fbpx
Wikipedia

Taylor series

In mathematics, the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function's derivatives at a single point. For most common functions, the function and the sum of its Taylor series are equal near this point. Taylor series are named after Brook Taylor, who introduced them in 1715. A Taylor series is also called a Maclaurin series when 0 is the point where the derivatives are considered, after Colin Maclaurin, who made extensive use of this special case of Taylor series in the mid-18th century.

As the degree of the Taylor polynomial rises, it approaches the correct function. This image shows sin x and its Taylor approximations by polynomials of degree 1, 3, 5, 7, 9, 11, and 13 at x = 0.

The partial sum formed by the first n + 1 terms of a Taylor series is a polynomial of degree n that is called the nth Taylor polynomial of the function. Taylor polynomials are approximations of a function, which become generally more accurate as n increases. Taylor's theorem gives quantitative estimates on the error introduced by the use of such approximations. If the Taylor series of a function is convergent, its sum is the limit of the infinite sequence of the Taylor polynomials. A function may differ from the sum of its Taylor series, even if its Taylor series is convergent. A function is analytic at a point x if it is equal to the sum of its Taylor series in some open interval (or open disk in the complex plane) containing x. This implies that the function is analytic at every point of the interval (or disk).

Definition Edit

The Taylor series of a real or complex-valued function f (x) that is infinitely differentiable at a real or complex number a is the power series

 

where n! denotes the factorial of n. In the more compact sigma notation, this can be written as

 

where f(n)(a) denotes the nth derivative of f evaluated at the point a. (The derivative of order zero of f is defined to be f itself and (xa)0 and 0! are both defined to be 1.)

With a = 0, the Maclaurin series takes the form:[1]

 

or in the compact sigma notation:

 

Examples Edit

The Taylor series of any polynomial is the polynomial itself.

The Maclaurin series of 1/1 − x is the geometric series

 

So, by substituting x for 1 − x, the Taylor series of 1/x at a = 1 is

 

By integrating the above Maclaurin series, we find the Maclaurin series of ln(1 − x), where ln denotes the natural logarithm:

 

The corresponding Taylor series of ln x at a = 1 is

 

and more generally, the corresponding Taylor series of ln x at an arbitrary nonzero point a is:

 

The Maclaurin series of the exponential function ex is

 

The above expansion holds because the derivative of ex with respect to x is also ex, and e0 equals 1. This leaves the terms (x − 0)n in the numerator and n! in the denominator of each term in the infinite sum.

History Edit

The ancient Greek philosopher Zeno of Elea considered the problem of summing an infinite series to achieve a finite result, but rejected it as an impossibility;[2] the result was Zeno's paradox. Later, Aristotle proposed a philosophical resolution of the paradox, but the mathematical content was apparently unresolved until taken up by Archimedes, as it had been prior to Aristotle by the Presocratic Atomist Democritus. It was through Archimedes's method of exhaustion that an infinite number of progressive subdivisions could be performed to achieve a finite result.[3] Liu Hui independently employed a similar method a few centuries later.[4]

In the 14th century, the earliest examples of specific Taylor series (but not the general method) were given by Madhava of Sangamagrama.[5][6] Though no record of his work survives, writings of his followers in the Kerala school of astronomy and mathematics suggest that he found the Taylor series for the trigonometric functions of sine, cosine, and arctangent (see Madhava series). During the following two centuries his followers developed further series expansions and rational approximations.

In late 1670, James Gregory was shown in a letter from John Collins several Maclaurin series (      and  ) derived by Isaac Newton, and told that Newton had developed a general method for expanding functions in series. Newton had in fact used a cumbersome method involving long division of series and term-by-term integration, but Gregory did not know it and set out to discover a general method for himself. In early 1671 Gregory discovered something like the general Maclaurin series and sent a letter to Collins including series for         (the integral of  ),   (the integral of sec, the inverse Gudermannian function),   and   (the Gudermannian function). However, thinking that he had merely redeveloped a method by Newton, Gregory never described how he obtained these series, and it can only be inferred that he understood the general method by examining scratch work he had scribbled on the back of another letter from 1671.[7]

In 1691–1692, Isaac Newton wrote down an explicit statement of the Taylor and Maclaurin series in an unpublished version of his work De Quadratura Curvarum. However, this work was never completed and the relevant sections were omitted from the portions published in 1704 under the title Tractatus de Quadratura Curvarum.

It was not until 1715 that a general method for constructing these series for all functions for which they exist was finally published by Brook Taylor,[8] after whom the series are now named.

The Maclaurin series was named after Colin Maclaurin, a professor in Edinburgh, who published the special case of the Taylor result in the mid-18th century.

Analytic functions Edit

 
The function e(−1/x2) is not analytic at x = 0: the Taylor series is identically 0, although the function is not.

If f (x) is given by a convergent power series in an open disk centred at b in the complex plane (or an interval in the real line), it is said to be analytic in this region. Thus for x in this region, f is given by a convergent power series

 

Differentiating by x the above formula n times, then setting x = b gives:

 

and so the power series expansion agrees with the Taylor series. Thus a function is analytic in an open disk centered at b if and only if its Taylor series converges to the value of the function at each point of the disk.

If f (x) is equal to the sum of its Taylor series for all x in the complex plane, it is called entire. The polynomials, exponential function ex, and the trigonometric functions sine and cosine, are examples of entire functions. Examples of functions that are not entire include the square root, the logarithm, the trigonometric function tangent, and its inverse, arctan. For these functions the Taylor series do not converge if x is far from b. That is, the Taylor series diverges at x if the distance between x and b is larger than the radius of convergence. The Taylor series can be used to calculate the value of an entire function at every point, if the value of the function, and of all of its derivatives, are known at a single point.

Uses of the Taylor series for analytic functions include:

  1. The partial sums (the Taylor polynomials) of the series can be used as approximations of the function. These approximations are good if sufficiently many terms are included.
  2. Differentiation and integration of power series can be performed term by term and is hence particularly easy.
  3. An analytic function is uniquely extended to a holomorphic function on an open disk in the complex plane. This makes the machinery of complex analysis available.
  4. The (truncated) series can be used to compute function values numerically, (often by recasting the polynomial into the Chebyshev form and evaluating it with the Clenshaw algorithm).
  5. Algebraic operations can be done readily on the power series representation; for instance, Euler's formula follows from Taylor series expansions for trigonometric and exponential functions. This result is of fundamental importance in such fields as harmonic analysis.
  6. Approximations using the first few terms of a Taylor series can make otherwise unsolvable problems possible for a restricted domain; this approach is often used in physics.

Approximation error and convergence Edit

 
The sine function (blue) is closely approximated by its Taylor polynomial of degree 7 (pink) for a full period centered at the origin.
 
The Taylor polynomials for ln(1 + x) only provide accurate approximations in the range −1 < x ≤ 1. For x > 1, Taylor polynomials of higher degree provide worse approximations.
 
The Taylor approximations for ln(1 + x) (black). For x > 1, the approximations diverge.

Pictured is an accurate approximation of sin x around the point x = 0. The pink curve is a polynomial of degree seven:

 

The error in this approximation is no more than |x|9 / 9!. For a full cycle centered at the origin (−π < x < π) the error is less than 0.08215. In particular, for −1 < x < 1, the error is less than 0.000003.

In contrast, also shown is a picture of the natural logarithm function ln(1 + x) and some of its Taylor polynomials around a = 0. These approximations converge to the function only in the region −1 < x ≤ 1; outside of this region the higher-degree Taylor polynomials are worse approximations for the function.

The error incurred in approximating a function by its nth-degree Taylor polynomial is called the remainder or residual and is denoted by the function Rn(x). Taylor's theorem can be used to obtain a bound on the size of the remainder.

In general, Taylor series need not be convergent at all. And in fact the set of functions with a convergent Taylor series is a meager set in the Fréchet space of smooth functions. And even if the Taylor series of a function f does converge, its limit need not in general be equal to the value of the function f (x). For example, the function

 

is infinitely differentiable at x = 0, and has all derivatives zero there. Consequently, the Taylor series of f (x) about x = 0 is identically zero. However, f (x) is not the zero function, so does not equal its Taylor series around the origin. Thus, f (x) is an example of a non-analytic smooth function.

