fbpx
Wikipedia

Theta function

In mathematics, theta functions are special functions of several complex variables. They show up in many topics, including Abelian varieties, moduli spaces, quadratic forms, and solitons. As Grassmann algebras, they appear in quantum field theory.[1]

Jacobi's theta function θ1 with nome q = eiπτ = 0.1e0.1iπ:

The most common form of theta function is that occurring in the theory of elliptic functions. With respect to one of the complex variables (conventionally called z), a theta function has a property expressing its behavior with respect to the addition of a period of the associated elliptic functions, making it a quasiperiodic function. In the abstract theory this quasiperiodicity comes from the cohomology class of a line bundle on a complex torus, a condition of descent.

One interpretation of theta functions when dealing with the heat equation is that "a theta function is a special function that describes the evolution of temperature on a segment domain subject to certain boundary conditions".[2]

Throughout this article, should be interpreted as (in order to resolve issues of choice of branch).[note 1]

Jacobi theta function

There are several closely related functions called Jacobi theta functions, and many different and incompatible systems of notation for them. One Jacobi theta function (named after Carl Gustav Jacob Jacobi) is a function defined for two complex variables z and τ, where z can be any complex number and τ is the half-period ratio, confined to the upper half-plane, which means it has positive imaginary part. It is given by the formula

 

where q = exp(πiτ) is the nome and η = exp(2πiz). It is a Jacobi form. The restriction ensures that it is an absolutely convergent series. At fixed τ, this is a Fourier series for a 1-periodic entire function of z. Accordingly, the theta function is 1-periodic in z:

 

By completing the square, it is also τ-quasiperiodic in z, with

 

Thus, in general,

 

for any integers a and b.

For any fixed  , the function is an entire function on the complex plane, so by Liouville's theorem, it cannot be doubly periodic in   unless it is constant, and so the best we could do is to make it periodic in   and quasi-periodic in  . Indeed, since

 
and  , the function   is unbounded, as required by Liouville's theorem.

It is in fact the most general entire function with 2 quasi-periods, in the following sense:[3]

Theorem — If   is entire and nonconstant, and satisfies the functional equations   for some constant  .

If  , then   and  . If  , then   for some nonzero  .

 
Theta function θ1 with different nome q = eiπτ. The black dot in the right-hand picture indicates how q changes with τ.
 
Theta function θ1 with different nome q = eiπτ. The black dot in the right-hand picture indicates how q changes with τ.

Auxiliary functions

The Jacobi theta function defined above is sometimes considered along with three auxiliary theta functions, in which case it is written with a double 0 subscript:

 

The auxiliary (or half-period) functions are defined by

 

This notation follows Riemann and Mumford; Jacobi's original formulation was in terms of the nome q = eiπτ rather than τ. In Jacobi's notation the θ-functions are written:

 
 
Jacobi theta 1
 
Jacobi theta 2
 
Jacobi theta 3
 
Jacobi theta 4

The above definitions of the Jacobi theta functions are by no means unique. See Jacobi theta functions (notational variations) for further discussion.

If we set z = 0 in the above theta functions, we obtain four functions of τ only, defined on the upper half-plane. Alternatively, we obtain four functions of q only, defined on the unit disk  . They are sometimes called theta constants:[note 2]

 

with the nome q = eiπτ. Observe that  . These can be used to define a variety of modular forms, and to parametrize certain curves; in particular, the Jacobi identity is

 

or equivalently,

 

which is the Fermat curve of degree four.

Jacobi identities

Jacobi's identities describe how theta functions transform under the modular group, which is generated by ττ + 1 and τ ↦ −1/τ. Equations for the first transform are easily found since adding one to τ in the exponent has the same effect as adding 1/2 to z (nn2 mod 2). For the second, let

 

Then

 

Theta functions in terms of the nome

Instead of expressing the Theta functions in terms of z and τ, we may express them in terms of arguments w and the nome q, where w = eπiz and q = eπiτ. In this form, the functions become

 

We see that the theta functions can also be defined in terms of w and q, without a direct reference to the exponential function. These formulas can, therefore, be used to define the Theta functions over other fields where the exponential function might not be everywhere defined, such as fields of p-adic numbers.

Product representations

The Jacobi triple product (a special case of the Macdonald identities) tells us that for complex numbers w and q with |q| < 1 and w ≠ 0 we have

 

It can be proven by elementary means, as for instance in Hardy and Wright's An Introduction to the Theory of Numbers.

If we express the theta function in terms of the nome q = eπiτ (noting some authors instead set q = e2πiτ) and take w = eπiz then

 

We therefore obtain a product formula for the theta function in the form

 

In terms of w and q:

 

where (  ;  ) is the q-Pochhammer symbol and θ(  ;  ) is the q-theta function. Expanding terms out, the Jacobi triple product can also be written

 

which we may also write as

 

This form is valid in general but clearly is of particular interest when z is real. Similar product formulas for the auxiliary theta functions are

 

In particular,

 
so we may interpret them as one-parameter deformations of the periodic functions  , again validating the interpretation of the theta function as the most general 2 quasi-period function.

Integral representations

The Jacobi theta functions have the following integral representations:

 

Explicit values

Lemniscatic values

Proper credit for most of these results goes to Ramanujan. See Ramanujan's lost notebook and a relevant reference at Euler function. The Ramanujan results quoted at Euler function plus a few elementary operations give the results below, so they are either in Ramanujan's lost notebook or follow immediately from it. See also Yi (2004).[4] Define,

 

with the nome     and Dedekind eta function   Then for  

 

Note that the following modular identities hold:

 

where   is the Rogers–Ramanujan continued fraction:

 

Equianharmonic values

The mathematician Bruce Berndt found out further values[5] of the theta function:

 

Further values

Many values of the theta function[6] and especially of the shown phi function can be represented in terms of the gamma function:

 

Some series identities

The next two series identities were proved by István Mező:[7]

 

These relations hold for all 0 < q < 1. Specializing the values of q, we have the next parameter free sums

 

Zeros of the Jacobi theta functions

All zeros of the Jacobi theta functions are simple zeros and are given by the following:

 

where m, n are arbitrary integers.

Relation to the Riemann zeta function

The relation

 

was used by Riemann to prove the functional equation for the Riemann zeta function, by means of the Mellin transform

 

which can be shown to be invariant under substitution of s by 1 − s. The corresponding integral for z ≠ 0 is given in the article on the Hurwitz zeta function.

Relation to the Weierstrass elliptic function

The theta function was used by Jacobi to construct (in a form adapted to easy calculation) his elliptic functions as the quotients of the above four theta functions, and could have been used by him to construct Weierstrass's elliptic functions also, since

 

where the second derivative is with respect to z and the constant c is defined so that the Laurent expansion of ℘(z) at z = 0 has zero constant term.

Relation to the q-gamma function

The fourth theta function – and thus the others too – is intimately connected to the Jackson q-gamma function via the relation[8]

 

Relations to Dedekind eta function

Let η(τ) be the Dedekind eta function, and the argument of the theta function as the nome q = eπiτ. Then,

 

and,

 

See also the Weber modular functions.

Elliptic modulus

The elliptic modulus is

 

and the complementary elliptic modulus is

 

A solution to the heat equation

The Jacobi theta function is the fundamental solution of the one-dimensional heat equation with spatially periodic boundary conditions.[9] Taking z = x to be real and τ = it with t real and positive, we can write

 

which solves the heat equation

 

This theta-function solution is 1-periodic in x, and as t → 0 it approaches the periodic delta function, or Dirac comb, in the sense of distributions

 .

