fbpx
Wikipedia

Complex analysis

Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic geometry, number theory, analytic combinatorics, applied mathematics; as well as in physics, including the branches of hydrodynamics, thermodynamics, and particularly quantum mechanics. By extension, use of complex analysis also has applications in engineering fields such as nuclear, aerospace, mechanical and electrical engineering.[citation needed]

As a differentiable function of a complex variable is equal to its Taylor series (that is, it is analytic), complex analysis is particularly concerned with analytic functions of a complex variable (that is, holomorphic functions).

History

 
Augustin-Louis Cauchy, one of the founders of complex analysis

Complex analysis is one of the classical branches in mathematics, with roots in the 18th century and just prior. Important mathematicians associated with complex numbers include Euler, Gauss, Riemann, Cauchy, Gösta Mittag-Leffler, Weierstrass, and many more in the 20th century. Complex analysis, in particular the theory of conformal mappings, has many physical applications and is also used throughout analytic number theory. In modern times, it has become very popular through a new boost from complex dynamics and the pictures of fractals produced by iterating holomorphic functions. Another important application of complex analysis is in string theory which examines conformal invariants in quantum field theory.

Complex functions

 
An exponential function An of a discrete (integer) variable n, similar to geometric progression

A complex function is a function from complex numbers to complex numbers. In other words, it is a function that has a subset of the complex numbers as a domain and the complex numbers as a codomain. Complex functions are generally supposed to have a domain that contains a nonempty open subset of the complex plane.

For any complex function, the values   from the domain and their images   in the range may be separated into real and imaginary parts:

 

where   are all real-valued.

In other words, a complex function   may be decomposed into

  and  

i.e., into two real-valued functions ( ,  ) of two real variables ( ,  ).

Similarly, any complex-valued function f on an arbitrary set X (is isomorphic to, and therefore, in that sense, it) can be considered as an ordered pair of two real-valued functions: (Re f, Im f) or, alternatively, as a vector-valued function from X into  

Some properties of complex-valued functions (such as continuity) are nothing more than the corresponding properties of vector valued functions of two real variables. Other concepts of complex analysis, such as differentiability, are direct generalizations of the similar concepts for real functions, but may have very different properties. In particular, every differentiable complex function is analytic (see next section), and two differentiable functions that are equal in a neighborhood of a point are equal on the intersection of their domain (if the domains are connected). The latter property is the basis of the principle of analytic continuation which allows extending every real analytic function in a unique way for getting a complex analytic function whose domain is the whole complex plane with a finite number of curve arcs removed. Many basic and special complex functions are defined in this way, including the complex exponential function, complex logarithm functions, and trigonometric functions.

Holomorphic functions

Complex functions that are differentiable at every point of an open subset   of the complex plane are said to be holomorphic on  . In the context of complex analysis, the derivative of   at   is defined to be[1]

 

Superficially, this definition is formally analogous to that of the derivative of a real function. However, complex derivatives and differentiable functions behave in significantly different ways compared to their real counterparts. In particular, for this limit to exist, the value of the difference quotient must approach the same complex number, regardless of the manner in which we approach   in the complex plane. Consequently, complex differentiability has much stronger implications than real differentiability. For instance, holomorphic functions are infinitely differentiable, whereas the existence of the nth derivative need not imply the existence of the (n + 1)th derivative for real functions. Furthermore, all holomorphic functions satisfy the stronger condition of analyticity, meaning that the function is, at every point in its domain, locally given by a convergent power series. In essence, this means that functions holomorphic on   can be approximated arbitrarily well by polynomials in some neighborhood of every point in  . This stands in sharp contrast to differentiable real functions; there are infinitely differentiable real functions that are nowhere analytic; see Non-analytic smooth function § A smooth function which is nowhere real analytic.

Most elementary functions, including the exponential function, the trigonometric functions, and all polynomial functions, extended appropriately to complex arguments as functions  , are holomorphic over the entire complex plane, making them entire functions, while rational functions  , where p and q are polynomials, are holomorphic on domains that exclude points where q is zero. Such functions that are holomorphic everywhere except a set of isolated points are known as meromorphic functions. On the other hand, the functions  ,  , and   are not holomorphic anywhere on the complex plane, as can be shown by their failure to satisfy the Cauchy–Riemann conditions (see below).

