fbpx
Wikipedia

Opisthocoelicaudia

Opisthocoelicaudia /ɒˌpɪsθsɪlɪˈkɔːdiə/ is a genus of sauropod dinosaur of the Late Cretaceous Period discovered in the Gobi Desert of Mongolia. The type species is Opisthocoelicaudia skarzynskii. A well-preserved skeleton lacking only the head and neck was unearthed in 1965 by Polish and Mongolian scientists, making Opisthocoelicaudia one of the best known sauropods from the Late Cretaceous. Tooth marks on this skeleton indicate that large carnivorous dinosaurs had fed on the carcass and possibly had carried away the now-missing parts. To date, only two additional, much less complete specimens are known, including part of a shoulder and a fragmentary tail. A relatively small sauropod, Opisthocoelicaudia measured about 11.4–13 m (37–43 ft) in length. Like other sauropods, it would have been characterised by a small head sitting on a very long neck and a barrel shaped trunk carried by four column-like legs. The name Opisthocoelicaudia means "posterior cavity tail", alluding to the unusual, opisthocoel condition of the anterior tail vertebrae that were concave on their posterior sides. This and other skeletal features lead researchers to propose that Opisthocoelicaudia was able to rear on its hindlegs.

Opisthocoelicaudia
Temporal range: Late Cretaceous, 70 Ma
Skeleton restoration of Opisthocoelicaudia in the Museum of Evolution of Polish Academy of Sciences, Warsaw
Scientific classification
Domain: Eukaryota
Kingdom: Animalia
Phylum: Chordata
Clade: Dinosauria
Clade: Saurischia
Clade: Sauropodomorpha
Clade: Sauropoda
Clade: Macronaria
Clade: Titanosauria
Family: Saltasauridae
Genus: Opisthocoelicaudia
Borsuk-Białynicka, 1977
Species:
O. skarzynskii
Binomial name
Opisthocoelicaudia skarzynskii
Borsuk-Białynicka, 1977

Named and described by Polish paleontologist Maria Magdalena Borsuk-Białynicka in 1977, Opisthocoelicaudia was first thought to be a new member of the Camarasauridae, but is currently considered a derived member of the Titanosauria. Its exact relationships within Titanosauria are contentious, but it may have been close to the North American Alamosaurus. All Opisthocoelicaudia fossils stem from the Nemegt Formation. Despite being rich in dinosaur fossils, the only other sauropod from this rock unit is Nemegtosaurus, which is known from a single skull. Since the skull of Opisthocoelicaudia remains unknown, several researchers have suggested that Nemegtosaurus and Opisthocoelicaudia may represent the same species. Sauropod footprints from the Nemegt Formation, which include skin impressions, can probably be referred to either Nemegtosaurus or Opisthocoelicaudia as these are the only known sauropods from this formation.

Discovery and specimens edit

 
Mounted holotype specimen

The type specimen was discovered between June 10 and 23, 1965, during a joint Polish-Mongolian paleontological expedition led by Polish paleontologist Zofia Kielan-Jaworowska.[1][2] The largest of a series of expeditions carried out in 1963–1971, this expedition involved 21 members, which at times were supported by additional hired Mongolian workers. The site of discovery is located in Ömnögovi Province in southern Mongolia in the Altan Uul area, which exposes some 100 km2 of badlands. The sediments exposed at Altan Uul belong to the Nemegt Formation, the youngest of the three geological formations of the Nemegt Basin. Opisthocoelicaudia was the first of several important dinosaur discoveries made by the 1965 expedition. The other finds, made at different localities, include several skeletons of the tyrannosaurid Tarbosaurus as well as the type specimens of the giant ornithomimosaur Deinocheirus, the sauropod Nemegtosaurus, and the pachycephalosaur Homalocephale.[2]

 
Latero-ventral view of the opisthocoelous anterior tail vertebrae, which lend Opisthocoelicaudia its name

On the fifth day of fieldwork, Ryszard Gradziński, the geologist of the expedition, found a concretion of well-preserved bones which promised to belong to a fairly complete skeleton. Excavation starting the next day revealed a nearly complete skeleton lacking only the head and neck. Until today, this specimen remains by far the most complete finding of this dinosaur. The transport of the specimen out of rough terrain caused major technical problems. Stone blocks containing the fossils had to be moved some 580 meters, dragged on improvised metal sledges made out of petrol drums, before they could be loaded onto trucks. Because the skeleton was embedded in very hard sandstone layers, several blocks weighed over a ton. On July 9, the packing of the skeleton into 35 crates started for transportation to Dalanzadgad; together, the crates weighed about 12 tons.[1][2]

The type specimen belonged to an aged individual.[3] Its taphonomy is unusual as it was found lying on its back – in contrast, most other nearly complete dinosaur skeletons of the Nemegt Formation usually are found lying on their sides.[4] The specimen was found encased in cross-bedded sandstone deposited by a river. Most of the discovered vertebrae were still connected together, forming a continuous series of eight dorsal, six sacral and thirty-four caudal vertebrae. An additional three vertebrae were found isolated from the series and may belong to the transitional area between back and neck. The remaining parts of the skeleton were shifted slightly out of their original anatomical position. Both the left limb and rib bones were found on the right side of the body, while conversely the right limb and rib bones were found on the left side. Bite marks have been identified on the skeleton, particularly in the pelvis and the thigh bone, showing that predators had fed on the carcass. The skull and neck are missing, indicating that the carnivores might have carried away these body parts.[3] The completeness of the remains indicate that the individual had died near the discovery site.[4] A flooding event might have transported the carcass a short distance and subsequently covered it with sediment, even before the soft tissue had decayed entirely.[3]

 
Shoulder blade and coracoid of a juvenile (ZPAL MgD-I/25c)

In 1977, Polish paleontologist Maria Magdalena Borsuk-Białynicka published her comprehensive description of the skeleton and named Opisthocoelicaudia skarzynskii as a new genus and species. The genus name, hinting at the unusual opisthocoel condition of the tail vertebrae, means "posterior cavity tail". It is derived from the Greek ὄπισθεν, opisthen [behind, at the back], κοῖλος, koilos [hollow], and Latin cauda [tail].[5] The specific name honors Wojciech Skarżyński, the person who prepared the type specimen.[3] Opisthocoelicaudia was only the third sauropod from Asia known from a postcranial skeleton, after Euhelopus and Mamenchisaurus.[3] After its discovery, the holotype skeleton became part of the collection of the Institute of Paleobiology in Warsaw, but later was handed back to its country of origin, now being housed at the Institute of Geology of the Mongolian Academy of Sciences in Ulaanbaatar under the catalog number MPC-D100/404.[6][7] Besides the type specimen, Borsuk-Białynicka described a shoulder blade and coracoid (ZPAL MgD-I/25c) from the same locality. These bones were not yet fused to each other, indicating a juvenile individual.[3]

By 2017, sauropod fossils had been recovered from a total of 32 localities within the Nemegt Formation, and possibly belong to either Opisthocoelicaudia or Nemegtosaurus. At least two finds from the Nemegt locality – a fragmentary tail (MPD 100/406) and a pair of claws – show features diagnostic for Opisthocoelicaudia and can be referred to the latter.[8][7] Field crews led by Philip Currie attempted to relocate the Opisthocoelicaudia holotype quarry in 2006 and 2008, but became successful only in 2009 thanks to additional data provided by Gradziński.[7] Although a prospection for additional bone material was not possible as the quarry had been filled by windblown sand, the quarry could be determined to fall within the lower portion of the Nemegt Formation.[7]

Description edit

 
Life restoration
 
Size diagram

Like other sauropods, Opisthocoelicaudia had a small head on a long neck, a barrel-shaped body on four columnar limbs, and a long tail. It was relatively small for a sauropod; the type specimen was estimated at 11.4 m (37 ft) to 13 m (43 ft) from the head to the tip of the tail.[9][10][11] The body mass has been estimated at 8.4 t (19,000 lb),[12] 10.5 t (23,000 lb),[9] 22 t (49,000 lb),[13] 13 t (29,000 lb)[14] and 25.4 t (56,000 lb)[15] in separate studies.

The skull and neck are not preserved, but the reconstruction of the nuchal ligament indicates the possession of a neck of medium length of roughly 5 m (16 ft).[3] Borsuk-Białynicka, in her 1977 description, noted the presence of eleven dorsal vertebrae. Gregory Paul in 2019, however, argued that the known part of the vertebral column actually includes the first cervical (neck vertebra), leaving only ten dorsals, typical of titanosaurs.[16] As in other titanosaurs, the back was quite flexible due to the lack of accessory vertebral joints (hyposphene-hypantrum articulations),[17] while the pelvic region was strengthened by an additional sixth hip vertebra.[3] The anterior vertebrae of the tail were opisthocoelous, which means they were convex on their anterior sides and concave on their back sides, forming ball-and-socket joints.[3] These opisthocoelous tail vertebrae lend Opisthocoelicaudia its name and serve to distinguish the genus from all other titanosaurs.[18] Other titanosaurs were usually characterised by strongly procoelous anterior tail vertebrae, which were concave on their anterior sides and convex on their back sides.[19] Another unique feature can be found in the back vertebrae, which show bifurcated spinous processes, resulting in a double row of bony projections along the top of the spine.[20] While unique in titanosaurs, this feature can be found in several other unrelated sauropods, including Diplodocus and Euhelopus, where it evolved independently.[21]

 
The ischium and pubis bones. The gap normally present between these bones is closed, a characteristic of Opisthocoelicaudia.