General solutions of the spatially periodic initial value problem for the heat equation may be obtained by convolving the initial data at t = 0 with the theta function.

Relation to the Heisenberg group

The Jacobi theta function is invariant under the action of a discrete subgroup of the Heisenberg group. This invariance is presented in the article on the theta representation of the Heisenberg group.

Generalizations

If F is a quadratic form in n variables, then the theta function associated with F is

 

with the sum extending over the lattice of integers  . This theta function is a modular form of weight n/2 (on an appropriately defined subgroup) of the modular group. In the Fourier expansion,

 

the numbers RF(k) are called the representation numbers of the form.

Theta series of a Dirichlet character

For χ a primitive Dirichlet character modulo q and ν = 1 − χ(−1)/2 then

 

is a weight 1/2 + ν modular form of level 4q2 and character

 

which means[10]

 

whenever

 

Ramanujan theta function

Riemann theta function

Let

 

the set of symmetric square matrices whose imaginary part is positive definite.   is called the Siegel upper half-space and is the multi-dimensional analog of the upper half-plane. The n-dimensional analogue of the modular group is the symplectic group Sp(2n, ); for n = 1, Sp(2, ) = SL(2, ). The n-dimensional analogue of the congruence subgroups is played by

 

Then, given τ , the Riemann theta function is defined as

 

Here, z  is an n-dimensional complex vector, and the superscript T denotes the transpose. The Jacobi theta function is then a special case, with n = 1 and τ  where   is the upper half-plane. One major application of the Riemann theta function is that it allows one to give explicit formulas for meromorphic functions on compact Riemann surfaces, as well as other auxiliary objects that figure prominently in their function theory, by taking τ to be the period matrix with respect to a canonical basis for its first homology group.

The Riemann theta converges absolutely and uniformly on compact subsets of  .

The functional equation is

 

which holds for all vectors a, b , and for all z  and τ .

Poincaré series

The Poincaré series generalizes the theta series to automorphic forms with respect to arbitrary Fuchsian groups.

Theta function coefficients

If a and b are positive integers, χ(n) any arithmetical function and |q| < 1, then

 

The general case, where f(n) and χ(n) are any arithmetical functions, and f(n) :    is strictly increasing with f(0) = 0, is

 

Notes

  1. ^ See e.g. https://dlmf.nist.gov/20.1. Note that this is, in general, not equivalent to the usual interpretation   when   is outside the strip  . Here,   denotes the principal branch of the complex logarithm.
  2. ^   for all   with  .

References

  • Abramowitz, Milton; Stegun, Irene A. (1964). Handbook of Mathematical Functions. New York: Dover Publications. sec. 16.27ff. ISBN 978-0-486-61272-0.
  • Akhiezer, Naum Illyich (1990) [1970]. Elements of the Theory of Elliptic Functions. AMS Translations of Mathematical Monographs. Vol. 79. Providence, RI: AMS. ISBN 978-0-8218-4532-5.
  • Farkas, Hershel M.; Kra, Irwin (1980). Riemann Surfaces. New York: Springer-Verlag. ch. 6. ISBN 978-0-387-90465-8.. (for treatment of the Riemann theta)
  • Hardy, G. H.; Wright, E. M. (1959). An Introduction to the Theory of Numbers (4th ed.). Oxford: Clarendon Press.
  • Mumford, David (1983). Tata Lectures on Theta I. Boston: Birkhauser. ISBN 978-3-7643-3109-2.
  • Pierpont, James (1959). Functions of a Complex Variable. New York: Dover Publications.
  • Rauch, Harry E.; Farkas, Hershel M. (1974). Theta Functions with Applications to Riemann Surfaces. Baltimore: Williams & Wilkins. ISBN 978-0-683-07196-2.
  • Reinhardt, William P.; Walker, Peter L. (2010), "Theta Functions", in Olver, Frank W. J.; Lozier, Daniel M.; Boisvert, Ronald F.; Clark, Charles W. (eds.), NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0-521-19225-5, MR 2723248
  • Whittaker, E. T.; Watson, G. N. (1927). A Course in Modern Analysis (4th ed.). Cambridge: Cambridge University Press. ch. 21. (history of Jacobi's θ functions)

Further reading

  • Farkas, Hershel M. (2008). "Theta functions in complex analysis and number theory". In Alladi, Krishnaswami (ed.). Surveys in Number Theory. Developments in Mathematics. Vol. 17. Springer-Verlag. pp. 57–87. ISBN 978-0-387-78509-7. Zbl 1206.11055.
  • Schoeneberg, Bruno (1974). "IX. Theta series". Elliptic modular functions. Die Grundlehren der mathematischen Wissenschaften. Vol. 203. Springer-Verlag. pp. 203–226. ISBN 978-3-540-06382-7.
  • Ackerman, Michael (1 February 1979). "On the generating functions of certain Eisenstein series". Mathematische Annalen. 244 (1): 75–81. doi:10.1007/BF01420339. S2CID 120045753.

Harry Rauch with Hershel M. Farkas: Theta functions with applications to Riemann Surfaces, Williams and Wilkins, Baltimore MD 1974, ISBN 0-683-07196-3.

External links

  • Moiseev Igor. "Elliptic functions for Matlab and Octave".

This article incorporates material from Integral representations of Jacobi theta functions on PlanetMath, which is licensed under the Creative Commons Attribution/Share-Alike License.

  1. ^ Tyurin, Andrey N. (30 October 2002). "Quantization, Classical and Quantum Field Theory and Theta-Functions". arXiv:math/0210466v1.
  2. ^ Chang, Der-Chen (2011). Heat Kernels for Elliptic and Sub-elliptic Operators. Birkhäuser. p. 7.
  3. ^ Tata Lectures on Theta I. Modern Birkhäuser Classics. Boston, MA: Birkhäuser Boston. 2007. p. 4. doi:10.1007/978-0-8176-4577-9. ISBN 978-0-8176-4572-4.
  4. ^ Yi, Jinhee (2004). "Theta-function identities and the explicit formulas for theta-function and their applications". Journal of Mathematical Analysis and Applications. 292 (2): 381–400. doi:10.1016/j.jmaa.2003.12.009.
  5. ^ Berndt, Bruce C; Rebák, Örs (9 January 2022). "Explicit Values for Ramanujan's Theta Function ϕ(q)". Hardy-Ramanujan Journal. 44: 8923. doi:10.46298/hrj.2022.8923. S2CID 245851672.
  6. ^ Yi, Jinhee (15 April 2004). "Theta-function identities and the explicit formulas for theta-function and their applications". Journal of Mathematical Analysis and Applications. 292 (2): 381–400. doi:10.1016/j.jmaa.2003.12.009.
  7. ^ Mező, István (2013), "Duplication formulae involving Jacobi theta functions and Gosper's q-trigonometric functions", Proceedings of the American Mathematical Society, 141 (7): 2401–2410, doi:10.1090/s0002-9939-2013-11576-5
  8. ^ Mező, István (2012). "A q-Raabe formula and an integral of the fourth Jacobi theta function". Journal of Number Theory. 133 (2): 692–704. doi:10.1016/j.jnt.2012.08.025.
  9. ^ Ohyama, Yousuke (1995). "Differential relations of theta functions". Osaka Journal of Mathematics. 32 (2): 431–450.
  10. ^ Shimura, On modular forms of half integral weight