An important property of holomorphic functions is the relationship between the partial derivatives of their real and imaginary components, known as the Cauchy–Riemann conditions. If  , defined by  , where  , is holomorphic on a region  , then for all  ,

 

In terms of the real and imaginary parts of the function, u and v, this is equivalent to the pair of equations   and  , where the subscripts indicate partial differentiation. However, the Cauchy–Riemann conditions do not characterize holomorphic functions, without additional continuity conditions (see Looman–Menchoff theorem).

Holomorphic functions exhibit some remarkable features. For instance, Picard's theorem asserts that the range of an entire function can take only three possible forms:  ,  , or   for some  . In other words, if two distinct complex numbers   and   are not in the range of an entire function  , then   is a constant function. Moreover, a holomorphic function on a connected open set is determined by its restriction to any nonempty open subset.

Conformal map

 
A rectangular grid (top) and its image under a conformal map   (bottom). It is seen that   maps pairs of lines intersecting at 90° to pairs of curves still intersecting at 90°.

In mathematics, a conformal map is a function that locally preserves angles, but not necessarily lengths.

More formally, let   and   be open subsets of  . A function   is called conformal (or angle-preserving) at a point   if it preserves angles between directed curves through  , as well as preserving orientation. Conformal maps preserve both angles and the shapes of infinitesimally small figures, but not necessarily their size or curvature.

The conformal property may be described in terms of the Jacobian derivative matrix of a coordinate transformation. The transformation is conformal whenever the Jacobian at each point is a positive scalar times a rotation matrix (orthogonal with determinant one). Some authors define conformality to include orientation-reversing mappings whose Jacobians can be written as any scalar times any orthogonal matrix.[2]

For mappings in two dimensions, the (orientation-preserving) conformal mappings are precisely the locally invertible complex analytic functions. In three and higher dimensions, Liouville's theorem sharply limits the conformal mappings to a few types.

The notion of conformality generalizes in a natural way to maps between Riemannian or semi-Riemannian manifolds.

Major results

 
Color wheel graph of the function f(x) = (x2 − 1)(x − 2 − i)2/x2 + 2 + 2i.
Hue represents the argument, brightness the magnitude.

One of the central tools in complex analysis is the line integral. The line integral around a closed path of a function that is holomorphic everywhere inside the area bounded by the closed path is always zero, as is stated by the Cauchy integral theorem. The values of such a holomorphic function inside a disk can be computed by a path integral on the disk's boundary (as shown in Cauchy's integral formula). Path integrals in the complex plane are often used to determine complicated real integrals, and here the theory of residues among others is applicable (see methods of contour integration). A "pole" (or isolated singularity) of a function is a point where the function's value becomes unbounded, or "blows up". If a function has such a pole, then one can compute the function's residue there, which can be used to compute path integrals involving the function; this is the content of the powerful residue theorem. The remarkable behavior of holomorphic functions near essential singularities is described by Picard's theorem. Functions that have only poles but no essential singularities are called meromorphic. Laurent series are the complex-valued equivalent to Taylor series, but can be used to study the behavior of functions near singularities through infinite sums of more well understood functions, such as polynomials.

A bounded function that is holomorphic in the entire complex plane must be constant; this is Liouville's theorem. It can be used to provide a natural and short proof for the fundamental theorem of algebra which states that the field of complex numbers is algebraically closed.

If a function is holomorphic throughout a connected domain then its values are fully determined by its values on any smaller subdomain. The function on the larger domain is said to be analytically continued from its values on the smaller domain. This allows the extension of the definition of functions, such as the Riemann zeta function, which are initially defined in terms of infinite sums that converge only on limited domains to almost the entire complex plane. Sometimes, as in the case of the natural logarithm, it is impossible to analytically continue a holomorphic function to a non-simply connected domain in the complex plane but it is possible to extend it to a holomorphic function on a closely related surface known as a Riemann surface.

All this refers to complex analysis in one variable. There is also a very rich theory of complex analysis in more than one complex dimension in which the analytic properties such as power series expansion carry over whereas most of the geometric properties of holomorphic functions in one complex dimension (such as conformality) do not carry over. The Riemann mapping theorem about the conformal relationship of certain domains in the complex plane, which may be the most important result in the one-dimensional theory, fails dramatically in higher dimensions.

A major application of certain complex spaces is in quantum mechanics as wave functions.