As in the hips of other titanosaurs, the ischium was relatively short, measuring only two-thirds the length of the pubis. The left and right ischium bones as well as the left and right pubis bones were ossified with each other over most of their length, closing the gap that in other sauropods is normally present between these bones.[18] The limbs were proportionally short, as seen in other titanosaurs.[22] The forelimbs measured 1.87 m (6.1 ft) in height in the nearly complete specimen, approximately two thirds the length of the hindlimbs, which were reconstructed at 2.46 m (8.1 ft) height.[3] As in other titanosaurs, the limbs were slightly spread outwards rather than standing vertically under the body,[23] while the forelimbs were more flexible and mobile compared to other sauropods.[22]

 
Limbs of Opisthocoelicaudia, showing the digit-less semicircular hands and the fully developed feet

The manus was composed merely of the five metacarpalia, which were orientated vertically and arranged in a semicircle. Carpal bones were missing, as in other titanosaurs.[3][24] Finger bones and claws were also completely absent – in most other titanosaurs, these bones were still present though extremely reduced in size. In the foot, the talus bone was strongly reduced as in other titanosaurs, while the calcaneus was probably completely absent in Opisthocoelicaudia.[3] In contrast to the manus, the foot showed well developed digits and claws. The phalangeal formula, which states the number of phalanges (digit bones) beginning with the innermost digit, is 2-2-2-1-0. Foot skeletons of titanosaurs are rarely found, and besides Opisthocoelicaudia, completely preserved examples are known only from Epachthosaurus and the unnamed La Invernada titanosaur, whose phalangeal formulas are 2-2-3-2-0 and 2-2-2-2-0, respectively. Of these three titanosaurs, Opisthocoelicaudia was the most derived while showing the fewest phalanges, indicating a progressive reduction in the phalangeal count during titanosaur evolution.[25] The claw of the first digit was not larger than that of the second digit, as in other sauropods, but roughly equal in size.[7]

Osteoderms (bony plates formed in the skin) have been found with at least 10 titanosaur genera. The lack of osteoderms in the nearly complete Opisthocoelicaudia skeleton might indicate they are absent in this genus.[26] However, the closely related Alamosaurus was found to have osteoderms nearly a century after its discovery, in addition to several other closely related titanosaurs, thus raising the possibility that Opisthocoelicaudia had them as well.[27]

Classification edit

Originally, Opisthocoelicaudia was classified as a member of the family Camarasauridae, together with Camarasaurus and Euhelopus. This classification was based on several shared features of the skeleton, most importantly the forked neural spines of the back vertebrae. In 1977, Borsuk-Białynicka considered Opisthocoelicaudia closer to Euhelopus than to Camarasaurus, placing it in the subfamily Euhelopodinae.[3] A 1981 study by Walter Coombs and Ralph Molnar, on the other hand, considered it a member of the subfamily Camarasaurinae and therefore a close relative of Camarasaurus.[28] Today, both Euhelopus and Opisthocoelicaudia are classified outside the Camarasauridae. In 1993, Leonardo Salgado and Rodolfo Coria showed Opisthocoelicaudia to represent a titanosaur and classified it within the family Titanosauridae.[19] The name Titanosauridae is currently considered invalid by many scientists;[29] instead, the name Lithostrotia is often used as an equivalent.[18][30]

Within the Lithostrotia, Opisthocoelicaudia has been found to be closely related to the genera Alamosaurus, Neuquensaurus, Rocasaurus and Saltasaurus, together forming the family Saltasauridae. Interrelationships of these genera are contested. Many scientists considered Opisthocoelicaudia to be most closely related to Alamosaurus, with both genera forming a monophyletic group, the Opisthocoelicaudiinae. Other scientists concluded that the Opisthocoelicaudiinae is paraphyletic (not forming a natural group).[31] Contradicting most other studies, Upchurch and colleagues in 2004 argued that Alamosaurus has to be placed outside the Saltasauridae as a close relative of Pellegrinisaurus, and therefore is not related to Opisthocoelicaudia at all.[18]

 
Skeletal drawing showing elements of the type specimen

This cladogram, based on Calvo and colleagues (2007), shows a monophyletic Opisthocoelicaudiinae:[32]

Opisthocoelicaudia in a cladogram after Navarro et al., 2022:[33]

Relationship to Nemegtosaurus edit

 
Cast of the skull of Nemegtosaurus, a possible senior synonym, mounted on the Opisthocoelicaudia skeletal restoration in Warsaw

Another sauropod of the Nemegt-Formation, Nemegtosaurus, is known only from a skull. Opisthocoelicaudia, on the other hand, lacks both the skull and neck, precluding a direct comparison and leading to suspicions that it may represent a synonym of Nemegtosaurus. According to the International Code of Zoological Nomenclature (ICZN), the oldest name has priority over younger synonyms – if Opisthocoelicaudia would be shown to be a synonym of Nemegtosaurus, the name Nemegtosaurus would remain valid while Opisthocoelicaudia would become invalid.[8]

Both Opisthocoelicaudia and Nemegtosaurus were discovered during the 1965 joint Polish-Mongolian expedition. Before the remains were prepared and described, the expedition crew believed both finds to belong to the same species of sauropod.[2] In 1977, Borsuk-Białynicka deemed Opisthocoelicaudia and Nemegtosaurus to represent separate genera because Nemegtosaurus was at this time considered to be a member of the Dicraeosauridae, while Opisthocoelicaudia seemed to be a representative of a different group, the Camarasauridae.[3]

Currently, both Opisthocoelicaudia and Nemegtosaurus are classified within the Titanosauria, and Jeffrey Wilson stated in 2005 that synonymy cannot be ruled out.[34] Currie and colleagues, in 2003 and 2017, argued that a synonymy is very probable in the light of new fossil discoveries in the Nemegt Formation.[8][7] After relocating the original Nemegtosaurus quarry, these researchers excavated postcranial bones of the Nemegtosaurus holotype including the centrum of a caudal vertebra and hind limb bones, which allowed, for the first time, a direct comparison between the Nemegtosaurus and Opisthocoelicaudia type specimens based on overlapping elements. These postcranial elements were found to be very similar to the corresponding parts of the Opisthocoelicaudia holotype. Most importantly, the discovered caudal centrum is opisthocoelous – a diagnostic feature of Opisthocoelicaudia – suggesting both genera were either closely related or synonymous. Furthermore, these authors noted that none of the 32 known sauropod localities of the Nemegt Formation revealed evidence for the presence of more than one species of sauropod.[7] In 2019, Alexander O. Averianov and Alexey V. Lopatin reported Nemegt sauropod vertebrae discovered in 1949 and some femora that differed from the same bones of Opisthocoelicaudia, and stated they probably belonged to Nemegtosaurus, thereby supporting that the two genera were distinct.[35]

In her 1977 description, Borsuk-Białynicka argued that different sauropod genera sharing the same habitat is nothing unusual, as is evident in the North American Morrison Formation.[3] Currie and colleagues, however, stressed in 2018 that the dinosaur fauna of the Nemegt Formation was fundamentally different, as larger dinosaurs were present with only few species per clade, indicating a harsh and geographically restricted habitat. Definitive proof for the suggested synonymy is, however, still missing, and additional overlapping elements would be required before Opisthocoelicaudia and Nemegtosaurus can be formally declared synonyms.[7]

Paleobiology edit

Posture edit

 
A: Posture based on the 1977 reconstruction by Borsuk-Białynicka[3] with a horizontal back. B: Posture based on the 2007 reconstruction by Schwarz et al.[36] with a much steeper scapula (green) angled 60° towards the horizontal, resulting in a downwards tilting back.