theta, function, other, functions, disambiguation, mathematics, theta, functions, special, functions, several, complex, variables, they, show, many, topics, including, abelian, varieties, moduli, spaces, quadratic, forms, solitons, grassmann, algebras, they, a. For other 8 functions see Theta function disambiguation In mathematics theta functions are special functions of several complex variables They show up in many topics including Abelian varieties moduli spaces quadratic forms and solitons As Grassmann algebras they appear in quantum field theory 1 Jacobi s theta function 81 with nome q eipt 0 1e0 1ip 8 1 z q 2 q 1 4 n 0 1 n q n n 1 sin 2 n 1 z n 1 n 1 2 q n 1 2 2 e 2 n 1 i z displaystyle begin aligned theta 1 z q amp 2q frac 1 4 sum n 0 infty 1 n q n n 1 sin 2n 1 z amp sum n infty infty 1 n frac 1 2 q left n frac 1 2 right 2 e 2n 1 iz end aligned The most common form of theta function is that occurring in the theory of elliptic functions With respect to one of the complex variables conventionally called z a theta function has a property expressing its behavior with respect to the addition of a period of the associated elliptic functions making it a quasiperiodic function In the abstract theory this quasiperiodicity comes from the cohomology class of a line bundle on a complex torus a condition of descent One interpretation of theta functions when dealing with the heat equation is that a theta function is a special function that describes the evolution of temperature on a segment domain subject to certain boundary conditions 2 Throughout this article e p i t a displaystyle e pi i tau alpha should be interpreted as e a p i t displaystyle e alpha pi i tau in order to resolve issues of choice of branch note 1 Contents 1 Jacobi theta function 2 Auxiliary functions 3 Jacobi identities 4 Theta functions in terms of the nome 5 Product representations 6 Integral representations 7 Explicit values 7 1 Lemniscatic values 7 2 Equianharmonic values 7 3 Further values 8 Some series identities 9 Zeros of the Jacobi theta functions 10 Relation to the Riemann zeta function 11 Relation to the Weierstrass elliptic function 12 Relation to the q gamma function 13 Relations to Dedekind eta function 14 Elliptic modulus 15 A solution to the heat equation 16 Relation to the Heisenberg group 17 Generalizations 17 1 Theta series of a Dirichlet character 17 2 Ramanujan theta function 17 3 Riemann theta function 17 4 Poincare series 17 5 Theta function coefficients 18 Notes 19 References 20 Further reading 21 External linksJacobi theta function EditThere are several closely related functions called Jacobi theta functions and many different and incompatible systems of notation for them One Jacobi theta function named after Carl Gustav Jacob Jacobi is a function defined for two complex variables z and t where z can be any complex number and t is the half period ratio confined to the upper half plane which means it has positive imaginary part It is given by the formula ϑ z t n exp p i n 2 t 2 p i n z 1 2 n 1 q n 2 cos 2 p n z n q n 2 h n displaystyle begin aligned vartheta z tau amp sum n infty infty exp left pi in 2 tau 2 pi inz right amp 1 2 sum n 1 infty q n 2 cos 2 pi nz amp sum n infty infty q n 2 eta n end aligned where q exp pit is the nome and h exp 2piz It is a Jacobi form The restriction ensures that it is an absolutely convergent series At fixed t this is a Fourier series for a 1 periodic entire function of z Accordingly the theta function is 1 periodic in z ϑ z 1 t ϑ z t displaystyle vartheta z 1 tau vartheta z tau By completing the square it is also t quasiperiodic in z with ϑ z t t exp p i t 2 z ϑ z t displaystyle vartheta z tau tau exp bigl pi i tau 2z bigr vartheta z tau Thus in general ϑ z a b t t exp p i b 2 t 2 p i b z ϑ z t displaystyle vartheta z a b tau tau exp left pi ib 2 tau 2 pi ibz right vartheta z tau for any integers a and b For any fixed t displaystyle tau the function is an entire function on the complex plane so by Liouville s theorem it cannot be doubly periodic in 1 t displaystyle 1 tau unless it is constant and so the best we could do is to make it periodic in 1 displaystyle 1 and quasi periodic in t displaystyle tau Indeed since ϑ z a b t t ϑ z t exp p b 2 ℑ t 2 b ℑ z displaystyle left frac vartheta z a b tau tau vartheta z tau right exp left pi b 2 Im tau 2b Im z right and ℑ t gt 0 displaystyle Im tau gt 0 the function ϑ z t displaystyle vartheta z tau is unbounded as required by Liouville s theorem It is in fact the most general entire function with 2 quasi periods in the following sense 3 Theorem If f C C displaystyle f mathbb C to mathbb C is entire and nonconstant and satisfies the functional equations f z 1 f z f z t e a z 2 p i b f z displaystyle begin cases f z 1 f z f z tau e az 2 pi ib f z end cases for some constant a b C displaystyle a b in mathbb C If a 0 displaystyle a 0 then b t displaystyle b tau and f z e 2 p i z displaystyle f z e 2 pi iz If a 2 p i displaystyle a 2 pi i then f z C ϑ z 1 2 t b t displaystyle f z C vartheta z frac 1 2 tau b tau for some nonzero C C displaystyle C in mathbb C Theta function 81 with different nome q eipt The black dot in the right hand picture indicates how q changes with t Theta function 81 with different nome q eipt The black dot in the right hand picture indicates how q changes with t Auxiliary functions EditThe Jacobi theta function defined above is sometimes considered along with three auxiliary theta functions in which case it is written with a double 0 subscript ϑ 00 z t ϑ z t displaystyle vartheta 00 z tau vartheta z tau The auxiliary or half period functions are defined by ϑ 01 z t ϑ z 1 2 t ϑ 10 z t exp 1 4 p i t p i z ϑ z 1 2 t t ϑ 11 z t exp 1 4 p i t p i z 1 2 ϑ z 1 2 t 1 2 t displaystyle begin aligned vartheta 01 z tau amp vartheta left z tfrac 1 2 tau right 3pt vartheta 10 z tau amp exp left tfrac 1 4 pi i