi 10 1371 journal pone 0085979 PMC 3906019 PMID 24489684 Gonzalez Riga B J Mannion P D Poropat S F Ortiz David L Coria J P 2018 Osteology of the Late Cretaceous Argentinean sauropod dinosaur Mendozasaurus neguyelap implications for basal titanosaur relationships Zoological Journal of the Linnean Society 184 1 136 181 doi 10 1093 zoolinnean zlx103 hdl 10044 1 53967 Mannion P D Upchurch P Jin X Zheng W 2019 New information on the Cretaceous sauropod dinosaurs of Zhejiang Province China impact on Laurasian titanosauriform phylogeny and biogeography Royal Society Open Science 6 8 191057 Bibcode 2019RSOS 691057M doi 10 1098 rsos 191057 PMC 6731702 PMID 31598266 Sallam H Gorscak E O Connor P El Dawoudi I El Sayed S Saber S 26 June 2017 New Egyptian sauropod reveals Late Cretaceous dinosaur dispersal between Europe and Africa Nature 2 3 445 451 doi 10 1038 s41559 017 0455 5 PMID 29379183 S2CID 3375335 Prasad Vandana Stromberg Caroline A E Alimohammadian Habib Sahni Ashok 18 November 2005 Dinosaur Coprolites and the Early Evolution of Grasses and Grazers Science 310 5751 1177 1180 Bibcode 2005Sci 310 1177P doi 10 1126 science 1118806 PMID 16293759 S2CID 1816461 Vila Bernat Jackson Frankie D Fortuny Josep Selles Albert G Galobart Angel 2010 3 D Modelling of Megaloolithid Clutches Insights about Nest Construction and Dinosaur Behaviour PLOS ONE 5 5 e10362 Bibcode 2010PLoSO 510362V doi 10 1371 journal pone 0010362 PMC 2864735 PMID 20463953 a b Ghilardi Aline M Aureliano Tito Duque Rudah R C Fernandes Marcelo A Barreto Alcina M F Chinsamy Anusuya 1 December 2016 A new titanosaur from the Lower Cretaceous of Brazil Cretaceous Research 67 16 24 Bibcode 2016CrRes 67 16G doi 10 1016 j cretres 2016 07 001 Roberts Greg 3 May 2007 Bones reveal Queensland s prehistoric titans The Australian Retrieved 4 May 2007 Molnar R E Salisbury S W 2005 Observations on Cretaceous Sauropods from Australia In Carpenter Kenneth Tidswell Virginia eds Thunder Lizards The Sauropodomorph Dinosaurs Indiana University Press pp 454 465 ISBN 978 0 253 34542 4 Bone discovery confirms big dinosaur roamed NZ The New Zealand Herald 24 June 2008 Retrieved 18 January 2009 Giant footprint could shed light on titanosaurus behaviour BBC News Online 5 October 2016 Retrieved 5 October 2016 Ghilardi Aline M Aureliano Tito Duque Rudah R C Fernandes Marcelo A Barreto Alcina M F Chinsamy Anusuya 1 December 2016 A new titanosaur from the Lower Cretaceous of Brazil Cretaceous Research 67 16 24 Bibcode 2016CrRes 67 16G doi 10 1016 j cretres 2016 07 001 ISSN 0195 6671 Aureliano Tito Nascimento Carolina S I Fernandes Marcelo A Ricardi Branco Fresia Ghilardi Aline M 1 February 2021 Blood parasites and acute osteomyelitis in a non avian dinosaur Sauropoda Titanosauria from the Upper Cretaceous Adamantina Formation Bauru Basin Southeast Brazil Cretaceous Research 118 104672 Bibcode 2021CrRes 11804672A doi 10 1016 j cretres 2020 104672 ISSN 0195 6671 S2CID 225134198 Aureliano Tito Nascimento Carolina S I Fernandes Marcelo A Ricardi Branco Fresia Ghilardi Aline M February 2021 Blood parasites and acute osteomyelitis in a non avian dinosaur Sauropoda Titanosauria from the Upper Cretaceous Adamantina Formation Bauru Basin Southeast Brazil Cretaceous Research 118 104672 Bibcode 2021CrRes 11804672A doi 10 1016 j cretres 2020 104672 S2CID 225134198 Baraniuk Chris January 2021 Gruesome Blood Worms Invaded a Dinosaur s Leg Bone Fossil Suggests Scientific American Cretaceous Titanosaur Suffered from Blood Parasites and Severe Bone Inflammation Paleontology Sci News com Breaking Science News Sci News com External links editTitanosauria at the Encyclopaedia Britannica Portals nbsp Dinosaurs nbsp Paleontology Retrieved from https en wikipedia org w index php title Titanosauria amp oldid 1207223690, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.