Originally, Borsuk-Białynicka assumed that in standard position the neck was horizontal or slanted slightly downward. This was based on the reconstruction of the nuchal ligament, which runs atop of the cervical and dorsal vertebrae and serves to support the weight of the head and neck.[3] Although an S-curved, swan-like ascending neck was envisaged in several subsequent reconstructions following similar depictions of better known sauropods, recent studies argue that sauropod necks were relatively straight and were carried more horizontally.[37]

The back was also reconstructed in a more or less horizontal orientation by Borsuk-Białynicka,[3] which was followed by most subsequent depictions. In a 2007 study, Daniela Schwarz and colleagues suggested that the back dipped towards the rear. According to these researchers, the shoulder blade would have been inclined at a horizontal angle of 55–65°, much steeper than previously thought, resulting in an elevated shoulder region.[36] With the vertebral column of the trunk and neck held in a relatively straight line, this would result in an elevated position of the head.[37]

Rearing stance edit

 
Pelvis of the type specimen

Opisthocoelicaudia may have been able to rear up on its hindlimbs for foraging, using its tail as a third leg. In 1977, Borsuk-Białynicka cited several skeletal features that might have been related to rearing, including the opisthocoelous vertebrae of the anterior part of the tail, which, according to this author, would have made the tail more flexible than in other sauropods. Features of the pelvis, such as the thickened shelf of the acetabulum, the flaring ilia, and the fused pubic symphysis, may have allowed the pelvis to withstand the stress of rearing.[3]

Heinrich Mallison in 2011 argued that Opisthocoelicaudia may have been able to angle the anterior part of the tail against the posterior part, producing a buckle in midsection. Thus, the anterior part would have been more straight during rearing than in other sauropods.[38] In 2005, Wilson assumed that rearing was an innovation not only of Opisthocoelicaudia but also of related genera within the subfamily Saltasaurinae. Common features of these genera, such as the shortened tail, may have evolved as adaptations to rearing.[31]

Footprints edit

 
Natural cast of a sauropod hindfoot impression, probably left by Opisthocoelicaudia

Footprints from the Nemegt Formation were unknown until 2003, when several examples had been described from the Nemegt locality by Currie and colleagues. Most of these footprints belonged to hadrosaurids (probably Saurolophus), while two have been left by a large theropod (probably Tarbosaurus) and yet another two by the hindfoot of a sauropod. The sauropod tracks were assigned to Opisthocoelicaudia, which, according to these authors, showed a matching hind foot morphology and was probably the only known sauropod (and, thus, the only potential trackmaker species) from the Nemegt Formation when Nemegtosaurus is regarded a synonym. The tracks were left in the soft and wet mud of shallow or freshly dried up points along a river and subsequently filled up with sand. Today only the sand infill remains, with the encasing mudstone having been eroded away.[8] The best-preserved footprint measures 63 cm (25 in) across, so it was probably created by an individual larger than the type specimen. Although the surface of the underside is hard to obtain, the vertical surfaces are very well preserved, making this track one of the best preserved sauropod tracks known. Four digital impressions can be distinguished, with two or three showing claw impressions. The toes were almost perpendicular. Even a skin impression has been preserved above the impression of the first toe, which shows the non-overlapping scales, each with an average diameter of 14 mm (0.55 in). The foot of the track creator was probably a little longer than wide. The second track is much shallower than the first, but shows well-preserved digit impressions with a high degree of detail, including at least two deep claw impressions that are rotated outwards, and a well-preserved impression of a fleshy toe pad behind the middle claw.[8]

Although number of additional sauropod tracks were reported in subsequent accounts, they continued to be rare in relation to the much more common hadrosaurid and theropod tracks. Brennan Stettner and colleagues, in 2017, reported on footprints discovered during a 2007 expedition to the Nemegt locality. The best preserved of these, a very large, 76 cm (30 in) long impression of a hindfoot, features a very well preserved underside showing digital pads and four outwards directed digits, the first three of which showing claws.[39] Also in 2017, Judai Nakajima and colleagues described a kidney-shaped impression as the first sauropod manus (forefoot) impression discovered in the formation.[40]

Paleoecology edit

 
Cretaceous-aged dinosaur fossil localities of Mongolia. Opisthocoelicaudia was collected in Altan Ula within area A (left).

The Nemegt Formation was deposited within the Late Cretaceous, although its exact age is unknown as it has never been dated radiometrically. According to different authors, the formation is late Campanian to early Maastrichtian, early Maastrichtian, or middle Maastrichtian in age.[41] The sediments of the Nemegt Formation were deposited in a plain crossed by rivers.[4] The climate was warm and subhumid with seasonal droughts,[41] and the soils were relatively dry.[42] Nevertheless, the Nemegt Formation was more humid than the underlying (and thus older) Barun Goyot and Djadochta Formations, which show a semiarid climate.[41]

The fauna of the Nemegt Formation includes aquatic or amphibious animals such as fish, turtles, and crocodiles as well as birds and the abundant medium to large sized dinosaurs, while smaller terrestrial vertebrates like lizards and mammals are rare.[41] Theropod dinosaurs are very diverse in the Nemegt and include the abundant tyrannosaur Tarbosaurus,[41] which might have preyed upon Opisthocoelicaudia.[43] The only other known sauropod is Nemegtosaurus, which is known from a single skull. Ornithischians are represented by the "duck-billed" hadrosaurids (including the very common Saurolophus), the thick-skulled pachycephalosaurs, and the heavily armored ankylosaurs. Neoceratopsians are absent, despite being present in the older Barun Goyot and Djadochta formations.[41] Other important dinosaur finds from the same locality as Opisthocoelicaudia include the troodontid Borogovia[44] and the ankylosaur Tarchia.[45]