tau pi iz right vartheta left z tfrac 1 2 tau tau right 3pt vartheta 11 z tau amp exp left tfrac 1 4 pi i tau pi i left z tfrac 1 2 right right vartheta left z tfrac 1 2 tau tfrac 1 2 tau right end aligned This notation follows Riemann and Mumford Jacobi s original formulation was in terms of the nome q eipt rather than t In Jacobi s notation the 8 functions are written 8 1 z q 8 1 p z q ϑ 11 z t 8 2 z q 8 2 p z q ϑ 10 z t 8 3 z q 8 3 p z q ϑ 00 z t 8 4 z q 8 4 p z q ϑ 01 z t displaystyle begin aligned theta 1 z q amp theta 1 pi z q vartheta 11 z tau theta 2 z q amp theta 2 pi z q vartheta 10 z tau theta 3 z q amp theta 3 pi z q vartheta 00 z tau theta 4 z q amp theta 4 pi z q vartheta 01 z tau end aligned Jacobi theta 1 Jacobi theta 2 Jacobi theta 3 Jacobi theta 4 The above definitions of the Jacobi theta functions are by no means unique See Jacobi theta functions notational variations for further discussion If we set z 0 in the above theta functions we obtain four functions of t only defined on the upper half plane Alternatively we obtain four functions of q only defined on the unit disk q lt 1 displaystyle q lt 1 They are sometimes called theta constants note 2 ϑ 11 0 t 8 1 q n 1 n 1 2 q n 1 2 2 ϑ 10 0 t 8 2 q n q n 1 2 2 ϑ 00 0 t 8 3 q n q n 2 ϑ 01 0 t 8 4 q n 1 n q n 2 displaystyle begin aligned vartheta 11 0 tau amp theta 1 q sum n infty infty 1 n 1 2 q n 1 2 2 vartheta 10 0 tau amp theta 2 q sum n infty infty q n 1 2 2 vartheta 00 0 tau amp theta 3 q sum n infty infty q n 2 vartheta 01 0 tau amp theta 4 q sum n infty infty 1 n q n 2 end aligned with the nome q eipt Observe that 8 1 q 0 displaystyle theta 1 q 0 These can be used to define a variety of modular forms and to parametrize certain curves in particular the Jacobi identity is 8 2 q 4 8 4 q 4 8 3 q 4 displaystyle theta 2 q 4 theta 4 q 4 theta 3 q 4 or equivalently ϑ 01 0 t 4 ϑ 10 0 t 4 ϑ 00 0 t 4 displaystyle vartheta 01 0 tau 4 vartheta 10 0 tau 4 vartheta 00 0 tau 4 which is the Fermat curve of degree four Jacobi identities EditJacobi s identities describe how theta functions transform under the modular group which is generated by t t 1 and t 1 t Equations for the first transform are easily found since adding one to t in the exponent has the same effect as adding 1 2 to z n n2 mod 2 For the second let a i t 1 2 exp p t i z 2 displaystyle alpha i tau frac 1 2 exp left frac pi tau iz 2 right Then ϑ 00 z t 1 t a ϑ 00 z t ϑ 01 z t 1 t a ϑ 10 z t ϑ 10 z t 1 t a ϑ 01 z t ϑ 11 z t 1 t i a ϑ 11 z t displaystyle begin aligned vartheta 00 left frac z tau frac 1 tau right amp alpha vartheta 00 z tau quad amp vartheta 01 left frac z tau frac 1 tau right amp alpha vartheta 10 z tau 3pt vartheta 10 left frac z tau frac 1 tau right amp alpha vartheta 01 z tau quad amp vartheta 11 left frac z tau frac 1 tau right amp i alpha vartheta 11 z tau end aligned Theta functions in terms of the nome EditInstead of expressing the Theta functions in terms of z and t we may express them in terms of arguments w and the nome q where w epiz and q epit In this form the functions become ϑ 00 w q n w 2 n q n 2 ϑ 01 w q n 1 n w 2 n q n 2 ϑ 10 w q n w 2 n 1 2 q n 1 2 2 ϑ 11 w q i n 1 n w 2 n 1 2 q n 1 2 2 displaystyle begin aligned vartheta 00 w q amp sum n infty infty left w 2 right n q n 2 quad amp vartheta 01 w q amp sum n infty infty 1 n left w 2 right n q n 2 3pt vartheta 10 w q amp sum n infty infty left w 2 right n frac 1 2 q left n frac 1 2 right 2 quad amp vartheta 11 w q amp i sum n infty infty 1 n left w 2 right n frac 1 2 q left n frac 1 2 right 2 end aligned We see that the theta functions can also be defined in terms of w and q without a direct reference to the exponential function These formulas can therefore be used to define the Theta functions over other fields where the exponential function might not be everywhere defined such as fields of p adic numbers Product representations EditThe Jacobi triple product a special case of the Macdonald identities tells us that for complex numbers w and q with q lt 1 and w 0 we have m 1 1 q 2 m 1 w 2 q 2 m 1 1 w 2 q 2 m 1 n w 2 n q n 2 displaystyle prod m 1 infty left 1 q 2m right left 1 w 2 q 2m 1 right left 1 w 2 q 2m 1 right sum n infty infty w 2n q n 2 It can be proven by elementary means as for instance in Hardy and Wright s An Introduction to the Theory of Numbers If we express the theta function in terms of the nome q epit noting some authors instead set q e2pit and take w epiz then ϑ z t n exp p i t n 2 exp 2 p i z n n w 2 n q n 2 displaystyle vartheta z tau sum n infty infty exp pi i tau n 2 exp 2 pi izn sum n infty infty w 2n q n 2 We therefore obtain a product formula for the theta function in the form ϑ z t m 1 1 exp 2 m p i t 1 exp 2 m 1 p i t 2 p i z 1 exp 2 m 1 p i t 2 p i z displaystyle vartheta z tau prod m 1 infty big 1 exp 2m pi i tau big Big 1 exp big 2m 1 pi i tau 2 pi iz big Big Big 1 exp big 2m 1 pi i tau 2 pi iz big Big In terms of w and q ϑ z t m 1 1 q 2 m 1 q 2 m 1 w 2 1 q 2 m 1 w 2 q 2 q 2 w 2 q q 2 q w 2 q 2 q 2 q 2 8 w 2 q q 2 displaystyle begin aligned vartheta z tau amp prod m 1 infty left 1 q 2m right left 1 q 2m 1 w 2 right left 1 frac q 2m 1 w 2 right amp left q 2 q 2 right infty left w 2 q q 2 right infty left frac q w 2 q 2 right infty amp left q 2 q 2 right infty theta left w 2 q q 2 right end aligned where is the q Pochhammer symbol and 8 is the q theta function Expanding terms out the Jacobi triple product can also be written m 1 1 q 2 m 1 w 2 w 2 q 2 m 1 q 4 m 2 displaystyle prod m 1 infty left 1 q 2m right Big 1 left w 2 w 2 right q 2m 1 q 4m 2 Big which we may also write as ϑ z q m 1 1 q 2 m 1 2 cos 2 p z q 2 m 1 q 4 m 2 displaystyle vartheta z mid q prod m 1 infty left 1 q 2m right left 1 2 cos 2 pi z q 2m 1 q 4m 2 right This form is valid in general but clearly is of particular interest when z is real Similar product formulas for the auxiliary theta