See also

References

  1. ^ Rudin, Walter (1987). Real and Complex Analysis (PDF). McGraw-Hill Education. p. 197. ISBN 978-0-07-054234-1.
  2. ^ Blair, David (2000-08-17). Inversion Theory and Conformal Mapping. The Student Mathematical Library. Vol. 9. Providence, Rhode Island: American Mathematical Society. doi:10.1090/stml/009. ISBN 978-0-8218-2636-2. S2CID 118752074.

Sources

  • Ablowitz, M. J. & A. S. Fokas, Complex Variables: Introduction and Applications (Cambridge, 2003).
  • Ahlfors, L., Complex Analysis (McGraw-Hill, 1953).
  • Cartan, H., Théorie élémentaire des fonctions analytiques d'une ou plusieurs variables complexes. (Hermann, 1961). English translation, Elementary Theory of Analytic Functions of One or Several Complex Variables. (Addison-Wesley, 1963).
  • Carathéodory, C., Funktionentheorie. (Birkhäuser, 1950). English translation, Theory of Functions of a Complex Variable (Chelsea, 1954). [2 volumes.]
  • Carrier, G. F., M. Krook, & C. E. Pearson, Functions of a Complex Variable: Theory and Technique. (McGraw-Hill, 1966).
  • Conway, J. B., Functions of One Complex Variable. (Springer, 1973).
  • Fisher, S., Complex Variables. (Wadsworth & Brooks/Cole, 1990).
  • Forsyth, A., Theory of Functions of a Complex Variable (Cambridge, 1893).
  • Freitag, E. & R. Busam, Funktionentheorie. (Springer, 1995). English translation, Complex Analysis. (Springer, 2005).
  • Goursat, E., Cours d'analyse mathématique, tome 2. (Gauthier-Villars, 1905). English translation, A course of mathematical analysis, vol. 2, part 1: Functions of a complex variable. (Ginn, 1916).
  • Henrici, P., Applied and Computational Complex Analysis (Wiley). [Three volumes: 1974, 1977, 1986.]
  • Kreyszig, E., Advanced Engineering Mathematics. (Wiley, 1962).
  • Lavrentyev, M. & B. Shabat, Методы теории функций комплексного переменного. (Methods of the Theory of Functions of a Complex Variable). (1951, in Russian).
  • Markushevich, A. I., Theory of Functions of a Complex Variable, (Prentice-Hall, 1965). [Three volumes.]
  • Marsden & Hoffman, Basic Complex Analysis. (Freeman, 1973).
  • Needham, T., Visual Complex Analysis. (Oxford, 1997). http://usf.usfca.edu/vca/
  • Remmert, R., Theory of Complex Functions. (Springer, 1990).
  • Rudin, W., Real and Complex Analysis. (McGraw-Hill, 1966).
  • Shaw, W. T., Complex Analysis with Mathematica (Cambridge, 2006).
  • Stein, E. & R. Shakarchi, Complex Analysis. (Princeton, 2003).
  • Sveshnikov, A. G. & A. N. Tikhonov, Теория функций комплексной переменной. (Nauka, 1967). English translation, The Theory Of Functions Of A Complex Variable (MIR, 1978).
  • Titchmarsh, E. C., The Theory of Functions. (Oxford, 1932).
  • Wegert, E., Visual Complex Functions. (Birkhäuser, 2012).
  • Whittaker, E. T. & G. N. Watson, A Course of Modern Analysis. (Cambridge, 1902). 3rd ed. (1920)