References edit

  1. ^ a b Kielan-Jaworowska, Z.; Dovchin, N. (1968). "Narrative of the Polish-Mongolian Expeditions 1963–1965" (PDF). Palaeontologia Polonica. 19: 7–40.
  2. ^ a b c d Kielan-Jaworowska, Z. (2013). "The Polish-Mongolian paleontological expeditions, 1963–1971, and the nomadic expedition, 2002". In Pursuit of Early Mammals. Indiana University Press. pp. 35–70. ISBN 978-0-253-00817-6.
  3. ^ a b c d e f g h i j k l m n o p q r s Borsuk-Białynicka, M.M. (1977). "A new camarasaurid sauropod Opisthocoelicaudia skarzynskii gen. n., sp. n. from the Upper Cretaceous of Mongolia" (PDF). Palaeontologia Polonica. 37 (5): 5–64.
  4. ^ a b c Gradziński, Ryszard (1969). "Sedimentation of dinosaur-bearing Upper Cretaceous deposits of the Nemegt Basin, Gobi Desert" (PDF). Palaeontologia Polonica. 21: 147–249.
  5. ^ Hentschel, E., & Wagner, G. (1990). Zoologisches Wörterbuch. Tiernamen, allgemeinbiologische, anatomische, physiologische Termini und biographische Daten (4th edition). Stuttgart: Gustav Fischer.
  6. ^ Maryańska, T. (2000). "Sauropods from Mongolia and the former Soviet Union". In Benton, M.J.; Shishkin, M.A.; Unwin, D.M.; Kurochkin, E.N. (eds.). The Age of Dinosaurs in Russia and Mongolia. Cambridge University Press. pp. 457–458. ISBN 978-0-521-54582-2.
  7. ^ a b c d e f g h Currie, Philip J.; Wilson, Jeffrey A.; Fanti, Federico; Mainbayar, Buuvei; Tsogtbaatar, Khishigjav (2018). "Rediscovery of the type localities of the Late Cretaceous Mongolian sauropods Nemegtosaurus mongoliensis and Opisthocoelicaudia skarzynskii: Stratigraphic and taxonomic implications". Palaeogeography, Palaeoclimatology, Palaeoecology. 494: 5–13. Bibcode:2018PPP...494....5C. doi:10.1016/j.palaeo.2017.10.035. hdl:11585/622592. S2CID 133748374.
  8. ^ a b c d e Currie, P.J.; Badamgarav, D.; Koppelhus, E.B. (2003). "The first Late Cretaceous footprints from the locality in the Gobi of Mongolia" (PDF). Ichnos. 10: 1–12. doi:10.1080/10420940390235071. S2CID 140547544.
  9. ^ a b Seebacher, F. (2001). "A new method to calculate allometric length-mass relationships of dinosaurs" (PDF). Journal of Vertebrate Paleontology. 21 (1): 51–60. CiteSeerX 10.1.1.462.255. doi:10.1671/0272-4634(2001)021[0051:ANMTCA]2.0.CO;2. S2CID 53446536.
  10. ^ Holtz, Thomas R. Jr.; Rey, Luis V. (2007). Dinosaurs: the most complete, up-to-date encyclopedia for dinosaur lovers of all ages. New York: Random House. ISBN 978-0-375-82419-7.
  11. ^ Barsbold, R. (1997). "Mongolian dinosaurs". In Currie, P.J.; Padian, K. (eds.). Encyclopedia of Dinosaurs. Academic Press. pp. 447–450. ISBN 978-0-12-226810-6.
  12. ^ Paul, Gregory S. (1997). "Dinosaur models: the good, the bad, and using them to estimate the mass of dinosaurs". In Wolberg, D.L.; Stump, E.; Rosenberg, G.D. (eds.). Dinofest International. Proceedings of a symposium held at Arizona State University. Academy of Natural Sciences, Philadelphia. pp. 129–154 (152).
  13. ^ Anderson, J.F.; Hall-Martin, A.; Russell, D.A. (2009). "Long-bone circumference and weight in mammals, birds and dinosaurs". Journal of Zoology. 207 (1): 53–61. doi:10.1111/j.1469-7998.1985.tb04915.x.
  14. ^ Packard, G.C.; Boardman, T.J.; Birchard, G.F. (2009). "Allometric equations for predicting body mass of dinosaurs". Journal of Zoology. 279 (1): 102–110. doi:10.1111/j.1469-7998.2009.00594.x.
  15. ^ Benson, R. B. J.; Campione, N. S. E.; Carrano, M. T.; Mannion, P. D.; Sullivan, C.; Upchurch, P.; Evans, D. C. (2014). "Rates of Dinosaur Body Mass Evolution Indicate 170 Million Years of Sustained Ecological Innovation on the Avian Stem Lineage". PLOS Biology. 12 (5): e1001853. doi:10.1371/journal.pbio.1001853. PMC 4011683. PMID 24802911.
  16. ^ Paul, Gregory S. (2019). "Determining the largest known land animal: A critical comparison of differing methods for restoring the volume and mass of extinct animals" (PDF). Annals of the Carnegie Museum. 85 (4): 335–358. doi:10.2992/007.085.0403. S2CID 210840060.
  17. ^ Apesteguía, S. (2005). "Evolution of the Hyposphene-Hypantrum Complex within Sauropoda". In Tidwell, V.; Carpenter, K. (eds.). Thunder-Lizards: The Sauropodomorph Dinosaurs. Indiana University Press. ISBN 978-0-253-34542-4.
  18. ^ a b c d Upchurch, P.; Barret, P.M.; Dodson, P. (2004). "Sauropoda". In Weishampel, D.B.; Dodson, P.; Osmólska, H. (eds.). The Dinosauria (2nd ed.). University of California Press. pp. 259–322. ISBN 978-0-520-25408-4.
  19. ^ a b Salgado, L.; Coria, R.A. (1993). "Consideraciones sobre las relaciones filogeneticas de Opisthocoelicaudia skarzynskii (Sauropoda) del Cretácico superior de Mongolia". Jornadas Argentinas de Paleontologia de Vertebrados, Resumenes (in Spanish). 10.
  20. ^ Wilson, J. (2002). "Sauropod dinosaur phylogeny: critique and cladistic analysis". Zoological Journal of the Linnean Society. 136 (2): 217–276. doi:10.1046/j.1096-3642.2002.00029.x. hdl:2027.42/73066. ISSN 0024-4082.
  21. ^ Taylor, M.P.; Wedel; M.J. (2013). "Why sauropods had long necks; and why giraffes have short necks". PeerJ. 1: e36. doi:10.7717/peerj.36. ISSN 2167-8359. PMC 3628838. PMID 23638372.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  22. ^ a b Carrano, M.T. (2005). "The Evolution of Sauropod Locomotion: Morphological Diversity of a Secondarily Quadrupedal Radiation". In Rogers, K.C.; Wilson, J.A. (eds.). The Sauropods: Evolution and Paleobiology. University of California Press. ISBN 978-0-520-24623-2.
  23. ^ Wilson, J.A.; Carrano, M.T. (1999). "Titanosaurs and the origin of "wide-gauge" trackways: a biomechanical and systematic perspective on sauropod locomotion". Paleobiology. 52 (2): 252–267. Bibcode:1999Pbio...25..252W. doi:10.1017/S0094837300026543. S2CID 88907578.
  24. ^ Apesteguía, S. (2005). "Evolution of the Titanosaur Metacarpus". In Tidwell, V.; Carpenter, K. (eds.). Thunder-Lizards: The Sauropodomorph Dinosaurs. Indiana University Press. pp. 321–345. ISBN 978-0-253-34542-4.
  25. ^ González Riga, B.J.; Calvo, J.O.; Porfiri, J. (2008). "An articulated titanosaur from Patagonia (Argentina): New evidence of neosauropod pedal evolution" (PDF). Palaeoworld. 17: 33–40. doi:10.1016/j.palwor.2007.08.003.
  26. ^ d’Emic, M.D.; Wilson, J.A.; Chatterjee, S. (2009). "The titanosaur (Dinosauria: Sauropoda) osteoderm record: review and first definitive specimen from India". Journal of Vertebrate Paleontology. 29 (1): 165–177. Bibcode:2009JVPal..29..165D. doi:10.1671/039.029.0131. S2CID 85991253.
  27. ^ Carrano, M.T.; Michael, D.D. (2015). "Osteoderms of the titanosaur sauropod dinosaur Alamosaurus sanjuanensis Gilmore, 1922". Journal of Vertebrate Paleontology. 35 (1): e901334. Bibcode:2015JVPal..35E1334C. doi:10.1080/02724634.2014.901334. S2CID 86797277.
  28. ^ Coombs, W.P.; Molnar, R.E. (1981). "Sauropoda (Reptilia, Saurischia) from the Cretaceous of Queensland". Memoirs of the Queensland Museum. 20 (2): 351–373.
  29. ^ Wilson, J.A.; Upchurch, P. (2003). "A Revision of Titanosaurus Lydekker (Dinosauria – Sauropoda), the first dinosaur genus with a 'Gondwanan' distribution". Journal of Systematic Palaeontology. 1 (3): 125–160. Bibcode:2003JSPal...1..125W. doi:10.1017/s1477201903001044. S2CID 53997295.
  30. ^ D’emic, M.D. (2012). "The early evolution of titanosauriform sauropod dinosaurs" (PDF). Zoological Journal of the Linnean Society. 166 (3): 624–671. doi:10.1111/j.1096-3642.2012.00853.x.
  31. ^ a b Wilson, J. (2005). "Overview of Sauropod Phylogeny and Evolution". In Rogers, K.C.; Wilson, J.A. (eds.). The Sauropods: Evolution and Paleobiology. University of California Press. ISBN 978-0-520-24623-2.
  32. ^ Calvo, J.O., Porfiri, J.D., González-Riga, B.J., Kellner, A.W. (2007). "A new Cretaceous terrestrial ecosystem from Gondwana with the description of a new sauropod dinosaur". Anais da Academia Brasileira de Ciências. 79 (3): 529–541. doi:10.1590/S0001-37652007000300013. PMID 17768539.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  33. ^ Navarro, Bruno A.; Ghilardi, Aline M.; Aureliano, Tito; Díaz, Verónica Díez; Bandeira, Kamila L. N.; Cattaruzzi, André G. S.; Iori, Fabiano V.; Martine, Ariel M.; Carvalho, Alberto B.; Anelli, Luiz E.; Fernandes, Marcelo A.; Zaher, Hussam (September 15, 2022). "A new nanoid titanosaur (Dinosauria: Sauropoda) from the Upper Cretaceous of Brazil". Ameghiniana. 59 (5): 317–354. doi:10.5710/AMGH.25.08.2022.3477. ISSN 1851-8044. S2CID 251875979.
  34. ^ Wilson, J.A. (2005). "Redescription of the Mongolian sauropod Nemegtosaurus mongoliensis Nowinski (Dinosauria: Saurischia) and comments on Late Cretaceous sauropod diversity". Journal of Systematic Palaeontology. 3 (3): 283–318. Bibcode:2005JSPal...3..283W. doi:10.1017/S1477201905001628. S2CID 54070651.
  35. ^ Averianov, Alexander; Lopatin, Alexey (2019). "A possible new specimen of the Late Cretaceous Mongolian sauropod Nemegtosaurus and sauropod diversity in the Nemegt Formation". Acta Palaeontologica Polonica. 64. doi:10.4202/app.00596.2019. ISSN 0567-7920.
  36. ^ a b Schwarz, D.; Frey, E.; Meyer, C. (2007). "Novel reconstruction of the orientation of the pectoral girdle in sauropods". The Anatomical Record. 290 (1): 32–47. doi:10.1002/ar.20405. PMID 17441196.
  37. ^ a b Stevens, K.A. (2013). "The articulation of sauropod necks: methodology and mythology". PLOS ONE. 8 (10): e78572. Bibcode:2013PLoSO...878572S. doi:10.1371/journal.pone.0078572. PMC 3812995. PMID 24205266.
  38. ^ Mallison, H. (2011). "Rearing Giants: Kinetic-Dynamic Modeling of Sauropod Bipedal and Tripodal Poses". In Klein, N.; Remes, K.; Gee, C.T.; Sander, P.M. (eds.). Biology of the Sauropod Dinosaurs: Understanding the Life of Giants. Indiana University Press. pp. 239–320. ISBN 978-0-253-35508-9.
  39. ^ Stettner, B.; Persons, W. S.; Currie, P. J. (2018). "A giant sauropod footprint from the Nemegt Formation (Upper Cretaceous) of Mongolia". Palaeogeography, Palaeoclimatology, Palaeoecology. 494: 168–172. Bibcode:2018PPP...494..168S. doi:10.1016/j.palaeo.2017.10.027. ISSN 0031-0182.
  40. ^ Nakajima, J.; Kobayashi, Y.; Chinzorig, T.; Tanaka, T.; Takasaki, R.; Tsogtbaatar, K.; Currie, P. J.; Fiorillo, A. R. (2018). "Dinosaur tracks at the Nemegt locality: Paleobiological and paleoenvironmental implications". Palaeogeography, Palaeoclimatology, Palaeoecology. 494: 147–159. Bibcode:2018PPP...494..147N. doi:10.1016/j.palaeo.2017.10.026. ISSN 0031-0182.
  41. ^ a b c d e f Osmólska, H. (1997). "Nemegt Formation". Encyclopedia of Dinosaurs. Academic Press. pp. 471–472. ISBN 978-0-12-226810-6.
  42. ^ Jerzykiewicz, Tomasz; Dale A. Russell (1991). "Late Mesozoic stratigraphy and vertebrates of the Gobi Basin". Cretaceous Research. 12 (4): 345–377. Bibcode:1991CrRes..12..345J. doi:10.1016/0195-6671(91)90015-5. ISSN 0195-6671.
  43. ^ Hurum, J.H.; Sabath, K. (2003). "Giant theropod dinosaurs from Asia and North America: Skulls of Tarbosaurus bataar and Tyrannosaurus rex compared" (PDF). Acta Palaeontologica Polonica. 48 (2): 161–190. ISSN 0567-7920.
  44. ^ Osmólska, H. (1987). "Borogovia gracilicrus gen. et sp. n., a new troodontid dinosaur from the Late Cretaceous of Mongolia" (PDF). Acta Palaeontologica Polonica. 32: 133–150. ISSN 0567-7920.
  45. ^ Maryańska, T. (1969). (PDF). Palaeontologia Polonica. 21: 23–32. Archived from the original (PDF) on July 12, 2020. Retrieved March 1, 2014.