functions are ϑ 01 z q m 1 1 q 2 m 1 2 cos 2 p z q 2 m 1 q 4 m 2 ϑ 10 z q 2 q 1 4 cos p z m 1 1 q 2 m 1 2 cos 2 p z q 2 m q 4 m ϑ 11 z q 2 q 1 4 sin p z m 1 1 q 2 m 1 2 cos 2 p z q 2 m q 4 m displaystyle begin aligned vartheta 01 z mid q amp prod m 1 infty left 1 q 2m right left 1 2 cos 2 pi z q 2m 1 q 4m 2 right 3pt vartheta 10 z mid q amp 2q frac 1 4 cos pi z prod m 1 infty left 1 q 2m right left 1 2 cos 2 pi z q 2m q 4m right 3pt vartheta 11 z mid q amp 2q frac 1 4 sin pi z prod m 1 infty left 1 q 2m right left 1 2 cos 2 pi z q 2m q 4m right end aligned In particular lim q 0 ϑ 10 z q 2 q 1 4 cos p z lim q 0 ϑ 11 z q 2 q 1 4 sin p z displaystyle lim q to 0 frac vartheta 10 z mid q 2q frac 1 4 cos pi z quad lim q to 0 frac vartheta 11 z mid q 2q frac 1 4 sin pi z so we may interpret them as one parameter deformations of the periodic functions sin cos displaystyle sin cos again validating the interpretation of the theta function as the most general 2 quasi period function Integral representations EditThe Jacobi theta functions have the following integral representations ϑ 00 z t i i i e i p t u 2 cos 2 u z p u sin p u d u ϑ 01 z t i i i e i p t u 2 cos 2 u z sin p u d u ϑ 10 z t i e i z 1 4 i p t i i e i p t u 2 cos 2 u z p u p t u sin p u d u ϑ 11 z t e i z 1 4 i p t i i e i p t u 2 cos 2 u z p t u sin p u d u displaystyle begin aligned vartheta 00 z tau amp i int i infty i infty e i pi tau u 2 frac cos 2uz pi u sin pi u mathrm d u 6pt vartheta 01 z tau amp i int i infty i infty e i pi tau u 2 frac cos 2uz sin pi u mathrm d u 6pt vartheta 10 z tau amp ie iz frac 1 4 i pi tau int i infty i infty e i pi tau u 2 frac cos 2uz pi u pi tau u sin pi u mathrm d u 6pt vartheta 11 z tau amp e iz frac 1 4 i pi tau int i infty i infty e i pi tau u 2 frac cos 2uz pi tau u sin pi u mathrm d u end aligned Explicit values EditLemniscatic values Edit Proper credit for most of these results goes to Ramanujan See Ramanujan s lost notebook and a relevant reference at Euler function The Ramanujan results quoted at Euler function plus a few elementary operations give the results below so they are either in Ramanujan s lost notebook or follow immediately from it See also Yi 2004 4 Define f q ϑ 00 0 t 8 3 0 q n q n 2 displaystyle quad varphi q vartheta 00 0 tau theta 3 0 q sum n infty infty q n 2 with the nome q e p i t displaystyle q e pi i tau t n 1 displaystyle tau n sqrt 1 and Dedekind eta function h t displaystyle eta tau Then for n 1 2 3 displaystyle n 1 2 3 dots f e p p 4 G 3 4 2 h 1 f e 2 p p 4 G 3 4 2 2 2 f e 3 p p 4 G 3 4 1 3 108 8 f e 4 p p 4 G 3 4 2 8 4 4 f e 5 p p 4 G 3 4 2 5 5 f e 6 p p 4 G 3 4 1 4 3 4 4 4 9 4 12 3 8 f e 7 p p 4 G 3 4 13 7 7 3 7 14 3 8 7 16 f e 8 p p 4 G 3 4 2 2 128 8 4 f e 9 p p 4 G 3 4 1 2 2 3 3 3 f e 10 p p 4 G 3 4 64 4 80 4 81 4 100 4 200 4 f e 11 p p 4 G 3 4 4 11 3 3 tanh 1 4 arcosh 7 4 1 6 artanh 27 47 3 44 8 66 22 11 f e 12 p p 4 G 3 4 1 4 2 4 3 4 4 4 9 4 18 4 24 4 2 108 8 f e 13 p p 4 G 3 4 1 13 2 13 3 coth 1 6 artanh 6 11 3 f e 14 p p 4 G 3 4 13 7 7 3 7 10 2 7 28 8 4 7 28 7 16 f e 15 p p 4 G 3 4 7 3 3 5 15 60 4 1500 4 12 3 8 5 2 f e 16 p f e 4 p p 4 G 3 4 1 2 4 128 16 f e 17 p p 4 G 3 4 2 1 17 4 17 8 5 17 17 17 17 2 f e 20 p f e 5 p p 4 G 3 4 3 2 5 4 5 2 6 f e 36 p 3 f e 9 p 2 f e 4 p f e p p 4 G 3 4 2 4 18 4 216 4 3 displaystyle begin aligned varphi left e pi right amp frac sqrt 4 pi Gamma left frac 3 4 right sqrt 2 eta left sqrt 1 right varphi left e 2 pi right amp frac sqrt 4 pi Gamma left frac 3 4 right frac sqrt 2 sqrt 2 2 varphi left e 3 pi right amp frac sqrt 4 pi Gamma left frac 3 4 right frac sqrt 1 sqrt 3 sqrt 8 108 varphi left e 4 pi right amp frac sqrt 4 pi Gamma left frac 3 4 right frac 2 sqrt 4 8 4 varphi left e 5 pi right amp frac sqrt 4 pi Gamma left frac 3 4 right sqrt frac 2 sqrt 5 5 varphi left e 6 pi right amp frac sqrt 4 pi Gamma left frac 3 4 right frac sqrt sqrt 4 1 sqrt 4 3 sqrt 4 4 sqrt 4 9 sqrt 8 12 3 varphi left e 7 pi right amp frac sqrt 4 pi Gamma left frac 3 4 right frac sqrt sqrt 13 sqrt 7 sqrt 7 3 sqrt 7 sqrt 8 14 3 cdot sqrt 16 7 varphi left e 8 pi right amp frac sqrt 4 pi Gamma left frac 3 4 right frac sqrt 2 sqrt 2 sqrt 8 128 4 varphi left e 9 pi right amp frac sqrt 4 pi Gamma left frac 3 4 right frac 1 sqrt 3 2 2 sqrt 3 3 varphi left e 10 pi right amp frac sqrt 4 pi Gamma left frac 3 4 right frac sqrt sqrt 4 64 sqrt 4 80 sqrt 4 81 sqrt 4 100 sqrt 4 200 varphi left e 11 pi right amp frac sqrt 4 pi Gamma left frac 3 4 right frac 4 sqrt 11 3 sqrt 3 tanh left tfrac 1 4 operatorname arcosh left tfrac 7 4 right tfrac 1 6 operatorname artanh left tfrac 27 47 sqrt 3 right right sqrt 8 44 cdot sqrt 66 22 sqrt 11 varphi left e 12 pi right amp frac sqrt 4 pi Gamma left frac 3 4 right frac sqrt sqrt 4 1 sqrt 4 2 sqrt 4 3 sqrt 4 4 sqrt 4 9 sqrt 4 18 sqrt 4 24 2 sqrt 8 108 varphi left e 13 pi right amp frac sqrt 4 pi Gamma left frac 3 4 right sqrt tfrac 1 13 tfrac 2 13 sqrt 3 coth left tfrac 1 6 operatorname artanh left tfrac 6 11 sqrt 3 right right varphi left e 14 pi right amp frac sqrt 4 pi Gamma left frac 3 4 right frac sqrt sqrt 13 sqrt 7 sqrt 7 3 sqrt 7 sqrt 10 2 sqrt 7 sqrt 8 28 sqrt 4 sqrt 7 sqrt 16 28 7 varphi left e 15 pi right amp frac sqrt 4 pi Gamma left frac 3 4 right frac sqrt 7 3 sqrt 3 sqrt 5 sqrt 15 sqrt 4 60 sqrt 4 1500 sqrt 8 12 3 cdot sqrt 5 2 varphi left e 16 pi right amp varphi left e 4 pi right frac sqrt 4 pi Gamma left frac 3 4 right frac sqrt 4 1 sqrt 2 sqrt 16 128 varphi left e 17 pi right amp frac sqrt 4 pi Gamma left frac 3 4 right frac sqrt 2 1 sqrt 4 17 sqrt 8 17 sqrt 5 sqrt 17 sqrt 17 17 sqrt 17 2 varphi left e 20 pi right amp varphi left e 5 pi right frac sqrt 4 pi Gamma left frac 3 4 right sqrt frac 3 2 sqrt 4 5 5 sqrt 2 6 varphi left e 36 pi right amp 3 varphi left e 9 pi right 2 varphi left e 4 pi right varphi left e pi right frac sqrt 4 pi Gamma left frac 3 4 right sqrt 3 sqrt 4 2 sqrt 4 18 sqrt 4 216 