In real analysis, this example shows that there are infinitely differentiable functions f (x) whose Taylor series are not equal to f (x) even if they converge. By contrast, the holomorphic functions studied in complex analysis always possess a convergent Taylor series, and even the Taylor series of meromorphic functions, which might have singularities, never converge to a value different from the function itself. The complex function e−1/z2, however, does not approach 0 when z approaches 0 along the imaginary axis, so it is not continuous in the complex plane and its Taylor series is undefined at 0.

More generally, every sequence of real or complex numbers can appear as coefficients in the Taylor series of an infinitely differentiable function defined on the real line, a consequence of Borel's lemma. As a result, the radius of convergence of a Taylor series can be zero. There are even infinitely differentiable functions defined on the real line whose Taylor series have a radius of convergence 0 everywhere.[9]

A function cannot be written as a Taylor series centred at a singularity; in these cases, one can often still achieve a series expansion if one allows also negative powers of the variable x; see Laurent series. For example, f (x) = e−1/x2 can be written as a Laurent series.

Generalization Edit

There is, however, a generalization[10][11] of the Taylor series that does converge to the value of the function itself for any bounded continuous function on (0,∞), using the calculus of finite differences. Specifically, one has the following theorem, due to Einar Hille, that for any t > 0,

 

Here Δn
h
is the nth finite difference operator with step size h. The series is precisely the Taylor series, except that divided differences appear in place of differentiation: the series is formally similar to the Newton series. When the function f is analytic at a, the terms in the series converge to the terms of the Taylor series, and in this sense generalizes the usual Taylor series.

In general, for any infinite sequence ai, the following power series identity holds:

 

So in particular,

 

The series on the right is the expectation value of f (a + X), where X is a Poisson-distributed random variable that takes the value jh with probability et/h·(t/h)j/j!. Hence,

 

The law of large numbers implies that the identity holds.[12]

List of Maclaurin series of some common functions Edit

Several important Maclaurin series expansions follow.[13] All these expansions are valid for complex arguments x.

Exponential function Edit

 
The exponential function ex (in blue), and the sum of the first n + 1 terms of its Taylor series at 0 (in red).

The exponential function   (with base e) has Maclaurin series

 .

It converges for all x.

The exponential generating function of the Bell numbers is the exponential function of the predecessor of the exponential function:

 

Natural logarithm Edit

The natural logarithm (with base e) has Maclaurin series

 

They converge for  . (In addition, the series for ln(1 − x) converges for x = −1, and the series for ln(1 + x) converges for x = 1.)

Geometric series Edit

The geometric series and its derivatives have Maclaurin series

 

All are convergent for  . These are special cases of the binomial series given in the next section.

Binomial series Edit

The binomial series is the power series

 
whose coefficients are the generalized binomial coefficients
 

(If n = 0, this product is an empty product and has value 1.) It converges for   for any real or complex number α.

When α = −1, this is essentially the infinite geometric series mentioned in the previous section. The special cases α = 1/2 and α = −1/2 give the square root function and its inverse:

 

When only the linear term is retained, this simplifies to the binomial approximation.

Trigonometric functions Edit

The usual trigonometric functions and their inverses have the following Maclaurin series:

 

All angles are expressed in radians. The numbers Bk appearing in the expansions of tan x are the Bernoulli numbers. The Ek in the expansion of sec x are Euler numbers.

Hyperbolic functions Edit

The hyperbolic functions have Maclaurin series closely related to the series for the corresponding trigonometric functions:

 

The numbers Bk appearing in the series for tanh x are the Bernoulli numbers.

Polylogarithmic functions Edit

The polylogarithms have these defining identities:

 
 

The Legendre chi functions are defined as follows:

 
 

And the formulas presented below are called inverse tangent integrals:

 
 

In statistical thermodynamics these formulas are of great importance.

Elliptic functions Edit

The complete elliptic integrals of first kind K and of second kind E can be defined as follows:

 
 

The Jacobi theta functions describe the world of the elliptic modular functions and they have these Taylor series:

 
 

The regular partition number sequence P(n) has this generating function:

 

The strict partition number sequence Q(n) has that generating function:

 

Calculation of Taylor series Edit

Several methods exist for the calculation of Taylor series of a large number of functions. One can attempt to use the definition of the Taylor series, though this often requires generalizing the form of the coefficients according to a readily apparent pattern. Alternatively, one can use manipulations such as substitution, multiplication or division, addition or subtraction of standard Taylor series to construct the Taylor series of a function, by virtue of Taylor series being power series. In some cases, one can also derive the Taylor series by repeatedly applying integration by parts. Particularly convenient is the use of computer algebra systems to calculate Taylor series.

First example Edit

In order to compute the 7th degree Maclaurin polynomial for the function

  ,

one may first rewrite the function as

 .

The Taylor series for the natural logarithm is (using the big O notation)

 

and for the cosine function

 .

The latter series expansion has a zero constant term, which enables us to substitute the second series into the first one and to easily omit terms of higher order than the 7th degree by using the big O notation:

 

Since the cosine is an even function, the coefficients for all the odd powers x, x3, x5, x7, ... have to be zero.

Second example Edit

Suppose we want the Taylor series at 0 of the function

 

We have for the exponential function

 

and, as in the first example,

 

Assume the power series is

 

Then multiplication with the denominator and substitution of the series of the cosine yields

 

Collecting the terms up to fourth order yields

 

The values of   can be found by comparison of coefficients with the top expression for  , yielding:

 

Third example Edit

Here we employ a method called "indirect expansion" to expand the given function. This method uses the known Taylor expansion of the exponential function. In order to expand (1 + x)ex as a Taylor series in x, we use the known Taylor series of function ex:

 

Thus,

 

Taylor series as definitions Edit

Classically, algebraic functions are defined by an algebraic equation, and transcendental functions (including those discussed above) are defined by some property that holds for them, such as a differential equation. For example, the exponential function is the function which is equal to its own derivative everywhere, and assumes the value 1 at the origin. However, one may equally well define an analytic function by its Taylor series.

Taylor series are used to define functions and "operators" in diverse areas of mathematics. In particular, this is true in areas where the classical definitions of functions break down. For example, using Taylor series, one may extend analytic functions to sets of matrices and operators, such as the matrix exponential or matrix logarithm.

In other areas, such as formal analysis, it is more convenient to work directly with the power series themselves. Thus one may define a solution of a differential equation as a power series which, one hopes to prove, is the Taylor series of the desired solution.

Taylor series in several variables Edit

The Taylor series may also be generalized to functions of more than one variable with[14][15]

 

For example, for a function   that depends on two variables, x and y, the Taylor series to second order about the point (a, b) is

 

where the subscripts denote the respective partial derivatives.

Second-order Taylor series in several variables Edit

A second-order Taylor series expansion of a scalar-valued function of more than one variable can be written compactly as

 

where D f (a) is the gradient of f evaluated at x = a and D2 f (a) is the Hessian matrix. Applying the multi-index notation the Taylor series for several variables becomes

 

which is to be understood as a still more abbreviated multi-index version of the first equation of this paragraph, with a full analogy to the single variable case.

Example Edit

 
Second-order Taylor series approximation (in orange) of a function f (x,y) = ex ln(1 + y) around the origin.