External links edit

  • How to Pronounce Opisthocoelicaudia

opisthocoelicaudia, ɔː, genus, sauropod, dinosaur, late, cretaceous, period, discovered, gobi, desert, mongolia, type, species, skarzynskii, well, preserved, skeleton, lacking, only, head, neck, unearthed, 1965, polish, mongolian, scientists, making, best, kno. Opisthocoelicaudia ɒ ˌ p ɪ s 8 oʊ s ɪ l ɪ ˈ k ɔː d i e is a genus of sauropod dinosaur of the Late Cretaceous Period discovered in the Gobi Desert of Mongolia The type species is Opisthocoelicaudia skarzynskii A well preserved skeleton lacking only the head and neck was unearthed in 1965 by Polish and Mongolian scientists making Opisthocoelicaudia one of the best known sauropods from the Late Cretaceous Tooth marks on this skeleton indicate that large carnivorous dinosaurs had fed on the carcass and possibly had carried away the now missing parts To date only two additional much less complete specimens are known including part of a shoulder and a fragmentary tail A relatively small sauropod Opisthocoelicaudia measured about 11 4 13 m 37 43 ft in length Like other sauropods it would have been characterised by a small head sitting on a very long neck and a barrel shaped trunk carried by four column like legs The name Opisthocoelicaudia means posterior cavity tail alluding to the unusual opisthocoel condition of the anterior tail vertebrae that were concave on their posterior sides This and other skeletal features lead researchers to propose that Opisthocoelicaudia was able to rear on its hindlegs OpisthocoelicaudiaTemporal range Late Cretaceous 70 Ma PreꞒ Ꞓ O S D C P T J K Pg N Skeleton restoration of Opisthocoelicaudia in the Museum of Evolution of Polish Academy of Sciences Warsaw Scientific classification Domain Eukaryota Kingdom Animalia Phylum Chordata Clade Dinosauria Clade Saurischia Clade Sauropodomorpha Clade Sauropoda Clade Macronaria Clade Titanosauria Family Saltasauridae Genus OpisthocoelicaudiaBorsuk Bialynicka 1977 Species O skarzynskii Binomial name Opisthocoelicaudia skarzynskiiBorsuk Bialynicka 1977 Named and described by Polish paleontologist Maria Magdalena Borsuk Bialynicka in 1977 Opisthocoelicaudia was first thought to be a new member of the Camarasauridae but is currently considered a derived member of the Titanosauria Its exact relationships within Titanosauria are contentious but it may have been close to the North American Alamosaurus All Opisthocoelicaudia fossils stem from the Nemegt Formation Despite being rich in dinosaur fossils the only other sauropod from this rock unit is Nemegtosaurus which is known from a single skull Since the skull of Opisthocoelicaudia remains unknown several researchers have suggested that Nemegtosaurus and Opisthocoelicaudia may represent the same species Sauropod footprints from the Nemegt Formation which include skin impressions can probably be referred to either Nemegtosaurus or Opisthocoelicaudia as these are the only known sauropods from this formation Contents 1 Discovery and specimens 2 Description 3 Classification 3 1 Relationship to Nemegtosaurus 4 Paleobiology 4 1 Posture 4 2 Rearing stance 4 3 Footprints 5 Paleoecology 6 References 7 External linksDiscovery and specimens edit nbsp Mounted holotype specimen The type specimen was discovered between June 10 and 23 1965 during a joint Polish Mongolian paleontological expedition led by Polish paleontologist Zofia Kielan Jaworowska 1 2 The largest of a series of expeditions carried out in 1963 1971 this expedition involved 21 members which at times were supported by additional hired Mongolian workers The site of discovery is located in Omnogovi Province in southern Mongolia in the Altan Uul area which exposes some 100 km2 of badlands The sediments exposed at Altan Uul belong to the Nemegt Formation the youngest of the three geological formations of the Nemegt Basin Opisthocoelicaudia was the first of several important dinosaur discoveries made by the 1965 expedition The other finds made at different localities include several skeletons of the tyrannosaurid Tarbosaurus as well as the type specimens of the giant ornithomimosaur Deinocheirus the sauropod Nemegtosaurus and the pachycephalosaur Homalocephale 2 nbsp Latero ventral view of the opisthocoelous anterior tail vertebrae which lend Opisthocoelicaudia its name On the fifth day of fieldwork Ryszard Gradzinski the geologist of the expedition found a concretion of well preserved bones which promised to belong to a fairly complete skeleton Excavation starting the next day revealed a nearly complete skeleton lacking only the head and neck Until today this specimen remains by far the most complete finding of this dinosaur The transport of the specimen out of rough terrain caused major technical problems Stone blocks containing the fossils had to be moved some 580 meters dragged on improvised metal sledges made out of petrol drums before they could be loaded onto trucks Because the skeleton was embedded in very hard sandstone layers several blocks weighed over a ton On July 9 the packing of the skeleton into 35 crates started for transportation to Dalanzadgad together the crates weighed about 12 tons 1 2 The type specimen belonged to an aged individual 3 Its taphonomy is unusual as it was found lying on its back in contrast most other nearly complete dinosaur skeletons of the Nemegt Formation usually are found lying on their sides 4 The specimen was found encased in cross bedded sandstone deposited by a river Most of the discovered vertebrae were still connected together forming a continuous series of eight dorsal six sacral and thirty four caudal vertebrae An additional three vertebrae were found isolated from the series and may belong to the transitional area between back and neck The remaining parts of the skeleton were shifted slightly out of their original anatomical position Both the left limb and rib bones were found on the right side of the body while conversely the right limb and rib bones were found on the left side Bite marks have been identified on the skeleton particularly in the pelvis and the thigh bone showing that predators had fed on the carcass The skull and neck are missing indicating that the carnivores might have carried away these body parts 3 The completeness of the remains indicate that the individual had died near the discovery site 4 A flooding event might have transported the carcass a short distance and subsequently covered it with sediment even before the soft tissue had decayed entirely 3 nbsp Shoulder blade and coracoid of a juvenile ZPAL MgD I 25c In 1977 Polish paleontologist Maria Magdalena Borsuk Bialynicka published her comprehensive description of the skeleton and named Opisthocoelicaudia skarzynskii as a new genus and species The genus name hinting at the unusual opisthocoel condition of the tail vertebrae means posterior cavity tail It is derived from the Greek ὄpis8en opisthen behind at the back koῖlos koilos hollow and Latin cauda tail 5 The specific name honors Wojciech Skarzynski the person who prepared the type specimen 3 Opisthocoelicaudia was only the third sauropod from Asia known from a postcranial skeleton after Euhelopus and Mamenchisaurus 3 After its discovery the holotype skeleton became part of the collection of the Institute of Paleobiology in Warsaw but later was handed back to its country of origin now being housed at the Institute of Geology of the Mongolian Academy of Sciences in Ulaanbaatar under the catalog number MPC D100 404 6 7 Besides the type specimen Borsuk Bialynicka described a shoulder blade and coracoid ZPAL MgD I 25c from the same locality These bones were not yet fused to each other indicating a juvenile individual 3 By 2017 sauropod fossils had been recovered from a total of 32 localities within the Nemegt Formation and possibly belong to either Opisthocoelicaudia or Nemegtosaurus At least two finds from the Nemegt locality a fragmentary tail MPD 100 406 and a pair of claws show features diagnostic for Opisthocoelicaudia and can be referred to the latter 8 7 Field crews led by Philip Currie attempted to relocate the Opisthocoelicaudia holotype quarry in 2006 and 2008 but became successful only in 2009 thanks to additional data provided by Gradzinski 7 Although a prospection for additional bone material was not possible as the quarry had been filled by windblown sand the quarry could be determined to fall within the lower portion of the Nemegt Formation 7 Description edit nbsp Life restoration nbsp Size diagram Like other sauropods Opisthocoelicaudia had a small head on a long neck a barrel shaped body on four columnar limbs and a long tail It was relatively small for a sauropod the type specimen was estimated at 11 4 m 37 ft to 13 m 43 ft from the head to the tip of the tail 9 10 11 The body mass has been estimated at 8 4 t 19 000 lb 12 10 5 t 23 000 lb 9 22 t 49 000 lb 13 13 t 29 000 lb 14 and 25 4 t 56 