External links

  • Wolfram Research's MathWorld Complex Analysis Page

complex, analysis, complex, analytic, complex, variables, redirect, here, complex, analytic, class, functions, holomorphic, function, study, several, complex, variables, function, several, complex, variables, confused, with, complexity, theory, this, article, . Complex analytic and complex variables redirect here For the complex analytic class of functions see Holomorphic function For the study of several complex variables see Function of several complex variables Not to be confused with Complexity theory This article includes a list of general references but it lacks sufficient corresponding inline citations Please help to improve this article by introducing more precise citations March 2021 Learn how and when to remove this template message Complex analysis traditionally known as the theory of functions of a complex variable is the branch of mathematical analysis that investigates functions of complex numbers It is helpful in many branches of mathematics including algebraic geometry number theory analytic combinatorics applied mathematics as well as in physics including the branches of hydrodynamics thermodynamics and particularly quantum mechanics By extension use of complex analysis also has applications in engineering fields such as nuclear aerospace mechanical and electrical engineering citation needed As a differentiable function of a complex variable is equal to its Taylor series that is it is analytic complex analysis is particularly concerned with analytic functions of a complex variable that is holomorphic functions Contents 1 History 2 Complex functions 3 Holomorphic functions 4 Conformal map 5 Major results 6 See also 7 References 8 Sources 9 External linksHistory Edit Augustin Louis Cauchy one of the founders of complex analysis Complex analysis is one of the classical branches in mathematics with roots in the 18th century and just prior Important mathematicians associated with complex numbers include Euler Gauss Riemann Cauchy Gosta Mittag Leffler Weierstrass and many more in the 20th century Complex analysis in particular the theory of conformal mappings has many physical applications and is also used throughout analytic number theory In modern times it has become very popular through a new boost from complex dynamics and the pictures of fractals produced by iterating holomorphic functions Another important application of complex analysis is in string theory which examines conformal invariants in quantum field theory Complex functions Edit An exponential function An of a discrete integer variable n similar to geometric progression A complex function is a function from complex numbers to complex numbers In other words it is a function that has a subset of the complex numbers as a domain and the complex numbers as a codomain Complex functions are generally supposed to have a domain that contains a nonempty open subset of the complex plane For any complex function the values z displaystyle z from the domain and their images f z displaystyle f z in the range may be separated into real and imaginary parts z x i y and f z f x i y u x y i v x y displaystyle z x iy quad text and quad f z f x iy u x y iv x y where x y u x y v x y displaystyle x y u x y v x y are all real valued In other words a complex function f C C displaystyle f mathbb C to mathbb C may be decomposed into u R 2 R displaystyle u mathbb R 2 to mathbb R quad and v R 2 R displaystyle quad v mathbb R 2 to mathbb R i e into two real valued functions u displaystyle u v displaystyle v of two real variables x displaystyle x y displaystyle y Similarly any complex valued function f on an arbitrary set X is isomorphic to and therefore in that sense it can be considered as an ordered pair of two real valued functions Re f Im f or alternatively as a vector valued function from X into R 2 displaystyle mathbb R 2 Some properties of complex valued functions such as continuity are nothing more than the corresponding properties of vector valued functions of two real variables Other concepts of complex analysis such as differentiability are direct generalizations of the similar concepts for real functions but may have very different properties In particular every differentiable complex function is analytic see next section and two differentiable functions that are equal in a neighborhood of a point are equal on the intersection of their domain if the domains are connected The latter property is the basis of the principle of analytic continuation which allows extending every real analytic function in a unique way for getting a complex analytic function whose domain is the whole complex plane with a finite number of curve arcs removed Many basic and special complex functions are defined in this way including the complex exponential function complex logarithm functions and trigonometric functions Holomorphic functions EditMain article Holomorphic function Complex functions that are differentiable at every point of an open subset W displaystyle Omega of the complex plane are said to be holomorphic on W displaystyle Omega In the context of complex analysis the derivative of f displaystyle f at z 0 displaystyle z 0 is defined to be 1 f z 0 lim z z 0 f z f z 0 z z 0 displaystyle f z 0 lim z to z 0 frac f z f z 0 z z 0 Superficially this definition is formally analogous to that of the derivative of a real function However complex derivatives and differentiable functions behave in significantly different ways compared to their real counterparts In particular