In order to compute a second-order Taylor series expansion around point (a, b) = (0, 0) of the function

 

one first computes all the necessary partial derivatives:

 

Evaluating these derivatives at the origin gives the Taylor coefficients

 

Substituting these values in to the general formula

 

produces

 

Since ln(1 + y) is analytic in |y| < 1, we have

 

Comparison with Fourier series Edit

The trigonometric Fourier series enables one to express a periodic function (or a function defined on a closed interval [a,b]) as an infinite sum of trigonometric functions (sines and cosines). In this sense, the Fourier series is analogous to Taylor series, since the latter allows one to express a function as an infinite sum of powers. Nevertheless, the two series differ from each other in several relevant issues:

  • The finite truncations of the Taylor series of f (x) about the point x = a are all exactly equal to f at a. In contrast, the Fourier series is computed by integrating over an entire interval, so there is generally no such point where all the finite truncations of the series are exact.
  • The computation of Taylor series requires the knowledge of the function on an arbitrary small neighbourhood of a point, whereas the computation of the Fourier series requires knowing the function on its whole domain interval. In a certain sense one could say that the Taylor series is "local" and the Fourier series is "global".
  • The Taylor series is defined for a function which has infinitely many derivatives at a single point, whereas the Fourier series is defined for any integrable function. In particular, the function could be nowhere differentiable. (For example, f (x) could be a Weierstrass function.)
  • The convergence of both series has very different properties. Even if the Taylor series has positive convergence radius, the resulting series may not coincide with the function; but if the function is analytic then the series converges pointwise to the function, and uniformly on every compact subset of the convergence interval. Concerning the Fourier series, if the function is square-integrable then the series converges in quadratic mean, but additional requirements are needed to ensure the pointwise or uniform convergence (for instance, if the function is periodic and of class C1 then the convergence is uniform).
  • Finally, in practice one wants to approximate the function with a finite number of terms, say with a Taylor polynomial or a partial sum of the trigonometric series, respectively. In the case of the Taylor series the error is very small in a neighbourhood of the point where it is computed, while it may be very large at a distant point. In the case of the Fourier series the error is distributed along the domain of the function.

See also Edit

Notes Edit

  1. ^ Thomas & Finney 1996, §8.9
  2. ^ Lindberg, David (2007). The Beginnings of Western Science (2nd ed.). University of Chicago Press. p. 33. ISBN 978-0-226-48205-7.
  3. ^ Kline, M. (1990). Mathematical Thought from Ancient to Modern Times. New York: Oxford University Press. pp. 35–37. ISBN 0-19-506135-7.
  4. ^ Boyer, C.; Merzbach, U. (1991). A History of Mathematics (Second revised ed.). John Wiley and Sons. pp. 202–203. ISBN 0-471-09763-2.
  5. ^ "Neither Newton nor Leibniz – The Pre-History of Calculus and Celestial Mechanics in Medieval Kerala" (PDF). MAT 314. Canisius College. (PDF) from the original on 2015-02-23. Retrieved 2006-07-09.
  6. ^ S. G. Dani (2012). "Ancient Indian Mathematics – A Conspectus". Resonance. 17 (3): 236–246. doi:10.1007/s12045-012-0022-y. S2CID 120553186.
  7. ^ Turnbull, Herbert Westren, ed. (1939). James Gregory; Tercentenary Memorial Volume. G. Bell & Sons. pp. 168–174.
    Roy, Ranjan (1990). "The Discovery of the Series Formula for π by Leibniz, Gregory and Nilakantha" (PDF). Mathematics Magazine. 63 (5): 291–306. doi:10.1080/0025570X.1990.11977541.
    Malet, Antoni (1993). "James Gregorie on Tangents and the "Taylor" Rule for Series Expansions". Archive for History of Exact Sciences. 46 (2): 97–137. doi:10.1007/BF00375656. JSTOR 41133959. S2CID 120101519.
  8. ^ Taylor, Brook (1715). Methodus Incrementorum Directa et Inversa [Direct and Reverse Methods of Incrementation] (in Latin). London. p. 21–23 (Prop. VII, Thm. 3, Cor. 2). Translated into English in Struik, D. J. (1969). A Source Book in Mathematics 1200–1800. Harvard University Press. pp. 329–332. ISBN 978-0-674-82355-6. Re-translated into English by Ian Bruce (2007) as Methodus Incrementorum Directa & Inversa, 17centurymaths.com.
    Feigenbaum, L. (1985). "Brook Taylor and the method of increments". Archive for History of Exact Sciences. 34 (1–2): 1–140. doi:10.1007/bf00329903. S2CID 122105736.
  9. ^ Rudin, Walter (1980), Real and Complex Analysis, New Delhi: McGraw-Hill, p. 418, Exercise 13, ISBN 0-07-099557-5
  10. ^ Feller, William (2003) [1971]. An introduction to probability theory and its applications. Vol. 2 (3rd ed.). Wiley. pp. 230–2. ISBN 9789971512989. OCLC 818811840.
  11. ^ Hille, Einar; Phillips, Ralph S. (1957), Functional analysis and semi-groups, AMS Colloquium Publications, vol. 31, American Mathematical Society, pp. 300–327.
  12. ^ Feller 2003, p. 231
  13. ^ Most of these can be found in (Abramowitz & Stegun 1970).
  14. ^ Hörmander, Lars (2002) [1990]. "1. Test Functions §1.1. A review of Differential Calculus". The analysis of partial differential operators. Vol. 1 (2nd ed.). Springer. Eqq. 1.1.7 and 1.1.7′. doi:10.1007/978-3-642-61497-2_2. ISBN 978-3-642-61497-2.
  15. ^ Kolk, Johan A.C.; Duistermaat, J.J. (2010). "Taylor Expansion in Several Variables". Distributions: Theory and applications. Birkhauser. pp. 59–63. doi:10.1007/978-0-8176-4675-2_6. ISBN 978-0-8176-4672-1.