000 lb 15 in separate studies The skull and neck are not preserved but the reconstruction of the nuchal ligament indicates the possession of a neck of medium length of roughly 5 m 16 ft 3 Borsuk Bialynicka in her 1977 description noted the presence of eleven dorsal vertebrae Gregory Paul in 2019 however argued that the known part of the vertebral column actually includes the first cervical neck vertebra leaving only ten dorsals typical of titanosaurs 16 As in other titanosaurs the back was quite flexible due to the lack of accessory vertebral joints hyposphene hypantrum articulations 17 while the pelvic region was strengthened by an additional sixth hip vertebra 3 The anterior vertebrae of the tail were opisthocoelous which means they were convex on their anterior sides and concave on their back sides forming ball and socket joints 3 These opisthocoelous tail vertebrae lend Opisthocoelicaudia its name and serve to distinguish the genus from all other titanosaurs 18 Other titanosaurs were usually characterised by strongly procoelous anterior tail vertebrae which were concave on their anterior sides and convex on their back sides 19 Another unique feature can be found in the back vertebrae which show bifurcated spinous processes resulting in a double row of bony projections along the top of the spine 20 While unique in titanosaurs this feature can be found in several other unrelated sauropods including Diplodocus and Euhelopus where it evolved independently 21 nbsp The ischium and pubis bones The gap normally present between these bones is closed a characteristic of Opisthocoelicaudia As in the hips of other titanosaurs the ischium was relatively short measuring only two thirds the length of the pubis The left and right ischium bones as well as the left and right pubis bones were ossified with each other over most of their length closing the gap that in other sauropods is normally present between these bones 18 The limbs were proportionally short as seen in other titanosaurs 22 The forelimbs measured 1 87 m 6 1 ft in height in the nearly complete specimen approximately two thirds the length of the hindlimbs which were reconstructed at 2 46 m 8 1 ft height 3 As in other titanosaurs the limbs were slightly spread outwards rather than standing vertically under the body 23 while the forelimbs were more flexible and mobile compared to other sauropods 22 nbsp Limbs of Opisthocoelicaudia showing the digit less semicircular hands and the fully developed feet The manus was composed merely of the five metacarpalia which were orientated vertically and arranged in a semicircle Carpal bones were missing as in other titanosaurs 3 24 Finger bones and claws were also completely absent in most other titanosaurs these bones were still present though extremely reduced in size In the foot the talus bone was strongly reduced as in other titanosaurs while the calcaneus was probably completely absent in Opisthocoelicaudia 3 In contrast to the manus the foot showed well developed digits and claws The phalangeal formula which states the number of phalanges digit bones beginning with the innermost digit is 2 2 2 1 0 Foot skeletons of titanosaurs are rarely found and besides Opisthocoelicaudia completely preserved examples are known only from Epachthosaurus and the unnamed La Invernada titanosaur whose phalangeal formulas are 2 2 3 2 0 and 2 2 2 2 0 respectively Of these three titanosaurs Opisthocoelicaudia was the most derived while showing the fewest phalanges indicating a progressive reduction in the phalangeal count during titanosaur evolution 25 The claw of the first digit was not larger than that of the second digit as in other sauropods but roughly equal in size 7 Osteoderms bony plates formed in the skin have been found with at least 10 titanosaur genera The lack of osteoderms in the nearly complete Opisthocoelicaudia skeleton might indicate they are absent in this genus 26 However the closely related Alamosaurus was found to have osteoderms nearly a century after its discovery in addition to several other closely related titanosaurs thus raising the possibility that Opisthocoelicaudia had them as well 27 Classification editOriginally Opisthocoelicaudia was classified as a member of the family Camarasauridae together with Camarasaurus and Euhelopus This classification was based on several shared features of the skeleton most importantly the forked neural spines of the back vertebrae In 1977 Borsuk Bialynicka considered Opisthocoelicaudia closer to Euhelopus than to Camarasaurus placing it in the subfamily Euhelopodinae 3 A 1981 study by Walter Coombs and Ralph Molnar on the other hand considered it a member of the subfamily Camarasaurinae and therefore a close relative of Camarasaurus 28 Today both Euhelopus and Opisthocoelicaudia are classified outside the Camarasauridae In 1993 Leonardo Salgado and Rodolfo Coria showed Opisthocoelicaudia to represent a titanosaur and classified it within the family Titanosauridae 19 The name Titanosauridae is currently considered invalid by many scientists 29 instead the name Lithostrotia is often used as an equivalent 18 30 Within the Lithostrotia Opisthocoelicaudia has been found to be closely related to the genera Alamosaurus Neuquensaurus Rocasaurus and Saltasaurus together forming the family Saltasauridae Interrelationships of these genera are contested Many scientists considered Opisthocoelicaudia to be most closely related to Alamosaurus with both genera forming a monophyletic group the Opisthocoelicaudiinae Other scientists concluded that the Opisthocoelicaudiinae is paraphyletic not forming a natural group 31 Contradicting most other studies Upchurch and colleagues in 2004 argued that Alamosaurus has to be placed outside the Saltasauridae as a close relative of Pellegrinisaurus and therefore is not related to Opisthocoelicaudia at all 18 nbsp Skeletal drawing showing elements of the type specimen This cladogram based on Calvo and colleagues 2007 shows a monophyletic Opisthocoelicaudiinae 32 Saltasauridae Opisthocoelicaudiinae Opisthocoelicaudia Alamosaurus Saltasaurinae Neuquensaurus Rocasaurus Saltasaurus Opisthocoelicaudia in a cladogram after Navarro et al 2022 33 Saltasauridae Opisthocoelicaudiinae Opisthocoelicaudia Nemegtosaurus Saltasaurinae Alamosaurus Baurutitan Ibirania Bonatitan Rocasaurus Saltasaurini Neuquensaurus MACN PV RN 233 Saltasaurus Relationship to Nemegtosaurus edit nbsp Cast of the skull of Nemegtosaurus a possible senior synonym mounted on the Opisthocoelicaudia skeletal restoration in Warsaw Another sauropod of the Nemegt Formation Nemegtosaurus is known only from a skull Opisthocoelicaudia on the other hand lacks both the skull and neck precluding a direct comparison and leading to suspicions that it may represent a synonym of Nemegtosaurus According to the International Code of Zoological Nomenclature ICZN the oldest name has priority over younger synonyms if Opisthocoelicaudia would be shown to be a synonym of Nemegtosaurus the name Nemegtosaurus would remain valid while Opisthocoelicaudia would become invalid 8 Both Opisthocoelicaudia and Nemegtosaurus were discovered during the 1965 joint Polish Mongolian expedition Before the remains were prepared and described the expedition crew believed both finds to belong to the same species of sauropod 2 In 1977 Borsuk Bialynicka deemed Opisthocoelicaudia and Nemegtosaurus to represent separate genera because Nemegtosaurus was at this time considered to be a member of the Dicraeosauridae while Opisthocoelicaudia seemed to be a representative of a different group the Camarasauridae 3 Currently both Opisthocoelicaudia and Nemegtosaurus are classified within the Titanosauria and Jeffrey Wilson stated in 2005 that synonymy cannot be ruled out 34 Currie and colleagues in 2003 and 2017 argued that a synonymy is very probable in the light of new fossil discoveries in the Nemegt Formation 8 7 After relocating the original Nemegtosaurus quarry these researchers excavated postcranial bones of the Nemegtosaurus holotype including the centrum of a caudal vertebra and hind limb bones which allowed for the first time a direct comparison between the Nemegtosaurus and Opisthocoelicaudia type specimens based on overlapping elements These postcranial elements were found to be very similar to the corresponding parts of the Opisthocoelicaudia holotype Most importantly the discovered caudal centrum is opisthocoelous a diagnostic feature of Opisthocoelicaudia suggesting both genera were either closely related or synonymous Furthermore these authors noted that none of the 32 known sauropod localities of the Nemegt Formation revealed evidence for the presence of more than one species of sauropod 7 In 2019 Alexander O Averianov and Alexey V Lopatin reported Nemegt sauropod vertebrae discovered in 1949 and some femora that differed from the same bones of Opisthocoelicaudia and stated