for this limit to exist the value of the difference quotient must approach the same complex number regardless of the manner in which we approach z 0 displaystyle z 0 in the complex plane Consequently complex differentiability has much stronger implications than real differentiability For instance holomorphic functions are infinitely differentiable whereas the existence of the nth derivative need not imply the existence of the n 1 th derivative for real functions Furthermore all holomorphic functions satisfy the stronger condition of analyticity meaning that the function is at every point in its domain locally given by a convergent power series In essence this means that functions holomorphic on W displaystyle Omega can be approximated arbitrarily well by polynomials in some neighborhood of every point in W displaystyle Omega This stands in sharp contrast to differentiable real functions there are infinitely differentiable real functions that are nowhere analytic see Non analytic smooth function A smooth function which is nowhere real analytic Most elementary functions including the exponential function the trigonometric functions and all polynomial functions extended appropriately to complex arguments as functions C C displaystyle mathbb C to mathbb C are holomorphic over the entire complex plane making them entire functions while rational functions p q displaystyle p q where p and q are polynomials are holomorphic on domains that exclude points where q is zero Such functions that are holomorphic everywhere except a set of isolated points are known as meromorphic functions On the other hand the functions z ℜ z displaystyle z mapsto Re z z z displaystyle z mapsto z and z z displaystyle z mapsto bar z are not holomorphic anywhere on the complex plane as can be shown by their failure to satisfy the Cauchy Riemann conditions see below An important property of holomorphic functions is the relationship between the partial derivatives of their real and imaginary components known as the Cauchy Riemann conditions If f C C displaystyle f mathbb C to mathbb C defined by f z f x i y u x y i v x y displaystyle f z f x iy u x y iv x y where x y u x y v x y R displaystyle x y u x y v x y in mathbb R is holomorphic on a region W displaystyle Omega then for all z 0 W displaystyle z 0 in Omega f z z 0 0 where z 1 2 x i y displaystyle frac partial f partial bar z z 0 0 text where frac partial partial bar z mathrel frac 1 2 left frac partial partial x i frac partial partial y right In terms of the real and imaginary parts of the function u and v this is equivalent to the pair of equations u x v y displaystyle u x v y and u y v x displaystyle u y v x where the subscripts indicate partial differentiation However the Cauchy Riemann conditions do not characterize holomorphic functions without additional continuity conditions see Looman Menchoff theorem Holomorphic functions exhibit some remarkable features For instance Picard s theorem asserts that the range of an entire function can take only three possible forms C displaystyle mathbb C C z 0 displaystyle mathbb C setminus z 0 or z 0 displaystyle z 0 for some z 0 C displaystyle z 0 in mathbb C In other words if two distinct complex numbers z displaystyle z and w displaystyle w are not in the range of an entire function f displaystyle f then f displaystyle f is a constant function Moreover a holomorphic function on a connected open set is determined by its restriction to any nonempty open subset Conformal map EditThis section is an excerpt from Conformal map edit A rectangular grid top and its image under a conformal map f displaystyle f bottom It is seen that f displaystyle f maps pairs of lines intersecting at 90 to pairs of curves still intersecting at 90 In mathematics a conformal map is a function that locally preserves angles but not necessarily lengths More formally let U displaystyle U and V displaystyle V be open subsets of R n displaystyle mathbb R n A function f U V displaystyle f U to V is called conformal or angle preserving at a point u 0 U displaystyle u 0 in U if it preserves angles between directed curves through u 0 displaystyle u 0 as well as preserving orientation Conformal maps preserve both angles and the shapes of infinitesimally small figures but not necessarily their size or curvature The conformal property may be described in terms of the Jacobian derivative matrix of a coordinate transformation The transformation is conformal whenever the Jacobian at each point is a positive scalar times a rotation matrix orthogonal with determinant one Some authors define conformality to include orientation reversing mappings whose Jacobians can be written as any scalar times any orthogonal matrix 2 For mappings in two dimensions the orientation preserving conformal mappings are precisely the locally invertible complex analytic functions In three and higher dimensions Liouville s theorem sharply limits the conformal mappings to a few types The notion of conformality generalizes in a natural way to maps between Riemannian or semi Riemannian manifolds Major results Edit Color wheel graph of the function f x x2 1 x 2 i 2 x2 2 2i Hue represents the argument brightness the magnitude One of the central tools in complex analysis is the line integral The line integral around a closed path of a function that is holomorphic everywhere inside the area bounded by the closed path is always zero as is stated by the Cauchy integral theorem The values of such a holomorphic function inside a disk can be computed by a path integral on the disk s boundary