References Edit

External links Edit

taylor, series, mathematics, taylor, expansion, function, infinite, terms, that, expressed, terms, function, derivatives, single, point, most, common, functions, function, equal, near, this, point, named, after, brook, taylor, introduced, them, 1715, also, cal. In mathematics the Taylor series or Taylor expansion of a function is an infinite sum of terms that are expressed in terms of the function s derivatives at a single point For most common functions the function and the sum of its Taylor series are equal near this point Taylor series are named after Brook Taylor who introduced them in 1715 A Taylor series is also called a Maclaurin series when 0 is the point where the derivatives are considered after Colin Maclaurin who made extensive use of this special case of Taylor series in the mid 18th century As the degree of the Taylor polynomial rises it approaches the correct function This image shows sin x and its Taylor approximations by polynomials of degree 1 3 5 7 9 11 and 13 at x 0 The partial sum formed by the first n 1 terms of a Taylor series is a polynomial of degree n that is called the n th Taylor polynomial of the function Taylor polynomials are approximations of a function which become generally more accurate as n increases Taylor s theorem gives quantitative estimates on the error introduced by the use of such approximations If the Taylor series of a function is convergent its sum is the limit of the infinite sequence of the Taylor polynomials A function may differ from the sum of its Taylor series even if its Taylor series is convergent A function is analytic at a point x if it is equal to the sum of its Taylor series in some open interval or open disk in the complex plane containing x This implies that the function is analytic at every point of the interval or disk Contents 1 Definition 2 Examples 3 History 4 Analytic functions 5 Approximation error and convergence 5 1 Generalization 6 List of Maclaurin series of some common functions 6 1 Exponential function 6 2 Natural logarithm 6 3 Geometric series 6 4 Binomial series 6 5 Trigonometric functions 6 6 Hyperbolic functions 6 7 Polylogarithmic functions 6 8 Elliptic functions 7 Calculation of Taylor series 7 1 First example 7 2 Second example 7 3 Third example 8 Taylor series as definitions 9 Taylor series in several variables 9 1 Second order Taylor series in several variables 9 2 Example 10 Comparison with Fourier series 11 See also 12 Notes 13 References 14 External linksDefinition EditThe Taylor series of a real or complex valued function f x that is infinitely differentiable at a real or complex number a is the power series f a f a 1 x a f a 2 x a 2 f a 3 x a 3 displaystyle f a frac f a 1 x a frac f a 2 x a 2 frac f a 3 x a 3 cdots nbsp where n denotes the factorial of n In the more compact sigma notation this can be written as n 0 f n a n x a n displaystyle sum n 0 infty frac f n a n x a n nbsp where f n a denotes the n th derivative of f evaluated at the point a The derivative of order zero of f is defined to be f itself and x a 0 and 0 are both defined to be 1 With a 0 the Maclaurin series takes the form 1 f 0 f 0 1 x f 0 2 x 2 f 0 3 x 3 displaystyle f 0 frac f 0 1 x frac f 0 2 x 2 frac f 0 3 x 3 cdots nbsp or in the compact sigma notation n 0 f n 0 n x n displaystyle sum n 0 infty frac f n 0 n x n nbsp Examples EditThe Taylor series of any polynomial is the polynomial itself The Maclaurin series of 1 1 x is the geometric series 1 x x 2 x 3 displaystyle 1 x x 2 x 3 cdots nbsp So by substituting x for 1 x the Taylor series of 1 x at a 1 is 1 x 1 x 1 2 x 1 3 displaystyle 1 x 1 x 1 2 x 1 3 cdots nbsp By integrating the above Maclaurin series we find the Maclaurin series of ln 1 x where ln denotes the natural logarithm x 1 2 x 2 1 3 x 3 1 4 x 4 displaystyle x tfrac 1 2 x 2 tfrac 1 3 x 3 tfrac 1 4 x 4 cdots nbsp The corresponding Taylor series of ln x at a 1 is x 1 1 2 x 1 2 1 3 x 1 3 1 4 x 1 4 displaystyle x 1 tfrac 1 2 x 1 2 tfrac 1 3 x 1 3 tfrac 1 4 x 1 4 cdots nbsp and more generally the corresponding Taylor series of ln x at an arbitrary nonzero point a is ln a 1 a x a 1 a 2 x a 2 2 displaystyle ln a frac 1 a x a frac 1 a 2 frac left x a right 2 2 cdots nbsp The Maclaurin series of the exponential function ex is n 0 x n n x 0 0 x 1 1 x 2 2 x 3 3 x 4 4 x 5 5 1 x x 2 2 x 3 6 x 4 24 x 5 120 displaystyle begin aligned sum n 0 infty frac x n n amp frac x 0 0 frac x 1 1 frac x 2 2 frac x 3 3 frac x 4 4 frac x 5 5 cdots amp 1 x frac x 2 2 frac x 3 6 frac x 4 24 frac x 5 120 cdots end aligned nbsp The above expansion holds because the derivative of ex with respect to x is also ex and e0 equals 1 This leaves the terms x 0 n in the numerator and n in the denominator of each term in the infinite sum History EditThe ancient Greek philosopher Zeno of Elea considered the problem of summing an infinite series to achieve a finite result but rejected it as an impossibility 2 the result was Zeno s paradox Later Aristotle proposed a philosophical resolution of the paradox but the mathematical content was apparently unresolved until taken up by Archimedes as it had been prior to Aristotle by the Presocratic Atomist Democritus It was through Archimedes s method of exhaustion that an infinite number of progressive subdivisions could be performed to achieve a finite result 3 Liu Hui independently employed a similar method a few centuries later 4 In the 14th century the earliest examples of specific Taylor series but not the general method were given by Madhava of Sangamagrama 5 6 Though no record of his work survives writings of his followers in the Kerala school of astronomy and mathematics suggest that he found the Taylor series for the trigonometric functions of sine cosine and arctangent see Madhava series During the following two centuries his followers developed further series expansions and rational approximations In late 1670 James Gregory was shown in a letter from John Collins several Maclaurin series sin x textstyle sin x nbsp cos x textstyle cos x nbsp arcsin x textstyle arcsin x nbsp and x cot x textstyle x cot x nbsp derived by Isaac Newton and told that Newton had developed a general method for expanding functions in series Newton had in fact used a cumbersome method involving long division of series and term by term integration but Gregory did not know it and set out to discover a general method for himself In early 1671 Gregory discovered something like the general Maclaurin series and sent a letter to Collins including series for arctan x textstyle arctan x nbsp tan x textstyle tan x nbsp sec x textstyle sec x nbsp ln sec x textstyle ln sec x nbsp the integral of tan displaystyle tan nbsp ln tan 1 2 1 2 p x textstyle ln tan tfrac 1 2 bigl tfrac 1 2 pi x bigr nbsp the integral of sec the inverse Gudermannian function arcsec 2 e x textstyle operatorname arcsec bigl sqrt 2 e x bigr nbsp and 2 arctan e x 1 2 p textstyle 2 arctan e x tfrac 1 2 pi nbsp the Gudermannian function However thinking that he had merely redeveloped a method by Newton Gregory never described how he obtained these series and it can only be inferred that he understood the general method by examining scratch work he had scribbled on the back of another letter from 1671 7 In 1691 1692 Isaac Newton wrote down an explicit statement of the Taylor and Maclaurin series in an unpublished version of his work De Quadratura Curvarum However this work was never completed and the relevant sections were omitted from the portions published in 1704 under the title Tractatus de Quadratura Curvarum It was not until 1715 that a general method for constructing these series for all functions for which they exist was finally published by Brook Taylor 8 after whom the series are now named The Maclaurin series was named