end aligned Note that the following modular identities hold 2 f q 4 f q 2 f 2 q 2 f 2 q 3 f q 9 f q 9 f 4 q 3 f q f 3 q 3 5 f q 25 f q 5 cot 1 2 arctan 2 5 f q f q 5 f 2 q f 2 q 5 1 s q s 2 q s q displaystyle begin aligned 2 varphi left q 4 right amp varphi q sqrt 2 varphi 2 left q 2 right varphi 2 q 3 varphi left q 9 right amp varphi q sqrt 3 9 frac varphi 4 left q 3 right varphi q varphi 3 q sqrt 5 varphi left q 25 right amp varphi left q 5 right cot left frac 1 2 arctan left frac 2 sqrt 5 frac varphi q varphi left q 5 right varphi 2 q varphi 2 left q 5 right frac 1 s q s 2 q s q right right end aligned where s q s e p i t R e p i 5 t displaystyle s q s left e pi i tau right R left e pi i 5 tau right is the Rogers Ramanujan continued fraction s q tan 1 2 arctan 5 2 f 2 q 5 f 2 q 1 2 cot 2 1 2 arccot 5 2 f 2 q 5 f 2 q 1 2 5 e p i 25 t 1 e p i 5 t 1 e 2 p i 5 t 1 displaystyle begin aligned s q amp sqrt 5 tan left frac 1 2 arctan left frac 5 2 frac varphi 2 left q 5 right varphi 2 q frac 1 2 right right cot 2 left frac 1 2 operatorname arccot left frac 5 2 frac varphi 2 left q 5 right varphi 2 q frac 1 2 right right amp cfrac e pi i 25 tau 1 cfrac e pi i 5 tau 1 cfrac e 2 pi i 5 tau 1 ddots end aligned Equianharmonic values Edit The mathematician Bruce Berndt found out further values 5 of the theta function f exp 3 p p 1 G 4 3 3 2 2 2 3 3 13 8 f exp 2 3 p p 1 G 4 3 3 2 2 2 3 3 13 8 cos 1 24 p f exp 3 3 p p 1 G 4 3 3 2 2 2 3 3 7 8 2 3 1 f exp 4 3 p p 1 G 4 3 3 2 2 5 3 3 13 8 1 cos 1 12 p f exp 5 3 p p 1 G 4 3 3 2 2 2 3 3 5 8 sin 1 5 p 2 5 100 3 2 5 10 3 3 5 5 1 displaystyle begin array lll varphi left exp sqrt 3 pi right amp amp pi 1 Gamma left tfrac 4 3 right 3 2 2 2 3 3 13 8 varphi left exp 2 sqrt 3 pi right amp amp pi 1 Gamma left tfrac 4 3 right 3 2 2 2 3 3 13 8 cos tfrac 1 24 pi varphi left exp 3 sqrt 3 pi right amp amp pi 1 Gamma left tfrac 4 3 right 3 2 2 2 3 3 7 8 sqrt 3 2 1 varphi left exp 4 sqrt 3 pi right amp amp pi 1 Gamma left tfrac 4 3 right 3 2 2 5 3 3 13 8 Bigl 1 sqrt cos tfrac 1 12 pi Bigr varphi left exp 5 sqrt 3 pi right amp amp pi 1 Gamma left tfrac 4 3 right 3 2 2 2 3 3 5 8 sin tfrac 1 5 pi tfrac 2 5 sqrt 3 100 tfrac 2 5 sqrt 3 10 tfrac 3 5 sqrt 5 1 end array Further values Edit Many values of the theta function 6 and especially of the shown phi function can be represented in terms of the gamma function f exp 2 p p 1 2 G 9 8 G 5 4 1 2 2 7 8 f exp 2 2 p p 1 2 G 9 8 G 5 4 1 2 2 1 8 1 2 1 f exp 3 2 p p 1 2 G 9 8 G 5 4 1 2 2 3 8 3 1 2 3 1 tan 5 24 p f exp 4 2 p p 1 2 G 9 8 G 5 4 1 2 2 1 8 1 2 2 2 4 f exp 5 2 p p 1 2 G 9 8 G 5 4 1 2 2 15 8 1 5 3 cos 1 10 p 9 6 1 3 1 3 2 3 1 6 5 1 3 9 6 1 3 1 3 2 3 1 6 5 1 3 1 5 5 2 sin 1 5 p f exp 6 p p 1 2 G 5 24 G 5 12 1 2 2 13 24 3 1 8 sin 5 12 p f exp 1 2 6 p p 1 2 G 5 24 G 5 12 1 2 2 5 24 3 1 8 sin 5 24 p displaystyle begin array lll varphi left exp sqrt 2 pi right amp amp pi 1 2 Gamma left tfrac 9 8 right Gamma left tfrac 5 4 right 1 2 2 7 8 varphi left exp 2 sqrt 2 pi right amp amp pi 1 2 Gamma left tfrac 9 8 right Gamma left tfrac 5 4 right 1 2 2 1 8 Bigl 1 sqrt sqrt 2 1 Bigr varphi left exp 3 sqrt 2 pi right amp amp pi 1 2 Gamma left tfrac 9 8 right Gamma left tfrac 5 4 right 1 2 2 3 8 3 1 2 sqrt 3 1 sqrt tan tfrac 5 24 pi varphi left exp 4 sqrt 2 pi right amp amp pi 1 2 Gamma left tfrac 9 8 right Gamma left tfrac 5 4 right 1 2 2 1 8 Bigl 1 sqrt 4 2 sqrt 2 2 Bigr varphi left exp 5 sqrt 2 pi right amp amp pi 1 2 Gamma left tfrac 9 8 right Gamma left tfrac 5 4 right 1 2 2 15 8 amp amp cdot biggl tfrac 1 5 sqrt 3 cos tfrac 1 10 pi dfrac 9 sqrt 6 1 3 1 sqrt 3 sqrt 2 3 1 6 5 1 3 9 sqrt 6 1 3 1 sqrt 3 sqrt 2 3 1 6 5 1 3 tfrac 1 5 sqrt 5 sqrt 2 sin tfrac 1 5 pi biggr varphi left exp sqrt 6 pi right amp amp pi 1 2 Gamma left tfrac 5 24 right Gamma left tfrac 5 12 right 1 2 2 13 24 3 1 8 sqrt sin tfrac 5 12 pi varphi left exp tfrac 1 2 sqrt 6 pi right amp amp pi 1 2 Gamma left tfrac 5 24 right Gamma left tfrac 5 12 right 1 2 2 5 24 3 1 8 sin tfrac 5 24 pi end array Some series identities EditThe next two series identities were proved by Istvan Mezo 7 8 4 2 q i q 1 4 k q 2 k 2 k 8 1 2 k 1 2 i ln q q 8 4 2 q k q 2 k 2 8 4 k ln q i q displaystyle begin aligned theta 4 2 q amp iq frac 1 4 sum k infty infty q 2k 2 k theta 1 left frac 2k 1 2i ln q q right 6pt theta 4 2 q amp sum k infty infty q 2k 2 theta 4 left frac k ln q i q right end aligned These relations hold for all 0 lt q lt 1 Specializing the values of q we have the next parameter free sums p e p 2 1 G 2 3 4 i k e p k 2 k 2 8 1 i p 2 2 k 1 e p p 2 1 G 2 3 4 k 8 4 i k p e p e 2 p k 2 displaystyle begin aligned sqrt frac pi sqrt e pi 2 cdot frac 1 Gamma 2 left frac 3 4 right amp i sum k infty infty e pi left k 2k 2 right theta 1 left frac i pi 2 2k 1 e pi right 6pt sqrt frac pi 2 cdot frac 1 Gamma 2 left frac 3 4 right amp sum k infty infty frac theta 4 left ik pi e pi right e 2 pi k 2 end aligned Zeros of the Jacobi theta functions EditAll zeros of the Jacobi theta functions are simple zeros and are given by the following ϑ z t ϑ 00 z t 0 z m n t 1 2 t 2 ϑ 11 z t 0 z m n t ϑ 10 z t 0 z m n t 1 2 ϑ 01 z t 0 z m n t t 2 displaystyle begin aligned vartheta z tau vartheta 00 z tau amp 0 quad amp Longleftrightarrow amp amp quad z amp m n tau frac 1 2 frac tau 2 3pt vartheta 11 z tau amp 0 quad amp Longleftrightarrow amp amp quad z amp m n tau 3pt vartheta 10 z tau amp 0 quad amp Longleftrightarrow amp amp quad z amp m n tau frac 1 2 3pt vartheta 01 z tau amp 0 quad amp Longleftrightarrow amp amp quad z amp m n tau frac tau 2 end aligned where m n are arbitrary integers Relation to the Riemann zeta function EditThe relation ϑ 0 1 t i t 1 2 ϑ 0 t displaystyle vartheta left 0 frac 1 tau right left i tau right frac 1 2 vartheta 0 tau was used by Riemann to prove the functional equation for the Riemann zeta function by means of the Mellin transform G s 2 p s 2 z s 1 2 0 ϑ 0 i t 1 t s 2 