as shown in Cauchy s integral formula Path integrals in the complex plane are often used to determine complicated real integrals and here the theory of residues among others is applicable see methods of contour integration A pole or isolated singularity of a function is a point where the function s value becomes unbounded or blows up If a function has such a pole then one can compute the function s residue there which can be used to compute path integrals involving the function this is the content of the powerful residue theorem The remarkable behavior of holomorphic functions near essential singularities is described by Picard s theorem Functions that have only poles but no essential singularities are called meromorphic Laurent series are the complex valued equivalent to Taylor series but can be used to study the behavior of functions near singularities through infinite sums of more well understood functions such as polynomials A bounded function that is holomorphic in the entire complex plane must be constant this is Liouville s theorem It can be used to provide a natural and short proof for the fundamental theorem of algebra which states that the field of complex numbers is algebraically closed If a function is holomorphic throughout a connected domain then its values are fully determined by its values on any smaller subdomain The function on the larger domain is said to be analytically continued from its values on the smaller domain This allows the extension of the definition of functions such as the Riemann zeta function which are initially defined in terms of infinite sums that converge only on limited domains to almost the entire complex plane Sometimes as in the case of the natural logarithm it is impossible to analytically continue a holomorphic function to a non simply connected domain in the complex plane but it is possible to extend it to a holomorphic function on a closely related surface known as a Riemann surface All this refers to complex analysis in one variable There is also a very rich theory of complex analysis in more than one complex dimension in which the analytic properties such as power series expansion carry over whereas most of the geometric properties of holomorphic functions in one complex dimension such as conformality do not carry over The Riemann mapping theorem about the conformal relationship of certain domains in the complex plane which may be the most important result in the one dimensional theory fails dramatically in higher dimensions A major application of certain complex spaces is in quantum mechanics as wave functions See also EditComplex geometry Hypercomplex analysis Vector calculus List of complex analysis topics Monodromy theorem Real analysis Riemann Roch theorem Runge s theoremReferences Edit Rudin Walter 1987 Real and Complex Analysis PDF McGraw Hill Education p 197 ISBN 978 0 07 054234 1 Blair David 2000 08 17 Inversion Theory and Conformal Mapping The Student Mathematical Library Vol 9 Providence Rhode Island American Mathematical Society doi 10 1090 stml 009 ISBN 978 0 8218 2636 2 S2CID 118752074 Sources EditAblowitz M J amp A S Fokas Complex Variables Introduction and Applications Cambridge 2003 Ahlfors L Complex Analysis McGraw Hill 1953 Cartan H Theorie elementaire des fonctions analytiques d une ou plusieurs variables complexes Hermann 1961 English translation Elementary Theory of Analytic Functions of One or Several Complex Variables Addison Wesley 1963 Caratheodory C Funktionentheorie Birkhauser 1950 English translation Theory of Functions of a Complex Variable Chelsea 1954 2 volumes Carrier G F M Krook amp C E Pearson Functions of a Complex Variable Theory and Technique McGraw Hill 1966 Conway J B Functions of One Complex Variable Springer 1973 Fisher S Complex Variables Wadsworth amp Brooks Cole 1990 Forsyth A Theory of Functions of a Complex Variable Cambridge 1893 Freitag E amp R Busam Funktionentheorie Springer 1995 English translation Complex Analysis Springer 2005 Goursat E Cours d analyse mathematique tome 2 Gauthier Villars 1905 English translation A course of mathematical analysis vol 2 part 1 Functions of a complex variable Ginn 1916 Henrici P Applied and Computational Complex Analysis Wiley Three volumes 1974 1977 1986 Kreyszig E Advanced Engineering Mathematics Wiley 1962 Lavrentyev M amp B Shabat Metody teorii funkcij kompleksnogo peremennogo Methods of the Theory of Functions of a Complex Variable 1951 in Russian Markushevich A I Theory of Functions of a Complex Variable Prentice Hall 1965 Three volumes Marsden amp Hoffman Basic Complex Analysis Freeman 1973 Needham T Visual Complex Analysis Oxford 1997 http usf usfca edu vca Remmert R Theory of Complex Functions Springer 1990 Rudin W Real and Complex Analysis McGraw Hill 1966 Shaw W T Complex Analysis with Mathematica Cambridge 2006 Stein E amp R Shakarchi Complex Analysis Princeton 2003 Sveshnikov A G amp A N Tikhonov Teoriya funkcij kompleksnoj peremennoj Nauka 1967 English translation The Theory Of Functions Of A Complex Variable MIR 1978 Titchmarsh E C The Theory of Functions Oxford 1932 Wegert E Visual Complex Functions Birkhauser 2012 Whittaker E T amp G N Watson A Course of Modern Analysis Cambridge 1902 3rd ed 1920 External links EditComplex analysis at Wikipedia s sister projects Definitions from Wiktionary Media from Commons Quotations from Wikiquote Wolfram Research s MathWorld Complex Analysis Page Retrieved from https en wikipedia org w index php title Complex analysis amp oldid 1147016887, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.