after Colin Maclaurin a professor in Edinburgh who published the special case of the Taylor result in the mid 18th century Analytic functions Edit nbsp The function e 1 x2 is not analytic at x 0 the Taylor series is identically 0 although the function is not Main article Analytic function If f x is given by a convergent power series in an open disk centred at b in the complex plane or an interval in the real line it is said to be analytic in this region Thus for x in this region f is given by a convergent power series f x n 0 a n x b n displaystyle f x sum n 0 infty a n x b n nbsp Differentiating by x the above formula n times then setting x b gives f n b n a n displaystyle frac f n b n a n nbsp and so the power series expansion agrees with the Taylor series Thus a function is analytic in an open disk centered at b if and only if its Taylor series converges to the value of the function at each point of the disk If f x is equal to the sum of its Taylor series for all x in the complex plane it is called entire The polynomials exponential function ex and the trigonometric functions sine and cosine are examples of entire functions Examples of functions that are not entire include the square root the logarithm the trigonometric function tangent and its inverse arctan For these functions the Taylor series do not converge if x is far from b That is the Taylor series diverges at x if the distance between x and b is larger than the radius of convergence The Taylor series can be used to calculate the value of an entire function at every point if the value of the function and of all of its derivatives are known at a single point Uses of the Taylor series for analytic functions include The partial sums the Taylor polynomials of the series can be used as approximations of the function These approximations are good if sufficiently many terms are included Differentiation and integration of power series can be performed term by term and is hence particularly easy An analytic function is uniquely extended to a holomorphic function on an open disk in the complex plane This makes the machinery of complex analysis available The truncated series can be used to compute function values numerically often by recasting the polynomial into the Chebyshev form and evaluating it with the Clenshaw algorithm Algebraic operations can be done readily on the power series representation for instance Euler s formula follows from Taylor series expansions for trigonometric and exponential functions This result is of fundamental importance in such fields as harmonic analysis Approximations using the first few terms of a Taylor series can make otherwise unsolvable problems possible for a restricted domain this approach is often used in physics Approximation error and convergence EditMain article Taylor s theorem nbsp The sine function blue is closely approximated by its Taylor polynomial of degree 7 pink for a full period centered at the origin nbsp The Taylor polynomials for ln 1 x only provide accurate approximations in the range 1 lt x 1 For x gt 1 Taylor polynomials of higher degree provide worse approximations nbsp The Taylor approximations for ln 1 x black For x gt 1 the approximations diverge Pictured is an accurate approximation of sin x around the point x 0 The pink curve is a polynomial of degree seven sin x x x 3 3 x 5 5 x 7 7 displaystyle sin x approx x frac x 3 3 frac x 5 5 frac x 7 7 nbsp The error in this approximation is no more than x 9 9 For a full cycle centered at the origin p lt x lt p the error is less than 0 08215 In particular for 1 lt x lt 1 the error is less than 0 000003 In contrast also shown is a picture of the natural logarithm function ln 1 x and some of its Taylor polynomials around a 0 These approximations converge to the function only in the region 1 lt x 1 outside of this region the higher degree Taylor polynomials are worse approximations for the function The error incurred in approximating a function by its n th degree Taylor polynomial is called the remainder or residual and is denoted by the function Rn x Taylor s theorem can be used to obtain a bound on the size of the remainder In general Taylor series need not be convergent at all And in fact the set of functions with a convergent Taylor series is a meager set in the Frechet space of smooth functions And even if the Taylor series of a function f does converge its limit need not in general be equal to the value of the function f x For example the function f x e 1 x 2 if x 0 0 if x 0 displaystyle f x begin cases e 1 x 2 amp text if x neq 0 3mu 0 amp text if x 0 end cases nbsp is infinitely differentiable at x 0 and has all derivatives zero there Consequently the Taylor series of f x about x 0 is identically zero However f x is not the zero function so does not equal its Taylor series around the origin Thus f x is an example of a non analytic smooth function In real analysis this example shows that there are infinitely differentiable functions f x whose Taylor series are not equal to f x even if they converge By contrast the holomorphic functions studied in complex analysis always possess a convergent Taylor series and even the Taylor series of meromorphic functions which might have singularities never converge to a value different from the function itself The complex function e 1 z2 however does not approach 0 when z approaches 0 along the imaginary axis so it is not continuous in the complex plane and its Taylor series is undefined at 0 More generally every sequence of real or complex numbers can appear as coefficients in the Taylor series of an infinitely differentiable function defined on the real line a consequence of Borel s lemma As a result the radius of convergence of a Taylor series can be zero There are even infinitely differentiable functions defined on the real line whose Taylor series have a radius of convergence 0 everywhere 9 A function cannot be written as a Taylor series centred at a singularity in these cases one can often still achieve a series expansion if one allows also negative powers of the variable x see Laurent series For example f x e 1 x2 can be written as a Laurent series Generalization Edit There is however a generalization 10 11 of the Taylor series that does converge to the value of the function itself for any bounded continuous function on 0 using the calculus of finite differences Specifically one has the following theorem due to Einar Hille that for any t gt 0 lim h 0 n 0 t n n D h n f a h n f a t displaystyle lim h to 0 sum n 0 infty frac t n n frac Delta h n f a h n f a t nbsp Here Dnh is the n th finite difference operator with step size h The series is precisely the Taylor series except that divided differences appear in place of differentiation the series is formally similar to the Newton series When the function f is analytic at a the terms in the series converge to the terms of the Taylor series and in this sense generalizes the usual Taylor series In general for any infinite sequence ai the following power series identity holds n 0 u n n D n a i e u j 0 u j j a i j displaystyle sum n 0 infty frac u n n Delta n a i e u sum j 0 infty frac u j j a i j nbsp So in particular f a t lim h 0 e t h j 0 f a j h t h j j displaystyle f a t lim h to 0 e t h sum j 0 infty f a jh frac t h j j nbsp The series on the right is the expectation value of f a X where X is a Poisson distributed random variable that takes the value jh with probability e t h t h j j Hence f a t lim h 0 f a x d P t h h x displaystyle f a t lim h to 0 int infty infty f a x dP t h h x nbsp The law of large numbers implies that the identity holds 12 List of Maclaurin series of some common functions EditSee also List of mathematical series Several important Maclaurin series expansions follow 13 All these expansions are valid for