d t t displaystyle Gamma left frac s 2 right pi frac s 2 zeta s frac 1 2 int 0 infty bigl vartheta 0 it 1 bigr t frac s 2 frac mathrm d t t which can be shown to be invariant under substitution of s by 1 s The corresponding integral for z 0 is given in the article on the Hurwitz zeta function Relation to the Weierstrass elliptic function EditThe theta function was used by Jacobi to construct in a form adapted to easy calculation his elliptic functions as the quotients of the above four theta functions and could have been used by him to construct Weierstrass s elliptic functions also since z t log ϑ 11 z t c displaystyle wp z tau big log vartheta 11 z tau big c where the second derivative is with respect to z and the constant c is defined so that the Laurent expansion of z at z 0 has zero constant term Relation to the q gamma function EditThe fourth theta function and thus the others too is intimately connected to the Jackson q gamma function via the relation 8 G q 2 x G q 2 1 x 1 q 2 x 1 x q 2 q 2 3 q 2 1 8 4 1 2 i 1 2 x log q 1 q displaystyle left Gamma q 2 x Gamma q 2 1 x right 1 frac q 2x 1 x left q 2 q 2 right infty 3 left q 2 1 right theta 4 left frac 1 2i 1 2x log q frac 1 q right Relations to Dedekind eta function EditLet h t be the Dedekind eta function and the argument of the theta function as the nome q epit Then 8 2 q ϑ 10 0 t 2 h 2 2 t h t 8 3 q ϑ 00 0 t h 5 t h 2 1 2 t h 2 2 t h 2 1 2 t 1 h t 1 8 4 q ϑ 01 0 t h 2 1 2 t h t displaystyle begin aligned theta 2 q vartheta 10 0 tau amp frac 2 eta 2 2 tau eta tau 3pt theta 3 q vartheta 00 0 tau amp frac eta 5 tau eta 2 left frac 1 2 tau right eta 2 2 tau frac eta 2 left frac 1 2 tau 1 right eta tau 1 3pt theta 4 q vartheta 01 0 tau amp frac eta 2 left frac 1 2 tau right eta tau end aligned and 8 2 q 8 3 q 8 4 q 2 h 3 t displaystyle theta 2 q theta 3 q theta 4 q 2 eta 3 tau See also the Weber modular functions Elliptic modulus EditThe elliptic modulus is k t ϑ 10 0 t 2 ϑ 00 0 t 2 displaystyle k tau frac vartheta 10 0 tau 2 vartheta 00 0 tau 2 and the complementary elliptic modulus is k t ϑ 01 0 t 2 ϑ 00 0 t 2 displaystyle k tau frac vartheta 01 0 tau 2 vartheta 00 0 tau 2 A solution to the heat equation EditThe Jacobi theta function is the fundamental solution of the one dimensional heat equation with spatially periodic boundary conditions 9 Taking z x to be real and t it with t real and positive we can write ϑ x i t 1 2 n 1 exp p n 2 t cos 2 p n x displaystyle vartheta x it 1 2 sum n 1 infty exp left pi n 2 t right cos 2 pi nx which solves the heat equation t ϑ x i t 1 4 p 2 x 2 ϑ x i t displaystyle frac partial partial t vartheta x it frac 1 4 pi frac partial 2 partial x 2 vartheta x it This theta function solution is 1 periodic in x and as t 0 it approaches the periodic delta function or Dirac comb in the sense of distributions lim t 0 ϑ x i t n d x n displaystyle lim t to 0 vartheta x it sum n infty infty delta x n General solutions of the spatially periodic initial value problem for the heat equation may be obtained by convolving the initial data at t 0 with the theta function Relation to the Heisenberg group EditThe Jacobi theta function is invariant under the action of a discrete subgroup of the Heisenberg group This invariance is presented in the article on the theta representation of the Heisenberg group Generalizations EditIf F is a quadratic form in n variables then the theta function associated with F is 8 F z m Z n e 2 p i z F m displaystyle theta F z sum m in mathbb Z n e 2 pi izF m with the sum extending over the lattice of integers Z n displaystyle mathbb Z n This theta function is a modular form of weight n 2 on an appropriately defined subgroup of the modular group In the Fourier expansion 8 F z k 0 R F k e 2 p i k z displaystyle hat theta F z sum k 0 infty R F k e 2 pi ikz the numbers RF k are called the representation numbers of the form Theta series of a Dirichlet character Edit For x a primitive Dirichlet character modulo q and n 1 x 1 2 then 8 x z 1 2 n x n n n e 2 i p n 2 z displaystyle theta chi z frac 1 2 sum n infty infty chi n n nu e 2i pi n 2 z is a weight 1 2 n modular form of level 4q2 and character x d 1 d n displaystyle chi d left frac 1 d right nu which means 10 8 x a z b c z d x d 1 d n 8 1 a z b c z d 8 1 z 1 2 n 8 x z displaystyle theta chi left frac az b cz d right chi d left frac 1 d right nu left frac theta 1 left frac az b cz d right theta 1 z right 1 2 nu theta chi z whenever a b c d Z 4 a d b c 1 c 0 mod 4 q 2 displaystyle a b c d in mathbb Z 4 ad bc 1 c equiv 0 bmod 4 q 2 Ramanujan theta function Edit Further information Ramanujan theta function and mock theta function Riemann theta function Edit Let H n F M n C F F T Im F gt 0 displaystyle mathbb H n left F in M n mathbb C big F F mathsf T operatorname Im F gt 0 right the set of symmetric square matrices whose imaginary part is positive definite H n displaystyle mathbb H n is called the Siegel upper half space and is the multi dimensional analog of the upper half plane The n dimensional analogue of the modular group is the symplectic group Sp 2n Z displaystyle mathbb Z for n 1 Sp 2 Z displaystyle mathbb Z SL 2 Z displaystyle mathbb Z The n dimensional analogue of the congruence subgroups is played by ker Sp 2 n Z Sp 2 n Z k Z displaystyle ker big operatorname Sp 2n mathbb Z to operatorname Sp 2n mathbb Z k mathbb Z big Then given t H n displaystyle mathbb H n the Riemann theta function is defined as 8 z t m Z n exp 2 p i 1 2 m T t m m T z displaystyle theta z tau sum m in mathbb Z n exp left 2 pi i left tfrac 1 2 m mathsf T tau m m mathsf T z right right Here z C n displaystyle mathbb C n is an n dimensional complex vector and the superscript T denotes the transpose The Jacobi theta function is then a special case with n 1 and t H displaystyle mathbb H where H displaystyle mathbb H is the upper half plane One major application