they probably belonged to Nemegtosaurus thereby supporting that the two genera were distinct 35 In her 1977 description Borsuk Bialynicka argued that different sauropod genera sharing the same habitat is nothing unusual as is evident in the North American Morrison Formation 3 Currie and colleagues however stressed in 2018 that the dinosaur fauna of the Nemegt Formation was fundamentally different as larger dinosaurs were present with only few species per clade indicating a harsh and geographically restricted habitat Definitive proof for the suggested synonymy is however still missing and additional overlapping elements would be required before Opisthocoelicaudia and Nemegtosaurus can be formally declared synonyms 7 Paleobiology editPosture edit Further information Sauropod neck posture nbsp A Posture based on the 1977 reconstruction by Borsuk Bialynicka 3 with a horizontal back B Posture based on the 2007 reconstruction by Schwarz et al 36 with a much steeper scapula green angled 60 towards the horizontal resulting in a downwards tilting back Originally Borsuk Bialynicka assumed that in standard position the neck was horizontal or slanted slightly downward This was based on the reconstruction of the nuchal ligament which runs atop of the cervical and dorsal vertebrae and serves to support the weight of the head and neck 3 Although an S curved swan like ascending neck was envisaged in several subsequent reconstructions following similar depictions of better known sauropods recent studies argue that sauropod necks were relatively straight and were carried more horizontally 37 The back was also reconstructed in a more or less horizontal orientation by Borsuk Bialynicka 3 which was followed by most subsequent depictions In a 2007 study Daniela Schwarz and colleagues suggested that the back dipped towards the rear According to these researchers the shoulder blade would have been inclined at a horizontal angle of 55 65 much steeper than previously thought resulting in an elevated shoulder region 36 With the vertebral column of the trunk and neck held in a relatively straight line this would result in an elevated position of the head 37 Rearing stance edit nbsp Pelvis of the type specimen Opisthocoelicaudia may have been able to rear up on its hindlimbs for foraging using its tail as a third leg In 1977 Borsuk Bialynicka cited several skeletal features that might have been related to rearing including the opisthocoelous vertebrae of the anterior part of the tail which according to this author would have made the tail more flexible than in other sauropods Features of the pelvis such as the thickened shelf of the acetabulum the flaring ilia and the fused pubic symphysis may have allowed the pelvis to withstand the stress of rearing 3 Heinrich Mallison in 2011 argued that Opisthocoelicaudia may have been able to angle the anterior part of the tail against the posterior part producing a buckle in midsection Thus the anterior part would have been more straight during rearing than in other sauropods 38 In 2005 Wilson assumed that rearing was an innovation not only of Opisthocoelicaudia but also of related genera within the subfamily Saltasaurinae Common features of these genera such as the shortened tail may have evolved as adaptations to rearing 31 Footprints edit nbsp Natural cast of a sauropod hindfoot impression probably left by Opisthocoelicaudia Footprints from the Nemegt Formation were unknown until 2003 when several examples had been described from the Nemegt locality by Currie and colleagues Most of these footprints belonged to hadrosaurids probably Saurolophus while two have been left by a large theropod probably Tarbosaurus and yet another two by the hindfoot of a sauropod The sauropod tracks were assigned to Opisthocoelicaudia which according to these authors showed a matching hind foot morphology and was probably the only known sauropod and thus the only potential trackmaker species from the Nemegt Formation when Nemegtosaurus is regarded a synonym The tracks were left in the soft and wet mud of shallow or freshly dried up points along a river and subsequently filled up with sand Today only the sand infill remains with the encasing mudstone having been eroded away 8 The best preserved footprint measures 63 cm 25 in across so it was probably created by an individual larger than the type specimen Although the surface of the underside is hard to obtain the vertical surfaces are very well preserved making this track one of the best preserved sauropod tracks known Four digital impressions can be distinguished with two or three showing claw impressions The toes were almost perpendicular Even a skin impression has been preserved above the impression of the first toe which shows the non overlapping scales each with an average diameter of 14 mm 0 55 in The foot of the track creator was probably a little longer than wide The second track is much shallower than the first but shows well preserved digit impressions with a high degree of detail including at least two deep claw impressions that are rotated outwards and a well preserved impression of a fleshy toe pad behind the middle claw 8 Although number of additional sauropod tracks were reported in subsequent accounts they continued to be rare in relation to the much more common hadrosaurid and theropod tracks Brennan Stettner and colleagues in 2017 reported on footprints discovered during a 2007 expedition to the Nemegt locality The best preserved of these a very large 76 cm 30 in long impression of a hindfoot features a very well preserved underside showing digital pads and four outwards directed digits the first three of which showing claws 39 Also in 2017 Judai Nakajima and colleagues described a kidney shaped impression as the first sauropod manus forefoot impression discovered in the formation 40 Paleoecology edit nbsp Cretaceous aged dinosaur fossil localities of Mongolia Opisthocoelicaudia was collected in Altan Ula within area A left The Nemegt Formation was deposited within the Late Cretaceous although its exact age is unknown as it has never been dated radiometrically According to different authors the formation is late Campanian to early Maastrichtian early Maastrichtian or middle Maastrichtian in age 41 The sediments of the Nemegt Formation were deposited in a plain crossed by rivers 4 The climate was warm and subhumid with seasonal droughts 41 and the soils were relatively dry 42 Nevertheless the Nemegt Formation was more humid than the underlying and thus older Barun Goyot and Djadochta Formations which show a semiarid climate 41 The fauna of the Nemegt Formation includes aquatic or amphibious animals such as fish turtles and crocodiles as well as birds and the abundant medium to large sized dinosaurs while smaller terrestrial vertebrates like lizards and mammals are rare 41 Theropod dinosaurs are very diverse in the Nemegt and include the abundant tyrannosaur Tarbosaurus 41 which might have preyed upon Opisthocoelicaudia 43 The only other known sauropod is Nemegtosaurus which is known from a single skull Ornithischians are represented by the duck billed hadrosaurids including the very common Saurolophus the thick skulled pachycephalosaurs and the heavily armored ankylosaurs Neoceratopsians are absent despite being present in the older Barun Goyot and Djadochta formations 41 Other important dinosaur finds from the same locality as Opisthocoelicaudia include the troodontid Borogovia 44 and the ankylosaur Tarchia 45 References edit a b Kielan Jaworowska Z Dovchin N 1968 Narrative of the Polish Mongolian Expeditions 1963 1965 PDF Palaeontologia Polonica 19 7 40 a b c d Kielan Jaworowska Z 2013 The Polish Mongolian paleontological expeditions 1963 1971 and the nomadic expedition 2002 In Pursuit of Early Mammals Indiana University Press pp 35 70 ISBN 978 0 253 00817 6 a b c d e f g h i j k l m n o p q r s Borsuk Bialynicka M M 1977 A new camarasaurid sauropod Opisthocoelicaudia skarzynskii gen n sp n from the Upper Cretaceous of Mongolia PDF Palaeontologia Polonica 37 5 5 64 a b c Gradzinski Ryszard 1969 Sedimentation of dinosaur bearing Upper Cretaceous deposits of the Nemegt Basin Gobi Desert PDF Palaeontologia Polonica 21 147 249 Hentschel E amp Wagner G 1990 Zoologisches Worterbuch Tiernamen allgemeinbiologische anatomische physiologische Termini und biographische Daten 4th edition Stuttgart Gustav Fischer Maryanska T 2000 Sauropods from Mongolia and the former Soviet Union In Benton M J Shishkin M A Unwin D M Kurochkin E N eds The Age of Dinosaurs in Russia and Mongolia Cambridge University Press pp 457 458 ISBN 978 0 521 54582 2 a b c d e f g h Currie Philip J Wilson Jeffrey A Fanti Federico Mainbayar Buuvei Tsogtbaatar Khishigjav 2018 Rediscovery of the type localities of the Late Cretaceous Mongolian sauropods Nemegtosaurus mongoliensis and Opisthocoelicaudia skarzynskii Stratigraphic and taxonomic