complex arguments x Exponential function Edit nbsp The exponential function ex in blue and the sum of the first n 1 terms of its Taylor series at 0 in red The exponential function e x displaystyle e x nbsp with base e has Maclaurin series e x n 0 x n n 1 x x 2 2 x 3 3 displaystyle e x sum n 0 infty frac x n n 1 x frac x 2 2 frac x 3 3 cdots nbsp It converges for all x The exponential generating function of the Bell numbers is the exponential function of the predecessor of the exponential function exp exp x 1 n 0 B n n x n displaystyle exp exp x 1 sum n 0 infty frac B n n x n nbsp Natural logarithm Edit Main article Mercator series The natural logarithm with base e has Maclaurin series ln 1 x n 1 x n n x x 2 2 x 3 3 ln 1 x n 1 1 n 1 x n n x x 2 2 x 3 3 displaystyle begin aligned ln 1 x amp sum n 1 infty frac x n n x frac x 2 2 frac x 3 3 cdots ln 1 x amp sum n 1 infty 1 n 1 frac x n n x frac x 2 2 frac x 3 3 cdots end aligned nbsp They converge for x lt 1 displaystyle x lt 1 nbsp In addition the series for ln 1 x converges for x 1 and the series for ln 1 x converges for x 1 Geometric series Edit The geometric series and its derivatives have Maclaurin series 1 1 x n 0 x n 1 1 x 2 n 1 n x n 1 1 1 x 3 n 2 n 1 n 2 x n 2 displaystyle begin aligned frac 1 1 x amp sum n 0 infty x n frac 1 1 x 2 amp sum n 1 infty nx n 1 frac 1 1 x 3 amp sum n 2 infty frac n 1 n 2 x n 2 end aligned nbsp All are convergent for x lt 1 displaystyle x lt 1 nbsp These are special cases of the binomial series given in the next section Binomial series Edit The binomial series is the power series 1 x a n 0 a n x n displaystyle 1 x alpha sum n 0 infty binom alpha n x n nbsp whose coefficients are the generalized binomial coefficients a n k 1 n a k 1 k a a 1 a n 1 n displaystyle binom alpha n prod k 1 n frac alpha k 1 k frac alpha alpha 1 cdots alpha n 1 n nbsp If n 0 this product is an empty product and has value 1 It converges for x lt 1 displaystyle x lt 1 nbsp for any real or complex number a When a 1 this is essentially the infinite geometric series mentioned in the previous section The special cases a 1 2 and a 1 2 give the square root function and its inverse 1 x 1 2 1 1 2 x 1 8 x 2 1 16 x 3 5 128 x 4 7 256 x 5 n 0 1 n 1 2 n 4 n n 2 2 n 1 x n 1 x 1 2 1 1 2 x 3 8 x 2 5 16 x 3 35 128 x 4 63 256 x 5 n 0 1 n 2 n 4 n n 2 x n displaystyle begin aligned 1 x frac 1 2 amp 1 tfrac 1 2 x tfrac 1 8 x 2 tfrac 1 16 x 3 tfrac 5 128 x 4 tfrac 7 256 x 5 cdots amp amp sum n 0 infty frac 1 n 1 2n 4 n n 2 2n 1 x n 1 x frac 1 2 amp 1 tfrac 1 2 x tfrac 3 8 x 2 tfrac 5 16 x 3 tfrac 35 128 x 4 tfrac 63 256 x 5 cdots amp amp sum n 0 infty frac 1 n 2n 4 n n 2 x n end aligned nbsp When only the linear term is retained this simplifies to the binomial approximation Trigonometric functions Edit The usual trigonometric functions and their inverses have the following Maclaurin series sin x n 0 1 n 2 n 1 x 2 n 1 x x 3 3 x 5 5 for all x cos x n 0 1 n 2 n x 2 n 1 x 2 2 x 4 4 for all x tan x n 1 B 2 n 4 n 1 4 n 2 n x 2 n 1 x x 3 3 2 x 5 15 for x lt p 2 sec x n 0 1 n E 2 n 2 n x 2 n 1 x 2 2 5 x 4 24 for x lt p 2 arcsin x n 0 2 n 4 n n 2 2 n 1 x 2 n 1 x x 3 6 3 x 5 40 for x 1 arccos x p 2 arcsin x p 2 n 0 2 n 4 n n 2 2 n 1 x 2 n 1 p 2 x x 3 6 3 x 5 40 for x 1 arctan x n 0 1 n 2 n 1 x 2 n 1 x x 3 3 x 5 5 for x 1 x i displaystyle begin aligned sin x amp sum n 0 infty frac 1 n 2n 1 x 2n 1 amp amp x frac x 3 3 frac x 5 5 cdots amp amp text for all x 6pt cos x amp sum n 0 infty frac 1 n 2n x 2n amp amp 1 frac x 2 2 frac x 4 4 cdots amp amp text for all x 6pt tan x amp sum n 1 infty frac B 2n 4 n left 1 4 n right 2n x 2n 1 amp amp x frac x 3 3 frac 2x 5 15 cdots amp amp text for x lt frac pi 2 6pt sec x amp sum n 0 infty frac 1 n E 2n 2n x 2n amp amp 1 frac x 2 2 frac 5x 4 24 cdots amp amp text for x lt frac pi 2 6pt arcsin x amp sum n 0 infty frac 2n 4 n n 2 2n 1 x 2n 1 amp amp x frac x 3 6 frac 3x 5 40 cdots amp amp text for x leq 1 6pt arccos x amp frac pi 2 arcsin x amp frac pi 2 sum n 0 infty frac 2n 4 n n 2 2n 1 x 2n 1 amp amp frac pi 2 x frac x 3 6 frac 3x 5 40 cdots amp amp text for x leq 1 6pt arctan x amp sum n 0 infty frac 1 n 2n 1 x 2n 1 amp amp x frac x 3 3 frac x 5 5 cdots amp amp text for x leq 1 x neq pm i end aligned nbsp All angles are expressed in radians The numbers Bk appearing in the expansions of tan x are the Bernoulli numbers The Ek in the expansion of sec x are Euler numbers Hyperbolic functions Edit The hyperbolic functions have Maclaurin series closely related to the series for the corresponding trigonometric functions sinh x n 0 x 2 n 1 2 n 1 x x 3 3 x 5 5 for all x cosh x n 0 x 2 n 2 n 1 x 2 2 x 4 4 for all x tanh x n 1 B 2 n 4 n 4 n 1 2 n x 2 n 1 x x 3 3 2 x 5 15 17 x 7 315 for x lt p 2 arsinh x n 0 1 n 2 n 4 n n 2 2 n 1 x 2 n 1 x x 3 6 3 x 5 40 for x 1 artanh x n 0 x 2 n 1 2 n 1 x x 3 3 x 5 5 for x 1 x 1 displaystyle begin aligned sinh x amp sum n 0 infty frac x 2n 1 2n 1 amp amp x frac x 3 3 frac x 5 5 cdots amp amp text for all x 6pt cosh x amp sum n 0 infty frac x 2n 2n amp amp 1 frac x 2 2 frac x 4 4 cdots amp amp text for all x 6pt tanh x amp sum n 1 infty frac B 2n 4 n left 4 n 1 right 2n x 2n 1 amp amp x frac x 3 3 frac 2x 5 15 frac 17x 7 315 cdots amp amp text for x lt frac pi 2 6pt operatorname arsinh x amp sum n 0 infty frac 1 n 2n 4 n n 2 2n 1 x 2n 1 amp amp x frac x 3 6 frac 3x 5 40 cdots amp amp text for x leq 1 6pt operatorname artanh x amp sum n 0 infty frac x 2n 1 2n 1 amp amp x frac x 3 3 frac x 5 5 cdots amp amp text for x leq 1 x neq pm 1 end aligned nbsp The numbers Bk appearing in the series for tanh x are the Bernoulli numbers Polylogarithmic functions Edit The polylogarithms have these defining identities Li 2 x n 1 1 n 2 x n displaystyle text Li 2 x sum n 1 infty frac 1 n 2 x n nbsp Li 3 x n 1 1 n 3 x n displaystyle text Li 3 x sum n 1 infty frac 1 n 3 x n nbsp The Legendre chi functions are defined as follows x 2 x n 0 1 2 n 1 2 x 2 n 1 displaystyle chi 2 x sum n 0 infty frac 1 2n 1 2 x 2n 1 nbsp x 3 x n 0 1 2 n 1 3 x 2 n 1 displaystyle chi 3 x sum n 0 infty frac 1 2n 1 3 x 2n 1 nbsp And the formulas presented below are called inverse tangent integrals Ti 2 x n 0 1 n 2 n 1 2 x 2 n 1 displaystyle text Ti 2 x sum n 0 infty frac 1 n 2n 1 2 x 2n 1 nbsp Ti 3 x n 0 1 n 2 n 1 3 x 2 n 1 displaystyle text Ti 3 x sum n 0 infty frac 1 n 2n 1 3 x 2n 1 nbsp In statistical thermodynamics these formulas are of great importance Elliptic functions Edit The complete elliptic integrals of first kind K and of second kind E can be defined as follows 2 p K x n 0 2 n 2 16 n n 4 x 2 n displaystyle frac 2 pi K x sum n 0 infty frac 2n 2 16 n n 4 x 2n nbsp 2 p E x n 0 2 n 2 1 2 n 16 n n 4 x 2 n displaystyle frac 2 pi E x sum n 0 infty frac 2n 2 1 2n 16 n n 4 x 2n nbsp The Jacobi theta functions describe the world of the elliptic modular functions and they have these Taylor series ϑ 00 x 1 2 n 1 x n 2 displaystyle vartheta 00 x 1 2 sum n 1 infty x n 2 nbsp ϑ 01 x 1 2 n 1 1 n x n 2 displaystyle vartheta 01 x 1 2 sum n 1 infty 1 n x n 2 nbsp The regular partition number sequence P n has this generating function ϑ 00 x 1 6 ϑ 01 x 2 3 ϑ 00 x 4 ϑ 01 x 4 16 x 1 24 n 0 P n x n k 1 1 1 x k displaystyle vartheta 00 x 1 6 vartheta 01 x 2 3 biggl frac vartheta 00 x 4 vartheta 01 x 4 16 x biggr 1 24 sum n 0 infty P n x n prod k 1 infty frac 1 1 x k nbsp The strict partition number sequence Q n has that generating function ϑ 00 x 1 6 ϑ 01 x 1 3 ϑ 00 x 4 ϑ 01 x 4 16 x 1 24 n 0 Q n x n k 1 1 1 x 2 k 1 displaystyle vartheta 00 x 1 6 vartheta 01 x 1 3 biggl frac vartheta 00 x 4 vartheta 01 x 4 16 x biggr 1 24 sum n 0 infty Q n x n prod k 1 infty frac 1 1 x 2k 1 nbsp Calculation of Taylor series EditSeveral methods exist for the calculation of Taylor series of a large number of functions One can attempt to use the definition of the