of the Riemann theta function is that it allows one to give explicit formulas for meromorphic functions on compact Riemann surfaces as well as other auxiliary objects that figure prominently in their function theory by taking t to be the period matrix with respect to a canonical basis for its first homology group The Riemann theta converges absolutely and uniformly on compact subsets of C n H n displaystyle mathbb C n times mathbb H n The functional equation is 8 z a t b t exp 2 p i b T z 1 2 b T t b 8 z t displaystyle theta z a tau b tau exp 2 pi i left b mathsf T z tfrac 1 2 b mathsf T tau b right theta z tau which holds for all vectors a b Z n displaystyle mathbb Z n and for all z C n displaystyle mathbb C n and t H n displaystyle mathbb H n Poincare series Edit The Poincare series generalizes the theta series to automorphic forms with respect to arbitrary Fuchsian groups Theta function coefficients Edit If a and b are positive integers x n any arithmetical function and q lt 1 then n 1 x n q a n 2 b n n 1 q n a d 2 b d n d n x d displaystyle sum n 1 infty chi n q an 2 bn sum n 1 infty q n sum stackrel d n ad 2 bd n chi d The general case where f n and x n are any arithmetical functions and f n N displaystyle mathbb N N displaystyle mathbb N is strictly increasing with f 0 0 is n 1 x n q f n n 1 q n d n f d d x d m d f d displaystyle sum n 1 infty chi n q f n sum n 1 infty q n sum d n sum f delta d chi delta mu left frac d f delta right Notes Edit See e g https dlmf nist gov 20 1 Note that this is in general not equivalent to the usual interpretation e z a e a Log e z displaystyle e z alpha e alpha operatorname Log e z when z displaystyle z is outside the strip p lt Im z p displaystyle pi lt operatorname Im z leq pi Here Log displaystyle operatorname Log denotes the principal branch of the complex logarithm 8 1 q 0 displaystyle theta 1 q 0 for all q C displaystyle q in mathbb C with q lt 1 displaystyle q lt 1 References EditAbramowitz Milton Stegun Irene A 1964 Handbook of Mathematical Functions New York Dover Publications sec 16 27ff ISBN 978 0 486 61272 0 Akhiezer Naum Illyich 1990 1970 Elements of the Theory of Elliptic Functions AMS Translations of Mathematical Monographs Vol 79 Providence RI AMS ISBN 978 0 8218 4532 5 Farkas Hershel M Kra Irwin 1980 Riemann Surfaces New York Springer Verlag ch 6 ISBN 978 0 387 90465 8 for treatment of the Riemann theta Hardy G H Wright E M 1959 An Introduction to the Theory of Numbers 4th ed Oxford Clarendon Press Mumford David 1983 Tata Lectures on Theta I Boston Birkhauser ISBN 978 3 7643 3109 2 Pierpont James 1959 Functions of a Complex Variable New York Dover Publications Rauch Harry E Farkas Hershel M 1974 Theta Functions with Applications to Riemann Surfaces Baltimore Williams amp Wilkins ISBN 978 0 683 07196 2 Reinhardt William P Walker Peter L 2010 Theta Functions in Olver Frank W J Lozier Daniel M Boisvert Ronald F Clark Charles W eds NIST Handbook of Mathematical Functions Cambridge University Press ISBN 978 0 521 19225 5 MR 2723248 Whittaker E T Watson G N 1927 A Course in Modern Analysis 4th ed Cambridge Cambridge University Press ch 21 history of Jacobi s 8 functions Further reading EditFarkas Hershel M 2008 Theta functions in complex analysis and number theory In Alladi Krishnaswami ed Surveys in Number Theory Developments in Mathematics Vol 17 Springer Verlag pp 57 87 ISBN 978 0 387 78509 7 Zbl 1206 11055 Schoeneberg Bruno 1974 IX Theta series Elliptic modular functions Die Grundlehren der mathematischen Wissenschaften Vol 203 Springer Verlag pp 203 226 ISBN 978 3 540 06382 7 Ackerman Michael 1 February 1979 On the generating functions of certain Eisenstein series Mathematische Annalen 244 1 75 81 doi 10 1007 BF01420339 S2CID 120045753 Harry Rauch with Hershel M Farkas Theta functions with applications to Riemann Surfaces Williams and Wilkins Baltimore MD 1974 ISBN 0 683 07196 3 External links EditMoiseev Igor Elliptic functions for Matlab and Octave This article incorporates material from Integral representations of Jacobi theta functions on PlanetMath which is licensed under the Creative Commons Attribution Share Alike License Tyurin Andrey N 30 October 2002 Quantization Classical and Quantum Field Theory and Theta Functions arXiv math 0210466v1 Chang Der Chen 2011 Heat Kernels for Elliptic and Sub elliptic Operators Birkhauser p 7 Tata Lectures on Theta I Modern Birkhauser Classics Boston MA Birkhauser Boston 2007 p 4 doi 10 1007 978 0 8176 4577 9 ISBN 978 0 8176 4572 4 Yi Jinhee 2004 Theta function identities and the explicit formulas for theta function and their applications Journal of Mathematical Analysis and Applications 292 2 381 400 doi 10 1016 j jmaa 2003 12 009 Berndt Bruce C Rebak Ors 9 January 2022 Explicit Values for Ramanujan s Theta Function ϕ q Hardy Ramanujan Journal 44 8923 doi 10 46298 hrj 2022 8923 S2CID 245851672 Yi Jinhee 15 April 2004 Theta function identities and the explicit formulas for theta function and their applications Journal of Mathematical Analysis and Applications 292 2 381 400 doi 10 1016 j jmaa 2003 12 009 Mezo Istvan 2013 Duplication formulae involving Jacobi theta functions and Gosper s q trigonometric functions Proceedings of the American Mathematical Society 141 7 2401 2410 doi 10 1090 s0002 9939 2013 11576 5 Mezo Istvan 2012 A q Raabe formula and an integral of the fourth Jacobi theta function Journal of Number Theory 133 2 692 704 doi 10 1016 j jnt 2012 08 025 Ohyama Yousuke 1995 Differential relations of theta functions Osaka Journal of Mathematics 32 2 431 450 Shimura On modular forms of half integral weight Retrieved from https en wikipedia org w index php title Theta function amp oldid 1130043143, wikipedia, wiki, book, books, library,

article

, read, download, free, free download, mp3, video, mp4, 3gp, jpg, jpeg, gif, png, picture, music, song, movie, book, game, games.