implications Palaeogeography Palaeoclimatology Palaeoecology 494 5 13 Bibcode 2018PPP 494 5C doi 10 1016 j palaeo 2017 10 035 hdl 11585 622592 S2CID 133748374 a b c d e Currie P J Badamgarav D Koppelhus E B 2003 The first Late Cretaceous footprints from the locality in the Gobi of Mongolia PDF Ichnos 10 1 12 doi 10 1080 10420940390235071 S2CID 140547544 a b Seebacher F 2001 A new method to calculate allometric length mass relationships of dinosaurs PDF Journal of Vertebrate Paleontology 21 1 51 60 CiteSeerX 10 1 1 462 255 doi 10 1671 0272 4634 2001 021 0051 ANMTCA 2 0 CO 2 S2CID 53446536 Holtz Thomas R Jr Rey Luis V 2007 Dinosaurs the most complete up to date encyclopedia for dinosaur lovers of all ages New York Random House ISBN 978 0 375 82419 7 Barsbold R 1997 Mongolian dinosaurs In Currie P J Padian K eds Encyclopedia of Dinosaurs Academic Press pp 447 450 ISBN 978 0 12 226810 6 Paul Gregory S 1997 Dinosaur models the good the bad and using them to estimate the mass of dinosaurs In Wolberg D L Stump E Rosenberg G D eds Dinofest International Proceedings of a symposium held at Arizona State University Academy of Natural Sciences Philadelphia pp 129 154 152 Anderson J F Hall Martin A Russell D A 2009 Long bone circumference and weight in mammals birds and dinosaurs Journal of Zoology 207 1 53 61 doi 10 1111 j 1469 7998 1985 tb04915 x Packard G C Boardman T J Birchard G F 2009 Allometric equations for predicting body mass of dinosaurs Journal of Zoology 279 1 102 110 doi 10 1111 j 1469 7998 2009 00594 x Benson R B J Campione N S E Carrano M T Mannion P D Sullivan C Upchurch P Evans D C 2014 Rates of Dinosaur Body Mass Evolution Indicate 170 Million Years of Sustained Ecological Innovation on the Avian Stem Lineage PLOS Biology 12 5 e1001853 doi 10 1371 journal pbio 1001853 PMC 4011683 PMID 24802911 Paul Gregory S 2019 Determining the largest known land animal A critical comparison of differing methods for restoring the volume and mass of extinct animals PDF Annals of the Carnegie Museum 85 4 335 358 doi 10 2992 007 085 0403 S2CID 210840060 Apesteguia S 2005 Evolution of the Hyposphene Hypantrum Complex within Sauropoda In Tidwell V Carpenter K eds Thunder Lizards The Sauropodomorph Dinosaurs Indiana University Press ISBN 978 0 253 34542 4 a b c d Upchurch P Barret P M Dodson P 2004 Sauropoda In Weishampel D B Dodson P Osmolska H eds The Dinosauria 2nd ed University of California Press pp 259 322 ISBN 978 0 520 25408 4 a b Salgado L Coria R A 1993 Consideraciones sobre las relaciones filogeneticas de Opisthocoelicaudia skarzynskii Sauropoda del Cretacico superior de Mongolia Jornadas Argentinas de Paleontologia de Vertebrados Resumenes in Spanish 10 Wilson J 2002 Sauropod dinosaur phylogeny critique and cladistic analysis Zoological Journal of the Linnean Society 136 2 217 276 doi 10 1046 j 1096 3642 2002 00029 x hdl 2027 42 73066 ISSN 0024 4082 Taylor M P Wedel M J 2013 Why sauropods had long necks and why giraffes have short necks PeerJ 1 e36 doi 10 7717 peerj 36 ISSN 2167 8359 PMC 3628838 PMID 23638372 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link a b Carrano M T 2005 The Evolution of Sauropod Locomotion Morphological Diversity of a Secondarily Quadrupedal Radiation In Rogers K C Wilson J A eds The Sauropods Evolution and Paleobiology University of California Press ISBN 978 0 520 24623 2 Wilson J A Carrano M T 1999 Titanosaurs and the origin of wide gauge trackways a biomechanical and systematic perspective on sauropod locomotion Paleobiology 52 2 252 267 Bibcode 1999Pbio 25 252W doi 10 1017 S0094837300026543 S2CID 88907578 Apesteguia S 2005 Evolution of the Titanosaur Metacarpus In Tidwell V Carpenter K eds Thunder Lizards The Sauropodomorph Dinosaurs Indiana University Press pp 321 345 ISBN 978 0 253 34542 4 Gonzalez Riga B J Calvo J O Porfiri J 2008 An articulated titanosaur from Patagonia Argentina New evidence of neosauropod pedal evolution PDF Palaeoworld 17 33 40 doi 10 1016 j palwor 2007 08 003 d Emic M D Wilson J A Chatterjee S 2009 The titanosaur Dinosauria Sauropoda osteoderm record review and first definitive specimen from India Journal of Vertebrate Paleontology 29 1 165 177 Bibcode 2009JVPal 29 165D doi 10 1671 039 029 0131 S2CID 85991253 Carrano M T Michael D D 2015 Osteoderms of the titanosaur sauropod dinosaur Alamosaurus sanjuanensis Gilmore 1922 Journal of Vertebrate Paleontology 35 1 e901334 Bibcode 2015JVPal 35E1334C doi 10 1080 02724634 2014 901334 S2CID 86797277 Coombs W P Molnar R E 1981 Sauropoda Reptilia Saurischia from the Cretaceous of Queensland Memoirs of the Queensland Museum 20 2 351 373 Wilson J A Upchurch P 2003 A Revision of Titanosaurus Lydekker Dinosauria Sauropoda the first dinosaur genus with a Gondwanan distribution Journal of Systematic Palaeontology 1 3 125 160 Bibcode 2003JSPal 1 125W doi 10 1017 s1477201903001044 S2CID 53997295 D emic M D 2012 The early evolution of titanosauriform sauropod dinosaurs PDF Zoological Journal of the Linnean Society 166 3 624 671 doi 10 1111 j 1096 3642 2012 00853 x a b Wilson J 2005 Overview of Sauropod Phylogeny and Evolution In Rogers K C Wilson J A eds The Sauropods Evolution and Paleobiology University of California Press ISBN 978 0 520 24623 2 Calvo J O Porfiri J D Gonzalez Riga B J Kellner A W 2007 A new Cretaceous terrestrial ecosystem from Gondwana with the description of a new sauropod dinosaur Anais da Academia Brasileira de Ciencias 79 3 529 541 doi 10 1590 S0001 37652007000300013 PMID 17768539 a href Template Cite journal html title Template Cite journal cite journal a CS1 maint multiple names authors list link Navarro Bruno A Ghilardi Aline M Aureliano Tito Diaz Veronica Diez Bandeira Kamila L N Cattaruzzi Andre G S Iori Fabiano V Martine Ariel M Carvalho Alberto B Anelli Luiz E Fernandes Marcelo A Zaher Hussam September 15 2022 A new nanoid titanosaur Dinosauria Sauropoda from the Upper Cretaceous of Brazil Ameghiniana 59 5 317 354 doi 10 5710 AMGH 25 08 2022 3477 ISSN 1851 8044 S2CID 251875979 Wilson J A 2005 Redescription of the Mongolian sauropod Nemegtosaurus mongoliensis Nowinski Dinosauria Saurischia and comments on Late Cretaceous sauropod diversity Journal of Systematic Palaeontology 3 3 283 318 Bibcode 2005JSPal 3 283W doi 10 1017 S1477201905001628 S2CID 54070651 Averianov Alexander Lopatin Alexey 2019 A possible new specimen of the Late Cretaceous Mongolian sauropod Nemegtosaurus and sauropod diversity in the Nemegt Formation Acta Palaeontologica Polonica 64 doi 10 4202 app 00596 2019 ISSN 0567 7920 a b Schwarz D Frey E Meyer C 2007 Novel reconstruction of the orientation of the pectoral girdle in sauropods The Anatomical Record 290 1 32 47 doi 10 1002 ar 20405 PMID 17441196 a b Stevens K A 2013 The articulation of sauropod necks methodology and mythology PLOS ONE 8 10 e78572 Bibcode 2013PLoSO 878572S doi 10 1371 journal pone 0078572 PMC 3812995 PMID 24205266 Mallison H 2011 Rearing Giants Kinetic Dynamic Modeling of Sauropod Bipedal and Tripodal Poses In Klein N Remes K Gee C T Sander P M eds Biology of the Sauropod Dinosaurs Understanding the Life of Giants Indiana University Press pp 239 320 ISBN 978 0 253 35508 9 Stettner B Persons W S Currie P J 2018 A giant sauropod footprint from the Nemegt Formation Upper Cretaceous of Mongolia Palaeogeography Palaeoclimatology Palaeoecology 494 168 172 Bibcode 2018PPP 494 168S doi 10 1016 j palaeo 2017 10 027 ISSN 0031 0182 Nakajima J Kobayashi Y Chinzorig T Tanaka T Takasaki R Tsogtbaatar K Currie P J Fiorillo A R 2018 Dinosaur tracks at the Nemegt locality Paleobiological and paleoenvironmental implications Palaeogeography Palaeoclimatology Palaeoecology 494 147 159 Bibcode 2018PPP 494 147N doi 10 1016 j palaeo 2017 10 026 ISSN 0031 0182 a b c d e f Osmolska H 1997 Nemegt Formation Encyclopedia of Dinosaurs Academic Press pp 471 472 ISBN 978 0 12 226810 6 Jerzykiewicz Tomasz Dale A Russell 1991 Late Mesozoic stratigraphy and vertebrates of the Gobi Basin Cretaceous Research 12 4 345 377 Bibcode 1991CrRes 12 345J doi 10 1016 0195 6671 91 90015 5 ISSN 0195 6671 Hurum J H Sabath K 2003 Giant theropod dinosaurs from Asia and North America Skulls of Tarbosaurus bataar and Tyrannosaurus rex compared PDF Acta Palaeontologica Polonica 48 2 161 190 ISSN 0567 7920 Osmolska H 1987 Borogovia gracilicrus gen et sp n a new troodontid dinosaur from the Late Cretaceous of Mongolia PDF Acta Palaeontologica Polonica 32 133 150 ISSN 0567 7920 Maryanska T 1969 Remains of armoured dinosaurs from the uppermost Cretaceous in Nemegt Basin Gobi Desert PDF Palaeontologia Polonica 21 23 32 Archived from the original PDF on July 12 2020 Retrieved March 1 2014 External links edit nbsp Wikimedia Commons has media related to Opisthocoelicaudia How to Pronounce Opisthocoelicaudia Retrieved from https en wikipedia org w index php title Opisthocoelicaudia amp oldid 1220727781, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.