Taylor series though this often requires generalizing the form of the coefficients according to a readily apparent pattern Alternatively one can use manipulations such as substitution multiplication or division addition or subtraction of standard Taylor series to construct the Taylor series of a function by virtue of Taylor series being power series In some cases one can also derive the Taylor series by repeatedly applying integration by parts Particularly convenient is the use of computer algebra systems to calculate Taylor series First example Edit In order to compute the 7th degree Maclaurin polynomial for the function f x ln cos x x p 2 p 2 displaystyle f x ln cos x quad x in left frac pi 2 frac pi 2 right nbsp one may first rewrite the function as f x ln 1 cos x 1 displaystyle f x ln bigl 1 cos x 1 bigr nbsp The Taylor series for the natural logarithm is using the big O notation ln 1 x x x 2 2 x 3 3 O x 4 displaystyle ln 1 x x frac x 2 2 frac x 3 3 O left x 4 right nbsp and for the cosine function cos x 1 x 2 2 x 4 24 x 6 720 O x 8 displaystyle cos x 1 frac x 2 2 frac x 4 24 frac x 6 720 O left x 8 right nbsp The latter series expansion has a zero constant term which enables us to substitute the second series into the first one and to easily omit terms of higher order than the 7th degree by using the big O notation f x ln 1 cos x 1 cos x 1 1 2 cos x 1 2 1 3 cos x 1 3 O cos x 1 4 x 2 2 x 4 24 x 6 720 O x 8 1 2 x 2 2 x 4 24 O x 6 2 1 3 x 2 2 O x 4 3 O x 8 x 2 2 x 4 24 x 6 720 x 4 8 x 6 48 x 6 24 O x 8 x 2 2 x 4 12 x 6 45 O x 8 displaystyle begin aligned f x amp ln bigl 1 cos x 1 bigr amp cos x 1 tfrac 1 2 cos x 1 2 tfrac 1 3 cos x 1 3 O left cos x 1 4 right amp left frac x 2 2 frac x 4 24 frac x 6 720 O left x 8 right right frac 1 2 left frac x 2 2 frac x 4 24 O left x 6 right right 2 frac 1 3 left frac x 2 2 O left x 4 right right 3 O left x 8 right amp frac x 2 2 frac x 4 24 frac x 6 720 frac x 4 8 frac x 6 48 frac x 6 24 O left x 8 right amp frac x 2 2 frac x 4 12 frac x 6 45 O left x 8 right end aligned nbsp Since the cosine is an even function the coefficients for all the odd powers x x3 x5 x7 have to be zero Second example Edit Suppose we want the Taylor series at 0 of the function g x e x cos x displaystyle g x frac e x cos x nbsp We have for the exponential function e x n 0 x n n 1 x x 2 2 x 3 3 x 4 4 displaystyle e x sum n 0 infty frac x n n 1 x frac x 2 2 frac x 3 3 frac x 4 4 cdots nbsp and as in the first example cos x 1 x 2 2 x 4 4 displaystyle cos x 1 frac x 2 2 frac x 4 4 cdots nbsp Assume the power series is e x cos x c 0 c 1 x c 2 x 2 c 3 x 3 displaystyle frac e x cos x c 0 c 1 x c 2 x 2 c 3 x 3 cdots nbsp Then multiplication with the denominator and substitution of the series of the cosine yields e x c 0 c 1 x c 2 x 2 c 3 x 3 cos x c 0 c 1 x c 2 x 2 c 3 x 3 c 4 x 4 1 x 2 2 x 4 4 c 0 c 0 2 x 2 c 0 4 x 4 c 1 x c 1 2 x 3 c 1 4 x 5 c 2 x 2 c 2 2 x 4 c 2 4 x 6 c 3 x 3 c 3 2 x 5 c 3 4 x 7 c 4 x 4 displaystyle begin aligned e x amp left c 0 c 1 x c 2 x 2 c 3 x 3 cdots right cos x amp left c 0 c 1 x c 2 x 2 c 3 x 3 c 4 x 4 cdots right left 1 frac x 2 2 frac x 4 4 cdots right amp c 0 frac c 0 2 x 2 frac c 0 4 x 4 c 1 x frac c 1 2 x 3 frac c 1 4 x 5 c 2 x 2 frac c 2 2 x 4 frac c 2 4 x 6 c 3 x 3 frac c 3 2 x 5 frac c 3 4 x 7 c 4 x 4 cdots end aligned nbsp Collecting the terms up to fourth order yields e x c 0 c 1 x c 2 c 0 2 x 2 c 3 c 1 2 x 3 c 4 c 2 2 c 0 4 x 4 displaystyle e x c 0 c 1 x left c 2 frac c 0 2 right x 2 left c 3 frac c 1 2 right x 3 left c 4 frac c 2 2 frac c 0 4 right x 4 cdots nbsp The values of c i displaystyle c i nbsp can be found by comparison of coefficients with the top expression for e x displaystyle e x nbsp yielding e x cos x 1 x x 2 2 x 3 3 x 4 2 displaystyle frac e x cos x 1 x x 2 frac 2x 3 3 frac x 4 2 cdots nbsp Third example Edit Here we employ a method called indirect expansion to expand the given function This method uses the known Taylor expansion of the exponential function In order to expand 1 x ex as a Taylor series in x we use the known Taylor series of function ex e x n 0 x n n 1 x x 2 2 x 3 3 x 4 4 displaystyle e x sum n 0 infty frac x n n 1 x frac x 2 2 frac x 3 3 frac x 4 4 cdots nbsp Thus 1 x e x e x x e x n 0 x n n n 0 x n 1 n 1 n 1 x n n n 0 x n 1 n 1 n 1 x n n n 1 x n n 1 1 n 1 1 n 1 n 1 x n 1 n 1 n 1 n x n n 0 n 1 n x n displaystyle begin aligned 1 x e x amp e x xe x sum n 0 infty frac x n n sum n 0 infty frac x n 1 n 1 sum n 1 infty frac x n n sum n 0 infty frac x n 1 n amp 1 sum n 1 infty frac x n n sum n 1 infty frac x n n 1 1 sum n 1 infty left frac 1 n frac 1 n 1 right x n amp 1 sum n 1 infty frac n 1 n x n amp sum n 0 infty frac n 1 n x n end aligned nbsp Taylor series as definitions EditClassically algebraic functions are defined by an algebraic equation and transcendental functions including those discussed above are defined by some property that holds for them such as a differential equation For example the exponential function is the function which is equal to its own derivative everywhere and assumes the value 1 at the origin However one may equally well define an analytic function by its Taylor series Taylor series are used to define functions and operators in diverse areas of mathematics In particular this is true in areas where the classical definitions of functions break down For example using Taylor series one may extend analytic functions to sets of matrices and operators such as the matrix exponential or matrix logarithm In other areas such as formal analysis it is more convenient to work directly with the power series themselves Thus one may define a solution of a differential equation as a power series which one hopes to prove is the Taylor series of the desired solution Taylor series in several variables EditThe Taylor series may also be generalized to functions of more than one variable with 14 15 T x 1 x d n 1 0 n d 0 x 1 a 1 n 1 x d a d n d n 1 n d n 1 n d f x 1 n 1 x d n d a 1 a d f a 1 a d j 1 d f a 1 a d x j x j a j 1 2 j 1 d k 1 d 2 f a 1 a d x j x k x j a j x k a k 1 3 j 1 d k 1 d l 1 d 3 f a 1 a d x j x k x l x j a j x k a k x l a l displaystyle begin aligned T x 1 ldots x d amp sum n 1 0 infty cdots sum n d 0 infty frac x 1 a 1 n 1 cdots x d a d n d n 1 cdots n d left frac partial n 1 cdots n d f partial x 1 n 1 cdots partial x d n d right a 1 ldots a d amp f a 1 ldots a d sum j 1 d frac partial f a 1 ldots a d partial x j x j a j frac 1 2 sum j 1 d sum k 1 d frac partial 2 f a 1 ldots a d partial x j partial x k x j a j x k a k amp qquad qquad frac 1 3 sum j 1 d sum k 1 d sum l 1 d frac partial 3 f a 1 ldots a d partial x j partial x k partial x l x j a j x k a k x l a l cdots end aligned nbsp For example for a function f x y displaystyle f x y nbsp that depends on two variables x and y the Taylor series to second order about the point a b is f a b x a f x a b y b f y a b 1 2 x a 2 f x x a b 2 x a y b f x y a b y b 2 f y y a b displaystyle f a b x a f x a b y b f y a b frac 1 2 Big x a 2 f xx a b 2 x a y b f xy a b y b 2 f yy a b Big nbsp where the subscripts denote the respective partial derivatives Second order Taylor series in several variables Edit See also Linearization Multivariable functions A second order Taylor series expansion of a scalar valued function of more than one variable can be written compactly as T x f a x a T D f a 1 2 x a T D 2 f a x a displaystyle T mathbf x f mathbf a mathbf x mathbf a mathsf T Df mathbf a frac 1 2 mathbf x mathbf a mathsf T left D 2 f mathbf a right mathbf x mathbf a cdots nbsp where D f a is the gradient of f evaluated at x a and D2 f a is the Hessian matrix Applying the multi index notation the Taylor series for several variables becomes T x a 0 x a a a a f a displaystyle T mathbf x sum alpha geq 0 frac mathbf x mathbf a alpha alpha left mathrm partial alpha f right mathbf a nbsp which is to be understood as a still more abbreviated multi index version of the first equation of this paragraph with a full analogy to the single variable case Example Edit nbsp Second order Taylor series approximation in orange of a function f x y ex ln 1 y around the origin In order to compute a second order Taylor series expansion around point a b 0 0 of the function f x y e x ln 1 y displaystyle f x y e x ln 1 y nbsp one first computes all the necessary partial derivatives f x e x ln 1 y f y e x 1 y f x x e x ln 1 y f y y e x 1 y 2 f x y f y x e x 1 y displaystyle begin aligned f x amp e x ln 1 y 6pt f y amp frac e x 1 y 6pt f xx amp e x ln 1 y 6pt f yy amp frac e x 1 y 2 6pt f xy amp f yx frac e x 1 y end aligned nbsp Evaluating these derivatives at the origin gives the Taylor coefficients f x 0 0 0 f y 0 0 1 f x x 0 0 0 f y y 0 0 1 f x y 0 0 f y x 0 0 1 displaystyle begin aligned f x 0 0 amp 0 f y 0 0 amp 1 f xx 0 0 amp 0 f yy 0 0 amp 1 f xy 0 0 amp f yx 0 0 1 end aligned nbsp Substituting these values in to the general formula T x y f a b x a f x a b y b f y a b 1 2 x a 2 f x x a b 2 x a y b f x y a b y b 2 f y y a b displaystyle begin aligned T x y amp f a b x a f x a b y b f y a b amp frac 1 2 left x a 2 f xx a b 2 x a y b f xy a b y b 2 f yy a b right cdots end aligned nbsp produces T x y 0 0 x 0 1 y 0 1 2 0 x 0 2 2 x 0 y 0 1 y 0 2 y x y 1 2 y 2 displaystyle begin aligned T x y amp 0 0 x 0 1 y 0 frac 1 2 big 0 x 0 2 2 x 0 y 0 1 y 0 2 big cdots amp y xy tfrac 1 2 y 2 cdots end aligned nbsp Since ln 1 y is analytic in y lt 1 we have e x ln 1 y y x y 1 2 y 2 y lt 1 displaystyle e x ln 1 y y xy tfrac 1 2 y 2 cdots qquad y lt 1 nbsp Comparison with Fourier series EditMain article Fourier series The trigonometric Fourier series enables one to express a periodic function or a function defined on a closed interval a b as an infinite sum of trigonometric functions sines and cosines In this sense the Fourier series is analogous to Taylor series since the latter allows one to express a function as an infinite sum of powers Nevertheless the two series differ from each other in several relevant issues The finite truncations of the Taylor series of f x about the point x a are all exactly equal to f at a In contrast the Fourier series is computed by integrating over an entire interval so there is generally no such point where all the finite truncations of the series are exact The computation of Taylor series requires the knowledge of the function on an arbitrary small neighbourhood of a point whereas the computation of the Fourier series requires knowing the function on its whole domain interval In a certain sense one could say that the Taylor series is local and the Fourier series is global The Taylor series is defined for a function which has infinitely many derivatives at a single point whereas the Fourier series is defined for any integrable function In particular the function could be nowhere differentiable For example f x could be a Weierstrass function The convergence of both series has very different properties Even if the Taylor series has positive convergence radius the resulting series may not coincide with the function but if the function is analytic then the series converges pointwise to the function and uniformly on every compact subset of the convergence interval Concerning the Fourier series if the function is square integrable then the series converges in quadratic mean but additional requirements are needed to ensure the pointwise or uniform convergence for instance if the function is periodic and of class C1 then the convergence is uniform Finally in practice one wants to approximate the function with a finite number of terms say with a Taylor polynomial or a partial sum of the trigonometric series respectively In the case of the Taylor series the error is very small in a neighbourhood of the point where it is computed while it may be very large at a distant point In the case of the Fourier series the error is distributed along the domain of the function See also EditAsymptotic expansion Generating function Laurent series Madhava series Newton s divided difference interpolation Pade approximant Puiseux series Shift operatorNotes Edit Thomas amp Finney 1996 8 9 Lindberg David 2007 The Beginnings of Western Science 2nd ed University of Chicago Press p 33 ISBN 978 0 226 48205 7 Kline M 1990 Mathematical Thought from Ancient to Modern Times New York Oxford University Press pp 35 37 ISBN 0 19 506135 7 Boyer C Merzbach U 1991 A History of Mathematics Second revised ed John Wiley and Sons pp 202 203 ISBN 0 471 09763 2 Neither Newton nor Leibniz The Pre History of Calculus and Celestial Mechanics in Medieval Kerala PDF MAT 314 Canisius College Archived PDF from the original on 2015 02 23 Retrieved 2006 07 09 S G Dani 2012 Ancient Indian Mathematics A Conspectus Resonance 17 3 236 246 doi 10 1007 s12045 012 0022 y S2CID 120553186 Turnbull Herbert Westren ed 1939 James Gregory Tercentenary Memorial Volume G Bell amp Sons pp 168 174 Roy Ranjan 1990 The Discovery of the Series Formula for p by Leibniz Gregory and Nilakantha PDF Mathematics Magazine 63 5 291 306 doi 10 1080 0025570X 1990 11977541 Malet Antoni 1993 James Gregorie on Tangents and the Taylor Rule for Series Expansions Archive for History of Exact Sciences 46 2 97 137 doi 10 1007 BF00375656 JSTOR 41133959 S2CID 120101519 Taylor Brook 1715 Methodus Incrementorum Directa et Inversa Direct and Reverse Methods of Incrementation in Latin London p 21 23 Prop VII Thm 3 Cor 2 Translated into English in Struik D J 1969 A Source Book in Mathematics 1200 1800 Harvard University Press pp 329 332 ISBN 978 0 674 82355 6 Re translated into English by Ian Bruce 2007 as Methodus Incrementorum Directa amp Inversa 17centurymaths com Feigenbaum L 1985 Brook Taylor and the method of increments Archive for History of Exact Sciences 34 1 2 1 140 doi 10 1007 bf00329903 S2CID 122105736 Rudin Walter 1980 Real and Complex Analysis New Delhi McGraw Hill p 418 Exercise 13 ISBN 0 07 099557 5 Feller William 2003 1971 An introduction to probability theory and its applications Vol 2 3rd ed Wiley pp 230 2 ISBN 9789971512989 OCLC 818811840 Hille Einar Phillips Ralph S 1957 Functional analysis and semi groups AMS Colloquium Publications vol 31 American Mathematical Society pp 300 327 Feller 2003 p 231 Most of these can be found in Abramowitz amp Stegun 1970 Hormander Lars 2002 1990 1 Test Functions 1 1 A review of Differential Calculus The analysis of partial differential operators Vol 1 2nd ed Springer Eqq 1 1 7 and 1 1 7 doi 10 1007 978 3 642 61497 2 2 ISBN 978 3 642 61497 2 Kolk Johan A C Duistermaat J J 2010 Taylor Expansion in Several Variables Distributions Theory and applications Birkhauser pp 59 63 doi 10 1007 978 0 8176 4675 2 6 ISBN 978 0 8176 4672 1 References EditAbramowitz Milton Stegun Irene A 1970 Handbook of Mathematical Functions with Formulas Graphs and Mathematical Tables New York Dover Publications Ninth printing Thomas George B Jr Finney Ross L 1996 Calculus and Analytic Geometry 9th ed Addison Wesley ISBN 0 201 53174 7 Greenberg Michael 1998 Advanced Engineering Mathematics 2nd ed Prentice Hall ISBN 0 13 321431 1 Roy Ranjan 2021 1st ed 2011 Series and Products in the Development of Mathematics Vol 1 2nd ed Cambridge University Press External links EditTaylor series at Wikipedia s sister projects nbsp Definitions from Wiktionary nbsp Media from Commons nbsp Textbooks from Wikibooks nbsp Resources from Wikiversity nbsp Data from Wikidata Taylor series Encyclopedia of Mathematics EMS Press 2001 1994 Weisstein Eric W Taylor Series MathWorld Retrieved from https en wikipedia org w index php title Taylor series amp oldid 1170488908, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.